
A Taxonomy for Program Metamodels
in Program Reverse Engineering

Hironori Washizaki1, Yann-Gael Gueheneuc2, Foutse Khomh2

ICSME 2016, Oct 5, 2016

H. Washizaki, Y-G. Gueheneuc, F. Khomh, “A Taxonomy for Program Metamodels in Program Reverse
Engineering,” 32nd IEEE International Conference on Software Maintenance and Evolution (ICSME 2016)

1 2
SYSTEM INFORMATION
CO., LTD.

What Are Program Metamodels?

2

Abstract
represen
tation

Program
source
code

Reverse

Program Grammar

Program Metamodel
Class

Method Attribute

Inheritance
Definition

Invocation Access

FAMIX (excerpt.)

Entity

Relationship

KDM (excerpt.)

Forward

Models of grammars, which
represent target programs
according to a specific purpose

Case 1: Program Transformation [HICSS’17]

“Program meta model”

Package, class, method, statement, …

Navigation, transformation

3
Juhua Li, Kazunori Sakamoto, Hironori Washizaki, Yoshiaki Fukazawa, “Promotion of Educational Effectiveness by
Translation-based Programming Language Learning Using Java and Swift,” 50th Annual Hawaii International Conference on
System Sciences (HICSS-50), Waikoloa, Hawaii, Jan 4-7, 2017

Case 2: Program Visualization [VISSOFT’16]

“Database schema”

Package, class

History, …

4
Ryosuke Ishizue, Hironori Washizaki, Yoshiaki Fukazawa, Sakae Inoue, Yoshiiku Hanai, Masanobu Kanazawa and Katsushi
Namba, “Metrics visualization technique based on the origins and function layers for OSS-based development,” 4th IEEE
Working Conference on Software Visualization (VISSOFT 2016)

What’s the problem?

5

Statement
Method

Transformation
・・・

Package
Class
・・・

History
・・・

Tool developer

Researcher

How to
select?

Reverse
engineer

How to
communicate? How to

design?

Concepts are not uniformly
recognized

Need a common
vocabulary!

Hard to select, design or
communicate metamodels
without common classification

Need a comprehensive
taxonomy and classification
based on the taxonomy!

“Program meta model” “Database schema”

Research Goal and Method

6

To provide a comprehensive taxonomy and use this
taxonomy to classify some popular metamodels

(1) Conceptual Framework

Taxonomy

62 papers

1200+ papers

M
et

am
o

d
el

s

X X

X X

X

・
・
・

・・・

M1

M2

M5

(2) SLR

(3) Analysis

(4) Classification

"meta model" AND ("source code”
OR program*) AND (extract* OR
transform* OR generat*)

Engineering Village covers 12 trusted databases incl. Ei Compendex and Inspec http://www.engineeringvillage.com/

(1) Conceptual framework

7

Metasyntax

Grammar

Program

Meta
language

Program
metamodel

Program
model

Metasyntax
of schema

Exchange
format

Model data

conforms

describes

can be
mapped to

describes

can be
mapped to

class C {
 void m() {
 ...
}

<class/>
 <name>C
 </name>
 ...

C: Class

m: Method

Grammarware Modelware Dataware

conforms

(2-3) ProMeTA: Program Metamodel Taxonomy

8

Program Metamodel

Target Language

Abstraction Level

Meta-Language

Exchange Format Processing Env.

Definition

Meta and History

Quality

(2-3) ProMeTA – Target Language

9

Program Metamodel

Target Language

Abstraction Level

Meta-Language

Exchange Format Processing Env.

Definition

Meta and History

Quality

Independence Supported Langs

Java C ・・・

(2-3) ProMeTA – Abstraction Level

10

Program Metamodel

Target Language

Abstraction Level

Meta-Language

Exchange Format Processing Env.

Definition

Meta and History

Quality

High Middle Low

System Module ・・・

(2-3) ProMeTA – Meta-Language

11

Program Metamodel

Target Language

Abstraction Level

Meta-Language

Exchange Format Processing Env.

Definition

Meta and History

Quality

Meta-Metamodel Metasyntax of Grammar

Graph Tree Only

(2-3) ProMeTA – Exchange Format

12

Program Metamodel

Target Language

Abstraction Level

Meta-Language

Exchange Format Processing Env.

Definition

Meta and History

Quality

Encoding Transfer
Mechanism

Text Binary

Abstract
Syntax

Exchange
Pattern

Exchange
Format Quality

(2-3) ProMeTA – Processing Environment

13

Program Metamodel

Target Language

Abstraction Level

Meta-Language

Exchange Format Processing Env.

Definition

Meta and History

Quality

Navigation Extractor

GPL Query

Analysis Transformation

(2-3) ProMeTA – Program Meta and History

14

Program Metamodel

Target Language

Abstraction Level

Meta-Language

Exchange Format Processing Env.

Definition

Meta and History

Quality

Language Soft. Ver. File Date File Ver. History

Ver. Change

(2-3) ProMeTA – Definition

15

Program Metamodel

Target Language

Abstraction Level

Meta-Language

Exchange Format Processing Env.

Definition

Meta and History

Quality

Strategy Clarity Locality

Auto Manual

(2-3) ProMeTA – Quality

16

Program Metamodel

Target Language

Abstraction Level

Meta-Language

Exchange Format Processing Env.

Definition

Meta and History

Quality

Performance Usability Compatibility Functional
Suitability

Reliability Portability Maintainability

Reusability Modifiability ISO/IEC 25010 quality model adopted

17

M
Target Language High Middle Lexical Structure Syntax Semantics Dialects

T1 T2 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20
M1 Independent Java, Delphi X X X X X X X X X X X X X
M2 Independent Java, PL/SQL X X X X X X X X X X X X X X
M3 Object-Oriented Java, C++, Ada, Smalltalk X X X X X X
M4 Object-Oriented Java, C++ X X X X X X
M5 Independent Java, C++, C X X X X X X X X

M
Meta-Language Exchange Format
L1 L2 L3 L4 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 F21 F22

M1 MOF Text File Transfer XMI, XSD Exp Ext + + ++ ++ ++ ++ + + ++ + + Exp Ext
M2 MOF Text File Transfer XMI Exp Ext + + ++ ++ ++ ++ + + ++ + + Exp Ext
M3 UML Text Text Stream XMI, CDIF Exp Ext + + ++ ++ ++ ++ + + ++ + + Exp Ext
M4 UML Text File Transfer XMI Exp Ext + + ++ ++ ++ ++ ++ + + Exp Ext

M5 X Binary Direct RDB Imp Int - - - - - - - - - Imp Int

M
Processing Environment

P1 P2 P3 P4 P5 P6 P7 P8 P9

M1 OCL, KDM Analysis Package
MoDisco (dedicated parsers),
Gra2MoL

KDM Target Mapping &
Transformation Package

X

M2 OCL, Modisco Java Model Query
MoDisco (KDM Source
Discovery, Java Discoverer)

ADM tools X X

M3 MOOSE Navigation and Querying Engine MOOSE MOOSE Refactoring Engine X X
M4 X Datrix X X
M5 SQL SPOOL (dedicated extractors) X

M
Definition Program Meta and History Data Functionality

D1 D2 D3 H1 H2 H3 H4 H5 H6 H7 Q1 Q2 Q3 Q4 Q5 Q6 Q7

M1 Manually Exp Ext X + Embedded Manual + +
M2 Manually Exp Ext X + Embedded Manual + +
M3 Manually Exp Ext +
M4 Manually Exp Int + +
M5 Manually Imp Int Dependency analysis

M
Non-Functionality

Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25

M1 - Doc, Sample, Community ++ ++ + + Free Fully Inheritance, Composition + ++ Fully ++ + +
M2 Doc, Sample, Community ++ ++ + + Free Fully Package Inheritance, Composition + ++ Fully ++ ++ +

M3 Doc, Sample, Community ++ ++ + Free Fully Inheritance, Composition + ++ Fully ++ ++ +

M4 ++ - - Free Unavailable Inheritance, Composition + - Partially + +
M5 - - - Free Unavailable - - Partially - -

(4) Classification Results and Findings

• Metamodels can be reused for major languages (Java, C++)

• Better to choose/create metamodels defined by explicitly-
externally defined major metalanguages/exchange formats

• Most are suitable for transformations and program analysis

• Few supports to describe meta and history data

18

Lang Abst Meta Exch Env. Hist Defi Func Qual

ASTM any M L MOF XMI OCL, MoDisco Lang Ext General ++

KDM any H M L MOF XMI OCL, MoDisco Ver. Ext General ++

FAMIX OOP M UML MSE MOOSE Ext General ++

SPOOL OOP M UML XMI Datrix Int General +

UNIQ Any M L EBNF RDB SPOOL, SQL Int Dependency

Abstract Syntax Tree Metamodel (ASTM), Knowledge Discovery Meta-Model (KDM)

FAMOOS Information Exchange Model (FAMIX)

Related Work and Conclusion
• Existing comparisons and evaluations (e.g.,

[Jin06][Izq14]) were conducted independently
– Do not provide a comprehensive guide of characteristics and

limitations of metamodels.

• Contribution
– A conceptual framework

– A comprehensive taxonomy, named ProMeTA

– A classification of existing popular program metamodels

• Future work
– Validate ProMeTA by conducting experiments

– Make ProMeTA available and modifiable to the community

19

[Jin06] D. Jin and J. R. Cordy, “Integrating reverse engineering tools using a service-sharing methodology,” in 14th IEEE
International Conference on Program Comprehension (ICPC’06). IEEE Computer Society, 2006, pp. 94–99.
[Izq14] J. L. C. Izquierdo and J. G. Molina, “Extracting models from source code in software modernization,” Software and
Systems Modeling, vol. 13, no. 2, pp. 713–734, 2014.

Thanks! Questions?

20

What are metamodels?

21

• Reverse engineering: analysis process to identify
elements and create target’s representations in
another or at a higher level of abstraction

• Program metamodel: a model of a programming
language grammar, which represents target
programs according to a specific purpose

Class

Method Attribute

Inheritance
Definition

Invocation Access

FAMIX (excerpt.)

Entity

Relationship

KDM (excerpt.)

Key Findings
• Target language: If the target is a major one like Java or C++, existing

metamodels and tools may be reused.
• Abstraction level: None of the existing metamodels supports all of the

required features at certain abstraction levels.
• Metalanguage: Better to choose or create metamodels defined by widely

accepted, explicitly-externally defined metalanguages like MOF and UML,
for long-term usage.

• Exchange format: Better to choose of create metamodels which support
the widely accepted, explicitly-externally defined SEFs like XMI, for long-
term usage.

• Processing environment: Most of the metamodels are suitable for
transformations and program analysis.

• Definition: Better to select or create explicitly-externally defined
metamodels, for long-term usage.

• Program meta and history data: There are few supports to describe meta
and history data in metamodels.

• Functionality: Better to select a general metamodel for various reverse
engineering purposes.

• Non-functionality: Should select fully available and formalized
metamodels.

22

Need to revise

