ICSME 2016, Oct 5, 2016

A Taxonomy for Program Metamodels
in Program Reverse Engineering

Hironori Washizaki!, Yann-Gael Gueheneuc?, Foutse Khomh?

WASEDA University NI POLYTECHNIQUE 35 =
! 2 MONTREAL -5 g

o—on~, SYSTEM INFORMATION
Ve J
SLC’ 5 o

H. Washizaki, Y-G. Gueheneuc, F. Khomh, “A Taxonomy for Program Metamodels in Program Reverse
Engineering,” 32nd IEEE International Conference on Software Maintenance and Evolution (ICSME 2016)

What Are Program Metamodels?

p

Models of grammars, which
represent target programs
according to a specific purpose

KDM (excerpt.) \

—> Entity

Relationship

Abstract
epresen % %@ii FAMIX (excerpt.)
] Inheritance

\
Q

tation L Class
E Program Metamodel j Definitiu

source

HH [

\

code

D™ \}

Method }<>—LAttribute
n

Invocatio Access :

Case 1: Program Transformation [HICSS'17]

III

“Program meta mode
~ Package, class, method, statemth
Navigation, transformatio

o cvnfin CH O
J&Iswu,m; O
Al RO BEERD (BTHCETR)

M1. BAROEMEHNT SME area(Double, Double) —> Double ERBELTLIEEL), Tk, arealiEALTI. 5. BRET5.50RFEOEMMEHMLTLEZ L,

Task 1. Implement the area function: area(Double, Double)->>Double
that calculates the area of a rectangle.
Then calculate the rectangle which width is 4.5 and the height is 5.5.

Swift

Double area(Double h, Double w){

h'w;

¥

Juhua Li, Kazunori Sakamoto, Hironori Washizaki, Yoshiaki Fukazawa, “Promotion of Educational Effectiveness by
Translation-based Programming Language Learning Using Java and Swift,” 50th Annual Hawaii International Conference on 3
System Sciences (HICSS-50), Waikoloa, Hawaii, Jan 4-7, 2017 7

Case 2: Program Visualization [vissorT’16]

Model name:test(2016-06-04)

Metrics :Number of defects

“Database schema”
Package, cIass\

H L]

istory

—) 7 () Q‘ /’,‘-.,

\
.y y .
__‘\J/
o
Function layer o1 o012 02 o013 0123 o023 o3 Total value

Application (APP) 3 0 0 104 97 0o 95 299
Application framework (FW) 2 0] 0 24 51 0 AT 94
Library (external OSS) 0 0 0 17 2 0 2 21
Android Runtinme(SYSTEM) 0 0 0 0 1 0 3 4
HW Library ‘ 0 0 0 0 7 Y 4 7 21
Others 3 2 0 8 25 0 155 193
Metrics total value 8 2 2 153 183 27 334 709
Total number of files 81764 741 27561 1200 564 426 4710 116966

Ryosuke Ishizue, Hironori Washizaki, Yoshiaki Fukazawa, Sakae Inoue, Yoshiiku Hanai, Masanobu Kanazawa and Katsushi
Namba, “Metrics visualization technique based on the origins and function layers for OSS-based development,” 4th IEEE
Working Conference on Software Visualization (VISSOFT 2016)

What's the problem?

Concepts are not uniformly Need a common
recognized vocabulary!

Hard to select, design or Need a comprehensive
communicate metamodels taxonomy and classification

without common classification ' based on the taxonomy!

“Program meta model” “Database schema”

e 'H How to
== g —) " @unicateg

Researcher

How to

select?
Reverse
engineer @

design? Statement

Method

Package
Class

History

Tool developer

“

Research Goal and Method

To provide a comprehensive taxonomy and use this
taxonomy to classify some popular metamodels

"meta model" AND ("source code”
OR program*) AND (extract* OR Taxonomy

transform* OR generat¥) (3) Analys:s >
G Engineering Village

(2) SLR (4) Classification é M1 | X
." > > o M?2 X
62 o+ .
paper % M5 X

1200+ papers E (1) Conceptual Framework j

6
Engineering Village covers 12 trusted databases incl. Ei Compendex and Inspec http://www.engineeringvillage.com/

(1) Conceptual framework

(QéﬂﬂﬂﬂTMﬂWVG;E\

/ Modelware\

/D_ Meta Q\
Metasyntax
Metasyntax language Y
7 1 of schema
conforms
[|
can be can be
mapped to Program mapped to |Exchange
Grammar e PP 5 € PP 5
= metamodel format
A A
conforms
[| [P
describes Program describes
Program [e £ — Model data
model
class C { . <class/>
void m() { C.C?ass <name>C
. </name>
\ m: Method -

(2-3) ProMeTA: Program Metamodel Taxonomy

@)

Target Language

Abstraction Leve}

@)
Meta-Language

C

Program Metamodel

o

Quality

Definition

Meta and History

Exchange Format

Processing Env.

&
(l o0

(2-3) ProMeTA — Target Language

Program Metamodel

@) (@)
Target Language Quality
N
bsh‘qction Level Definition
N ©
M&Q-Language Meta and History
AN C
‘Kxchange Format || Processing Env.
Independence | [Supported Langs

Java

C

(2-3) ProMeTA — Abstraction Level

@)

Target Language

Abstraction Leve}

N &
W\e’é\l_a nguage
N\

C

Program Metamodel

o

Quality

Definition

Meta and History

EXQhange Format

Processing Env.

DN

High Middle || Low

System|| Module

(2-3) ProMeTA — Meta-Language

Program Metamodel

@)

Target Language

Abstraction Leve}

@)
Meta-Language

o

Quality

Definition

Meta and History

C
Exghsgge Format|| Processing Env.

AN

Meta-Metamodel | | Metasyntax of Grammar

PN

Graph

Tree Only

(2-3) ProMeTA — Exchange Format

Program Metamodel

@)

Target Language

Abstraction Leve}

®

Meta-Language

C

o

Quality

Definition

Meta and History

Exchange Format

Processing Env.

& » = ——

Encoding

o

Transfer
Mechanism

Abstract
Syntax

Exchange Exchange

Pattern ||Format Quality

Text | | Binary

(2-3) ProMeTA — Processing Environment

@)

Target Language

Abstraction Leve}

@)
Meta-Language

C

Program Metamodel

o

Quality

Definition

Meta and History

Exchange Format

Processing Env.

m

Navigation| | Extractor || Analysis | |Transfor

mation

o

GPL || Query

6

(2-3) ProMeTA — Program Meta and History

Program Metamodel

@)

Target Language

(@)
Quality
Abstraction Level, Definition
A
Meta-Language Meta and History
C —,
Exchange Format || Processingtny.
i
Language | | Soft. Ver. | | File Date | |File Ver.| | History

/A

Ver. ChangeL

A4

(2-3) ProMeTA — Definition

Program Metamodel

@)

Target Language

Abstraction Leve}

®

Meta-Language

C

(@)
Quality

Definition

Exchange Format Processingﬁr\{

Strategy Clarity

Locality

N

Auto

Manual

6

(2-3) ProMeTA — Quality

Program Metamodel

o ®
Target Language Quality
Abstraction Level, 7O
O 77
Meta-Language e ang/Fﬁsty{y
/

angeFormatyPro singf,r{/.

o/ (/c/ S

Functionall[performance| fompatibility lsability | Reliability [Portability|Maintainability

Suitability A

ISO/IEC 25010 quality model adopted ||<eusabi|it+Modifiability,
=4

M Target Language High Middle Lexical Structure Syntax Semantics| Dialects
T T2 Al |A2| A3 [A4 | A5 | A6 | A7 | A8| A9 |A10[AT11]A12| A13[A14|A15|A16(A17[A18] A19 A20
M1 Independent [Java, Delphi X| X[X[X[X X X[X[X]| X]| X[X X
M2] Independent [Java, PL/SQL X[X| X] X X1 X[X X[X[X]| X X | X X
M3] Object—Oriented|Java, C++, Ada, Smalltalk X | X X1 X X | X
M4] Object—Oriented|Java, C++ X | X X X | X X
M5 Independent |Java, C++, C X X X | X X | X X X
M Meta—Language Exchange Format
L1 | L2| L3[L4] E1 E2 E3 E4(E5 | E6 | E7 |E8|E9|E10|E11|E12|E13|E14|(E15(E16|E17|E18|E19| E20(F21|F22
M1 |MOF Text |File Transfer |XMI, XSD Exp [Ext Sl I I o o I o o B + |+ + + Exp |Ext
M2 |MOF Text |File Transfer | XMI Exp [Ext Sl I I o I o I o o I + |+ |+ + Exp |Ext
M3 JUML Text [Text Stream |XMI, CDIF Exp |Ext + + | A | A | |+ + |+ |+ + Exp [Ext
M4 JUML Text [File Transfer | XMI Exp |Ext +| + | A+ | A | ++ | + + Exp [Ext
M5 X |Binary [Direct RDB (Imp [Int - - - - - - - - - Imp |Int
M Processing Environment
P1 P2 P3 P4 P5 P6|P7(P8| P9
) MoDisco (dedicated parsers), KDM Target Mapping &
M1 OCL, KDM Analysis Package Gra2MoL Transformation Package X
M2| |OCL, Modisco Java Model Query MoDisco (KDM Source ADM tools X | X
Discovery, Java Discoverer)
M3 MOOSE Navigation and Querying Engine MOOSE MOOSE Refactoring Engine X| X
M4] X Datrix X| X
M5 SQL SPOOL (dedicated extractors) X
M Definition Program Meta and History Data Functionality
D1 D2 [D3 | H1 [H2 | H3 | H4 H5 H6 H7 | Q1 Q2 Q3 Q4 | Q5| Q6 Q7
M1]Manually Exp [Ext X + Embedded Manual | + +
M2 Manually Exp |Ext X + Embedded Manual | + +
M3 Manually Exp [Ext +
M4 Manually Exp |[Int + +
M5 | Manually Imp |[Int Dependency analysis
M Non—Functionality
Q8 Q9 Q10| Q11| Q12|Q13|Q14| Q15 Q16 Q18 Q19 Q20({Q21| Q22 |Q23|(Q24|Q25
M1] - [Doc, Sample, Community| ++ ++ | + | + |Free Fully Inheritance, Composition| + | ++ Fully | ++| + +
M2 Doc, Sample, Community| ++ ++ | + | + |Free Fully Package [Inheritance, Composition| + | ++ Fully | ++] ++ | +
M3 Doc, Sample, Community| ++ ++ | + Free Fully Inheritance, Composition| + | ++ Fully | ++ [++ | +
M4 ++ - - Free| Unavailable Inheritance, Composition| + — | Partially| + +
M5 - - - Free| Unavailable - - | Partially| - -

(4) Classification Results and Findings

Metamodels can be reused for major languages (Java, C++)

Better to choose/create metamodels defined by explicitly-
externally defined major metalanguages/exchange formats

Most are suitable for transformations and program analysis
Few supports to describe meta and history data

Lang | Abst | Meta | Exch Env. Hist | Defi Func Qual

ASTM | any ML | MOF | XMI | OCL, MoDisco |Lang | Ext | General ++

KDM any |HML | MOF | XMI | OCL, MoDisco | Ver. |Ext | General ++

FAMIX [OOP | M |UML |MSE | MOOSE Ext | General |4+
SPOOL {OOP | M |UML |XMI | Datrix Int | General |4
UNIQ |Any | ML |EBNF |RDB |SPOOL,SQL Int | Dependency

[II1F Abstract Syntax Tree Metamodel (ASTM), Knowledge Discovery Meta-Model (KDM)

H FAMOOS Information Exchange Model (FAMIX) éj

Related Work and Conclusion

* Existing comparisons and evaluations (e.g.,
[Jin06][lzg14]) were conducted independently

— Do not provide a comprehensive guide of characteristics and
limitations of metamodels.
e Contribution
— A conceptual framework
— A comprehensive taxonomy, named ProMeTA
— A classification of existing popular program metamodels

* Future work
— Validate ProMeTA by conducting experiments
— Make ProMeTA available and modifiable to the community

International Conference on Program Comprehension (ICPC’06). IEEE Computer Society, 2006, pp. 94-99.
[1zg14] J. L. C. Izquierdo and J. G. Molina, “Extracting models from source code in software modernization,” Software and

[Jin06] D. Jin and J. R. Cordy, “Integrating reverse engineering tools using a service-sharing methodology,” in 14th IEEE
Systems Modeling, vol. 13, no. 2, pp. 713-734, 2014. é

Thanks! Questions?

Research Goal and Method

To provide a comprehensive taxonomy and use this
taxonomy to classify some popular metamodels

"meta model"™ AND ("source code”
OR program*] AND (extract* OR . Taxonomy
transform* OR generat*) {_Q)Anal_ysrs
E Engineering Village
/ v
(2) SLR (4) Classification g M1|x X
o | <] X | X
L ——
— % IV.I2
62 paper w
pap = M5 X

1200+ papers

l (1) Conceptual Framework |

6

(2-3) ProMeTA: Program Metamodel Taxonomy

Program Metamodel

|Target Language Quality

|Abstraction Lev Definition

Q
| Meta-Language

h/leta and History}

kxchange Format” Processing Env. |

aH

(1) Conceptual framework

(Grammarware Modelware-' ‘
Meta W\
M ntax
Metasyntax Iang‘l‘Jage i
= of schema
canbe " canbe +
mappedto [Program | Mappedto [Exchange
Grammar|<————
- metamodel format
A
conforms

describes

_Model data

describes Program
Program
model

class C | e EEE
void m() { Llass <name>C
g & </name>

m: Method

]

(4) Classification Results and Findings

* If the target language is a major one like Java or C++, existing
metamodels and tools may be reused.

= Better to choose/create metamodels defined by widely
accepted, explicitly-externally defined metalanguages/formats

* Most are suitable for transformations and program analysis.
* Few supports to describe meta and history data

Lang | Abst | Meta | Exch Env. Hist | Defi| Func Qual

ASTM |any ML | MOF | XMl | OCL MoDisco |Lang |Ext | General ++

KDM ..:any |HML | MOF | XMI | OCL, MoDisco |Ver. |Ext | General ++

FAMIX | OOP M | UML | MSE | MOOSE Ext | General ++

SPOOL | OOP M |UML |XMI | Datrix Int | General +

UNIQ. | Any ML | EBNF | RDB | SPOOL, SQL Int | Dependsncy

1'7“-‘ € Apstract Syntax Tree Metamodel (ASTM), Knowledge Discovery Meta-Model (KDM), z
H FAMOQS Information Exchange Model {FAMIX), SPQOL, UNIQ-ART 9 :

What are metamodels?

e Reverse engineering: analysis process to identify
elements and create target’s representations in
another or at a higher level of abstraction

* Program metamodel: a model of a programming

Inheritance
Definition

FAMIX (excerpt.)

Class |<>—

Y

bute

anguage grammar, which represents target
orograms according to a specific purpose

KDM (excerpt.)

—>

Entity

—<>| Method }<>|\ Attri
Invocation Access

Relationship

4

Key Findings Need to revise

Target language: If the target is a major one like Java or C++, existing
metamodels and tools may be reused.

Abstraction level: None of the existing metamodels supports all of the
required features at certain abstraction levels.

Metalanguage: Better to choose or create metamodels defined by widely
accepted, explicitly-externally defined metalanguages like MOF and UML,
for long-term usage.

Exchange format: Better to choose of create metamodels which support
the widely accepted, explicitly-externally defined SEFs like XM, for long-
term usage.

Processing environment: Most of the metamodels are suitable for
transformations and program analysis.

Definition: Better to select or create explicitly-externally defined
metamodels, for long-term usage.

Program meta and history data: There are few supports to describe meta
and history data in metamodels.

Functionality: Better to select a general metamodel for various reverse
engineering purposes.

Non-functionality: Should select fully available and formalized
metamodels.

