
Code Smells and Refactoring: A Tertiary Systematic Review of Challenges and
Observations

Guilherme Lacerdaa,c,∗, Fabio Petrillob, Marcelo Pimentac, Yann Gaël Guéhéneucd

aUniversity of Vale do Rio dos Sinos
Polytechnic School

São Leopoldo, RS, Brazil
E-mail: guilhermeslacerda@gmail.com
bUniversity of Quebec at Chicoutimi

Department of Computer Science & Mathematics
Chicoutimi, Quebec, Canada
E-mail: fabio@petrillo.com

cFederal University of Rio Grande do Sul
Institute of Informatics
Porto Alegre, RS, Brazil

E-mail: mpimenta@inf.ufrgs.br
dConcordia University

Departement of Computer Science and Software Engineering
Montreal, Quebec, Canada

E-mail: yann-gael.gueheneuc@concordia.ca

Abstract

Refactoring and smells have been well researched by the software-engineering research community these past decades.
Several secondary studies have been published on code smells, discussing their implications on software quality,their im-
pact on maintenance and evolution, and existing tools for their detection. Other secondary studies addressed refactoring,
discussing refactoring techniques, opportunities for refactoring, impact on quality, and tools support.

In this paper, we present a tertiary systematic literature review of previous surveys, secondary systematic literature
reviews, and systematic mappings. We identify the main observations (what we know) and challenges (what we do not
know) on code smells and refactoring. We perform this tertiary review using eight scientific databases, based on a set of
five research questions, identifying 40 secondary studies between 1992 and 2018.

We organize the main observations and challenges about code smell and their refactoring into: smells definitions, most
common code-smell detection approaches, code-smell detection tools, most common refactoring, and refactoring tools.
We show that code smells and refactoring have a strong relationship with quality attributes, i.e., with understandability,
maintainability, testability, complexity, functionality, and reusability. We argue that code smells and refactoring could
be considered as the two faces of a same coin. Besides, we identify how refactoring affects quality attributes, more than
code smells. We also discuss the implications of this work for practitioners, researchers, and instructors. We identify 13
open issues that could guide future research work.

Thus, we want to highlight the gap between code smells and refactoring in the current state of software-engineering
research. We wish that this work could help the software-engineering research community in collaborating on future
work on code smells and refactoring.

Keywords: Code Smells, refactoring, tertiary systematic review

1. Introduction

Software maintenance is an essential activity for any
software system. According to Lowe [1] and Telea [2], 50%
to 80% of software costs are related to maintenance activi-
ties: repairing design and implementation faults, adapting
software to a different environment (hardware, OS), and
adding or modifying functionalities. Software maintenance
is difficult because of the lack of helpful documentation,

∗ Corresponding author

large and complex source code becomes the only reliable
source of information about a system [1].

Several studies provided a broad overview of pitfalls
[3], anti-patterns [4], and smells [5]. Although there are
many contexts where smells can be found, like models [6],
tests [7], requirements [8], architecture [9, 10], and ser-
vices [11], our main focus is smells found in source code,
a.k.a. code smells, because these impact maintainability
negatively [12].

Code smells are violations of coding design principles
[13]. They increase technical debt [14], affecting software

Preprint submitted to Journal of Systems and Software May 13, 2020

maintenance [15, 16], and evolution [17, 12]. They con-
tribute negatively to software understanding and poten-
tially lead to the introduction of flaws [18, 19]. In gen-
eral, developers introduce code smells in software systems
when modifications and enhancements are performed to
meet new requirements. The code becomes complex and
the original design is broken, lowering software quality.

Refactoring can remove code smells [5]. Refactoring
is a process of improving software systems by applying
transformations that should preserve their observable be-
havior [20, 21, 13]. One of the major challenges of software-
engineering research is to provide strategies for determin-
ing which refactoring to apply and when they should be
applied [5]. There are many opportunities to use refactor-
ing [22, 23, 24, 25, 26] to remove code smells.

However, there are many problems with refactoring
and the refactoring process; among other problems: (a)
How to detect smells, either about code or design? (b)
After detecting these smells, which refactoring should be
applied? (c) What are the steps to apply these refactoring?
(d) What are the gains when applying these refactoring to
remove code smells? According to Mealy [27, 28], these
questions, without automated support, are difficult to an-
swer [29]. Looking at the entire process and these prob-
lems, we claim that the relationship between code smells
and refactoring should be further investigated.

Tertiary systematic literature reviews (SLRs) are re-
views of reviews, using secondary studies, in a given area,
to provide an overview of the state of the evidence in that
area. The software-engineering community accepted sec-
ondary and tertiary studies as useful and helpful [30, 31].
We chose to perform a tertiary study to investigate the re-
lationship between code smells and refactoring because it is
one of the ways used by researchers to provide evidence in a
specific area, which can be integrated with practical expe-
rience regarding software development and maintenance.
There is a relatively high number of secondary and ter-
tiary studies in software engineering [32, 7, 33, 34]. Other
studies [35] reported the usefulness and value of these stud-
ies.

Thus, we perform a tertiary SLR [30], from surveys,
systematic mappings, and secondary SLRs, to understand
and report on the relationship (or lack thereof) between
code smells and refactoring. There are large numbers of
studies on code smells and refactoring, respectively, eval-
uate their implications and contexts, usually in the form
of secondary studies, to explore these topics together. In
addition to the relationship between code smells and refac-
toring, we also study and discuss what we know and what
we do not know about code smells and refactoring, such
as the detection of smells (types, techniques, tools) and
applications of refactoring (opportunities, tools).

Our study answers five research questions (RQs):

• RQ1: What refactoring-related topics have been in-
vestigated in secondary studies?

• RQ2: What smells-related topics have been investi-
gated in secondary studies?

• RQ3: Which tools have been mentioned for code smell
detection and refactoring support?

• RQ4: Which RQs have been studied on code smells
and refactoring? What are the highest cited sec-
ondary studies?

• RQ5: What are the annual trends of types, quality,
and the number of primary studies reviewed by the
secondary studies?

We identify 40 secondary studies on code smells and
refactoring. We analyze the secondary studies to identify
the most discussed topics. We then explore these topics
in detail, summarizing the observations and challenges re-
lated to these topics. We name an observation (what we
know) a consensus in the literature, whereas a challenge
(what we do not know) is a topic still open and to be better
explored. Figure 1 summarizes our research method.

Thus, we answer our research questions and provide
the following contributions:

• We cross-reference the most frequent code smells with
their detection approaches, detection tools, suggested
refactoring, and refactoring tools (Table 8).

• We report the relationships of the top 10 code smells
with their refactoring and their impact on quality
(Figure 23). Also, we relate internal attributes with
external quality attributes using the QMOOD model
[36]. Thus, we show that refactoring affect quality
more than code smells (Figure 24).

• We present the implications of this study from the
perspective of practitioners, researchers, and instruc-
tors (Section 6).

• We report on 13 open issues about code smells and
refactoring (Section 7).

This paper is organized as follows: Section 2 defines
code smells and refactoring. Section 3 presents the struc-
ture of our tertiary systematic literature review, with goal
and RQs, identification of relevant literature, selection cri-
teria, quality assessment, data extraction, and execution.
Section 4 shows the main findings and discussion about
the observations and challenges. Section 5 discusses the
relationship between quality, code smells, and refactoring.
Section 6 presents the implications of our research from
the perspective of practitioners, researchers, and instruc-
tors. Section 7 presents open issues useful for the future
works. Section 8 discusses the main threats to validity of
our study. Finally, Section 9 concludes with future work.

2. Background

In this section, we present some key concepts needed
to deepen the discussion about smells and refactoring.

2

Figure 1: The strategy used in this research, from the analysis process to the consolidation of results

2.1. Smells
Although “smell” is a well-known practical concept,

there is not a rigorous definition nor an agreement on
how to categorize it and organize it. Next, we summarize
the main definitions, taxonomies, and categories related to
smells.

2.1.1. Definitions
The term “smell” refers to some internal problem in the

software either at a lower level, known as code level [5] or
higher, design [4] describing symptoms observed in com-
ponents that impair software evolution. According to such
level, a smell is respectively named code smell or design
smell.

Differently from a bug, a smell does not necessarily
cause a fault in the application but may lead to other
negative consequences, impacting on software maintenance
and evolution.

It is undeniable that the concept of smells was adopted,
first, by the agile software development community as a
way of pointing out something wrong or an improvement
point [37, 38, 39]. Currently, the industry has also adopted
this term to represent anomalies in software elements.

The use of the term “smell” became popular mainly
due to the original work of Fowler et al. [5], who used
it to identify code patterns that contain structural prob-
lems and, therefore, should be improved. Fowler et al. [5]
were pioneers in identifying and discussing code smells and
providing a practical guide to techniques to resolve them.

Brown et al. [4] present 40 anti-patterns, which de-
scribes common occurrences for a problem that generates
negative consequences. Anti-patterns are categorized in
development, architecture, and project management. In
Table 1, the main smells related to code are presented.

Fowler et al. [5] described 22 smells and associated
sequences of refactoring that could be applied to mitigate
each smell. Such work made an important contribution

by organizing and cataloging a list of smells, presented in
Table 2. Recently, Fowler updated information on smells,
introducing the other 6 smells to the original list [13].

Wake [20] extended that list (Table 3), taking into ac-
count some problematic aspects, often identified by soft-
ware developers in practice. Kerievsky [21] brought this
discussion from the perspective of the application of design
patterns. Gamma et al. proposed design patterns [40] that
provide targets for refactoring. Design Patterns represent
solutions commonly used by developers to solve recurrent
problems in a specific context. Kerievsky broadened that
list, suggesting specific refactoring for the implementation
of design patterns, and including a few more smells (Table
4).

Martin [41] seeks to identify possible problems in code
from the standpoint of cleaning heuristics, that is, what is
needed in terms of style rules, good practices, and disci-
pline to keep code clean. The smells described are not only
related to the code structure, but also comments, building
environment, error handling, formatting, element naming,
and even testing.

Although there is an agreement concerning many smells,
we can also find distinct points of view, depending on the
practical experience of each author. For example, Mi-
hancea [42], inheritance is considered both a good practice
of OO design and, at the same time, a problem for software
maintenance and evolution. In other’s works [43, 44], par-
ticular modes of use of inheritance and polymorphism it is
related to comprehension pitfalls and repetitive patterns,
which can easily deceive developers during the activities
of software understanding and evolution.

The way usually adopted to describe smells is the orig-
inal description proposed by Fowler et al. [5]. However,
Zhang et al. [45] has attempted to define a distinct ap-
proach to represent some specific smells (e.g., Data Clumps,
Middle Man, Message Chains, Speculative Generality, Switch
Statements).

3

Table 1: List of design smells presented by Brown et al. [4]

Smell Description

Blob as know as God Class, is a style of procedural design procedural which brings an object to have too many responsibilities
(Controller) and attributes with low cohesion, while others only save data or execute simple processes

Lava Flow dead code and forgot information frozen with design

Functional Decomposition a procedural code in a technology that implements the OO paradigm (usually the main function that calls many others),
caused by the previous expertise of the developers in a procedural language and little experience in OO

Poltergeist classes that have a role and life cycle very limited, frequently starting a process for other objects

Spaghetti Code use of classes without structures, long methods without parameters, use of global variables, in addition to not exploiting
and preventing the application of OO principles such as inheritance and polymorphism

Cut and Paste Programming reused code by a copy of code fragments, generating maintenance problems

Swiss Army Knife exposes the high complexity to meet the predictable needs of a part of the system (usually utility classes with many
responsibilities)

Among the smells previously described, it is necessary
a more detailed explanation regarding Code Clones. Al-
though clone studies have grown in recent years, with spe-
cific communities dedicated to the subject, we have chosen
to keep clone studies within our research. A clone [46] is
something that appears to be a copy of an original form.
It is a synonym of duplicate. Although cloning leads to re-
dundant code, not every redundant code is a clone. There
may be cases in which two code segments that are no copy
of each other happens to be similar or even identical by ac-
cident. Also, there may be redundant code that is seman-
tically equivalent but has an entirely different implemen-
tation. There are four types of clones, describe as follows
[47]: a) Type-1 (Exact Clone) are the clones which look
like an original code; b) Type-2 (Renamed/parameterized
Clone) is the clones where variations come in the name
of literals, keywords, variables, among others; c) Type-3
(Near-miss Clone) are changed to persist in the code in
the form of addition, deletion, and modification of state-
ments; and finally d) Type-4 (Semantic Clone) are function
or behavior of the clone remains same, but the syntax or
coding of the program is different.

2.1.2. Categorization
An interesting way to understand smells is through cat-

egorization, based on possible relationships between them,
aiming to achieve better comprehension [49]. For example,
Wake [20] proposed a classification of the smells cataloged
by Fowler et al. [5], with the following division:

• Smells within Classes: smells identified with simple
metrics (comments, long method, large class, long
parameter list), names that need to be improved
(type embedded in name, uncommunicative name, in-
consistent names), unnecessary complexity (dead code,
speculative generality), code snippets that need to be
removed (magic numbers, duplicated code, alterna-
tive classes with different interfaces), and problems
in conditional logic (null check, complicated boolean
expression, special case, simulated inheritance); and

• Smells between Classes: in this category, we find

smells that represent data like lost objects, with the
absence of appropriate behavior (primitive obsession,
data class, data clump, temporary field), relation-
ship between class hierarchies (refused bequest, inap-
propriate intimacy, lazy class, combinatorial explo-
sion), balancing responsibilities (feature envy, mes-
sage chains, middle man), code changes (divergent
change, shotgun surgery, parallel inheritance hierar-
chies), and the lack of an incomplete library class.

Mäntylä et al. [50] proposed another taxonomy of smells,
presented as follows:

• Bloaters: a bloater represents any element in the
code that has become very large and can not be ef-
fectively handled. In general, bloaters are difficult
to understand and modify. Smells belonging to this
category are Long Method, Large Class, Primitive
Obsession, Long Parameter List and Data Clumps;

• Object-Orientation Abusers: workaround solutions
used in the code, without exploring principles of a
good OO design [48]. Smells in this category is
Switch Statements, Temporary Field, Refused Be-
quest, Alternative Classes with Different Interfaces
and Parallel Inheritance Hierarchies;

• Change Preventers: software structures very difficult
to modify; in general, this difficulty may occur at one
or several points. In this category we find Divergent
Change and Shotgun Surgery ;

• Dispensables: smells that are unnecessary and, there-
fore, should be deleted. Smells in this category are
Duplicated Code, Lazy Class, Data Class, and Spec-
ulative Generality ;

• Couplers: smells characterizing a high coupling, like
Feature Envy and Inappropriate Intimacy.

In addition to the proposed taxonomy, Mäntylä presents
in another work [49] a set of metrics supporting the iden-
tification of smells, as well as a study of how effective is

4

Table 2: List of code smells presented by Fowler et al. [5, 13]

Smell Description

Duplicated Code consists of equal or very similar passages in different fragments of the same code base

Long Method/Long Func-
tion

very large method/function and, therefore, difficult to understand, extend and modify. It is very likely that this method
has too many responsibilities, hurting one of the principles of a good OO design (SRP: Single Responsibility Principle [48])

Large Class class that has many responsibilities and therefore contains many variables and methods. The same SRP also applies in this
case

Long Parameter List extensive parameter list, which makes it difficult to understand and is usually an indication that the method has too many
responsibilities. This smell has a strong relationship with Long Method

Divergent Change a single class needs to be changed for many reasons. This is a clear indication that it is not sufficiently cohesive and must
be divided

Shotgun Surgery opposite to Divergent Change, because when it happens a modification, several different classes have to be changed

Feature Envy when a method is more interested in members of other classes than its own, is a clear sign that it is in the wrong class

Data Clumps data structures that always appear together, and when one of the items is not present, the whole set loses its meaning

Primitive Obsession it represents the situation where primitive types are used in place of light classes

Switch Statements/Repeated
Switches

it is not necessarily smells by definition, but when they are widely used, they are usually a sign of problems, especially when
used to identify the behavior of an object based on its type

Parallel Inheritance Hierar-
chies

existence of two hierarchies of classes that are fully connected, that is, when adding a subclass in one of the hierarchies, it
is required that a similar subclass be created in the other

Lazy Class classes that do not have sufficient responsibilities and therefore should not exist

Speculative Generality code snippets are designed to support future software behavior that is not yet required

Temporary Field member-only used in specific situations, and that outside of it has no meaning

Message Chains one object accesses another, to then access another object belonging to this second, and so on, causing a high coupling
between classes

Middle Man identified how much a class has almost no logic, as it delegates almost everything to another class

Inappropriate Intimacy a case where two classes are known too, characterizing a high level of coupling

Alternative Classes with
Different Interfaces

one class supports different classes, but their interface is different

Incomplete Class Library the software uses a library that is not complete, and therefore extensions to that library are required

Data Class the class that serves only as a container of data, without any behavior. Generally, other classes are responsible for manip-
ulating their data, which is a case of Feature Envy

Refused Bequest it indicates that a subclass does not use inherited data or behaviors

Comments it cannot be considered a smell by definition but should be used with care as they are generally not required. Whenever it
is necessary to insert a comment, it is worth checking if the code cannot be more expressive

Mysterious Name non-significant names that do not represent the software elements

Global Data it can be modified from anywhere in the code base, and there’s no mechanism to discover which bit of code touched it

Mutable Data it changes to data can often lead to unexpected consequences and tricky bugs

Lazy Element software elements designed to grow, but do not conform with software evolution

Insider Trading coupling problems caused by trade data between modules

the use of these metrics, suggesting techniques to carry
out measurements. Developers’ opinions on these smells
and their perceptions can vary significantly due to some
factors, like experience, theoretical knowledge, and famil-
iarity with the code in question, among others.

Perez [51] proposes another smell classification, accord-
ing to problem levels. The smells are categorized as low-
level and high-level smells. The low-level smells are related
to particular problems in the code, such as Large Class and
Long Method. The high-level smells relate to more com-
plex problems that may be detected in the code structure,
such as Blob (see Table 1), for instance.

Some of the low-level smells could be considered equiv-
alent to code smells, whereas some of the high-level smells
could be regarded as equivalent to the architectural/de-
sign smells. Sometimes, high-level smells manifest by the
composition of low-level smells.

In addition to several definitions of the term “smell”

definitions, there are several ways to detect smells, ranging
from human perception to metrics, rule-based strategies,
search-based methods, and software visualization. In prac-
tice, tools are also built to support such detection mecha-
nisms, an issue explored by some studies of our research.

2.2. Refactoring
Refactoring is the primary approach to remove smells.

Next, we summarize the main concepts, the refactoring
process, and some automation aspects regarding refactor-
ing.

2.2.1. Definition
The term “refactoring” came from the work of Opdyke

[52], which defines it as reorganization strategies that sup-
port a change in a software element. Refactoring helps
to make the code more readable and eliminating possi-
ble problems, as well as improving the internal quality at-

5

Table 3: List of code smells presented by Wake [20]

Smell Description

Type Embedded in Name names used, usually defined with duplication, such as schedule.addCourse(course) instead of schedule.add(course). This
category also included the use of Hungarian notation and variables that reflect their type in counterpoint to their purpose
or function

Uncommunicative Names names used in software elements (usually attributes and local variables) that do not communicate their name/intent enough,
such as x or value1. It is even more critical when used in methods and classes

Inconsistent Names same name used in different places, for different purposes

Dead Code characterized by a variable, attribute, or code fragment that is not used anywhere. It is usually a result of a code change
with improper cleaning

Null Check occurrences that repeatedly appear, verifying the null values of objects

Complicated Boolean Ex-
pression

code snippets involving boolean operators such as and, or and not

Special Case complex conditional statements

Magic Numbers numeric values that appear deliberately in the code and that invariably do not change

Table 4: List of code smells presented by Kerievsky [21]

Smell Description

Conditional Complexity it describes that although conditional structures are not problems in themselves, the exaggerated use of them is a smell that
must be tackled

Indecent Exposure it happens when clients have too much access to the classes they use. It unnecessarily increases the complexity of the system

Solution Sprawl similar to the Shotgun Surgery, where an update causes changes in several parts of the system

Combinatorial Explosion it is a more subtle form, but very similar to Duplicated Code, where several code snippets execute the same function but in
objects of different types

Oddball Solution it occurs when there are two ways to solve the same problem on the same system, which is usually a subtle sign of Duplicated
Code

tributes of the software [53]. Refactoring is also used for
reengineering, allowing to turn more modular and struc-
tured a specific system (legacy or decayed code) [54].

There are different levels of abstraction and types of
software artifacts that one can apply the refactoring. For
instance, it is possible to apply refactoring in UML mod-
els, database schemas, requirements, software architecture,
and structures of a language [53]. So refactoring focuses
not only on the source code but also on other artifacts,
and for this reason, there is a need to keep all the arti-
facts synchronized. Because refactoring does not change
the behavior of a program, the order of application of the
techniques may vary according to distinct criteria. Often,
some techniques can be used in sequence, as long as they
satisfy the preconditions for the techniques used a poste-
riori. Other times, the sequence is arbitrary.

The refactoring typically occurs at two levels: high and
low level. High-level refactoring (or composite refactor-
ing) can be defined such as those referring to significant
(usually macro or architectural) design changes, and low-
level (or primitive refactoring) are those for small (ordi-
nary) changes. The work of Opdyke [52] also introduces
a fundamental element for refactoring: the precondition,
a to guarantee that the transformation preserves the pro-
gram behavior. Preconditions are checked before applying
the transformation to make sure that it will not introduce
compilation problems or change the behavior of the pro-

gram. For example, the Extract Method refactoring checks
the selected code fragment contains broken elements be-
fore to perform the refactoring. Opdyke states, to perform
high-level refactoring, it is necessary to perform low-level
refactoring.

The point is that low-level refactoring are rarely exe-
cuted in isolation. Generally, they are used together, when
the developers already have in mind a defined objective to
apply the techniques to achieve the desired design. The
pioneer thesis of Opdyke [52] defined 23 primitive refactor-
ing techniques and presented three examples of composite
refactoring, formed by primitive techniques. Since then, a
lot of work [55, 56, 57] has been made to improve refac-
toring adoption, mainly concerning the refactoring process
and automation.

2.2.2. Process and Automation
Every refactoring can be composed of a set of simple

basic steps. If a developer does not know where to start or
if she feels overwhelmed, these basic steps are a good way
to start. Sometimes such a set of basic steps is considered
as a process called refactoring process. Mens and Tourwé
[53] identified a common process in which refactoring op-
erations:

1. Detect pieces of code with refactoring opportunities;

2. Determine which refactoring can apply in the se-

6

lected code snippet;

3. Ensure that the selected refactoring preserve the be-
havior;

4. Apply the chosen refactoring in the respective loca-
tions;

5. Assess the effect of the refactoring on quality char-
acteristics of the software;

6. Maintain the consistency between the refactored ar-
tifact and other software artifacts.

At the same time, refactoring can become a continu-
ous improvement tool for software, especially if the team
is made up of developers concerned about the quality of
the implemented code. According to Parnin et al. [58], one
problem-related to refactoring is the benefits of software
quality gained through these practices are often diluted by
the high costs and low priority when compared to the ur-
gency of bug fixes and the implementation of new features.

This problem is because 40% of the time invested in
software maintenance is the cost to understand the soft-
ware and architecture will evolve [2].

Murphy-Hill and Black [59] presents two terms that
can summarize the posture concerning refactoring: floss
refactoring, that is, to adopt day-to-day refactoring tech-
niques in a healthy and disciplined way and root channel
refactoring when there is no habit of cleaning and this can
be very costly over time, with the necessity to plan.

Although the refactoring scenario initially was proposed
for object-oriented languages, other researchers have ap-
plied the idea of refactoring to various paradigms, such
as functional [60], logic programming [61], aspects [62],
among others. The general idea is similar to that of object-
oriented languages, but the conditions and mechanics are
different.

Roberts [63], another pioneer in this field, extended the
work of Opdyke, addressing the optics of creating refactor-
ing support tools that are fast and reliable for developers.
For this, Roberts added the post-conditional element in
refactoring, which describes what should or should not be
valid after the application of the technique. The Refactor-
ing Browser tool, created by Roberts, implements some
refactorings inside the Smalltalk programming language.

Some tools proposed for various programming languages,
such as Java, Smalltalk, C++, C#, Python, and others.
The goal is double: (i) to reduce possible errors and code
inconsistencies and (ii) to automate the refactoring’s prac-
tice. Through the tool, the developer can select the code
snippet, which technique should be applied, and which pa-
rameters required for execution. The tool automatically
checks the preconditions and, if all is correct, uses refac-
toring. Some tools, whether commercial or academic, also
have been proposed to support refactoring in the form of
IDE plugins.

For the Java language, there is JDeodorant [64] and
JRefactory [65]. Refactory [66] allows developers to apply

refactorings from UML diagrams. CppRefactory [67] is an
open-source refactoring tool that automates the refactor-
ing process in C++ projects. For C#, Visual Assist X
[68], Code Rush [69], and ReSharper [70]. XRefactory [71]
is a refactoring browser for Emacs, XEmacs, and jEdit.
For Visual Basic, the tool is Project Analyzer [72]. And,
for Python, the tools are Rope [73] and the Bicycle Repair
Man [74].

Tsantalis [75] advocates the automatic detection ap-
proach. Thus, his research group analyzes JDeodorant as
a tool that automatically detects smells. Tsantalis and
Chatzigeorgeou [76] proposed to analyze the repository of
code versions, to classify the refactoring according to the
number, proximity, and extent of the changes crossing with
the corresponding smells. Another approach based on the
selection of techniques using technical debt as a metric in
which the debt and interest rate to pay are calculated [77].
Of course, it is necessary to have some mechanism to select
and rank the refactoring techniques [78, 79, 80].

3. Study Design

We realized a tertiary systematic literature review (SLR),
adopting the Kitchenham et al. [81, 82, 30] SLR guide-
lines. The SLR followed five main steps (Figure 2): (1)
definition of goal and research questions; (2) identification
of relevant papers; (3) selection criteria, (4) quality assess-
ment, and (5) data extraction. These steps are detailed as
follows.

3.1. Goal and Research Questions
The main goal of this work is to examine the current

research works and the most important contributions of
the smells and refactoring fields. At the same time, a
comprehensive and systematic view can be a contribution
to the research community as it can facilitate assessments
and discussions of future directions related to these issues.

To structure our research, we studied and evaluated
other tertiary studies [83, 33, 84]. We also wanted to un-
derstand how the research area evolved. Thus, we studied
the research questions (RQs) asked in other tertiary stud-
ies in SE [30, 7, 34] to inspire our work. We built the RQs
using this information.

The purpose of this SLR is to answer the following
RQs:

• RQ1: What refactoring-related topics have been in-
vestigated in secondary studies?

• RQ2: What smells-related topics have been investi-
gated in secondary studies?Answering RQ1 and RQ2
will enable us to determine the refactoring and smells
topics covered and not covered by secondary stud-
ies. Knowing the topics not covered will pinpoint
the need for conducting secondary studies in those
topics.

7

Figure 2: Steps defined of SLR

• RQ3: Which tools have been mentioned for code smell
detection and refactoring support?Answering RQ3,
we are investigating which tools have been mentioned
to aim to smell detection. Furthermore, we are also
searching for supporting tools for refactoring.

• RQ4: Which RQs have been studied on code smells
and refactoring? What are the highest cited sec-
ondary studies?Responding to RQ4, we analyze which
aspects discussed in the studies and what the corre-
lation between them is. Given the importance of
citations to determine scientific merit, we decided
to investigate what secondary studies are the most
cited.

• RQ5: What are the annual trends of types, quality,
and the number of primary studies reviewed by the
secondary studies?Answering RQ5, will allow us to
get a big picture of the landscape in this field and on
the several studies about it.

3.2. Identification of Relevant Literature
The search involved in eight digital libraries (see Ta-

ble 5), aiming to identify relevant secondary studies, pub-
lished in journals, and conferences about software engi-
neering, software development, software maintenance and
evolution, and software quality.

We used the PICOC process, the search string con-
struction, the search engines, and the selection criteria
for the returned studies. Each of them is described here-
after. PICOC is a process that aids in structuring SLRs
[81, 82, 30]. This process consists of identifying the pop-
ulation (P), the intervention (I), the comparison (C), the
expected outcomes (O), and the (C) context of a SLR.
They are:

• Population (P): Conferences and journals about Soft-
ware engineering, software development, software main-
tenance and evolution, software quality;

• Intervention (I): systematic literature, systematic map-
ping, survey, systematic literature review;

• Comparison (C): Not applicable, since the purpose
of the study is to characterize the secondary studies
available in the literature;

• Outcomes (O): Methods, techniques, practices, ap-
plication, problems, strategies, and tools described
in Surveys, Systematic Mappings, and Systematic
Literature Reviews;

• Context (C): Domain of smells and refactoring.

The strategies for the final search string were: a) deriva-
tion of terms used in the research question (example: smells,
refactoring) and related to the RQs; b) list of keywords
of papers consulted; c) use of the Boolean operator OR
to incorporate synonyms; d) use of the AND operator to
make the conjunction between the different keywords. The
search string was built based on the following terms:
survey, systematic mapping, systematic literature review,
smell, refactoring, tool, technique, method, practice, appli-
cation, problem, software

The digital libraries chosen are presented in Table 5.
We build specific search strings to each digital library, tak-
ing into account its characteristics. Some criteria have
been configured in the search engine itself. The terms
used in the queries were also prioritized, depending on
each search engine in the databases.

3.3. Selection criteria
To select the studies returned with the search strings,

we elaborate on a list of criteria for exclusion and inclusion.
The exclusion criteria used were as follows:

• articles not related to the software engineering area
(development, quality, maintenance, and evolution
of software);

• articles/studies not written in English;

• works presented in non-academic events in the area
of computing (e.g., Agile Conference, Agiles Conf);

• studies such as tutorials, position papers, theses, and
dissertations.

The criteria for inclusion include:

• secondary studies (Systematic Literature Reviews,
Systematic Mappings, and Surveys) about smells and
refactoring;

• articles describing the use/development/evaluation
of tools, methods, practices for smells detection;

• articles describing the use/development/evaluation
of refactoring tools, methods and techniques;

• works published between 1992 and 2018. We defined
1992 as the beginning of the research, because of the
doctoral thesis published by Opdyke [52], the first
detailed written work on refactoring [13];

8

Table 5: Digital libraries, criteria considered, and search queries

Database URL Criteria Query

ACM Digital Li-
brary

http://dl.acm.org/ Published since 1993, Content
Format: PDF

acmdlTitle:(smell refactoring) AND
recordAbstract:(survey "systematic
literature" "systematic literature review"
"systematic review" review "systematic
mapping" "systematic study" "mapping
study") AND (tool* technique* method*
practice* problem*)

IEEE Xplore http://ieeexplore.ieee.org/Xplore/
home.jsp

Filters Applied: 1992-2018, Con-
ferences Journals and Magazines

(("Document Title":smell OR refactoring)
AND ("Abstract":systematic literature
OR systematic mapping OR mapping study
OR systematic review OR survey) AND
("Publication Title":software engineering
OR software quality OR software
maintenance OR software evolution))

Science Direct http://www.sciencedirect.com/ Year 1992-2018, Find articles
with these terms (1), Title, ab-
stract and keywords (2), Publica-
tion title: Journal of Systems and
Software; Information and Soft-
ware Technology

(1) smell OR refactoring (2) survey OR
"systematic literature" OR "systematic
literature review" OR "systematic review"
OR review OR "systematic mapping" OR
"systematic study" OR "mapping study"

Wiley InterScience http://www.interscience.wiley.com Date Range: 01/1992 and
12/2018, Computer Science

survey OR ’systematic literature’
OR ’systematic review’ OR review OR
’systematic mapping’ OR ’systematic study’
OR study OR mapping" in Abstract and
"refactoring OR smell" in Abstract AND
software AND (technique* OR tool* OR
method* OR practice* OR application OR
problem)

Scopus https://www.scopus.com/ English, Computer Science Soft-
ware Engineering, Conference Pa-
per and Chapter, before to 1992

(TITLE(survey OR "systematic literature"
OR "systematic literature review"
OR "systematic review" OR review OR
"systematic mapping" OR "systematic
study" OR "mapping study") AND
TITLE-ABS(refactoring OR smell)) AND
ALL(tool* OR technique* OR method* OR
practice* OR problem* AND software)
AND ((PUBYEAR > 1992) AND (PUBYEAR
< 2019)) AND (LIMIT-TO(SUBJAREA,
"COMP")) AND (LIMIT-TO(DOCTYPE,
"cp") OR LIMIT-TO(DOCTYPE, "ar")) AND
(LIMIT-TO(LANGUAGE, "English"))

AIS eLibrary http://aisel.aisnet.org/ Date Range: 1992-01-01 and
2019-01-01, Limited search to:
All Repositories, Format: Links,
Computer Sciences

(survey OR ’systematic literature’
OR ’systematic review’ OR review OR
’systematic mapping’ AND software) AND
abstract:(refactoring OR smell) AND
(software AND (technique* OR tool* OR
method* OR practice* OR application OR
problem*))

Google Scholar https://scholar.google.com 1992-2018 allintitle:(smell OR refactoring) AND
("systematic literature" OR "systematic
mapping" OR "systematic study" OR
"literature review" OR survey)

Springer http://link.springer.com/ English, Computer Science, Soft-
ware Engineering, Conference Pa-
per and Chapter, 1992 and 2018

(systematic literature OR mapping study OR
systematic mapping OR literature review)
AND (smell OR refactor*) AND (tool* OR
technique* OR method* OR practice* OR
problem*)

9

• only full papers (more than 6 pages);

• be available online for download.

To avoid missing any potentially relevant studies then
we applied the snowballing technique by checking the ref-
erences of each selected study [85].

3.4. Quality Assessment
Each candidate Survey, Systematic Mapping, or Sys-

tematic Literature Review was evaluated using the same
criteria adopted by previous research studies (e.g., by Kitchen-
ham et al.) in tertiary studies [82, 30]. These criteria
were defined by the Centre for Reviews and Dissemina-
tion (CDR) Database of Abstracts of Reviews of Effects
(DARE), of the York University [86]. The criteria are four
quality assessment questions, described as follows:

1. Are the review’s inclusion and exclusion criteria de-
scribed and appropriate?

2. Is the literature search likely to have covered all rel-
evant studies?

3. Did the reviewers assess the quality/validity of the
included studies?

4. Were the primary data/studies adequately described?

Kitchenham et al. [82, 30] proposed a score for these
questions. For each candidate secondary study in our pool,
the quality score was calculated by assigning {0, 0.5, 1} to
each of the four questions and then adding them up.

3.5. Data Extraction
We structured the Google Forms for data extraction.

In this form, we find the main information that we consider
relevant regarding the papers. In general, we consider:

• Paper’s information: title, authors, authorś institu-
tion and country, year of publication, initial and final
year of research, where the paper published, abstract
and keywords, type of publication (journal or confer-
ence);

• Main contributions, evidence, and type of method re-
search (Survey, Systematic Mapping, or Systematic
Literature Review);

• Databases used and Research Questions defined;

• Amount of papers considered and analyzed;

• Categorization of smells research (definition, detec-
tion options, support tools, technical debt, and oth-
ers) and categorization of refactoring research (tech-
niques, opportunities, support tools, tests, and oth-
ers);

• Research approaches (case studies, surveys, experi-
mental and empirical studies);

• Type of projects (FLOSS, commercial, toy/academic)
and repositories and programming languages used;

• Context: refactoring techniques presented, tools more
cited, and smells (design/code) described.

In addition to the spreadsheet, Mendeley1 is also used
to assist in the cataloging, structuring and searching for
papers. All artifacts produced from our research are avail-
able on the replication package [87].

3.6. Execution
With the research protocol defined, we started filtering

these studies. As there were a large number of papers iden-
tified in the search phase, the filtering process consisted of
four steps. Each step used the inclusion and exclusion cri-
teria, and relevance of the study according to its content.
We describe these steps as follows:

1. Search and delete studies based on criteria defined
through reading the title, abstract and keywords;

2. Remove duplicate papers and full-text analysis using
inclusion/exclusion criteria;

3. For selected studies, we apply the snowballing pro-
cess;

4. Define the context and categorization of the works,
saving this information using the adopted tools (spread-
sheet and Mendeley).

In total, there were 467 secondary studies, and we se-
lected 59 studies. Of these 59, 26 (six duplicates and 20
based on the selection criteria) were discarded, leaving 33
selected secondary studies. After applying to snowball, an-
other seven studies were added, totaling 40 selected stud-
ies. For each paper selected, the data were extracted and
analyzed (Figure 3).

Considering all databases, we obtained an average ac-
curacy of 12.63% in the search, in which Google Scholar
showed better accuracy (33.33%), while Springer had the
lowest accuracy (5.62%).

In the selected secondary studies, 19 different databases
(Figure 4) were used for research, highlighting IEEE Xplore,
used in 90% of the selected studies, followed by ACM Digi-
tal Library and Science Direct (80% and 75% respectively).

Selecting all these libraries together can lead to over-
lapping results, which requires the identification and re-
moval of redundant results; however, this selection of li-
braries increases confidence in the completeness of the re-
view. Our search considered all years between 1992 and
2018 to increase the comprehensiveness of the review, con-
sidering 1992 as a mark of the year of pioneer publication
about refactoring [52]. The list of selected secondary stud-
ies found is presented in Table 6.

1 http://www.mendeley.com/

10

Table 6: List of selected secondary studies

Title Ref

S1 A systematic literature mapping on the relationship between design patterns and bad smells [88]

S2 A review-based comparative study of bad smell detection tools [89]

S3 UML model refactoring: a systematic literature review [6]

S4 Identifying Various Code-Smells and Refactoring Opportunities in Object-Oriented Software System : A systematic Literature Review [90]

S5 Trends, Opportunities and Challenges of Software Refactoring: A Systematic Literature Review [91]

S6 Classification and Summarization of Software Refactoring Researches: A Literature Review Approach [92]

S7 Empirical Evaluation of the Impact of Object-Oriented Code Refactoring on Quality Attributes: A Systematic Literature Review [93]

S8 Bad Smells in Software Product Lines: A Systematic Review [94]

S9 The vision of software clone management: Past, present, and future [95]

S10 A survey of software refactoring [53]

S11 Code Bad Smells: a review of current knowledge [96]

S12 A Systematic Literature Review: Code Bad Smells in Java Source Code [97]

S13 A systematic literature review: Refactoring for disclosing code smells in object oriented software [98]

S14 A systematic mapping study on software product line evolution: From legacy system reengineering to product line refactoring [99]

S15 A survey on software smells [100]

S16 Smells in software test code: A survey of knowledge in industry and academia [101]

S17 A survey of search-based refactoring for software maintenance [102]

S18 A review of code smell mining techniques [103]

S19 Clone evolution: a systematic review [104]

S20 Software clone detection: A systematic review [105]

S21 Managing architectural technical debt: A unified model and systematic literature review [9]

S22 Identifying refactoring opportunities in object-oriented code: A systematic literature review [106]

S23 Identification and management of technical debt: A systematic mapping study [8]

S24 A systematic review on the code smell effect [107]

S25 A systematic review on search-based refactoring [108]

S26 A systematic mapping study on technical debt and its management [10]

S27 Analyzing the concept of technical debt in the context of agile software development: A systematic literature review [109]

S28 Co-ocurrence of Design Patterns and Bad Smells in Software Systems : A Systematic Literature Review [110]

S29 Non-Source Code Refactoring: A Systematic Literature Review [111]

S30 Survey of Research on Software Clones [46]

S31 A Survey of Software Clone Detection Techniques [47]

S32 A Systematic Literature Review of Code Clone Prevention Approaches [112]

S33 Systematic Mapping Study of Metrics based Clone Detection Techniques [113]

S34 A systematic literature review on the detection of smells and their evolution in object-oriented and service-oriented systems [11]

S35 The Impact of Code Smells on Software Bugs: a Systematic Literature Review [114]

S36 Refactoring UML Models of Object-Oriented Software: A Systematic Review [115]

S37 Impact of Code Smells on the Rate of Defects in Software: A Literature Review [116]

S38 Empirical evidence of code decay: A systematic mapping study [117]

S39 Software Design Smell Detection: a systematic mapping study [118]

S40 A systematic literature review on bad smells - 5 W’s: which, when, what, who, where [119]

11

Figure 3: Steps of execution research and number of selected studies on each databases

Figure 4: Databases used in the secondary studies

We queried smells and refactoring separately to find
secondary studies from these two fields because, although
they are closely related, researches have studied smell and
refactoring separately. For better distribution, we orga-
nize these studies into themes like refactoring (13 stud-
ies), smells (25 studies), and both (2 studies covering both
themes).

Within each theme, papers are categorized into top-
ics. As we show in Figure 1, the topics emerged from the
analyzed studies. To organize the topics, we used a card
sorting technique [120, 121]. Card sorting is a knowledge
elicitation method commonly used for capturing informa-
tion about different ways of representing domain knowl-
edge. It has been used in various fields such as psychol-
ogy, knowledge engineering, and software engineering. We
discuss the most cited topics in detail in Section 42

The topics related to refactoring are trends and chal-
lenges, quality and object-orientation (OO), process, soft-
ware product lines (SPL), search-based and technical debt
(TD), and models. The topics related to smells are rela-
tionship with design patterns, detection tools, SPLs, clones,
definitions, challenges, tests, mining, technical debt (TD),
and impact and effects. The topic covered by both refac-

2 We make all categories and topics and their organization in other
documents used during the research, available at [87]. However, We
will not discuss the topics were having already distinct research com-
munities, such as refactoring models and clones. Also, some topics
that not appeared in secondary studies maybe nowadays considered
as essential by the academical community: thus, a preliminary dis-
cussion of some implications of our work to the academic community
is presented in Section 8.

toring and smells is related to object-orientation. In Fig-
ure 5, we present a mind-map with this distribution and
quantity by topics. Some abstract topics such as models
and SPL are not discussed here, because our research is
more focused on code-related topics like code smells and
refactoring.

In Table 7, the list of studies by publication source and
venue (Journal, Conference) is displayed. The emphasis is
on Systems and Software, Information and Software Tech-
nology, and Transactions on Software Engineering, which
receive secondary studies in their submissions.

4. Findings

We compile the results from 40 selected studies to show
which approaches used to detect code smells, which tools
have supported this detection process, which refactoring
techniques used and which are being supported by tools.
Table 8 summarizes the ten most-cited smell, with the fol-
lowing information: the main approaches to smell detec-
tion, the most cited smell detection tools, the most sug-
gested refactoring for each smell, and most cited refactor-
ing tools. We sorted each item by the number of references.
Thus, we organized the main findings to help researchers
and practitioners to address their research activities (we
discuss some implications about practitioners, researchers,
and instructors in the Section 6). Duplicated Code was
already the smell considered by the agile community as
being the most cited smell [5, 21, 122, 48, 41]. Also, it was
the most smell studied and the most referenced smell in
secondary studies [S2, S4, S11, S15, S18, S24]. Here, we
grouped Code Clones with Duplicated Code following the
classification proposed by some works [S9, S19, S20, S30,
S31, S32, S33].

Next, we present our findings in subsections grouped
by RQs.

4.1. RQ1: What refactoring-related topics have been in-
vestigated in secondary studies?

In our research, as shown in Figure 5, we found 13
secondary studies related to refactoring [S3, S5, S6, S7,
S10, S14, S17, S21, S22, S25, S27, S29, S36].

We categorize the refactoring topics of such 13 studies
as they were discussed in the literature, plotting the Figure
6. A summary of the main highlights found in these studies
and a discussion of some points are presented here.

12

Table 7: Distribution of studies by venues

Source Venue Amount Studies

Systems and Software Journal 6 S15, S16, S20, S21, S24,
S26

Information and Software Technology Journal 5 S20, S22, S23, S25, S27

IEEE Transactions on Software Engineering Journal 3 S7, S10, S40

Journal of Software: Evolution and Process Journal 2 S18, S19

CSMR-WCRE (IEEE Conference on Software Maintenance, Reengi-
neering, and Reverse Engineering)

Conference 2 S9, S38

Advanced Science and Technology Letters Journal 1 S6

Empirical Software Engineering Journal 1 S3

International Journal on Future Revolution in Computer Science &
Communication Engineering

Journal 1 S4

International Journal of Software Engineering and Its Applications Journal 1 S5

Journal of Software Maintenance and Evolution: Research and Prac-
tice

Journal 1 S11

Journal of Software Engineering Research and Development Journal 1 S17

Journal of Software Engineering Research and Development Journal 1 S17

Science of Computer Programming Journal 1 S14

International Journal of Software Engineering and Its Applications Journal 1 S29

International Journal of Computer Applications Journal 1 S31

International Journal of Software Engineering and Technology Journal 1 S32

Journal of Software: Practice and Experience Journal 1 S34

Journal of Information Journal 1 S35

Journal of Software Quality Journal 1 S39

IJSEKE (International Journal of Software Engineering and Knowl-
edge Engineering)

Journal 1 S36

SAC (Symposium of Applied Computing) Conference 1 S1

EASE (International Conference on Evaluation and Assessment in
Software Engineering)

Conference 1 S2

SBCARS (Brazilian Symposium on Software Components, Architec-
tures and Reuse)

Conference 1 S8

SBSI (Brazilian Symposium on Information Systems Conference 1 S28

IBIF (Internationales Begegnungs und Forschungszentrum fur Infor-
matik)

Conference 1 S30

Ain Shams Engineering Journal Journal 1 S13

ICCSA (International Conference on Computational Science and its
Applications)

Conference 1 S12

AICTC (International Conference on Advances in Information Com-
munication Technology & Computing)

Conference 1 S33

SQAMIA (Workshop of Software Quality) Conference 1 S37

13

Table 8: List of Top-10 smells and strategies to identify/remove/mitigate

Smells Main approaches to de-
tect

Most cited detection tools Most suggested refactoring Most cited refac-
toring tools

Duplicated
Code/Clones

textual [S2, S19, S20, S30,
S31, S32, S33], token [S2,
S19, S20, S30, S31, S32],
metrics-based [S2, S18,
S20, S30, S32, S33], tree
[S2, S20, S31, S32, S33],
strategies/rules [S2, S20,
S31], probabilistic/search-
based [S20, S31, S32, S33],
visualization [S9, S30, S31]

CCFinder [S2, S9, S19, S20, S30, S31],
CloneDr [S2,S9, S20, S31], Nicad [S2, S20,
S31, S40], JCD [S2, S30, S31], PMD [S2, S9,
S40], Checkstyle [S2, S18, S40], CloneDig-
ger [S2, S9], Duploc [S20, S31], inFusion
[S2, S18, S39, S40], CP-Miner [S19, S31],
Jplag [S30, S31], ConQAT/CloneDectetive
[S9, S20, S40], DECKARD [S19, S20], Clever
[S9, S19], DECOR [S13, S39], inCode [S2,
S39, S40], iPlasma [S2, S40], Gendarme [S2],
Clone Miner [S9], SYMake [S2], CloneBoard
[S9], CPC [S9], CloneScape[S9], SHINOBI
[S9], JSync [S9], Cleman [S9], CeDAR [S9],
CloneTracker [S19], Cyclone [S19], CloneIn-
spector [S19], Columbus [S19], Datrix [S19],
SimScan [S19], Simian [S19, S20], SmallDude
[S19], iClones [S19], CLAN/Covet [S20, S31],
ARIES [S33], JCodeCanine [S13], JDev [S13],
JCCD, SAME, Borland Together, Sonar-
Qube, Stench Blossom, InsRefactor [S40]

Extract Method [S4, S7, S9], Pull
Up Method [S4, S9], Rename Method
[S4, S9], Replace Constructor With
Factory [S4, S30], Extract Class [S4],
Form Template Method [S4], Push Down
Method [S9], Push Up Method [S4], Sub-
stitute Algorithm [S13], Move Method
[S9], Extract Superclass [S9], Extract
utility-class [S9]

JDeodorant [S39,
S40], Wrangler
[S2], CodeRush
[S9]

Large Class/God
Class

metrics-based [S2,
S15, S18], strate-
gies/rules [S2, S15, S38],
probabilistic/search-based
[S15, S38], history-based
[S15], optimization-based
[S15], visualization [S13]

DECOR [S2, S18, S38, S39, S40], PMD [S2,
S18, S39, S40], Gendarme [S2], inCode [S2,
S39, S40], inFusion [S2, S39, S40], iPlasma
[S2, S39, S40], Checkstyle [S2, S18, S40],
SDMetrics [S2, S40], Weka [S13], HIST [S4,
S40], Stench Blossom [S13, S40], BSDT [S13],
CodeNose [S18], JDev [S13], JCosmo [S13],
2D-DSL, NosePrints, Prodetection, P-EA,
BLOP, History Miner, BBT, TACO, SMURF,
EvolutionAnalyzer, Van, Borland Together,
Understand, Pascal Analyzer, SCOOP/Or-
ganic, CodeVizard, IYC, MuLATo, SpIRIT,
InsRefactor, JCodeOdor, JSNOSE, HULK,
Paprika, Metrics, SourceMiner [S40]

Extract Class [S4, S13], Extract Sub-
class [S4, S13], Replace Data Value with
Object [S4], Extract Interface [S4], Du-
plicate Observed Data [S13]

JDeodorant [S2,
S18, S39, S40],
TrueRefactor [S17]

Feature Envy strategies/rules [S2, S13,
S15], metrics-based [S13,
S18, S38], history-based
[S15], optimization-based
[S15], probabilistic/search-
based [S13, S15], visualiza-
tion [S13]

iPlasma [S2, S13, S39, S40], IntelliJ IDEA
[S2], Stench Blossom [S13, S40], JSpIRIT
[S2, S40], NosePrints [S2, S40], Weka [S13],
HIST [S4, S40], JCosmo [S13], SACSEA
[S13], JCodeCanine [S13], inFusion [S18, S39,
S40], inCode [S13, S39, S40], CodeNose
[S18], DECOR, Prodetection, P-EA, BLOP,
TACO, Fluid Tool, Methodbook, Borland To-
gether, Understand, SCOOP/Organic, Mu-
LATo, SourceMiner [S40]

Move Method [S4, S13], Extract
Method [S4, S7, S13], Move Field [S4]

JDeodorant [S13,
S18, S40], JMove
[S40]

Long Method metrics-based [S2,
S15, S18], strate-
gies/rules [S2, S13, S15],
probabilistic/search-based
[S15]

Checkstyle [S2, S13, S18, S40], PMD
[S2, S18, S39, S40], TACO [S24], Stench
Blossom, DECOR [S18, S39, S40], inFu-
sion, JSpIRIT, CodeNose [S18], Gendarme
[S2], iPlasma [S39, S40], inCode, 2D-DSL,
NosePrints, Prodetection, TACO, Teamscale,
Borland Together, Understand, SCOOP/Or-
ganic, IYC, MuLATo, InsRefactor, ConQAT
[S40]

Extract Method [S4, S7, S13], Replace
Temp with Query [S4, S7, S13], In-
troduce Parameter Object and Preserve
Whole Object [S13], Replace Method
with Method Objects [S7, S13], Decom-
positional Objects [S7, S13]

JDeodorant [S2,
S13, S18, S39, 40],
TrueRefactor [S2,
S17]

Long Parameter
List

strategies/rules [S2, S13,
S15], metrics-based [S15,
S18], optimization-based
[S15]

PMD [S2, S13, S18, S39, S40], Check-
style [S2, S18, S40], DECOR [S18, S39,
S40], CodeNose [S18], JDev [S13], SAC-
SEA [S13], iPlasma [S39, S40], inCode, in-
Fusion, 2D-DSL, NosePrints, P-EA, BLOP,
Borland Together, Understand, Pascal An-
alyzer, SCOOP/Organic, MuLATo, SpIRIT,
InsRefactor, JSNOSE, Metrics, SDMetrics
[S40]

Replace Parameter with Method [S4,
S13], Preserve the Whole Object [S4], In-
troduce Parameter Object [S4]

JDeodorant [S40]

Divergent
Change

strategies/rules [S13, S15],
metrics-based [S18], history-
based [S15]

HIST [S4, S13, S40], DECOR [S39], Bor-
land Together, Understand, inFusion, in-
Code, SCOOP/Organic, MuLATo, SourceM-
iner [S40]

Extract Class [S4, S13] JDeodorant [S40]

Data Clumps metrics-based [S2, S18],
strategies/rules [S2], tree
[S2], visualization [S13]

CBSDetector [S2, S40], inCode [S2, S39,
S40], inFusion [S2, S39, S40], IntelliJ IDEA
[S2], Stench Blossom [S2, S40], NosePrints,
Borland Together [S40]

Introduce Parameter Object [S4, S13],
Extract Class [S4, S13], Preserve Whole
Object [S4, S13]

*

Refused Bequest metrics-based [S13, S15,
S18], strategies/rules [S15],
visualization [S13]

iPlasma [S13, S39, S40], inCode [S2, S39,
S40], inFusion [S2, S39, S40], IntelliJ
IDEA [S2], Stench Blossom [S2], DECOR
[S39, S40], 2D-DSL, NosePrints, Prodetec-
tion, Borland Together, SpIRIT [S40]

Replace Inheritance with Delegation
[S4, S13], Push Down Method [S13], Push
Down Field [S13]

*

Shotgun Surgery metrics-based [S15, S18],
strategies/rules [S13, S38],
optimization-based [S15],
history-based [S15]

HIST [S4, S13, S40], inFusion, inCode,
iPlasma [S39, S40], DECOR [S39, S40],
Prodetection, P-EA, BBT , Borland To-
gether, Understand, SCOOP/Organic, Code-
Vizard, MuLATo, SpIRIT, JCodeOdor [S40]

Move Method [S4, S13],Move Field [S4],
Inline Class [S4], Move Class [S13]

TrueRefactor [S17]

Lazy Class metrics-based [S18] BSDT [S13], DECOR [S39] Collapse Hierarchy [S4, S13], Inline
Class [S4, S13]

TrueRefactor [S2,
S17]

14

Figure 5: Mind-map of secondary studies, categorized by smells, refactoring and both (in the parentheses are the numbers of studies and in
the brackets their references)

Figure 6: Categorization of refactoring topics

4.1.1. Refactoring Techniques Highlights
Ten studies mention refactoring techniques [S4, S7, S8,

S10, S13, S14, S22, S25, S30, S31]. We presented the
top 10 refactoring more quoted on studies (Figure 7). The
techniques thatmost appear are extraction techniques
(e.g., method, variable, class) [S4, S7, S8, S10, S13,
S14, S22, S25, S30].

Figure 7: Top 10 refactoring techniques

Extraction techniques are quoted as a technique used in
5 smells more cited (Table 8). For instance, Extract Class
can be applied in Duplicated Code/Clones, Large Class/-

God Class, Divergent Change, and Data Clumps. We note
that the same refactoring can be applied to more than one
smell. Of course, in these cases, the developer should take
context into account.

Also, the most cited refactoring are also the most stud-
ied, according to [S5, S7, S22, S25]. These studies show
that the researchers are more interested in the Extract
Class and Extract Method than in other refactoring tech-
niques. Move Method also deserves a highlight. The high
interest in these techniques may indicate their significant
importance in the software industry. However, although
these techniques could be potentially more frequently ap-
plied during the refactoring process than other refactoring
activities due to their influence [S7, S22], Extract Class and
Extract Superclass is rarely used in practice, as also shown
in [S22]. Other techniques such as Rename Field, Rename
Method, Inline Temp, and Add Parameter are among the
most used techniques in practice. Still, surprisingly we did
not find studies that highlight opportunities for their ap-
propriate application. Still, Rename Method is the most
commonly used automated refactoring [S22].

Most of the refactoring described in the studies are the
same defined by Fowler et al. [5]. However, the number of
techniques explored is still small. Indeed, the studies
[S7, S25] report a low number of considered techniques (20
and 27, respectively).

In practice, it is challenging for the developer to iden-
tify refactoring opportunities, that is, to determine which
type of refactoring should be applied to correct a smell
[S25]. The relationship between smells and refac-
toring is not a one to one relationship [S7, S25].
We can apply more than one refactoring technique to a
smell. It may even be necessary to combine more than
one refactoring to remove it or reduce its impact. Also,
some refactoring can be applied in more than one smell.

These observations suggest that there is a gap be-
tween refactoring practice and research for the topic
of identifying refactoring opportunities. These re-
sults point up opportunities to evaluate unexplored or un-
derutilized refactoring, which could (or not) be applied
together.

15

Table 9: Tools and secondary studies related
4.1.2. Refactoring Opportunities

The refactoring opportunities, application of refac-
toring and tools support are the most studied topics
[S3, S5, S7, S10, S14, S17, S21, S22, S25, S27].

The most commonly used approaches to identifying
refactoring opportunities are quality metrics oriented, pre-
condition oriented, and clustering oriented [S7, S17, S22].

Quality metrics oriented approach is used to predict
and identify refactoring opportunities (Extract Subclass,
Extract Superclass, Extract Class, Move Method, Extract
Method, Pull Up Method, Form Template Method, Param-
eterize Method, and Pull Up Constructor) [S7, S17, S22].
Most metrics are related to coupling, cohesion, and dis-
tance (similarity) between code elements, and the studies
described several distinct ways to calculate such metrics.

Pre-condition oriented approach is used to identify refac-
toring opportunities (Move Method), mainly related to
Feature Envy and Code Clones smells [S17, S22]. This
approach firstly evaluates a condition just before applying
a refactoring technique. Such a condition is also usually
related to some metrics.

Clustering oriented approaches use algorithms based on
some similarity measure and combination of code elements
(e.g., lines of code, attributes, methods, and classes), for
refactoring opportunities (Extract Method, Move Method,
Move Class, Move Field, Inline Class, and Extract Class)
[S17, S22].

Graph-oriented approach, code slicing, and dynamic
analysis are other approaches to the identification of refac-
toring opportunities (e.g., Move Method, Extract Method,
and Extract Class) [S22]. Such approaches are mainly use-
ful to discover different refactoring opportunities in SPL
[S14], and models [S3, S29, S36]. Too, code slicing is a
practical approach to small code snippets (e.g., methods),
although having scalability issues [S22].

Moreover, the study [S22] relates that only a single ap-
proach for specific refactorings (Graph-oriented approach
used to Extract Interface and clustering-oriented approach
used to Inline Class).

Search-based approaches use to detect refactoring op-
portunities and to evaluate their applicability (application,
behavior preservation, impact) [S17, S25]. The technique
most used is the adoption of evolutionary algorithms (Ge-
netic Algorithms), with highlights for Hill-Climbing Search
[S17, S25]. The search-based approach has also explored
this opportunity for pattern-oriented refactoring [21], with
studies of patterns Template Method, Decorator, Abstract
Factory, and Factory Method [S17].

Some studies (see [S7, S22]) indicated that researchers
generally compare the results obtained from one refactor-
ing with the results of other refactoring that use the same
identification approach. One of the key open issues in
this area is analyzing the results of applying different ap-
proaches for identifying refactoring opportunities for a spe-
cific activity to determine the best approach. Indeed, ex-
amining how refactoring techniques using different identi-

16

fication approaches can be further explored in future work.
Another important aspect of refactoring is how to ap-

ply it. The application of refactoring can direct or indirect
[S25]. In the direct approach, the refactoring is applied
directly to the artifact (e.g., code and model), and thus
it can be easily automated. In this case, the preservation
of the behavior of refactoring is ensured. In the indirect
approach, a sequence of refactoring produced as an op-
timized intermediary solution, and later that sequence is
applied to the artifact. Thus, the artifact is indirectly op-
timized. Most of the work reported by [S25] uses indirect
approach and one possible reason may be the dif-
ficulty in ensuring the preservation of behavior.

Automation is one of the critical difficulties in per-
forming comparative studies among approaches. Accord-
ing to [S25], the refactoring process addresses six tasks
[S10]. However, there is not a fully automatic approach
for the whole software refactoring activity by solving all
these tasks. Based on the results presented in [S25], the
most difficult tasks are: (1) assure that the applied refac-
toring preserves behavior, (2) implement the refactoring;
and (3) maintain the consistency between the refactored
artifact. Still, according to [S25], one of the problems
of automating this task is the difficulty in preserv-
ing the behavior.

In addition to automation, another interesting topic is
the application of refactoring with tools support, discussed
later in Sub-section 4.3.

4.1.3. Impact on Software Quality
The studies [S4, S5, S7, S22] indicated that different

refactoring sometimes have an opposite impact on differ-
ent quality attributes. Performing unnecessary refactoring
(changes in a code that does not need to refactored) may
unexpectedly cause the code quality to degrade instead of
being improved. Therefore, refactoring does not al-
ways improve all software quality aspects.

The studies [S7, S22] investigated the impacts of a few
individual refactoring on some internal quality attributes
such as cohesion, coupling, complexity, inheritance, and
size. However, such studies were not able to identify im-
pacts on external and other internal quality attributes.

Researchers were more interested in exploring the im-
pacts of Move Method, Extract Class, and Extract Method
on quality than the impact of any other refactoring [S7,
S22]. Still, according to [S7, S13], researchers took two
main approaches in studying the effect of refactoring on
quality. The first approach is identifying refactoring op-
portunities, determining those required to remove code
bad smells, performing refactoring when it is applicable,
and comparing the code quality before and after refactor-
ing. The second approach is analyzing the changes imple-
mented on code during the maintenance phase, detecting
the changes due to refactoring, and comparing before and
after the code quality.

Each refactoring scenario includes: (1) a summary of
the situation where refactoring is necessary, (2) a motiva-

tion for the importance of performing the required refac-
toring, and (3) a mechanism describing how to implement
the refactoring. The study [S7] relates some refactoring
and quality impact.

Extract Class was found to have a potentially positive
impact on cohesion, inheritance, and size, and a poten-
tially negative effect on complexity and coupling. Extract
Subclass has a potentially negative impact on complexity
and an inconsistent impact on cohesion and coupling. In-
line Class has a potentially positive impact on cohesion,
coupling, and complexity, but it has an opposite effect
on inheritance. Extract Method has a potentially posi-
tive effect on cohesion, complexity, and size, and it does
not affect inheritance and coupling (in most cases). Move
Method has a potentially positive impact on cohesion and
a potentially negative impact on coupling and complexity.
Move Field has a potentially positive effect on cohesion
and a potentially negative effect on the coupling. Encap-
sulate Field has a potentially positive impact on complex-
ity, an inconsistent impact on coupling and cohesion, and
does not affect inheritance. Replace Data Value with Ob-
ject has potentially positive implications for cohesion and
a potentially negative impact on the coupling. Finally, Re-
place Method with Method Object has a potentially positive
impact on the coupling.

We observe such information about positive or negative
impacts are very relevant to support developers in applying
refactoring and assessing which refactoring used, not only
to eliminate smells but also to improve quality aspects.
Additionally, it is beneficial for expanding studies on
the impacts on quality in other refactoring, not
yet explored. In Section 5, we discuss more deeply the
relationship between refactoring and quality.

4.1.4. Software Evolution and Technical Debt
There is nowadays an agreement in SE community about

technical debt: refactoring are the primary approach
to minimize the effects of technical debt [S21, S26,
S27]. Besides, if refactoring is overlooked, it can lead to a
development crisis in the long run [S21, S27].

Decision-making about refactoring is a challenge be-
cause costs are concrete and immediate. In contrast, the
benefits of refactoring are vague, long-term, and histori-
cally very difficult for the developers to quantify or justify
[S21, S23]. The identification and application of refactor-
ing may introduce new problems, and therefore, compli-
cating the analysis.

One strategy to identify refactoring candidates [S21] is
to locate the architecturally relevant classes as they are
the pillar classes of the software design. To this end, we
need finding classes that have earlier been frequently refac-
tored together with looking for classes that are harmful to
the system’s design. The classes are prioritized and sorted
according to their impact on the overall system’s quality.
However, as reported by [S21, S23, S26, S27], there is a
lack of studies that conclusively describe the data caused

17

by such code changes. Therefore, architectural refac-
toring is risky, difficult to estimate, and very diffi-
cult to prioritize.

RQ1 Summary
Challenges: The relationship between smells and refactoring is not
a one to one relationship. It brings us numerous challenges regarding
refactoring, such as (i) which refactoring can combine, (ii) which can
not combine, (iii) which have the most significant impact on quality,
and (iv) which detracts from the quality of software.
Although we have a large amount of research associated with refac-
toring, we still need to bring it closer to practice, encouraging re-
searchers to improve the results most commonly used in practice.
Another challenge is how to analyze the results obtained in the ap-
plication of the refactoring.
Comparing how refactoring can use different identification ap-
proaches can be further explored in future work.
Observations: Extraction techniques are the most mentioned in
the secondary studies. However, the number of techniques explored is
still small (between 20 and 27 of 72). Refactoring opportunities, ap-
plication of refactoring, and refactoring tools are topics that most ap-
pear in the studies. Quality metrics-oriented approach, precondition-
oriented approach, and clustering-oriented approach are the most
cited approaches to identify refactoring opportunities.
Refactoring is the first approach to minimize technical debt effects.
However, some refactoring, when applied, negatively affect the qual-
ity of the software.

4.2. RQ2: What smells-related topics have been investi-
gated in secondary studies?

As noted in Figure 5, most of the selected studies refer
to the smells [S1, S2, S8, S9, S11, S12, S15, S16, S18,
S19, S20, S23, S24, S26, S28, S29, S30, S31, S32, S33,
S34, S35, S36, S37, S38, S39, S40]. In this section, we
focused on design and code smells, because they are the
most cited subjects in the selected studies and also due to
their direct relationship with the code. The following are
the main points.

4.2.1. Design Smells Highlights
Although studies primarily focus on code smells, pa-

pers about design smells are also found. Fourteen studies
quoted design smells [S1, S2, S3, S13, S15, S19, S24, S28,
S34, S35, S37, S38, S39, S40]. The top 5 design smells
(Figure 8) were defined by Brown et al. [4].

Figure 8: Top 5 design smells

Blob is the most mentioned design smell in the studies
[S1, S3, S13, S24, S28, S34, S35, S37, S39, S40]. Some
reasons can justify this mention. Blobs are easy to de-
tect, and there are a variety of tools that identify this
type of design smell. Table 8 presents a list of detection
approaches and tools to detect Blob. Also, Blob is used in
some studies as synonymous with Large Class [5] or God
Class [123]. Previously, we presented the Blob definition
by Brown (see Table 1) and the Large Class definition by
Fowler (see Table 2). However, in other works, e.g., [S34],
this differentiation is made. Here, we have maintained
this differentiation by considering the original definitions
of distinct authors.

We can observe, in these cases, problems re-
lated to smells nomenclature. We also note that these
naming and definition problems also occur with other smells.
For example, Copy and Paste Programming has been used
as a synonym for Duplicated Code/Clones. We were iden-
tifying distinct studies [S11, S12, S15, S39, S40] using dif-
ferent smells names to describe the same problem in design
and code.

Some design smells usually appear together in many
studies. For example, the following studies [S1, S3, S13,
S24, S34, S39, S40] that discussed Blob also approached
Spaghetti Code, Swiss Army Knife, Lava Flow, Functional
Decomposition, and Poltergeist. Many works often consist
of evaluating a given design smell or even its relationship
with other design smells.

The design smells has also been studied together
with code smells. The studies [S28, S35, S37, S39]
reported relations between the following pairs of design
smells and code smells (e.g., Blob, Data Class, and Blob,
Large Class). Others pairs of design smell we found are:
(God Class, God Method), (God Class, Feature Envy),
(God Class, Data Class), (God Class, Duplicated Code),
(Data Class, Data Clumps), (Divergent Change, Shotgun
Surgery), and (Divergent Change, Shotgun Surgery, Fea-
ture Envy, Long Method) are also related [S28, S39].

4.2.2. Code Smells Highlights
The code smells initially defined by Fowler et al. [5]

are the most mentioned. We presented top 10 most quoted
code smells on studies (Figure 9).

Twenty-eight studies quotes code smells [S1, S2, S3,
S4, S8, S9, S11, S12, S13, S15, S16, S18, S19, S20, S23,
S24, S27, S28, S30, S31, S32, S33, S34, S35, S37, S38,
S39, S40]. Duplicated Code/Clones is the most studied
code smell [S9, S19, S20, S30, S31, S32, S33] (7 studies
from 28). We observe that the Duplicated Code/Clones
have been investigated separately and explored in differ-
ent ways. Duplicated Code/Clones cause code design prob-
lems, making maintenance difficult, and introducing subtle
errors. Probably, It is the reason we find an active com-
munity dedicated to Duplicated Code/Clones.

Other code smells in the Top 10 most quoted list are
God Class/Large Class, Feature Envy, Long Method, Long

18

Figure 9: Top 10 code smells

Parameter List, Divergent Change, Data Clumps, Refused
Bequest, Shotgun Surgery, and Lazy Class.

When the technical debt was the subject, God
Class/Large Class has been the most investigated
smell. Such the smell is conceptually easy to understand,
and, according to [S21], it is up to 13 times more likely
to be affected by defects and up to 7 times more change-
prone, which makes them a good candidate for TD mitiga-
tion. Several reasons justify the higher prevalence of some
smells than others: tools available for their detection, the
frequency of smell occurrence, popularity among practi-
tioners, representativity of design and code problems, and
the incidence of one code smell in another.

However, rarely some code smells are investigated. Ac-
cording to [S12, S18], Alternative Classes with Different
Interfaces, Incomplete Class Library did not obtain the at-
tention of researchers. The study [S12] still include Prim-
itive Obsession, Inappropriate Intimacy, and Comments.
Perhaps, these smells are not so interesting, or they are
complicated to identify, not justifying the carrying out of
studies. The literature does not explain why researchers
did not attempt to detect them.

Some of the smells listed on the top 10 smells are re-
lated usually by co-occurrence. We observe in Figure 10
the relationship among smells reported by studies [S1, S28,
S39, S40]. The nodes represent smells, and the edges are
the relationships between them.

We observed that the code smells God Class/Large
Class, Long Method, Feature Envy, and Duplicated Code/-
Clones co-occur in many selected studies. For example,
the presence of a Long Parameter List can result in a Long
Method. The presence of Long Method, by its characteris-
tic, can indicate a God Class/Large Class. Also, the fact
that we separate a Long Method and it has many behaviors
that are not related to the same class, can cause a Feature
Envy.

Other code smells, like Lazy Class, Refused Bequest,
Shotgun Surgery, Long Parameter List, Divergent Change,
and Data Clumps are mentioned in studies, but the rela-
tion between them is not mentioned, suggesting that this is

still a topic deserving more attention. The current stud-
ies on the co-existence of smells in the code indicate an
association with maintenance and design problems. Co-
occurrences can be more explored, such as the ap-
pearance of smell in consequence of another smell,
smells that are always close (presence of one im-
plies the presence of another), among others.

In the same way, it occurs with design smells, naming
problems are also found with code smells. Several studies
[S11, S12, S15, S39, S40] claim that the use of terms and
classifications adopted by different authors are not
sound. On the one hand, we found distinct definitions for
the same smell name. On the other hand, the same smell
definition is presented with different names. According to
[S40], such fragmentation of definitions is due to the lack of
a more systematic or formal taxonomy for code anomalies.

The standardization process is necessary to allow the
unification of the terminology and its precise definition. A
standard, cataloging all the smells (design/code) defined
up to the present time should be possible, determining
those that refer to the same smell with different names.
The study [S39] also suggests the creation of a unique cat-
alog (in the same way as the Design Patterns Catalog) with
a unique entry in the catalog enriched with “other names”
or “also known as”. It is important to increase ef-
forts to the standardization of the concepts, which
would also allow an increase in smells detection
consistency.

4.2.3. Smell Detection Approaches
The main topics for code smells are shown in (Figure

11). The most discussed topics are smell detection ap-
proaches, appearing in six topics among the 16 most cited
topics. There is a lack of standard agreed-upon definitions
for code smell detection in the research community [S2,
S11, S12, S39, S40].

We analyze the main approaches to smell detection,
considering the top 10 most quoted smells (Table 8). Among
them, the use of human perception, metrics-based, de-
tection rules, reverse engineering/static analysis, history-
based, machine learning-based, and software visualization
are the most mentioned approaches. We group them to
facilitate our analysis. We defined the following classifi-
cations: human perception, metrics-based, strategy/rules-
based, probabilistic/search-based, and visualization-based.

Human perception-based approach [S10, S12, S13, S15,
S18, S19, S20, S24, S26, S34, S35, S38, S39, S40] is a funda-
mental manual approach to detect smells, usually based on
different guidelines followed by developers to detect man-
ually design defects [S18, S39]. Manual techniques are
human-centric, time-consuming, and error-prone. These
techniques eliminate uncertainties in the detection process
due to human involvement, but they are not useful for ex-
amining code smells within large systems. However, we
do not eliminate human participation from the detection
process.

19

Figure 10: Co-occurrence of smells from the studies

Figure 11: Smell topics, based on how are discussed in the literature

Metrics-based approach [S2, S4, S5, S6, S7, S9, S12,
S13, S14, S15, S16, S17, S18, S19, S20, S22, S24, S25, S26,
S30, S31, S32, S33, S34, S35, S38, S39, S40] is usually
the approach used to detect Large Class/God Class, Long
Method, Data Clumps, Refused Bequest, Shotgun Surgery
and Lazy Class. This approach was mentioned in all top
10 smells selected. It used to evaluate/measure source
code elements (e.g., attributes, lines, parameters, meth-
ods, classes), allowing them to take some decisions. The
accuracy of metrics-based approaches is dependent on the
proper selection of threshold values, which are usually em-
pirical and not much reliable [S2, S18, S38, S39]. There is
not yet a consensus on the standard threshold val-
ues for the detection of smells, and consequently,
there is a lot of disparity among results of differ-
ent techniques. One of the factors that can contribute
to this finding is the lack of standardization/formalization
of the smell definition.

Rule-based (or strategy-based) approach [S2, S4, S6,
S9, S11, S12, S13, S14, S15, S17, S18, S19, S20, S22, S24,
S25, S26, S30, S31, S32, S33, S34, S35, S38, S39, S40] is an-
other approach which combines rules, logic expression, and
metrics used typically to detect the following smells: Fea-
ture Envy, Long Parameter List, and Divergent Change.
Different smells are represented as detection rules. Each
rule is specific to specific smells and can be defined manu-
ally or automatically using different techniques [S39]. The
conversion of symptoms into detection rules requires anal-
ysis and interpretation effort to select the proper threshold
values. There is not yet agreement on defining standard
symptoms with the same interpretations, and thus the pre-
cision of the approach is low. Since rule-based approach
makes intensive use of metrics, the same works that men-
tion this type of approach also mention a metrics-based
approach.

Probabilistic/search-based approaches [S12, S15, S18,
S20, S31, S32, S33, S34, S39] apply different algorithms
and rules for the detection of smells directly from source
code. Most techniques in this category apply machine
learning algorithms and fuzzy logic. The study [S39] rein-
forces the use of the search-based approach to detect dif-
ferent types of smells. Several techniques and algorithms
proposed for extracting specified rules to detect smells
with techniques based on genetic and heuristic search algo-
rithms. These techniques learn from the standard design
and coding practices and examine how the code deviates
from these practices. The success of these techniques de-
pends on the dataset’s quality and training [S2]. These
techniques are very limited for dealing with unknown and
varying definitions of code smells, but it is one of the ap-
proaches to be more explored in future work, not only for
smell detection but also to support refactoring recommen-

20

dations.
Visualization-based approach [S9, S12, S13, S15, S18,

S20, S26, S34, S39, S40] integrate the capability of human
expertise with the automated detection process. In some
cases, when the software is very complicated, the graphical
representation of the software artifact arises as a solution
to deal with complexity. Such an approach has scalability
problems for large systems, and it is error-prone because of
wrong human judgment depending on visualization type.
However, this approach could help developers to identify
points of code to be improved, reducing the technical debt.

According to [S2, S39, S40], smell detection ap-
proaches and their corresponding produced results
are highly inconsistent. In general, generic ap-
proaches are used for all types of smells, while
some specific approaches are used for more specific
smells. That is the case for approaches such as history-
based, optimization-based, and probabilistic/search-based.
The study [S40] reports that different detectors for the
same smell produce different answers, which is coherent
with the need for new strategies to identify smells (or even
approaches) in a more efficient/effective way than current
approaches. It is also necessary to explore whether
the approaches could be combined or individually
used for the detection of a set of smells. We suggest,
as future work, the assessment of which approach combi-
nation is better and in which context and conditions.

4.2.4. Impacts and Effects
The studies [S11, S15, S24] do not differentiate between

a smell and a definite quality problem. The community
believes existing smell detection methods suffer from high
false-positive rates. Also, existing methods cannot define,
specify, and capture the context of a smell adequately.
Undoubtedly, the impact of smells causes decay in
the overall design, affecting the quality attributes
[S24, S35, S37, S38], including maintainability (the effort
to change the code), understandability, and extendability
(the effort to add new functionality). A deeper discussion
of the relationship among quality attributes, smells and
refactoring is presented in Section 5.

However, some studies [S15, S23, S24] do not establish
an explicit connection between smells and their impact on
the productivity of a software development team. Several
studies [S21, S23, S26, S27, S38, S39, S40] presents dif-
ferent factors in how smells affect the architecture decay,
both developer-focused and development process-focused,
concentrating on the relation between design/code smells.
Developer-focused issues involve difficulties related to in-
experienced/novice developers focused on functionality build,
lack of a system’s architecture knowledge, apprehension
due to system complexity, and carelessness. Development
process-focused issues include difficulties related to missing
functionalities, violation of object-oriented concepts (ab-
straction, information hiding, modularity, and hierarchy),
project deadline pressures, changing and adding new re-

quirements, updating new software and hardware compo-
nents, and ad-hoc modifications without documentation.

The studies suggested that developers should promptly
identify and address the code smells upfront. Otherwise,
code anomalies increase modularity violations and cause
architecture degradation. To achieve such skills, intro-
ducing new approaches to developers’ education could be
necessary. We do not find secondary studies discussing
ways to teach such practices while developers are coding.
Therefore, we suggest the development of mechanisms and
tools which help developers, recommending practices in
such context, as seen at Section 6.

RQ2 Summary
Challenges: The literature does not explain why researchers did
not attempt to detect Alternative Classes with Different Interfaces,
Incomplete Class Library, Primitive Obsession, Inappropriate Inti-
macy, and Comments. It is necessary to evaluate the reason for the
lack of interest in these smells.
A smells naming standardization is necessary, allowing the terminol-
ogy and its precise meaning to be unified. With this standardiza-
tion, cataloging the smells defined up to the present time should be
possible, determining those that refer to the same smell with dif-
ferent names. This process will undoubtedly have repercussions on
detection approaches. Another question that can investigate is the
appearance of smell in consequence of another or the existence of
smells that are always related, sometimes co-occurring.
Furthermore, it is necessary to explore which approaches can be com-
plementary or explicitly used for a specific smell. There is a variety of
approaches to revealing smells, with high false-positive rates. Thus,
there are open possibilities to explore and to improve methods capa-
ble of defining, specify, and capture the smell context.
Observations: Blob and Duplicated Code/Clones are the most
mentioned design and code smell, respectively. Related to techni-
cal debt, God Class/Large Class has been the most investigated
smell. Design smells have also been studied together with code
smells. There are simple and composite smells (the combination
of simple smell can lead to a composite smell).
It is a consensus that manual detection is difficult, time-consuming,
and prone to errors. However, there is no consensus on the standard
threshold values for the detection of smells, which are the cause of a
disparity in the results of different techniques.
Over time, there has been a significant number of detection
approaches, like metrics-based and strategies/rules. They have
been the most cited. Other approaches, such as history-based,
optimization-based, probabilistic-search-based, and visualization,
have also been used to smells detection. Besides, smell detection
approaches and the corresponding produced results are highly in-
consistent. The impact of smells causes decay in the overall design,
affecting quality attributes.

4.3. RQ3: Which tools have been mentioned for code-smell
detection and refactoring support?

Manual detection of code smells in the early days was
very time consuming, error-prone, and costly. Smell de-
tection tools automate specific smell detection techniques.
To address these problems, researchers developed many
semi-automated and automated code smell detection tools
and refactoring support. To answer RQ3, we investigated
which platforms/programming languages are used and which
tools have been aiming for smell detection. Furthermore,
we also investigated supporting tools for refactoring.

The tools investigated in studies [S2, S13, S18, S39,
S40] have many characteristics, summarized as follows:
if they are free or not; whether they are open source or

21

proprietary; their supported languages; the terms used to
describe the smells; the internal representation of the soft-
ware artifact; the degree of automation; the ability to also
perform refactoring; the way to run the tool; their ability
to generate metrics; the type of input source; the output
format; the facility to work with Command Line Interface
(CLI); Graphical User Interface (GUI)/plugged on IDEs,
and the list of smells the tool can detect.

4.3.1. Platforms/Programming Languages
The majority of studies [S1, S2, S3, S4, S5, S7, S8, S9,

S10, S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S22,
S23, S24, S25, S26, S29, S30, S31, S32, S33, S34, S35, S36,
S37, S39, S40] refer to Java as platform/programming
language(PL) most used to develop tools (Figure
12).

Figure 12: Platforms/programming languages more used

Thirty-five studies that mentioned platforms/PLs have
suggested Java as the most used technology, following by
C++ and C# (57.14% and 42.85%, respectively). Accord-
ing to GitHub3, Java is the third most popular program-
ming language used in project repositories, whereas ac-
cording to the Tiobe Index4, Java is the most popular pro-
gramming language. Java has been the most widely used
platform for tool development and also as a target lan-
guage for experiments. Few tools (e.g., PMD, Borland To-
gether, CCFinder, inFusion, inCode, and iPlasma) listed
in the studies [S2, S18, S39, S40] work with more than
one programming language. Therefore, there is an op-
portunity to develop tools that support more than
one programming language. For instance, Javascript
is more and more adopted by the industry and is already
the leader in FLOSS projects on GitHub. However, it ap-
pears only as of the fourth technology mentioned in the
studies so far. Nevertheless, the second edition of the re-
cently released Fowler refactoring book [13] presents all
examples in Javascript.

3 more info: https://octoverse.github.com/, accessed December, 09
2019 4 more info: https://www.tiobe.com/tiobe-index/, accessed
December, 09 2019

4.3.2. Smells Detection Tools
Nineteen studies [S1, S2, S9, S12, S13, S17, S18, S19,

S20, S26, S27, S30, S31, S33, S34, S35, S38, S39, S40]
quoted smell detection tools. In a set of more than
162 distinct tools, we presented the top 5 smell
detection tools (Figure 13). CCFinder is the tool that
most appears in studies [S2, S9, S19, S20, S30, S31, S34,
S35, S39] for smells detection, together with PMD [S1,
S2, S9, S12, S13, S18, S26, S39, S40] (both with 47.36%
of studies). inCode [S1, S2, S13, S18, S34, S35, S39, S40]
and DECOR/DETEX [S13, S18, S34, S35, S38, S39, S40]
appears together with 42.10%. inFusion [S2, S13, S17,
S18, S35, S39, S40] appears with 36.84%.

Figure 13: Top 5 smells tools

CCFinder is the most quoted tool to detect Code Clones
(e.g., Type-1 and Type-2), using the token-based approach.
The tool uses a suffix tree algorithm, and so it cannot han-
dle statement insertions and deletions in Code Clones. It
applies several metrics to detect relevant clones. It also
optimizes the sizes of programs to reduce the complexity
of the token matching algorithm. It produces high recall,
whereas its precision is lower when compared with some
other techniques [S31]. CCFinder probably is the most
cited because detects Type-1 and Type-2 clones, which are
the more commons clones. There is not a “perfect” clone
detection technique, e.g., having high scores to all prop-
erties like precision, recall, ok, portability, and robustness
[S9, S31]. Perhaps new clone detection approaches could
do better by overcoming some of the limitations of exist-
ing techniques. Still according to [S31], Type-4 clones
require to solve an undecidable problem. The clone
detection technique can be improved by combining sev-
eral different types of methods or re-implementing systems
using a different programming language. Such the tech-
nique presents new challenges for software maintenance,
refactoring, and clone management. Clones introduce
maintenance and evolution problems, but, in most
of the cases, they do not affect quality [S20, S35,
S37].

PMD is a static analysis tool used to detect code vio-
lations or bad development practices. Because of its broad

22

action spectrum, it ends up detecting some smells like Du-
plicated Code, Large Class, Long Method, and Long Pa-
rameter List. For Large Class detection, the tool presents
a low precision rate (about 14%). On the other hand, it
performed well with Long Method, achieving 50% to 67%
of recall and 80% to 100% of precision [S2]. In the study
[S18] is discussed the use of PMD, comparing with an-
other coding standard/smell detection tool, called Check-
style5. Although Checkstyle detects the same smells of
PMD, there is a difference in detection results, due to dif-
ferent threshold values used by these tools, as well as the
metrics took in the account. Beyond the list of smells tools,
the study [S18] presents a set of experiments realized. For
Large Class, PMD uses a threshold of 1000 NLOC6, while
Checkstyle uses 2000. Still, for Long Method, PMD uses a
threshold of 100 and Checkstyle, 150. For Long Parameter
List, again we have differences of thresholds, with PMD
using ten and Checkstyle, 7. PMD appears among the
most cited due to its more general performance, although,
as we have seen, it is not very accurate.

inCode is an Eclipse plug-in that helps smell detection,
detectingDuplicated Code, Large Class, Feature Envy, Data
Clumps, and Refused Bequest, with visualization support.
Although it is a tool that detects several smells [S2, S35,
S39, S40], we do not found secondary studies discussing
more details about functionalities, strategies used to de-
tect, precision, and recall of operation. Since inCode is an
Eclipse plugin detects multiple smells and works with mul-
tiple programming languages, it is among the most com-
monly cited detection tools.

DECOR/DETEX , proposed by Moha et al. [29], is
the tool capable of detecting more than 10 smells
(e.g., Large Class/God Class, Lazy Class, Long Method,
Long Parameter List, Refused Bequest, Speculative Gener-
ality, Message Chains, Shotgun Surgery, Duplicated Code,
Comments, Data Class) identified by Fowler et al. [5].
Also, DECOR/DETEX detects design smells proposed by
Brown et al. [4], like Swiss Army Knife, Blob, and Func-
tional Decomposition. DECOR is a method, and DETEX
is a tool that allows us to specify and to detect code and
design smells, using a DSL7 [S13]. The tool allows develop-
ers to make metrics threshold settings to detect smells. Al-
though the study [S18] reports 50% of precision and 100%
of recall, the study [S13] reports experiments indicating
not such a high accuracy. DECOR is among the most
cited detection tools probably due to the lightweight na-
ture that allows researchers to employ it to detect several
types of smells without the need of compiling anything
each time.

inFusion is another tool that detects Duplicated Code,
Large Class, Feature Envy, Long Method, Data Clumps,
and Refused Bequest. inFusion has an open-source version
called iPlasma, which is quoted too, but with more lim-
ited functionalities. The tool presents the same numbers

5 Checkstyle was the sixth tool most mentioned in the studies
6 non-commented lines of code 7 Domain Specific Language

of PMD [S2], with a 14% recall rate for Large Class de-
tection. The authors report an experiment with just one
project. Probably, it is necessary to achieve more exper-
iments. Also, the tool performed well with Long Method,
achieving 50% to 67% of recall and 80% to 100% of preci-
sion.

Smell detection tools use thresholds on metrics or ad-
hoc rules to identify structures in code, at the price of some
inaccuracy [S40]. The accuracy of a code smell detection
tool is a key aspect of its validity. Some secondary stud-
ies [S2, S15, S18, S40] reveal approximately 30%
of the tools spotlight the accuracy, that is, pre-
cision and recall, of their technique or tool. Also,
the studies [S18, S40] describe that authors of code smell
detection tools perform experiments on different systems,
and the comparison of published results becomes difficult
when tools are not available. Standard benchmark sys-
tems for code smell detection tools are not avail-
able, which require the attention of the research
community.

Murphy-Hill et al. [124] presents a list of guidelines as
success factors related to usability for code smell detectors.
The studies [S2, S40] contain a discussion about usability
and detection tools. They define six features for tools anal-
ysis: a) easy exportation: results about the detected bad
smells were easily exportable, for instance, to text, CSV or
other file formats; b) highlighting of smell occurrences; c)
configurability: allowing detection settings; d) graph visu-
alization; e) detected smell filtering; f) Analysis of multiple
versions. According to [S2], inFusion is the only tool that
supports five features (a to e), although two of these are
available only in the full commercial version of the tool.
In addition to the features mentioned above, the studies
[S2, S40] describe that some usability issues could hinder
the tool user experience. Some usability problems, such
as difficulty in navigating between bad smell occurrences
(in general, results showed in long lists without summa-
rization), difficulty in identifying the source code related
to a smell detection, and lack of advanced filters for spe-
cific bad smell detection. In general, tools do not provide
data visualization through statistical analysis, counters of
detection results, or result’s presentation by charts.

Most of the tools focus on the recovery of code
smells from a single language, that is, in most cases,
Java language [S2, S18, S39, S40]. None of the tools de-
tect all 22 code smells identified by Fowler et al. [5]. On
average, tools cover three to four smells for detection [S2,
S18]. The tool inFusion claims to detect all code smells
of Fowler, but it is a commercial tool, and it was not free
and available for experiments realized in [S18, S39]. We
identify an opportunity for the development of tools for the
detection of relevant smells not yet explored. Additionally,
tools that detect smells in more than one language should
also receive attention from the SE community.

23

4.3.3. Refactoring Tools
Since refactoring tools are also essential to our work,

and we did a study on tools that support refactoring. Thir-
teen secondary studies [S1, S2, S4, S9, S12, S13, S14, S17,
S18, S29, S34, S39, S40] presented 24 distinct tools
that help developers applying refactoring. We se-
lect the top 5 refactoring tools (Figure 14) for a de-
tailed discussion.

Figure 14: Top 5 refactoring tools

JDeodorant is the tool that most appears in
studies [S1, S2, S4, S12, S13, S18, S29, S34, S39, S40]
(71.42% of studies), followed by TrueRefactor [S2, S17,
S25] (21.42%), Eclipse Refactoring [S18, S29] and Intel-
liJ IDEA Refactoring [S2, S29] (14.28% both), and finally
Wrangler [S13] (7.14%). There are other 19 tools with a
similar percentage, but we choice Wrangler, because it is
the first tool supporting refactoring for clones.

JDeodorant [S13, S18, S40] is an Eclipse plug-in that
automatically recognizes Large/God class, Feature Envy,
Switch Statement/Type Check, and Long Method code smells
from Java source code. It has support for refactoring and
assists the user in refactoring transformations [S18, S40].

In the same study [S2] that also analyze PMD and
inFusion, there was high agreement among these three
tools concerning the detection results, although JDeodor-
ant points out more bad smell instances compared to the
other tools, in its default configuration. JDeodorant has
too achieved low precision rate (about 14%) in detecting
Large Class. The tool uses both metrics and AST8 to
detect bad smells. Considering that some tools apply un-
known techniques, detection results may be different. The
authors [S2] observe that JDeodorant indicates the high-
est number of Large Class and Long Method instances, and
scored the lowest results for both recall and precision. We
note that JDeodorant is one of the few tools that combine
smells detection with the automatic application of refac-
toring. It may be the reason for being the most mentioned:
even with some limitations presented, this shows that more
tools with these characteristics are needed.

8 Abstract Syntax Tree

The TrueRefactor [S17, S25] is an automated refactor-
ing tool that significantly improves the comprehensibility
of legacy systems [125]. To detect code smells, each source
file is parsed and then used to create a control flow graph to
represent the structure of the software. For each code smell
type, a set of metrics is calculated to identify whether a
section of the code is an instance of a code smell type. The
tool uses a genetic algorithm (GA) to search for the best
sequence of refactoring that removes the highest number of
code smells from the source code. As an automated refac-
toring tool, TrueRefactor does perform actual refactoring,
but currently supports mainly the modification of UML
rather than code. The study [S17] describes an example
program with code smells artificially inserted to analyze
the effectiveness of the tool. The number of code smells of
each type over the set of iterations was measured jointly
with the measure of a set of quality metrics. In both cases,
the values increased initially before staying relatively sta-
ble throughout the rest of the process. A comparison of
initial and final code smells shows that the tool removes
a significative proportion of smells, and also metric values
indicate that the surrogate metrics are improved. Despite
the limitations presented by TrueRefactor, a positive as-
pect is a way adopted for sorting the most appropriate
refactoring, based on a given smell and its impact. This
shows that researchers can advance in more studies of clas-
sifying refactoring, taking into account their impact.

Beyond the JDeodorant and TrueRefactor, the rest of
the tools do not present more details or analysis about use
and accuracy. Two IDEs appear, too, as most mentioned.
The IntelliJ IDEA implements more than 40 refactoring,
using a lexical and syntactic parser to convert the code into
the form of AST, called Program Source Interface (PSI)
[126]. The PSI is used to validate any generated code.
After code transformation, the Formatter is responsible
for verifying the scope of the changes, adjusting the code
with indentation, inserting blank lines, changing of qual-
ified names, and imports of libraries. IntelliJ IDEA still
makes use of a built-in DSL to find fragments in the PSI
using a defined lean notation. The use of DSL is also one of
the paths suggested for future studies for code refactoring
[96, 126, 127].

Wrangler [128, 60] is a tool that supports interactive
refactoring of Erlang programs. It is integrated with Emacs
as well as with Eclipse, through the ErlIDE plugin. Wran-
gler itself is implemented in Erlang. The tool supports a
variety of refactoring, as well as a set of code smell inspec-
tion functionalities, and mainly a lot of facilities to detect
and eliminate code clones.

Eclipse Refactoring is also well-known for the constant
improvements to the use of refactoring. The process con-
sists of the phases of verification of preconditions, detailed
analysis, and rewriting of the code. Guidelines help to
seek a more straightforward code rewriting mechanism,
also based on the AST form. Although Eclipse supports
more than 20 refactoring techniques, a lot of work has im-
proved the use and application of the refactoring, resulting

24

in more speed for developers [129].
We note that Eclipse and IntelliJ IDEA appear here

by bringing automation to refactoring, helping developers
in the process. One of the advantages of using these tools
is to ensure the application of refactoring (passed by refac-
toring preconditions and also by postconditions, ensuring
that AST has not been broken). However, it is up to the
developers to find the smells and also know the refactor-
ing to apply. Murphy-Hill has argued in previous work
[59, 130] on usability and habits of developers, showing
that this is not a trivial process. We think tools taking
advantage of such potentialities, guiding the developers
in the process (for example, recommending a refactoring),
can be explored in future studies.

4.3.4. Tool Considerations
According to [S13, S18, S21], the detection of code

smell reduces the cost of maintenance if the fail-
ures found in the early stages of software devel-
opment. The applicability of smell detection tools varies
according to the goal of detection: the objective could be
software quality management, or maintenance after smells
detection, code quality improvement, and fault detection
via refactoring. One observation is the detection goal is
highly related to the impact goal, since the investigation
of the impact of smells occurs after the detection. Indeed,
the study [S40] observes that the inconclusive knowledge
about the negative impact of smells is partially attributed
to tools/techniques used to detect them.

Since there is a great variety of tools and discrepancies
on tools findings, we cannot discard discrepant results in
different studies because they were using different tools.
Still, according to [S39], only a few tools can analyze very
large-sized projects (millions of lines of code). Most of
the tools did not take into account the expert feedback
or other characteristics like the influence of the context,
project domain, and project status.

A large number of tools are available for the
detection and removal of code smells. However,
evaluation frameworks that could help the user for
appropriate selection of any tool for a given context
are missing [S18, S39]. The currently available tools
[S2, S15, S39] can detect only a very small number of
smells. It is still a big problem to determine which code
smell is effective in indicating the need for refactoring and
what type of refactoring, and programmer involvement is
still necessary [S2, S11]. Although refactoring has been
proposed to remove smells, several subtleties make this
activity inherently complicated [S40].

In the refactoring field, we suggest that developers of
new detection tools should be aware of the possible us-
ages of their tools, considering observations referenced by
[S2]. According to [S5], a refactoring tool developer
can not provide custom refactoring fitting for all
specific user needs because the possible number
of refactoring is unlimited. Therefore, customizable
refactoring tools based on the demand of the developer are

missing. Still, as reported by [S7], the existing refactoring
tools are error-prone, and therefore, using these tools may
result in producing incorrectly refactored pieces of code.
As a result, tools usage sometimes negatively affect code
quality. Automating the refactoring process consists of au-
tomating the two following main steps [S22]: (1) identify
refactoring opportunities, and (2) perform refactoring. It
is necessary to automate effective techniques to identify
opportunities for such refactoring and then perform it.

Tools should make it easier for programmers to refactor
quickly and correctly. Tools have to help analyze the
impact of the smell: nowadays, many tools do a
weak job of communicating errors triggered by the
refactoring.

Furthermore, tools like Eclipse IDE and IntelliJ IDEA
automate some pointed refactoring. The point is it de-
pends on the developer knowing how to conduct it. In
particular, the study of the human perception of what is
a code smell and how to deal with it has been mostly ne-
glected in the past [S15]. In the same way, human opinion
remains important to decide where refactoring is worth
applying [S5]. According to [S18, S39], there are few stud-
ies discussing such support for refactoring. A significant
motivation for identifying code smells is source code refac-
toring, but most code smell detection tools focus on the
detection/visualization of code smells. This finding is ev-
idenced in our research (Table 8, marked as *): there is
not a tool that automates refactoring, according to one
indicated smell. It shows the need to deepen work on the
constructions of refactoring support tools coupled to smell
detection tools.

Moreover, from the perspective of tools evaluation, the
unavailability of implementations hinder reproducibility
and impose barriers to the underlying empirical studies, in
particular for those aiming at comparing new approaches
with the state-of-the-art. Experts from industry and
academy need to assess the results of the tools
regarding detecting false positives and false nega-
tives. It is also essential to have expert opinions concern-
ing smell prioritization, smell impact on product quality
and technical debt, as well as evaluation of refactoring in
the same terms. In general, according to [S18, S39], tools
lack maturity and a lot of limitations restrict their
use and adoption by the industry.

25

RQ3 Summary
Challenges: We notice a preference for a programming language/-
platform, for both the tool construction and realization of experi-
ments. It opens the opportunity to develop tools that support more
than one programming language.
It is necessary to expand the studies and experiments, evidencing
the accuracy of the smell detection tools as well as refactoring tools.
We identify a lack of maturity of tools with limitations that restrict
their use and adoption by the industry. Standard benchmark systems
for results of code smell detection tools and refactoring tools are not
available, which require the attention of the research community.
Also, it is necessary to involve experts to assess the results of these
tools.
Observations: Several aspects characterize tools: free or not, open-
source or proprietary, supported languages, the terms used to de-
scribe the smells, the degree of automation, the ability also to per-
form refactoring, the way to run the tool, among others.
Java is the platform/programming language most used to develop
tools. Also, most tools focus on the identification of code smells
from a single language, where Java is predominant too.
We have a large number of smell detection tools, using the most
different detection approaches. Currently, available tools can detect
only a tiny amount of smells (between 3 and 4). The number of tools
that perform refactoring is small.
The most quoted smell detection tool is CCFinder because we have
more studies related to the Duplicated Code/ Clones. This smell has
an impact on software maintenance and evolution, but we have not
identified significant effects on quality. The most cited refactoring
tool is the JDeodorant, used to apply specific refactoring for specific
code smells.

4.4. RQ4: Which RQs have been studied on smells and
refactoring? What are the highest cited secondary
studies?

Responding to RQ4, we analyze which RQs discussed
in the studies and the correlation among them. Also, we
present a discussion of the most mentioned works.

4.4.1. Analysis of RQs
RQs are essential points in any scientific work. They

define the direction and conduct the focus of the studies.
An explicitly stated RQ is one of the requisites for a review
to be considered systematic. We explore RQs from two
points of view: general analysis and specific analysis.

In a more general analysis, we had 181 RQs in the
40 selected secondary studies. It gives an average of
4.5 RQs per study. The study [S40] was the study
with the highest number (13 RQs). Thus, it is a
broad study, addressing several topics related mainly to
smell definition, smells detection, tools, impact, trends,
and focus on the research group and researchers.

We had two studies [S28, S30] with only one
RQ. The study [S28] addresses the co-occurrence between
smells and design patterns. The study [S30] is focused on
Code Clones.

Other studies, such as [S4, S9, S10, S18, S31], had
no explicitly defined RQs. The studies [S4, S18] are SLRs.
They have defined goals, but not in the format of RQs, not
following a SLR protocol and making difficult an analysis.
The studies [S9, S10, S31] are Surveys. Surveys do not
explicitly have RQs and do not follow a defined protocol,
unlike SLRs and SMs.

In a specific analysis, we used the RQ classification
proposed by Easterbrook et al. [131] (Table 10). This
classification has been used in other studies as well, e.g.,
[132, 133, 134, 7]. We ranked each RQ within the study,
but we did not rank the studies based on their RQs, using
the most specific RQ as the basis, as performed in Silva et
al. [132]. We observed that the studies [S1, S14, S16, S21,
S27, S40] have one major RQ is divided into secondary
RQs. In these cases, we classified the secondaries RQs
follow the Easterbrook RQ classification. For brevity and
space constraints, we are not reporting the entire list of
RQs extracted from all studies, but the reader can find it
in our online replication package [87].

Revising the list of RQs can help researchers to use RQs
for new secondary studies, creating better and more sys-
tematic RQs. We note that Description-and-Classification
(DC) RQs are the most popular, with a wide margin (75%
of studies). RQs of this type is mainly used in secondary
studies. The second most frequent is the Frequency Distri-
bution (FD), with Existence (E) and Descriptive Process
(DP) in the third.

We identified 152 RQs (83.97%) about Exploratory and
Base-rates Questions. In more detail, 34 studies (85%)
have at least one RQ in these categories9. Likewise found
in SLRs, these categories of RQs are more common in SMs
and Surveys [82, 30]. Although, according to Kitchenham
[30], this distinction between SMs and SLRs is a bit con-
fusing.

Relationship (R) and Causality (C) were a minority of
the questions. It is the type of question one would ask to
assess the effectiveness of treatments as in the traditional
form of SLRs [30].

Our research evaluates the presence of empirical and
evidence-based SE in secondary studies. We searched for
terms like "empirical", "evidence", and "experimental" in
all RQs, finding only 9 RQs (4.97%) related to this pur-
pose. As we know from the growth of primary studies
with such objectives, we suggest more secondary studies
crossing and analyzing this information.

As shown in Table 10, to our surprise, there were
not RQs in any of the secondary studies of type
Causality-Comparative Interaction (CCI) nor De-
sign (D). One could identify such RQs as more sophisti-
cated ones compared to the others: e.g., a CCI RQ may
look like this: “Does smell A or B cause more maintain-
ability problems under one condition but not others?”. We
hope to see secondary studies with such RQs in the future.

Also, We analyze the studies based on their RQs (and
focus, when the study does not present RQs explicitly),
and focus given on the defined RQs. We present the studies
grouped by focus (Table 11).

Smell detection techniques are explored by several stud-
ies [S8, S12, S12, S13, S15, S18, S19, S20, S23, S26, S30,
S32, S33, S34, S38, S39, S40]. There is a particular inter-
est in smell detection approaches, using the most different

9 see the data in the replication package [87]

26

Table 10: Classification of RQs, as presented by [131], number of studies, number of RQs in the pool and examples

RQ Category Sub-Category Code # of studies # RQs in the
pool

Examples

Exploratory Existence E 13 (32.5%) 16 (8.83%) Does X exist?

RQ1: What is the definition of a software smell? [S15]

RQ3.3: Are there any analysis methods for detecting and/or
evaluating ATD? [S21]

RQ1.1: Are there bad smells significantly more studied than
others? If so, is there any specific reason? Are bad smells stud-
ied alone or together with other bad smells (co-occurrences)?
[S40]

Description and Classification DC 30 (75%) 90 (49.72%) What is X like?

RQ2.2: What co-occurrences have been identified by the stud-
ies? [S1]

RQ2: Which are the main features of these tools? [S2]

RQ3: What methods have been used to study Code Bad
Smells? S[11]

Description-Comparative DCO 7 (17.5%) 11 (6.07%) How does X differ from Y?

RQ2: how to compare refactoring tools and techniques? [S6]

RQ2.1: What are different studies in semantic clone detection
and their comparative analysis? [S20]

RQ1: What are the types of technical debt and what is not
considered as technical debt? [S26]

Base-rate Frequency Distribution FD 11 (27.5%) 19 (10.49%) How often does X occur?

RQ3: Which are the most frequent types of bad smells these
tools aim to detect? [S2]

RQ1: What refactoring scenarios were accounted for in the
PSs? [S7]

RQ1: How many papers were published per year? [S17]

Descriptive-Process DP 10 (25%) 16 (8.83%) How does X normally work?

RQ2: What model smell detection strategies have been used to
identify refactoring opportunities for model refactoring? [S3]

RQ2: What are the different approaches used for the detection
of code smells and how the smells are removed using these
approaches? [S13]

RQ4: How do smells get detected? [S15]

Relationship Relationship R 12 (30%) 13 (7.18%) Are X and Y related?

RQ1.3: RQ3: What is the correlation between the detection
techniques based on bad smells? [S12]

RQ8: What tools are used in TDM and what TDM activities
are supported by these tools? [S26]

RQ1.3: What research areas are emphasized in the literature
that reports studies of TD (technical debt) in the context of
ASD (Agile Sofware Development)? [S27]

Causality Causality C 9 (22.5%) 14 (7.73%) Does X cause Y?

RQ4: What evidence is there that Code Bad Smells indicate
problems in code? [S11]

RQ4: Which quality attributes are compromised when techni-
cal debt is incurred? [S26]

RQ1: do all of the code smells equally impact software quality
in terms of detected software defects? [S37]

Causality-Comparative CC 5 (12.5%) 6 (3.31%) Does X cause more Y than does Z?

RQ3.1: Attention level in the formal versus grey literature:
How much attention has this topic received in the formal ver-
sus grey literature? [S16]

RQ2: How similar/different are the experimental settings of
studies investigating smell effect? [S24]

RQ3.3: Considering the co-occurrence of bad smells in the pa-
pers of our dataset, how many of them actually study some
relations between bad smells and what are the main findings
of these co-studies? [S40]

Causality-Comparative Interaction CCI 0 (0.0%) 0 (0.0%) Does X or Z cause more Y under one condition but not oth-
ers?

Design Design D 0 (0.0%) 0 (0.0%) What’s an effective way to achieve X?

Total 181 (100.0%)

27

Table 11: Distribution of studies based on RQs focus

Focus Studies

Co-occurrence between smells
and relationship with design pat-
terns

S1, S28, S39, S40

Smell detection tools S2, S4, S11, S13,
S15, S18, S19, S20,
S31, S32, S35, S39,
S40

Model refactoring S3, S29, S36

Refactoring techniques applied
on smells

S4, S6, S8, S13, S17,
S21, S22, S25

Trends, opportunities, chal-
lenges, gaps (refactoring and
smells)

S5, S15, S17, S20,
S21, S23, S24, S26,
S27, S34, S37, S40

Refactoring tools S6, S17, S25, S40

Software quality and refactoring
(impact, attributes, measures,
scenarios)

S7, S11, S15, S37

Product lines (refactoring,
smells)

S8, S14

Clones S9, S19, S20, S30,
S31, S32, S33

Refactoring process (human
knowledge, mental model)

S10, S22

Smells definition S2, S4, S8, S11, S12,
S15, S40

Smell detection approaches S8, S11, S12, S13,
S15, S18, S19, S20,
S23, S26, S30, S32,
S33, S34, S38, S39,
S40

Introduction smells on systems,
impact and affect/effect

S15, S24, S35, S37,
S38, S39, S40

Tests S16

Search-based S17, S25

Technical debt S21, S23, S26, S27

approaches (we discussed the most previously mentioned).
In some ways, some studies address techniques in specific
contexts (e.g., studies [S20, S30, S32, S33] in the context
of clones).

Some studies have discussed techniques but not always
ways to automate them [S8, S12, S23, S26, S30, S33, S34,
S38]. Other studies have explored ways to automate de-
tection techniques [S2, S4, S11, S13, S15, S18, S19, S20,
S31, S32, S35, S39, S40].

Other studies have discussed trends and challenges in
smells and refactoring topics [S5, S15, S17, S20, S21, S23,
S24, S26, S27, S34, S37, S40]. Here, we do not differenti-
ate them because we try to analyze both topics together,
evaluating the relationship between them.

There are also studies related to specific topics not
commonly mentioned (such as tests [S16] and model refac-

toring [S3, S29, S36]).
There is no relation between study comprehensiveness

and the number of RQs: the scope of the study is related
to the scope of the RQ itself and not necessarily with the
number of RQs. Such relation does not appear in studies
that have a large number of RQs ([S20] has 12 RQs, [S25]
has 12 RQs, and [S17] has 10 RQs), but study [S15] re-
inforces this finding. It has 5 RQs but it is related to 6
focuses.

4.4.2. Ranking of Cited Secondary Studies
To identify the highest-cited papers is becoming a pop-

ular subject not only in software engineering but in all
computer science [135, 136, 137, 138]. The reputation of
the authors of a given paper could be a factor in our anal-
ysis. However, quantifying reputation is not easy, and dis-
cussing factors impacting the number of citations of a pa-
per is outside the scope of our current work. To investigate
the number of citations we used two classifications.

First, we adopted a citation metric: Absolute (total)
number of citations since its publication. To obtain such
citation data, we use Google Scholar mechanism: for each
paper selected, we use the Google Scholar Search and save
the number of citations. We show the top-five list of sec-
ondary studies based on the metric defined in Table 12.

Second, we adopt another citation metric: the number
of citations per year, taking into account the year the work
was published until now (Table 13). Comparing results
considering the two metrics, we observed that the studies
[S10, S20, S26] appear in both results. Also, among the
topics most covered in the cited works are Code Clones
[S20, S30] and technical debt [S23, S26]. Clones10 have
deserved more and more prominence from the community,
with studies directed at the topic, and often being rec-
ognized as a specific research area. The TD11 has also
grown in recent years with studies focusing on manage-
ment policies, tools, and techniques to mitigate its impact
on software maintenance and evolution.

Forty studies had a total of 2568 citations, with
an average of 64.2 citations per study and median=9. The
difference between average and median gave by the fact
that [S10] work has 1301 citations while [S30] has 272
([S10] is almost 4.79 times more cited than [S30]). Since
[S10] published in 2004, the number of citations was signif-
icant. Recent studies (published between 2017 and 2018)
still has a small number of citations. Thus, it seems that
primary studies more cited than compared to Surveys,
SLR, and SM studies (Note that only 2% of cited stud-
ies refer to SLR/SM, as previously shown in Figure 17,
where they classified as "others").

Among the selected studies, [S10] remains the most
cited with 14 citations. Next, the studies [S22, S3] appear

10 the term code clone generated about 545,000 results (about 17,200
in the last five years) in Google Scholar 11 the term technical
debt generated about 2,490,000 (about 107,000 in the last five years)
results in Google Scholar

28

Table 12: Top 5 selected studies sorted by the number of citations of Google Scholar

Title Year Citations

S10 A survey of software refactoring 2004 1301

S30 Survey of Research on Software Clones 2007 277

S20 Software clone detection: A systematic review 2013 216

S26 A systematic mapping study on technical debt and its management 2015 208

S11 Code Bad Smells: a review of current knowledge 2011 113

Table 13: Top 5 of selected studies sorted by the number of citations by year

Title Year Citations by
Year

S10 A survey of software refactoring 2004 86.72

S26 A systematic mapping study on technical debt and its management 2015 52.00

S14 A systematic mapping study on software product line evolution: From legacy system reengineering to product line refactoring 2017 42.50

S20 Software clone detection: A systematic review 2013 36.00

S23 Identification and management of technical debt: A systematic mapping study 2016 27.00

with 13 and 12 quotes, respectively. Finishing the top 5
of the citations, we have the studies [S20, S11] with 11
and 10 citations. However, it is interesting to note [S3]
is the most cited study among selected secondary studies
(38.70% of the [S3] citations are from secondary studies).

RQ4 Summary
Challenges: Although the secondary studies aim at giving a
panoramic view of the area, we identified the need for studies that
contain more sophisticated RQs. With the increase of empirical
studies on smells and refactoring, we consider new possibilities of
secondary studies covering RQs about Causality (mainly CCI) and
Design (D), comparing and evaluating phenomena, describing situ-
ations of efficacy and efficiency about methods, practices, and tools
are open.
Observations: We had 181 RQs in the 40 selected secondary stud-
ies. The study [S40] with the highest number (13 RQs) is indeed
the most comprehensive. Besides, we find studies with only one RQ.
And, finally, studies that did not explicitly have RQs. It is the
case of Surveys, which do not follow a defined protocol.
Still, we had SLRs that did not follow a protocol too.
The scope of the study is related to the scope of the RQ
itself and not necessarily with the number of RQs.
Code clones and technical debt are the recurring themes
in the most cited secondary studies.
The study [S10] is the most cited among the secondary
studies.

4.5. RQ5: What are the annual trends of types, quality,
and the number of primary studies reviewed by the
secondary studies?

The growing number of secondary studies on smells
and refactoring is a strong indication of the high interest
in this field. Next, we present some main characteristics
of these secondary studies.

4.5.1. Paper types and references
Although our research defined as start reference the

year 1992, the first secondary study [S10] published in
2004 (Figure 15). Then we had just two secondary stud-
ies publications until 2012 (2007 and 2011). After 2013,
the number of publications of secondary studies increased.
We note it is due to the popularization of SLR and SM in
the SE field. Of these selected studies, 75% published in
journals and 25% published in conferences.

Figure 15: Distribution of publications per year

Most of the studies refer to SLR (65%) [S2, S3,
S4, S5, S6, S7, S8, S11, S12, S13, S18, S19, S20, S21,
S22, S24, S25, S27, S28, S29, S32, S34, S35, S36, S37,
S40], with 17.5% refer to SM [S1, S14, S23, S26, S33, S38,
S39] and 17.5% refer to Survey [S9, S10, S15, S16, S17,
S30, S31]. Only one study is multivocal literature [S16]
(Figure 16). A multivocal literature mapping (MLM) [7]
is an SLR that include data from multiple types of sources,

29

e.g., scientific literature and practitioners’ grey literature
(e.g., blog posts, white papers, and presentation videos).
Multivocal mapping studies have just recently started to
appear in SE literature.

Figure 16: Type of secondary studies

In the snowballing process, we revised 7141 references,
finding 184 studies. Among them, we selected seven stud-
ies to complement our research, using our selection crite-
ria. Most of the studies (65%) did not use snowballing [S3,
S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S19,
S20, S22, S24, S28, S29, S30, S31, S32, S33, S36, S37, S38]
and 35% used snowballing [S1, S2, S16, S17, S18, S21, S23,
S25, S26, S27, S34, S35, S39, S40] as a research mechanism
[85]. We noted the snowballing process appeared in
studies published after 2015. If we consider 2015 as a
starting point, the use of snowballing is present in 50% of
the selected studies, showing the growth of the snowballing
process in secondary studies.

Most of secondary studies used (around 58%) empirical
and case studies (Figure 17). These types of studies are
the preferred approaches for validating tools/prototypes.
However, there is a lack of validation using experts
in this field, qualifying the analysis. To increase confi-
dence in empirical evaluation results in primary studies,
we compile some information about secondary studies [S7,
S22, S40]. According to such studies, it is necessary to pay
attention to the following points:

1. use a relatively large dataset implemented with dif-
ferent programming languages and considering a mix-
ture of open-source and industrial systems;

2. clearly define the study goal (smell detections, refac-
toring techniques) considered;

3. fully identify the evaluation measures;

4. adequately describe the study participants;

5. clearly describe the scoring systems adopted;

6. compare the results with previous findings; and

7. discusses validity threats.

According to the studies [S5, S6, S13, S22, S39, S40],
although most researchers in this area are from academia,
some participants in reported empirical studies are prac-
titioners from industry, indicating they have some contact
with each other. We found three studies [S17, S39, S40],
where the authors from the academic and industrial sec-
tors worked together. In Section 6, we discuss in more
detail the implications of researchers and practitioners on
this type of work.

Figure 17: Distribution of studies types cited by secondary studies

4.5.2. Projects
Most of the academic researchers use nonindustrial datasets

for the studies [S22, S39, S40], usually open-source/FLOSS
and Toy applications as illustrated by (Figure 18). The
majority of projects realized experiments with FLOSS,
representing 57% of the projects mentioned in the studies.

Figure 18: Type of referenced projects

A tags cloud containing keywords of selected studies
provides a high-level picture of the cited software projects

30

(Figure 19). The projects more cited in studies are Apache,
Eclipse, jHotDraw, ArgoUML, and GanttProject. Most of
the more quoted projects have some common features like
a) they are long-lived projects (10+ years); b) they are
structured in sub-projects; c) they are large projects, and
d) they considered as marks in the open-source/FLOSS
world.

According to [S18, S22], many authors perform ex-
periments on open source projects for the evaluation of
their techniques. Experiments on commercial/industrial
projects are performed only by few authors. On the one
hand, it is easier to conduct experiments using FLOSS
projects due to the availability of versions and constant
evolution. More, many projects have often used as a basis
for experiments. On the other hand, it is essential to put
an emphasis on experiments carried out with industrial
projects. It is a challenge to be faced in the coming years.
It may also be essential to analyze the ratio of code smells
existing in open source versus industrial projects. We do
not have until now a benchmark of projects [S22,
S39, S40]. Some studies [S13, S18, S39, S40] point a lack of
benchmark definitions for smells validated by experts. It
happens with refactoring, too. The large set of tools and
systems used in the experimental settings suggest the lack
of well-designed benchmarks should be better addressed.
The benchmarks could be constructed, having the same
characteristics as the most used systems.

PROMISES12 is an example of a benchmark and an
excellent initiative. However, such a benchmark does not
seem to be updated for some time and also does not have
specific datasets for refactoring and smells. Similar initia-
tives should be encouraged to contribute to advances on
this topic.

Figure 19: Word cloud of projects cited in secondary studies

4.5.3. Analysis of Selected Studies
The selected studies have as the initial year of research

1990 (through 2010) and as the final year varying from
2004 to 2018. The average period used to search the se-
lected secondary studies is 15.2 years, with an average of

12 Research dataset repository is specializing in software engineer-
ing. More info: http://promise.site.uottawa.ca/SERepository/

1444 papers considered and 92.1 papers selected by the
studies. The study [S8] considered the minor time was
seven years (2007-2014) of a total of 165 studies, picking
18. The study [S40] considered the most extensive-time
period of research (27 years, from 1990 until 2017), con-
sidering 9633 papers, selecting 351 for analysis and dis-
cussion. The study [S34] has regarded as the most sig-
nificant number of primary studies (13769), selecting 78.
The study [S15] selected the most significant number of
primary studies (445), of a total of 1028. The study [S16]
had the highest accuracy in the survey (52.86), selecting
166 studies out of a total of 314. The study [S34] had the
lowest efficiency (0.56), choosing 78 studies out of a total
of 13769. Probably, in all cases, this is a consequence of
the selection criteria used by the authors. The RQs used
in the research has driven the study focus. A priori, stud-
ies more comprehensive have more RQs, but in fact, it
depends on the RQ comprehensiveness. The comprehen-
siveness of a study is directly related to the statement of
the RQs.

We also analyze if studies have search strings and inclu-
sion/exclusion criteria explicit. Studies adopted different
ways to explicit their search strings. Almost all studies
without RQs also do not have explicit search strings and
inclusion/exclusion criteria. Still, some studies have de-
fined inclusion/exclusion criteria but did not have defined
an explicit search string. It shows that some authors did
not explain the protocol of the study, making it difficult
for its reproduction. A better decision would be to adopt a
research protocol, such as those recommended by [81, 82].

The number of primary studies referenced can vary. A
large number of regular surveys did not explicitly report
the number of primary studies. In these cases, we counted
the number of references of secondary papers, and use it
as an estimate of the size of the study. The secondary
studies have a sum of 4573 references, with an average
of 114.32 references cited per study (median=99). Such
data illustrated by Figure 20, which presents the number
of primary studies analyzed in each secondary research,
grouped by publication year.

Figure 20: Number of primary studies referenced by secondary re-
searches per year

31

As previously discussed (Sub-section 3.4), each Survey,
SM, and SLR was evaluated using a set of quality-related
criteria used in earlier studies. For each study in our pool,
the quality score calculated by assigning {0, 0.5, 1} to each
of the four questions. The result value in the range of (0,
4) where 4 is the maximum score.

Figure 21: Total quality score per year

As shown in Figure 21, all selected studies scored be-
tween 2 and 4. Surveys scored lower because they do not
follow a formal protocol like SLR and SM do (even though
some studies do not have RQs or selection criteria defined).
Still, they are very cited in the literature. More than
80% of the studies we selected scored between 3
and 4.

RQ5 Summary
Challenges: As we previously noticed on tools analysis, there is a
lack of validation by experts in the field: experts should participate
more effectively in experiments.
Another challenge is the lack of benchmarks. It could enrich research
and experiments, as well as support improved recall and accuracy of
techniques and tools for both smells and refactoring.
Observations: We noticed a growth of secondary studies in recent
years. Considering the last three years, we have more than half of
secondary studies than previously published.
The vast majority of studies are SLR (65%) — 75% of the studies
published in journals. The snowballing is not yet as present as the
inclusion mechanism of new studies in the pool (it considering 2015
to 2018, 50% of studies did not use the process).
The preferred approaches for validating the proposed tools/proto-
types are empirical studies and case studies.
The selected studies point to FLOSS projects (i.e., Apache, Eclipse,
jHotDraw, ArgoUML, and GanttProject) as the most used for exper-
iments.
We do not have a recognized benchmark of projects until now.

5. The relationship between Code Smells and Refac-
toring

As we have seen in the studies reviewed, code smells
have certain interesting features. Code smells are symp-
toms or design problems that may affect the evolution and
maintenance of the software. Some of these code smells are
small, and we call a simple smell. Often, the occurrence of
one code smell may be related to or correlated (as shown in

Figure 10) with another code smell, deriving a composite
smell, or design smell. We have discussed in previous sec-
tions (see Sub-sections 4.2 and 4.3.2) the main approaches
for the detection of code smells, as well as the most cited
tools to support this activity.

We also summarized some interesting characteristics of
refactoring (see Sub-sections 4.1 and 4.3.3). We note that
there are simple refactoring, known as primitive refactor-
ings. Often, for a given situation, we need to perform a
sequence of refactoring, known as composite refactoring.
Also, we present the more known tools supporting refac-
toring.

As we showed earlier, looking at code smells and refac-
toring in isolation, we noticed that there are some similar
characteristics.

Code smells and refactoring affect software quality (see
Sub-sections 4.1.3 and 4.2.4). Quality is one of the most
critical issues in software engineering, drawing attention
from both practitioners and researchers. Developing soft-
ware with quality is essential, but preserving or increas-
ing software quality during maintenance is even
more critical. Code smells produce software quality prob-
lems. Firstly, external quality attributes suffer from it
over a long time, affecting the evolution of software, lead-
ing to increased technical debt. Second, internal quality
attributes are also affected by code smells. Some code
smells produce problems like low cohesion, high coupling,
encapsulation-related problems that influence design deci-
sions and maintenance. Refactoring and code smells are
linked, because refactoring are the main strategy to re-
move/mitigate code smells, improving the software qual-
ity (clarity, simplicity, comprehension). We know, as dis-
cussed in the Sub-sections 4.1.4 and 4.2.4, that refactoring
is the primary approach to mitigating technical debt. We
also know that refactoring, if improperly applied, can gen-
erate new code smells and, consequently, affect the quality
negatively.

In Figure 22, we present a scheme of this relationship,
with the specific characteristics of code smells and refac-
toring, as well as the elements that connect them. So,
code smells and refactoring are closely related to software
quality.

5.1. Quality models, Code Smells and Refactoring
Different software quality models are found in the lit-

erature and referenced in the studies [S21, S23, S26, S27,
S39]. Each model defines a set of main software qual-
ity attributes. Some attributes are common to different
models. The models mentioned in the studies were
ISO/IEC 9126 [139], FURPS 13, and McCalls Fac-
tor Model [140]. However, the primary model of soft-
ware quality factors mentioned in the selected studies is
the ISO/IEC 9126. The ISO/IEC 9126 model is the most
comprehensive, providing six main features classified as ex-
ternal attributes (e.g., Functionality, Reliability, Usability,

13 https://en.wikipedia.org/wiki/FURPS

32

Figure 22: Code smells and refactorings with some of their similar features. In the center, the aspects that connect them, by highlighting the
quality

Efficiency, Maintainability, and Portability). Meanwhile,
the current industry standard, called ISO/IEC 25010, men-
tioned in only one study [S26].

Another difficult task investigated in the soft-
ware refactoring field is the preference of code smells
to be corrected, based on given importance [S25].
A few studies [S15, S24, S35, S37, S38, S39, S40] identify
the relationship between the detected types of smells and
quality attributes. The nature of the relationship identi-
fied by the authors varies from one to another. Most of
the code smells, in particular, defined by Fowleret al.
[5] affect more than one quality attribute. There-
fore, some quality attributes influence more than
others. The quality attributes most affected are main-
tainability, complexity, and understandability. They have
a significant role in software maintenance costs. In this
case, the set of code smells related to these quality
attributes will have the highest degree of priority
for removal from the software.

On the other hand, only one study [S7] has explored the
impact of refactoring on quality attributes. The study [S7]
presented external and internal quality attributes. The
external quality attributes more often are maintainability,
reusability, and understandability. Reliability and main-
tainability are attributes more studied. The internal qual-
ity attributes more investigated are cohesion, coupling,
complexity, inheritance, and size attributes, where cou-
pling and size are the most and least considered attributes,
respectively. Coupling measures have also been one of
the main approaches to evaluate decay [S38] and tech-
nical debt [S21]. It is important to note that estimated
external quality attributes are quantified using combina-
tions of internal quality measures such as cohesion, cou-
pling, and inheritance. Therefore, studying the impact
of refactoring on a single internal quality attribute
is potentially more straightforward and more ac-
cessible than addressing combinations of internal
quality attributes. The study [S7] also recommends that
researchers conduct more empirical studies to ex-
plore the impact of refactoring on external quality
attributes because these attributes are of direct in-

terest to practitioners.
According to studies [S7, S22], the researchers observed

that different refactorings potentially have differ-
ent, and sometimes conflicting, impacts on qual-
ity. It is difficult to distinguish between the effects of in-
dividual refactoring scenarios or to draw any conclusions
regarding their impacts on quality. One recommenda-
tion is must apply a set of refactoring that follow
the same scenario and assess quality before and
after refactoring.

5.2. Analysis
We found studies [S15, S24, S35, S37, S38, S39, S40]

focused on verifying how the occurrence of code smells im-
pacts several quality attributes. In the same way, we found
one study [S7] discussing refactoring and their impact on
quality. With a base on results, we develop a visualization
(Figure 23), that allows analyzing the relationship among
quality attributes, which code smells affected them, which
refactoring can be applying to these code smells, and what
is the impact on quality when using such refactoring.

The attributes of quality most affected by code
smells are maintainability, understandability, and
complexity. However, evolvability, stability, performance,
and testability mentioned in only one code smell, each one.

The code smells that most affect different qual-
ity attributes are God Class/ Large Class, Long
Method, and Feature Envy. God Class/Large Class
is the most affect quality attributes. It affects main-
tainability, complexity, evolvability, stability, performance,
readability, reusability, and changeability. God Class/Large
Class and Feature Envy are more prone to bugs, as well
as affecting complexity, understandability, usability, and
maintainability. Long Method affects complexity, under-
standability, readability, reusability, maintainability, change-
ability, and testability.

Some code smells have a larger set of refactoring than
others (see Table 8). It is the case of Duplicated Code/-
Clones, which have more refactoring that can be
applied. In this smell, we can use Pull Up Method, Re-
name Method, Replace Constructor with Factory, Form

33

Figure 23: The relationship among (external and internal) quality attributes and their impact on code smells and refactoring

Template Method, Pull Up Method, Push Down Method,
Substitute Algorithm, Extract Superclass, Extract Class,
Extract utility-class, andMove Method. Long Method presents
an alternative the refactoring Extract Method, Replace Temp
with Query, Introduce Parameter Object, Preserve the Whole
Object, Replace Method with Method Objects, and Decom-
positional Objects. God Class/Large Class also presents
some refactoring, such as Extract Class, Extract Subclass,
Replace Data Value with Object, Extract Interface, and
Duplicate Observed Data.

According to previously presented, the relationship be-
tween refactoring and code smell is not one-to-one [S7].
Refactoring are flexible, can be applied in more
than one code smell. It is the case of Extract Class,
Move Method, and Extract Method, which also have been
more studied by researchers.

We also commented that refactoring does not always
improve all quality attributes. When quality improve-
ment is the goal of refactoring, developers should
be careful and check whether the application’s pro-
posed refactoring achieves the desired goal. Devel-
opers need to know they apply such refactoring on smell,
which can lead to the introduction of other ones. It is
important to note that by positively affected by refactor-
ing on a quality attribute, we mean that the refactoring
causes the value of measure that quantifies the quality at-
tribute to increase, and vice versa. However, increase the
value does not always mean that the quality is improved
because, for some quality attributes (e.g., coupling, com-

plexity, size), the improvement indicated by the decrease
in the corresponding value. Of course, it depends on how
being calculates such a metric.

Refactoring also affect different quality attributes. For
instance, Extract Method and Extract Class are refac-
toring that most affect different quality attributes
(10), with Inline Class affected 8 attributes. Extract Method
affects inheritance and coupling negatively. The same refac-
toring affects complexity, cohesion, size, information hid-
ing, maintainability, reusability, testability, and understand-
ability positively. Extract Class affects inheritance, co-
hesion positively, and information hiding. Also, it af-
fects coupling, complexity, size, maintainability, reusabil-
ity, testability, and understandability negatively.

It is also important to mention that 14 refactoring
options for the presented code smells do not have
studies associated with their impact on quality. It
is the case of Replace Constructor with Factory, Substi-
tute Algorithm, Extract Superclass, Extract utility-class,
Introduce Parameter Object, Duplicate Observed Data, Re-
place Temp with Query, Preserve Whole Object, Decompo-
sitional Objects, Replace Parameter with Method, Replace
Inheritance with Delegation, Push Down Field, Collapse
Hierarchy, and Rename Method. Therefore, we do not
know their impacts when applying these refactoring.

Besides, when evaluating the quality, developers are
advised to consider several quality attributes and
not focus on one particular attribute, ignoring oth-
ers. Otherwise, the proposed refactoring may detract from

34

quality rather than improve it. We show that the im-
pact of refactoring on most of the measured external qual-
ity attributes has not studied. Consequently, the impact
of refactoring on measured external quality attributes re-
quires more research and study. We recommend that re-
searchers conduct more studies to explore the impact of
refactoring on external quality attributes because these at-
tributes are of direct interest to practitioners.

The studies [S7, S24, S35, S37] are recent and drive
the necessity to answer if code smells harms the
project, as well as the impact on refactoring. More-
over, the number of quality attributes and their pos-
sible combinations with distinct code smells are
high, thus requiring different studies. The same
happens with refactoring. The study of impact/effect
has been receiving so much attention until now. It sug-
gests that there is still no comprehensive and sufficient
evidence on the extent of adverse effects associated with
code smells and positive impact on refactoring on software
maintenance and evolution.

In studies on code smells, more external quality at-
tributes referenced. In refactoring studies, there were in-
ternal and external attributes. Of course, about refactor-
ing, we may experience code deterioration or improvement,
as we discussed earlier. To better represent this relation-
ship between internal and external quality attributes, we
have grouped internal attributes with their proper relation
to external attributes. For this, we use the QMOODmodel
[36]. We consider only the internal attributes found in the
secondary studies and, based on QMOOD model, observe
where they applied. We also ignored the quality attributes
referenced by QMOOD model but not mentioned in the
studies used in our research. Thus, we define that coupling
used in reusability and understandability. We observe that
both cohesion and size used in reusability, understandabil-
ity, and functionality. Understandability uses information
hiding. Functionality and understandability use Polymor-
phism. As shown in Figure 24, we present a new view with
a different arrangement of quality attributes.

We note that the quality attributes most af-
fected by code smells are also the ones most af-
fected by refactoring. We identify that refactoring have
more impacts on understandability, functionality, reusabi-
lity, and maintainability. With this new redistribution,
we note that by grouping internal attributes with external
attributes using the QMOOD model, refactoring affect
quality more than code smells. It demonstrates that
this relationship is not only due to the code smell
refactoring link, but that the origin of the relation-
ship is quality. And that in the medium to long term,
depending on the context of refactoring, can lead to new
code smells, generating a cycle that can further deteriorate
the software. Therefore, we recommend that other stud-
ies explore this relationship of code smells and refactoring
quality as their main aspect.

6. Implications

We now discuss the implications of this systematic lit-
erature review on code smells and refactoring for practi-
tioners, researchers, and instructors because, as explained
by Goues et al. [141], it is essential that SLRs provide
some advice beyond their RQs.

Practitioners. Real software systems must be continually
changed to meet the demands of the market and the expec-
tations of their users. Thus, software development teams
must be always concerned by the continuous improvement
and quality of their systems [142]. However, there are
still many challenges related to software maintenance and
evolution, including the need to understand the systems
and the complexity involved in the development process.
The lack of understanding of architectural deviations dur-
ing software evolution compromises both the development
process and the systems themselves.

Leppänen et al. [143] present a decision-making frame-
work, based on practitioners’ perceptions. They claim that
the need for refactoring is rather subjective and not nec-
essarily rational. They show the empirical nature of the
refactoring process. Exposure to the real world brings in-
valuable insights [144, 145, 56]. Developers are the real
specialists who, with their perceptions and experiences,
can say which structure is better than the others. Their
knowledge should drive refactoring. We argue that refac-
toring should be a daily habit. The more refactoring are
neglected, the greater the likelihood and need of doing
larger refactoring, which are more problematic: they must
be planned, they interrupt daily work, and often they must
be justified to management. We reported in this paper
that the most applied refactoring are primitive refactor-
ing. Indeed, they are simpler than composite refactoring
and are automated in tools.

The use of version control, testing, and reviews are en-
couraged as good practices [145]. Code reviews, for exam-
ple, can help find targets for refactoring. We observed14
that these practices help reduce code complexity, maintain
quality, and improve the source code in the long run. New
research discussing these practices in relation to refactor-
ing could bring new perspectives on how developers should
address such good practices.

Developers know the values of refactoring but are often
prevented from applying them [146]. One of the reason
preventing the use of refactoring is the lack of measures
showing their impacts. The lack of monitoring of refac-
toring was also pointed in several works [147, 143, 145].
We observed that, when prioritizing code smells, seeing
the relationship and the impact of quality attributes to
code smells helped their prioritization. When performing
refactoring, it is also necessary to assess their impacts.

14 One of the authors of this work worked for 20+ years in the in-
dustry, helping software development teams to improve code quality.
This perception is based on his experiences.

35

Figure 24: Relationship among quality attributes using the QMOOD model, impact on code smells and refactoring

Instructors:. The implications described for practitioners
are also valid for instructors.

The concept of “quality” is present in all software en-
gineering knowledge areas (KAs) [148]. We highlight that
design, construction, testing, maintenance, models and
methods, quality, and computing foundation KAs associat-
ing topics discussed in this work. We present a pragmatic
way to support instructors in their classes.

The discussion about code smells and refactoring began
with the introduction of eXtreme Programming in curric-
ula [149]. Some studies [150, 151] described experiences
in applying some lessons learnt based on self-documenting
and functional tests, encapsulation, and unit testing, refac-
toring of constants and variables and to extract meth-
ods. These studies did not include all the lessons needed
to learn refactoring, but reported some benefits, like the
importance of self-documenting code, code smell recog-
nition, testing comprehension, and improvement of code
style. Then, several approaches were proposed to support
instructors in learning/teaching refactoring, including tu-
toring systems [152], agents [153], gamification [154], and
on-line teaching [55]. Yet, it is necessary to use real-world
examples for learning and teaching. The use of a existing
source code with real (or injected) problems promotes a
collaborative environment to exchange knowledge.

We identified that these topics should be included in
various courses in curricula, such as introduction to pro-
gramming, software engineering, software quality, software

design. We observed that the exposition to change brings
students the perception of concepts that are progressive
and intuitive. The reasoning behind refactoring is also es-
sential (when do I refactor? What do I refactor? Why is
this refactoring better?). When refactoring are taught and
used in class, they help students to acquire good program-
ming practices and design principles.

We reported several aspects that instructors could con-
sider in their classes because we are instructors ourselves.
We have had the opportunity to apply and to discuss code
smells and refactoring in classes. We taught this topic in
undergraduate15 and graduate courses16. One of the prac-
tices that we use and recommend is to perform Coding
Dojos17. A Coding Dojo allows students to learn prac-
tices, such as test-driven development, refactoring, code
review, pair programming, and the use of tools such as
static analysis, code coverage, and build tasks. We en-
courage instructors to incorporate both code smells and
refactoring into their classes to develop students’ technical
skills. New developers should be aware of code smells and
how to remove them.

Researchers. We sought to show the close relationship be-
tween code smells and refactoring. We compiled the main

15 Object-Oriented Programming, Software Engineering, and Soft-
ware Architecture at UniRitter; Techniques of Program Construction
at UFRGS 16 Smells, Patterns and Refactoring at UniRitter; Ag-
ile Development Introduction and Agile Development with eXtreme
Programming at Unisinos 17 http://codingdojo.org/

36

results of the secondary studies and highlighted several
challenges.

We understand that refactoring exist because code smells
indicate that something is not right in the source code.
Thus, a standardized form of code smell definitions, de-
tection methods, and tools is needed. Dig [155] showed
that there is growing interests on automation, prioritiza-
tion, inference, and recommendation of refactoring. Re-
searchers are encouraged to explore such interests together
with the practice of refactoring. They should focus their
research on refactoring that are often applied in practice
rather than study refactoring opportunities already con-
sidered in the literature and–or rarely applied in practice.
Researchers should also explore improving the results of
applying refactoring that are commonly used in practice
as well as propose refactoring tools.

Also, researchers should analyze the impacts of code
smells and refactoring on software quality and technical
debt. They must strive to bring their research closer to
the software industry. Recent studies [156, 157, 158] on
industry and education in software engineering showed a
large gap in several areas, including quality and design.
These areas are closely related to the topics discussed in
this study. Researchers do work with industry: almost
50% of collaborations started in industry and 90% gener-
ated at least one paper [158], which show the importance
of industry-academic collaboration. Researchers should
strive to create partnerships, showing how they can be
useful for both areas.

7. Open Issues

We now present some open issues, i.e., questions for
future works, concerning code smells detection, refactoring
techniques, support tools, impact on quality, and academic
research and its relationship with industry.

Mens et al. [147] presented some future trends in re-
search in 2003. After more than 15 years, some questions
remain open, interesting topics for future works. We dis-
cuss in detail each identified issue, summarized in Table
14.

As we noted in relation to studies [S11, S12, S15, S39,
S40], there is a problem of naming and organizing code
smell (see Subsection 4.2.2). Code smells have definitions
that are sometimes complex and not informal [59]. There-
fore, researchers could research the standardization of code
smells.

As shown in Table 8, several studies [S2, S13, S15, S18,
S19, S20, S30, S31, S32, S33] presented many approaches
to code smell detection (see Subsection 4.2.3). However,
we still must understand which approaches are the most
effective. Some code smells have more than one approach
while others have none. Researchers could study the com-
binations of approaches to code smell detection as well as
propose approaches for currently undetected code smells.

There is an opportunity to assess whether the most
cited code smells impact the industry. Recent studies

[159, 160] also evaluated the developers’ perceptions and
how they detect smells. Researches should also assess
whether practitioners recognize code smells and whether
practitioners know that code smells are symptoms of prob-
lems.

In the code-smell detection process, researchers should
evaluate the developers’ participation (e.g., when, how)
[S2, S11] because they are critical in this process [161].
Developers’ insights and experiences can be explored in
future work to improve the detection process.

Some studies [S24, S35, S37, S38] discussed the impact
of code smells on quality attributes (see Subsection 4.2.4).
Other studies [S15, S23, S24] did not establish an explicit
connection between smells and quality, which is an oppor-
tunity for further work.

Following previous studies [S2, S4, S9, S13, S15, S18,
S19, S39, S40], we organized a list of code smell detec-
tion tools (see Subsection 4.3.2). However, many of them
are obsolete or have severe limitations (scalability, prior-
itization, visualization, multi-smells, multi-language , low
precision, and recall). Researchers should invest into de-
veloping more comprehensive tools.

Research related to developers’ knowledge about refac-
toring is essential [S10, S22] to understand the developers’
mental models when refactoring. Although IDEs provide
some automated refactoring, some studies showed that de-
velopers do not use them [162, 163] (see Subsection 4.3.3)
because of usability or lack of knowledge of the refactor-
ing process [164]. Researchers could evaluate whether the
decision is rational or subjective, refactoring is a daily ac-
tivity, factors used in the decision to refactor, learning,
among others.

Some studies discussed refactoring and their impact on
quality attributes [S4, S5, S7, S22] (see Subsection 4.1.3)
but with small numbers of refactoring (Subsection 4.1.1)
and different quality models (Section 5). Researchers could
study systematically refactoring and their relationship to
quality. Other studies could measure the impact of refac-
toring on individual attributes (e.g., security, understand-
ability, and extensibility) and studies to evaluate most
commonly used refactoring by developers that affect the
quality (decay or improvement), using quality models such
as ISO 25010.

Some studies [S2, S9, S17, S18, S39, S40] presented
refactoring tools. Table 8 and Subsection 4.3.3 show that
there are few refactoring tools and some are obsolete. There
is an opportunity to propose and improve refactoring tools,
especially tools to predict and evaluate the effects of refac-
toring.

We showed in Subsection 4.1.3 that applying refactor-
ing can cause problems [S21, S23]. Therefore, we identify
a research opportunity on refactoring monitoring, to mon-
itor the effects of refactoring on software evolution.

Some studies [S21, S23, S26, S27] discussed architec-
tural refactoring and their benefits as well as whether refac-
toring should be contextualized (e.g., method, class, and
package). However, it is an open issues for researchers to

37

explore the frontiers between contexts and their benefits
for quality.

Teaching code smells and refactoring is interconnected
(see Section 6). Researchers could develop studies in the
classroom about best practices and tools that enhance
learning, training future professionals with this awareness.

Code smells and refactoring are evolving research areas
and some studies bring trends, opportunities, and gaps [S5,
S15, S17, S20, S21, S23, S24, S26, S27, S34, S37, S40]. We
suggest topics such as identifying reliable datasets that
can be compared with existing studies, using large-scale
academic and industrial projects to generate more reliable
conclusions and analyzing industrial and academic studies
looking for data inconsistencies.

8. Threats to validity

This section discusses some threats to the validity and
some decisions to mitigate them. The search string of an
SLR needs to very well defined to return secondary studies
that are relevant to the search topic. In this study, we used
several synonyms referring to the main terms of the SLR
goal searched. Some pilot searches conducted to find new
synonyms for the search string. Therefore, we believe the
defined search string has returned as many relevant sec-
ondary studies as possible. Thus, we seek to broaden our
research spectrum. However, not all topics covered by sec-
ondary studies. It also does not mean that the community
does not include this topic.

The choice of electronic databases is another factor
that may impact the results of an SLR. In this study, we
perform a search for secondary studies in eight different
electronic databases. Therefore, other databases not used
in the survey may contain work that is relevant to this
review. To reduce this threat, we do carry out a snow-
balling process to find more potentially relevant studies.
In this step, the citations of the selected papers verified
through a list of references to find pertinent other studies
not included initially on our search.

This SLR considered only papers written in English.
Some relevant studies may be written in other languages.
However, the primary venues of scientific publication in
SE accepts papers in English. Therefore, we consider that
using English is sufficient to filter the main studies on the
subject.

Besides, the classification scheme of studies is another
point that considered a threat to validity. The data ex-
traction was performed subjectively and grouped into cat-
egories to facilitate the reading and the understanding of
the readers. To avoid bias, we follow some procedures.
However, other reviews can have different classification
schemas and ways to group and analyze the papers. An-
other threat is related to the granularity of the information
presented in the reviewed secondary studies. If some in-
formation is not described in these studies, it may affect
our conclusions. Reliability validity is concerned with is-
sues that affect the ability to draw that the operations of

a study can be repeated with the same results. Our re-
search can easily replicated following the steps described
and using the search string.

9. Conclusion and Future Work

We performed a tertiary study on code smells and refac-
toring. We systematically analyzed 40 secondary studies,
answering five RQs to present the main challenges (what
we do not know) and observations (what we know) related
to code smells and refactoring. We summarize some of the
main findings below.

We show that the majority of studies discuss smells
and refactoring separately (Figure 5). Only two secondary
studies explore both explicitly. Smells have the majority of
secondary studies (62.5%), with different focuses of study.
Duplicated Code/Clones and God Class/Large Class are
the most mentioned code smells. Also, God Class/Large
Class has been the most investigated smells related to
technical debt. We observe problems related to smells def-
inition, affecting their detection.

Another challenge deserving more studies are the co-
occurrence of code smells, that is, the appearance of code
smell in consequence of another or code smells that are al-
ways close. There have several detection approaches, being
metrics-based, and strategies/rules the most cited among
them. Besides, smell detection approaches and the corre-
sponding produced results are highly inconsistent. There
is no consensus on the standard threshold values for the
detection of smells, which are the cause of the disparity in
the results of different approaches. Some approaches, like
probabilistic/search-based, have grown and deserve atten-
tion.

Extraction refactoring (such as extract classes or meth-
ods) have been the most explored in the studies. Only a
small set of refactoring have studied (around 27 of 72),
opening up possibilities for studies that evaluate other
refactoring, as well as assess the reason for not exploring
them. Although refactoring has been an ally of develop-
ers to reduce technical debt, the refactoring do not always
improve code quality.

We found 162 distinct smell detection tools, and CCFinder
is the most cited one. Also, we found 24 distinct refactor-
ing tools, and JDeodorant is the most cited one. We have
also seen that there is a gap in the development of refac-
toring support tools, such as the extension of techniques
not yet exploited (opportunities, execution, developer sup-
port, impact on quality). We cross-referenced the most
frequently reported smells with detection approaches, de-
tection tools, suggested refactoring, and refactoring tools
(Table 8). We note that even though there are several
smell detection tools, many are discontinued or have low
accuracy. Similarly, we see that there is room to explore
refactoring tools in these smells.

We present some open questions as a basis for future
studies on smell detection, refactoring, supporting tools,

38

Table 14: Open issues on smells, refactoring or both

Issue Topic Observations

I1 - Code smell naming Smell There is an apparent problem of code smelling nomenclature [S11, S12, S15, S39, S40]

I2 - Approaches to code smell detection Smell We need to explore which approaches are most effective in smell detection [S2, S13, S15, S18, S19,
S20, S30, S31, S32, S33]

I3 - Code smell and industry perception Smell We need to assess whether practitioners recognize code smells and whether practitioners know this
code smells as symptoms of code problems

I4 - Developers and code smell detection process Smell It is essential to evaluate the participation of developers in the code smell detection process [S2,
S11], using the developers’ insights and experiences to improve the detection process

I5 - Code smell and impact on quality attributes Smell The studies [S15, S23, S24] do not establish an explicit connection between smells and quality,
showing there is an opportunity for further studies

I6 - Code smell tools Smell There are many opportunities to explore smell detection tools [S2, S4, S9, S13, S15, S18, S19, S39,
S40]

I7 - Developer’s refactoring knowledge Refactoring The use of developers’ knowledge about refactoring [S10, S22] can help to improve the refactoring
process, refactoring tools, among others

I8 - Refactoring and impact on quality at-
tributes

Refactoring There are many opportunities to research a low explored refactoring, most commonly used refactoring
by developers and their relationships with quality attributes [S4, S5, S7, S22]

I9 - Refactoring tools Refactoring There is an opportunity to propose/improve refactoring tools [S2, S9, S17, S18, S39, S40]

I10 - Refactoring tracking Refactoring There is a research opportunity on refactoring tracking and monitoring the effects of refactoring
[S21, S23]

I11 - Architectural refactoring versus contex-
tual refactoring

Refactoring It is an open theme for researchers to explore where is this frontier about architectural and contextual
refactoring (e.g., package, class, method), as well as its benefits for quality [S21, S23, S26, S27]

I12 - Teaching code smell and refactoring Both Researchers can develop studies in the classroom about best practices and tools for learning and
training

I13 - Research gaps on code smell and refactor-
ing

Both Production of reliable datasets, use of large-scale academic and industrial projects, industrial and
academic analysis looking for data inconsistencies are examples of trends, opportunities, and gaps
[S5, S15, S17, S20, S21, S23, S24, S26, S27, S34, S37, S40]

impact on software quality, as well as research that con-
siders both academia and industry (Section 7).

Our study shows quality attributes make relationships
between refactoring and code smells. We noticed that the
quality attributes affected by code smells were the same af-
fected by refactoring. Code smells and refactoring have a
relationship with understandability, maintainability, testa-
bility, complexity, functionality, and reusability. Besides,
we also observed refactoring affect quality more than code
smells.

The relationship between code smell and refactoring
have several open questions. For instance, which refactor-
ing could apply in a specific code smell? Which refactor-
ing can be combined to mitigate such code smell? Which
refactoring have the most significant impact on quality?
Briefly, we suggest more studies to investigate refactoring
and code smells jointly as a single phenomenon.

We hope this study could instigate researchers to in-
vestigate more deeply both practices and tools to mitigate
the code smell and evaluate the impact on quality. In the
same way, we suggest studies to explore the goal of refac-
toring used by practitioners and their effect on quality as
well as the development/improvement of refactoring tools
to monitor refactoring and its gains.
[1] W. Welf Löwe, T. Panas, Rapid construction of software com-

prehension tools, International Journal of Software Engineer-
ing and Knowledge Engineering 15 (06) (2005) 995–1025.

[2] A. Telea, L. Voinea, Visual software analytics for the build
optimization of large-scale software systems, Computational
Statistics 26 (4) (2011) 635–654.

[3] B. F. Webster, Pitfalls of object oriented development, M and
T Books, New York, NY, USA, 1995.

[4] W. H. Brown, R. C. Malveau, H. W. M. III, T. J. Mow-
bray, AntiPatterns: Refactoring software, architectures, and
projects in crisis, John Wiley and Sons, Inc, Canada, 1998.

[5] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refac-
toring: Improving the Design of Existing Code, Addison-
Wesley, 1999.

[6] M. Misbhauddin, M. Alshayeb, UML model refactoring: a
systematic literature review, Empirical Software Engineering
20 (1) (2015) 206–251. doi:10.1007/s10664-013-9283-7.

[7] V. Garousi, M. V. Mäntylä, A systematic literature review of
literature reviews in software testing, Information and Soft-
ware Technology 80 (2016) 195 – 216.

[8] N. S. Alves, T. S. Mendes, M. G. de Mendonça, R. O. Spínola,
F. Shull, C. Seaman, Identification and management of techni-
cal debt: A systematic mapping study, Information and Soft-
ware Technology 70 (2016) 100–121. doi:10.1016/j.infsof.
2015.10.008.

[9] T. Besker, A. Martini, J. Bosch, Managing architectural tech-
nical debt: A unified model and systematic literature re-
view, Journal of Systems and Software 135 (2018) 1–16. doi:
10.1016/j.jss.2017.09.025.

[10] Z. Li, P. Avgeriou, P. Liang, A systematic mapping study on
technical debt and its management, Journal of Systems and
Software 101 (2015) 193–220. doi:10.1016/j.jss.2014.12.
027.

[11] F. Sabir, F. Palma, G. Rasool, Y.-G. Guéhéneuc, N. Moha,
A systematic literature review on the detection of smells and
their evolution in object-oriented and service-oriented systems,
Software: Practice and Experience 49 (August) (2018) 1–37.
doi:10.1002/spe.2639.
URL http://doi.wiley.com/10.1002/spe.2639

[12] T. Hall, M. Zhang, D. Bowes, Y. Sun, Some code smells have a
significant but small effect on faults, ACM Trans. Softw. Eng.
Methodol. 23 (4) (2014) 33:1–33:39. doi:10.1145/2629648.

[13] M. Fowler, K. Beck, Refactoring: Improving the Design of
Existing Code - Second Edition, Pearson, 2019.

[14] P. Kruchten, R. L. Nord, I. Ozkaya, Technical debt: From
metaphor to theory and practice, IEEE Software 29 (6) (2012)
18–21. doi:10.1109/MS.2012.167.

[15] D. I. K. Sjøberg, A. Yamashita, B. C. D. Anda, A. Mockus,
T. Dybå, Quantifying the effect of code smells on maintenance
effort, IEEE Transactions on Software Engineering 39 (8)

39

http://dx.doi.org/10.1007/s10664-013-9283-7
http://dx.doi.org/10.1016/j.infsof.2015.10.008
http://dx.doi.org/10.1016/j.infsof.2015.10.008
http://dx.doi.org/10.1016/j.jss.2017.09.025
http://dx.doi.org/10.1016/j.jss.2017.09.025
http://dx.doi.org/10.1016/j.jss.2014.12.027
http://dx.doi.org/10.1016/j.jss.2014.12.027
http://doi.wiley.com/10.1002/spe.2639
http://doi.wiley.com/10.1002/spe.2639
http://dx.doi.org/10.1002/spe.2639
http://doi.wiley.com/10.1002/spe.2639
http://dx.doi.org/10.1145/2629648
http://dx.doi.org/10.1109/MS.2012.167

(2013) 1144–1156. doi:10.1109/TSE.2012.89.
[16] A. Yamashita, L. Moonen, Exploring the impact of inter-smell

relations on software maintainability: An empirical study, in:
Proceedings of the 2013 International Conference on Software
Engineering, ICSE ’13, IEEE Press, Piscataway, NJ, USA,
2013, pp. 682–691.
URL http://dl.acm.org/citation.cfm?id=2486788.2486878

[17] M. Abbes, F. Khomh, Y. Gueheneuc, G. Antoniol, An empiri-
cal study of the impact of two antipatterns, blob and spaghetti
code, on program comprehension, in: 2011 15th European
Conference on Software Maintenance and Reengineering, 2011,
pp. 181–190. doi:10.1109/CSMR.2011.24.

[18] F. Khomh, M. Di Penta, Y. Gueheneuc, An exploratory study
of the impact of code smells on software change-proneness, in:
2009 16th Working Conference on Reverse Engineering, 2009,
pp. 75–84. doi:10.1109/WCRE.2009.28.

[19] F. Khomh, M. D. Penta, Y.-G. Guéhéneuc, G. Antoniol, An ex-
ploratory study of the impact of antipatterns on class change-
and fault-proneness, Empirical Software Engineering 17 (3)
(2012) 243–275. doi:10.1007/s10664-011-9171-y.
URL https://doi.org/10.1007/s10664-011-9171-y

[20] W. C. Wake, Refactoring Workbook, Addison-Wesley, 2003.
[21] J. Kerievsky, Refactoring to Patterns, Addison-Wesley, 2004.
[22] J. Al Dallal, Constructing models for predicting extract sub-

class refactoring opportunities using object-oriented quality
metrics, Information and Software Technology 54 (10) (2012)
1125–1141. doi:10.1016/j.infsof.2012.04.004.
URL http://dx.doi.org/10.1016/j.infsof.2012.04.
004http://linkinghub.elsevier.com/retrieve/pii/
S0950584912000754

[23] Y. Bian, X. Su, P. Ma, Identifying Accurate Refactoring
Opportunities Using Metrics, Vol. 250 of Advances in In-
telligent Systems and Computing, Springer India, 2014.
doi:10.1007/978-81-322-1695-7.
URL http://link.springer.com/10.1007/
978-81-322-1695-7

[24] A. Chatzigeorgiou, S. Charalampidou, A. Ampatzoglou,
A. Chatzigeorgiou, Identifying extract method refactoring op-
portunities based on functional relevance, IEEE Transactions
on Software Engineering 43 (July) (2017) 1–22. doi:10.1109/
TSE.2016.2645572.

[25] J. Vedurada, V. K. Nandivada, Refactoring opportunities for
replacing type code with state and subclass, Proceedings -
2017 IEEE/ACM 39th International Conference on Software
Engineering Companion, ICSE-C 2017 (2017) 305–307doi:
10.1109/ICSE-C.2017.97.

[26] R. Terra, M. T. Valente, S. Miranda, V. Sales, JMove: A novel
heuristic and tool to detect move method refactoring oppor-
tunities, Journal of Systems and Software 138 (2018) 19–36.
doi:10.1016/j.jss.2017.11.073.
URL https://doi.org/10.1016/j.jss.2017.11.073https://
linkinghub.elsevier.com/retrieve/pii/S0164121217302960

[27] E. Mealy, P. Strooper, Evaluating software refactoring tool
support, in: Australian Software Engineering Conference
(ASWEC’06), 2006, pp. 10 pp.–340. doi:10.1109/ASWEC.
2006.26.

[28] E. Mealy, D. Carrington, P. Strooper, P. Wyeth, Improving us-
ability of software refactoring tools, in: 2007 Australian Soft-
ware Engineering Conference (ASWEC’07), 2007, pp. 307–318.
doi:10.1109/ASWEC.2007.24.

[29] N. Moha, Y.-G. Guéhéneuc, L. Duchien, A.-F. L. Meur, Decor:
A method for the specification and detection of code and design
smells, IEEE Transactions on Software Engineering.

[30] B. Kitchenham, R. Pretorius, D. Budgen, O. P. Brereton,
M. Turner, M. Niazi, S. Linkman, Systematic literature re-
views in software engineering – a tertiary study, Information
and Software Technology 52 (8) (2010) 792 – 805. doi:https:
//doi.org/10.1016/j.infsof.2010.03.006.
URL http://www.sciencedirect.com/science/article/pii/
S0950584910000467

[31] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, Systematic

mapping studies in software engineering, in: Proceedings of the
12th International Conference on Evaluation and Assessment
in Software Engineering, EASE’08, BCS Learning & Develop-
ment Ltd., Swindon, UK, 2008, pp. 68–77.

[32] I. Nurdiani, J. Börstler, S. A. Fricker, The impacts of agile and
lean practices on project constraints: A tertiary study, Journal
of Systems and Software 119 (2016) 162 – 183.

[33] R. Hoda, N. Salleh, J. Grundy, H. M. Tee, Systematic litera-
ture reviews in agile software development: A tertiary study,
Information and Software Technology 85 (2017) 60 – 70.

[34] N. Rios, M. G. de Mendonça Neto, R. O. Spínola, A tertiary
study on technical debt: Types, management strategies, re-
search trends, and base information for practitioners, Infor-
mation and Software Technology 102 (2018) 117 – 145.

[35] B. Kitchenham, P. Brereton, D. Budgen, The educational value
of mapping studies of software engineering literature, in: Pro-
ceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ICSE ’10, ACM, New York,
NY, USA, 2010, pp. 589–598. doi:10.1145/1806799.1806887.

[36] J. Bansiya, C. G. Davis, A hierarchical model for object-
oriented design quality assessment, IEEE Transactions on Soft-
ware Engineering 28 (1) (2002) 4–17. doi:10.1109/32.979986.

[37] J. Highsmith, M. Fowler, The agile manifesto, Software Devel-
opment Magazine 9 (8) (2001) 29–30.

[38] K. Beck, C. Andres, Extreme Programming Explained: Em-
brace Change (2nd Edition), Addison-Wesley, 2004.

[39] A. Elssamadisy, Patterns of Agile Practice Adoption: The
Technical Cluster, C4Media, 2007.

[40] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-
Wesley, 1994.

[41] R. C. Martin, Clean Code: A Handbook of Agile Software
Craftsmanship, Prentice Hall, 2008.

[42] P. F. Mihancea, Towards a Client Driven Characterization of
Class Hierarchies, in: 14th IEEE International Conference on
Program Comprehension (ICPC’06), IEEE, 2006, pp. 285–294.
doi:10.1109/ICPC.2006.48.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=1631136

[43] J. Offutt, R. Alexander, Y. Wu, Q. Xiao, C. Hutchinson, A
fault model for subtype inheritance and polymorphism, in:
Proceedings 12th International Symposium on Software Re-
liability Engineering, IEEE Comput. Soc, 2001, pp. 84–93.
doi:10.1109/ISSRE.2001.989461.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=989461

[44] P. F. Mihancea, R. Marinescu, Discovering Comprehension
Pitfalls in Class Hierarchies, in: 2009 13th European Confer-
ence on Software Maintenance and Reengineering, IEEE, 2009,
pp. 7–16. doi:10.1109/CSMR.2009.31.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=4812734

[45] M. Zhang, N. Baddoo, P. Wernick, T. Hall, Improving the
precision of fowler’s definitions of bad smells, in: 2008 32nd
Annual IEEE Software Engineering Workshop, 2008, pp. 161–
166. doi:10.1109/SEW.2008.26.

[46] R. Koschke, Survey of research on software clones, in:
R. Koschke, E. Merlo, A. Walenstein (Eds.), Duplica-
tion, Redundancy, and Similarity in Software, no. 06301 in
Dagstuhl Seminar Proceedings, Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl, Germany, Dagstuhl, Germany, 2007, p. 1.
URL http://drops.dagstuhl.de/opus/volltexte/2007/962

[47] A. Sheneamer, J. Kalita, A Survey of Software Clone Detec-
tion Techniques, International Journal of Computer Applica-
tions 137 (10) (2016) 975–8887. doi:10.1109/MITICON.2016.
8025227.

[48] R. C. Martin, M. Martin, Agile Principles, Patterns, and Prac-
tices in C#, Prentice Hall, 2007.

[49] M. Mantyla, Bad smells in software - a taxonomy and an em-
pirical study, Ph.D. thesis, Helsinki University of Technology

40

http://dx.doi.org/10.1109/TSE.2012.89
http://dl.acm.org/citation.cfm?id=2486788.2486878
http://dl.acm.org/citation.cfm?id=2486788.2486878
http://dl.acm.org/citation.cfm?id=2486788.2486878
http://dx.doi.org/10.1109/CSMR.2011.24
http://dx.doi.org/10.1109/WCRE.2009.28
https://doi.org/10.1007/s10664-011-9171-y
https://doi.org/10.1007/s10664-011-9171-y
https://doi.org/10.1007/s10664-011-9171-y
http://dx.doi.org/10.1007/s10664-011-9171-y
https://doi.org/10.1007/s10664-011-9171-y
http://dx.doi.org/10.1016/j.infsof.2012.04.004 http://linkinghub.elsevier.com/retrieve/pii/S0950584912000754
http://dx.doi.org/10.1016/j.infsof.2012.04.004 http://linkinghub.elsevier.com/retrieve/pii/S0950584912000754
http://dx.doi.org/10.1016/j.infsof.2012.04.004 http://linkinghub.elsevier.com/retrieve/pii/S0950584912000754
http://dx.doi.org/10.1016/j.infsof.2012.04.004
http://dx.doi.org/10.1016/j.infsof.2012.04.004 http://linkinghub.elsevier.com/retrieve/pii/S0950584912000754
http://dx.doi.org/10.1016/j.infsof.2012.04.004 http://linkinghub.elsevier.com/retrieve/pii/S0950584912000754
http://dx.doi.org/10.1016/j.infsof.2012.04.004 http://linkinghub.elsevier.com/retrieve/pii/S0950584912000754
http://link.springer.com/10.1007/978-81-322-1695-7
http://link.springer.com/10.1007/978-81-322-1695-7
http://dx.doi.org/10.1007/978-81-322-1695-7
http://link.springer.com/10.1007/978-81-322-1695-7
http://link.springer.com/10.1007/978-81-322-1695-7
http://dx.doi.org/10.1109/TSE.2016.2645572
http://dx.doi.org/10.1109/TSE.2016.2645572
http://dx.doi.org/10.1109/ICSE-C.2017.97
http://dx.doi.org/10.1109/ICSE-C.2017.97
https://doi.org/10.1016/j.jss.2017.11.073 https://linkinghub.elsevier.com/retrieve/pii/S0164121217302960
https://doi.org/10.1016/j.jss.2017.11.073 https://linkinghub.elsevier.com/retrieve/pii/S0164121217302960
https://doi.org/10.1016/j.jss.2017.11.073 https://linkinghub.elsevier.com/retrieve/pii/S0164121217302960
http://dx.doi.org/10.1016/j.jss.2017.11.073
https://doi.org/10.1016/j.jss.2017.11.073 https://linkinghub.elsevier.com/retrieve/pii/S0164121217302960
https://doi.org/10.1016/j.jss.2017.11.073 https://linkinghub.elsevier.com/retrieve/pii/S0164121217302960
http://dx.doi.org/10.1109/ASWEC.2006.26
http://dx.doi.org/10.1109/ASWEC.2006.26
http://dx.doi.org/10.1109/ASWEC.2007.24
http://www.sciencedirect.com/science/article/pii/S0950584910000467
http://www.sciencedirect.com/science/article/pii/S0950584910000467
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2010.03.006
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2010.03.006
http://www.sciencedirect.com/science/article/pii/S0950584910000467
http://www.sciencedirect.com/science/article/pii/S0950584910000467
http://dx.doi.org/10.1145/1806799.1806887
http://dx.doi.org/10.1109/32.979986
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1631136
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1631136
http://dx.doi.org/10.1109/ICPC.2006.48
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1631136
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1631136
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=989461
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=989461
http://dx.doi.org/10.1109/ISSRE.2001.989461
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=989461
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=989461
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4812734
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4812734
http://dx.doi.org/10.1109/CSMR.2009.31
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4812734
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4812734
http://dx.doi.org/10.1109/SEW.2008.26
http://drops.dagstuhl.de/opus/volltexte/2007/962
http://drops.dagstuhl.de/opus/volltexte/2007/962
http://dx.doi.org/10.1109/MITICON.2016.8025227
http://dx.doi.org/10.1109/MITICON.2016.8025227

(2003).
[50] M. Mantyla, J. Vanhanen, C. Lassenius, A taxonomy and an

initial empirical study of bad smells in code, in: Proceedings of
the 19th IEEE International Conference on Software Mainte-
nance (ICSM’03), IEEE Computer Society, Washington, DC,
USA, 2003, pp. 381–.
URL http://dl.acm.org/citation.cfm?id=943571

[51] J. Perez, Refactoring planning for design smell correction in
object-oriented software, Ph.D. thesis, Escuela Técnica Supe-
rior e Ingeniería Informática - Universidad de Valladolid (01
2011).

[52] W. Opdyke, Refactoring object-oriented frameworks, Ph.D.
thesis, University of Illinois at Urbana-Champaign (1992).

[53] T. Mens, T. Tourwe, A survey of software refactoring, IEEE
Transactions on Software Engineering 30 (2) (2004) 126–139.
doi:10.1109/TSE.2004.1265817.

[54] R. Fanta, V. Rajlich, Reengineering object-oriented code, in:
Proceedings of the 15th IEEE International Conference on
Software Maintenance (ICSM’98), IEEE Computer Society,
Washington, DC, USA, 1998, pp. 238–246.

[55] C. López, J. M. Alonso, R. Marticorena, J. M. Maudes, De-
sign of e-activities for the learning of code refactoring tasks,
in: 2014 International Symposium on Computers in Education
(SIIE), 2014, pp. 35–40. doi:10.1109/SIIE.2014.7017701.

[56] S. Lahtinen, M. Leppänen, Refactoring patterns, practices
for daily work, in: Proceedings of the 10th Travelling Con-
ference on Pattern Languages of Programs, VikingPLoP ’16,
ACM, New York, NY, USA, 2016, pp. 6:1–6:8. doi:10.1145/
3022636.3022642.
URL http://doi.acm.org/10.1145/3022636.3022642

[57] T. Haendler, J. Frysak, Deconstructing the refactoring pro-
cess from a problem-solving and decision-making perspective,
in: Proceedings of the 13th International Conference on Soft-
ware Technologies (ICSOFT 2018), 2018, pp. 363–372. doi:
10.5220/0006915903630372.

[58] C. Parnin, C. Görg, O. Nnadi, A catalogue of lightweight vi-
sualizations to support code smell inspection, in: Proceedings
of the 4th ACM Symposium on Software Visualization, Soft-
Vis ’08, Association for Computing Machinery, New York, NY,
USA, 2008, p. 77–86. doi:10.1145/1409720.1409733.
URL https://doi.org/10.1145/1409720.1409733

[59] E. Murphy-Hill, A. Black, Seven habits of highly effective
smell detector, in: Proceedings of the International Work-
shop on Recommendation Systems for Software Engineering
(RSSE’08), ACM, New York, NY, USA, 2008, pp. 36–40.

[60] H. Li, S. Thompson, G. Orosz, M. Töth, Refactoring with
wrangler, updated: Data and process refactorings, and inte-
gration with eclipse, in: Z. Horváth, T. Teoh (Eds.), Proceed-
ings of the Seventh ACM SIGPLAN Erlang Workshop, ACM
Press, NY, USA, 2008, p. 12pp.
URL https://kar.kent.ac.uk/24013/

[61] E. Saadeh, D. G. Kourie, Composite refactoring using fine-
grained transformations, in: Proceedings of the 2009 Annual
Research Conference of the South African Institute of Com-
puter Scientists and Information Technologists, SAICSIT ’09,
Association for Computing Machinery, New York, NY, USA,
2009, p. 22–29. doi:10.1145/1632149.1632154.
URL https://doi.org/10.1145/1632149.1632154

[62] E. K. Piveta, M. Hecht, M. S. Pimenta, R. Price, Detecting
bad smells in aspectj, JUCS 12 (7) (2006) 811–827.

[63] D. B. Roberts, Practical analysis for refactoring, Ph.D. thesis,
University of Illinois at Urbana-Champaign (1999).

[64] N. Tsantalis, Jdeodorant, https://github.com/tsantalis/JDeodorant
(2018).

[65] JRefactory, Jrefactory, http://jrefactory.sourceforge.net/
(2018).

[66] Refactory, Refactory, http://www.modelrefactoring.org/index.php/Refactoring
(2013).

[67] CppRefactory, Cpprefactory, http://cpptool.sourceforge.net/
(2001).

[68] W. T. Software, Visual assist - a visualstudio extension

by whole tomato software, http://www.wholetomato.com/
(2018).

[69] D. Express, Coderush: Ide productivity tools for visualstudio,
http://www.devexpress.com/Products/CodeRush/ (2018).

[70] JetBrains, The most intelligent extension for visual studio
:: Resharper - c#, vb.net, linq, asp.net, asp.net mvc, xaml,
xml, javascript, html, build scripts. best-of-breed tools for
code refactoring, code quality analysis, code cleanup, nav-
igation, code generation, unit testing, and code templates,
http://www.jetbrains.com/resharper/index.html (2018).

[71] XRefactory, Xrefactory, http://www.xref.sk/about.html
(1998).

[72] Aivosto, Project analyzer v10.2 for visual basic, vb.net and
vba, http://www.aivosto.com/project/ (2018).

[73] Rope, Rope python refactoring library...,
https://github.com/python-rope/rope (2018).

[74] B. R. Man, Bicycle repair man,
http://bicyclerepair.sourceforge.net/ (2018).

[75] N. Tsantalis, Evaluation and improvement of software architec-
ture: Identification of design problems in object-oriented sys-
tems and resolution through refactorings, Ph.D. thesis, Mace-
donia University (2010).

[76] N. Tsantalis, A. Chatzigeorgiou, Ranking refactoring sugges-
tions based on historical volatility, in: 2011 15th European
Conference on Software Maintenance and Reengineering, 2011,
pp. 25–34. doi:10.1109/CSMR.2011.7.

[77] N. Zazworka, C. Seaman, F. Shull, Prioritizing design debt
investment opportunities, in: Proceedings of the 2nd Work-
shop on Managing Technical Debt, MTD ’11, Association for
Computing Machinery, New York, NY, USA, 2011, p. 39–42.
doi:10.1145/1985362.1985372.
URL https://doi.org/10.1145/1985362.1985372

[78] E. K. Piveta, Improving the search for refactoring opportu-
nities on object-oriented and aspect-oriented software, Ph.D.
thesis, PPGC - Universidade Federal do Rio Grande do Sul
(UFRGS) (2009).

[79] M. Bruch, M. Monperrus, M. Mezini, Learning from examples
to improve code completion systems, in: Proceedings of the
7th Joint Meeting of the European Software Engineering Con-
ference and the ACM SIGSOFT Symposium on The Founda-
tions of Software Engineering, ESEC/FSE ’09, Association for
Computing Machinery, New York, NY, USA, 2009, p. 213–222.
doi:10.1145/1595696.1595728.
URL https://doi.org/10.1145/1595696.1595728

[80] Y. Y. Lee, S. Harwell, S. Khurshid, D. Marinov, Temporal
code completion and navigation, in: 2013 35th International
Conference on Software Engineering (ICSE), 2013, pp. 1181–
1184. doi:10.1109/ICSE.2013.6606673.

[81] B. Kitchenham, S. Charters, D. Budgen, P. Brereton,
M. Turner, S. Linkman, Guidelines for performing systematic
literature reviews in software engineering (2007).

[82] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bai-
ley, S. Linkman, Systematic literature reviews in software engi-
neering – a systematic literature review, Information and Soft-
ware Technology 51 (51) (2009) 7–15.

[83] S. Imtiaz, M. Bano, N. Ikram, M. Niazi, A tertiary study: Ex-
periences of conducting systematic literature reviews in soft-
ware engineering, in: Proceedings of the 17th International
Conference on Evaluation and Assessment in Software En-
gineering, EASE ’13, Association for Computing Machinery,
New York, NY, USA, 2013, p. 177–182. doi:10.1145/2460999.
2461025.
URL https://doi.org/10.1145/2460999.2461025

[84] M. U. Khan, S. Sherin, M. Z. Iqbal, R. Zahid, Landscaping
systematic mapping studies in software engineering: A tertiary
study, Journal of Systems and Software 149 (2019) 396 – 436.
doi:https://doi.org/10.1016/j.jss.2018.12.018.
URL http://www.sciencedirect.com/science/article/pii/
S0164121218302784

[85] C. Wohlin, Guidelines for snowballing in systematic literature
studies and a replication in software engineering, in: Proceed-

41

http://dl.acm.org/citation.cfm?id=943571
http://dl.acm.org/citation.cfm?id=943571
http://dl.acm.org/citation.cfm?id=943571
http://dx.doi.org/10.1109/TSE.2004.1265817
http://dx.doi.org/10.1109/SIIE.2014.7017701
http://doi.acm.org/10.1145/3022636.3022642
http://doi.acm.org/10.1145/3022636.3022642
http://dx.doi.org/10.1145/3022636.3022642
http://dx.doi.org/10.1145/3022636.3022642
http://doi.acm.org/10.1145/3022636.3022642
http://dx.doi.org/10.5220/0006915903630372
http://dx.doi.org/10.5220/0006915903630372
https://doi.org/10.1145/1409720.1409733
https://doi.org/10.1145/1409720.1409733
http://dx.doi.org/10.1145/1409720.1409733
https://doi.org/10.1145/1409720.1409733
https://kar.kent.ac.uk/24013/
https://kar.kent.ac.uk/24013/
https://kar.kent.ac.uk/24013/
https://kar.kent.ac.uk/24013/
https://doi.org/10.1145/1632149.1632154
https://doi.org/10.1145/1632149.1632154
http://dx.doi.org/10.1145/1632149.1632154
https://doi.org/10.1145/1632149.1632154
http://dx.doi.org/10.1109/CSMR.2011.7
https://doi.org/10.1145/1985362.1985372
https://doi.org/10.1145/1985362.1985372
http://dx.doi.org/10.1145/1985362.1985372
https://doi.org/10.1145/1985362.1985372
https://doi.org/10.1145/1595696.1595728
https://doi.org/10.1145/1595696.1595728
http://dx.doi.org/10.1145/1595696.1595728
https://doi.org/10.1145/1595696.1595728
http://dx.doi.org/10.1109/ICSE.2013.6606673
https://doi.org/10.1145/2460999.2461025
https://doi.org/10.1145/2460999.2461025
https://doi.org/10.1145/2460999.2461025
http://dx.doi.org/10.1145/2460999.2461025
http://dx.doi.org/10.1145/2460999.2461025
https://doi.org/10.1145/2460999.2461025
http://www.sciencedirect.com/science/article/pii/S0164121218302784
http://www.sciencedirect.com/science/article/pii/S0164121218302784
http://www.sciencedirect.com/science/article/pii/S0164121218302784
http://dx.doi.org/https://doi.org/10.1016/j.jss.2018.12.018
http://www.sciencedirect.com/science/article/pii/S0164121218302784
http://www.sciencedirect.com/science/article/pii/S0164121218302784

ings of the 18th International Conference on Evaluation and
Assessment in Software Engineering, EASE ’14, ACM, New
York, NY, USA, 2014, pp. 38:1–38:10.

[86] University of York, Centre for reviews and dissemination,
https://www.york.ac.uk/crd/ (2018).

[87] G. Lacerda, Online repository for tertiary systematic re-
view about code smells and refactoring (package replication),
https://bit.ly/2WRD1N2 (2019).

[88] B. L. Sousa, M. A. S. Bigonha, K. A. M. Ferreira, A systematic
literature mapping on the relationship between design patterns
and bad smells, in: Proceedings of the 33rd Annual ACM Sym-
posium on Applied Computing - SAC ’18, ACM Press, 2018,
pp. 1528–1535. doi:10.1145/3167132.3167295.

[89] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, E. Figueiredo, A
review-based comparative study of bad smell detection tools,
in: Proceedings of the 20th International Conference on Eval-
uation and Assessment in Software Engineering, EASE ’16,
Association for Computing Machinery, New York, NY, USA,
2016, p. 1. doi:10.1145/2915970.2915984.
URL https://doi.org/10.1145/2915970.2915984

[90] R. Singh, A. Kumar, Identifying Various Code-Smells and
Refactoring Opportunities in Object-Oriented Software Sys-
tem : A systematic Literature Review, International Journal
on Future Revolution in Computer Science & Communication
Engineering 8 (March) (2018) 62–74.

[91] M. Abebe, C.-J. Yoo, Trends, Opportunities and Challenges of
Software Refactoring: A Systematic Literature Review, Inter-
national Journal of Software Engineering and Its Applications
8 (6) (2014) 299–318. doi:10.14257/ijseia.2014.8.6.24.

[92] M. Abebe, C.-j. Yoo, Classification and Summarization of Soft-
ware Refactoring Researches: A Literature Review Approach,
in: Advanced Science and Technology Letters, Vol. 46, Science
& Engineering Research Support soCiety, 2014, pp. 279–284.
doi:10.14257/astl.2014.46.59.

[93] J. Al Dallal, A. Abdin, Empirical Evaluation of the Impact
of Object-Oriented Code Refactoring on Quality Attributes:
A Systematic Literature Review, IEEE Transactions on Soft-
ware Engineering 44 (1) (2018) 44–69. doi:10.1109/TSE.2017.
2658573.

[94] G. Vale, E. Figueiredo, R. Abilio, H. Costa, Bad Smells in
Software Product Lines: A Systematic Review, in: 2014 Eighth
Brazilian Symposium on Software Components, Architectures
and Reuse, IEEE, 2014, pp. 84–94. doi:10.1109/SBCARS.2014.
21.

[95] C. K. Roy, M. F. Zibran, R. Koschke, The vision of soft-
ware clone management: Past, present, and future (Keynote
paper), in: 2014 Software Evolution Week - IEEE Confer-
ence on Software Maintenance, Reengineering, and Reverse
Engineering (CSMR-WCRE), IEEE, 2014, pp. 18–33. doi:
10.1109/CSMR-WCRE.2014.6747168.

[96] M. Zhang, T. Hall, N. Baddoo, Code Bad Smells: a re-
view of current knowledge, Journal of Software Maintenance
and Evolution: Research and Practice 23 (3) (2011) 179–202.
arXiv:1408.1293, doi:10.1002/smr.521.

[97] A. Gupta, B. Suri, S. Misra, A Systematic Literature Review:
Code Bad Smells in Java Source Code, in: ICCSA 2017, 2017,
pp. 665–682. doi:10.1007/978-3-319-62404-4_49.

[98] S. Singh, S. Kaur, A systematic literature review: Refac-
toring for disclosing code smells in object oriented soft-
ware, Ain Shams Engineering Journaldoi:10.1016/j.asej.
2017.03.002.

[99] M. A. Laguna, Y. Crespo, A systematic mapping study on soft-
ware product line evolution: From legacy system reengineering
to product line refactoring, Science of Computer Programming
78 (8) (2013) 1010–1034. doi:10.1016/j.scico.2012.05.003.

[100] T. Sharma, D. Spinellis, A survey on software smells, Journal
of Systems and Software 138 (2018) 158–173. doi:10.1016/j.
jss.2017.12.034.

[101] V. Garousi, B. Küçük, Smells in software test code: A survey of
knowledge in industry and academia, Journal of Systems and
Software 138 (2018) 52–81. doi:10.1016/j.jss.2017.12.013.

[102] M. Mohan, D. Greer, A survey of search-based refactoring
for software maintenance, Journal of Software Engineering
Research and Development 6 (1) (2018) 3. doi:10.1186/
s40411-018-0046-4.

[103] G. Rasool, Z. Arshad, A review of code smell mining tech-
niques, Journal of Software: Evolution and Process 27 (11)
(2015) 867–895. arXiv:1408.1293, doi:10.1002/smr.1737.

[104] J. R. Pate, R. Tairas, N. A. Kraft, Clone evolution: a system-
atic review, Journal of Software: Evolution and Process 25 (3)
(2013) 261–283. arXiv:1408.1293, doi:10.1002/smr.579.

[105] D. Rattan, R. Bhatia, M. Singh, Software clone detection: A
systematic review, Information and Software Technology 55 (7)
(2013) 1165–1199. doi:10.1016/j.infsof.2013.01.008.

[106] J. Al Dallal, Identifying refactoring opportunities in object-
oriented code: A systematic literature review, Information and
Software Technology 58 (2015) 231–249. arXiv:arXiv:1011.
1669v3, doi:10.1016/j.infsof.2014.08.002.

[107] J. A. M. Santos, J. B. Rocha-Junior, L. C. L. Prates, R. S.
do Nascimento, M. F. Freitas, M. G. de Mendonça, A sys-
tematic review on the code smell effect, Journal of Systems
and Software 144 (July) (2018) 450–477. doi:10.1016/j.jss.
2018.07.035.

[108] T. Mariani, S. R. Vergilio, A systematic review on search-based
refactoring, Information and Software Technology 83 (2017)
14–34. doi:10.1016/j.infsof.2016.11.009.

[109] W. N. Behutiye, P. Rodríguez, M. Oivo, A. Tosun, Ana-
lyzing the concept of technical debt in the context of agile
software development: A systematic literature review, Infor-
mation and Software Technology 82 (2017) 139–158. doi:
10.1016/j.infsof.2016.10.004.

[110] B. Cardoso, E. Figueiredo, Co-occurrence of design patterns
and bad smells in software systems: An exploratory study, in:
Proceedings of the Annual Conference on Brazilian Symposium
on Information Systems: Information Systems: A Computer
Socio-Technical Perspective - Volume 1, SBSI 2015, Brazil-
ian Computer Society, Porto Alegre, Brazil, Brazil, 2015, pp.
46:347–46:354.

[111] S. Rochimah, S. Arifiani, V. F. Insanittaqwa, Non-Source Code
Refactoring: A Systematic Literature Review, International
Journal of Software Engineering and Its Applications 9 (6)
(2015) 197–214. doi:10.14257/ijseia.2015.9.6.19.

[112] A. Ali, S. Sulaiman, A Systematic Literature Review of Code
Clone Prevention Approaches, International Journal of Soft-
ware Engineering . . . 1 (JANUARY 2014) (2014) 1–6.

[113] D. Rattan, J. Kaur, Systematic Mapping Study of Metrics
based Clone Detection Techniques, Proceedings of the In-
ternational Conference on Advances in Information Commu-
nication Technology & Computing - AICTC ’16 (2016) 1–
7doi:10.1145/2979779.2979855.

[114] A. S. Cairo, G. D. F. Carneiro, M. P. Monteiro, The Im-
pact of Code Smells on Software Bugs: a Systematic Lit-
erature Review, Journal of Information Science, Technology
and Engineering 9 (October) (2018) 1–21. doi:10.20944/
preprints201810.0059.v1.

[115] B. K. Sidhu, K. Singh, N. Sharma, Refactoring UML Mod-
els of Object-Oriented Software: A Systematic Review, In-
ternational Journal of Software Engineering and Knowledge
Engineering 28 (9) (2018) 1287–1319. doi:10.1145/1878431.
1878433.

[116] M. GRADIŠNIK, MITJA and HERIČKO, Impact of Code
Smells on the Rate of Defects in Software: A Literature Re-
view, in: SQAMIA 2018: 7th Workshop of Software Qual-
ity, no. October in SQAMIA 2018, 2018, pp. 1–21. doi:
10.20944/preprints201810.0059.v1.

[117] A. Bandi, B. J. Williams, E. B. Allen, Empirical evidence of
code decay: A systematic mapping study, Proceedings - Work-
ing Conference on Reverse Engineering, WCRE (2013) 341–
350doi:10.1109/WCRE.2013.6671309.

[118] K. Alkharabsheh, Y. Crespo, E. Manso, J. A. Taboada, Soft-
ware Design Smell Detection: a systematic mapping study,
Software Quality Journaldoi:10.1007/s11219-018-9424-8.

42

https://www.york.ac.uk/crd/
http://dx.doi.org/10.1145/3167132.3167295
https://doi.org/10.1145/2915970.2915984
https://doi.org/10.1145/2915970.2915984
http://dx.doi.org/10.1145/2915970.2915984
https://doi.org/10.1145/2915970.2915984
http://dx.doi.org/10.14257/ijseia.2014.8.6.24
http://dx.doi.org/10.14257/astl.2014.46.59
http://dx.doi.org/10.1109/TSE.2017.2658573
http://dx.doi.org/10.1109/TSE.2017.2658573
http://dx.doi.org/10.1109/SBCARS.2014.21
http://dx.doi.org/10.1109/SBCARS.2014.21
http://dx.doi.org/10.1109/CSMR-WCRE.2014.6747168
http://dx.doi.org/10.1109/CSMR-WCRE.2014.6747168
http://arxiv.org/abs/1408.1293
http://dx.doi.org/10.1002/smr.521
http://dx.doi.org/10.1007/978-3-319-62404-4_49
http://dx.doi.org/10.1016/j.asej.2017.03.002
http://dx.doi.org/10.1016/j.asej.2017.03.002
http://dx.doi.org/10.1016/j.scico.2012.05.003
http://dx.doi.org/10.1016/j.jss.2017.12.034
http://dx.doi.org/10.1016/j.jss.2017.12.034
http://dx.doi.org/10.1016/j.jss.2017.12.013
http://dx.doi.org/10.1186/s40411-018-0046-4
http://dx.doi.org/10.1186/s40411-018-0046-4
http://arxiv.org/abs/1408.1293
http://dx.doi.org/10.1002/smr.1737
http://arxiv.org/abs/1408.1293
http://dx.doi.org/10.1002/smr.579
http://dx.doi.org/10.1016/j.infsof.2013.01.008
http://arxiv.org/abs/arXiv:1011.1669v3
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1016/j.infsof.2014.08.002
http://dx.doi.org/10.1016/j.jss.2018.07.035
http://dx.doi.org/10.1016/j.jss.2018.07.035
http://dx.doi.org/10.1016/j.infsof.2016.11.009
http://dx.doi.org/10.1016/j.infsof.2016.10.004
http://dx.doi.org/10.1016/j.infsof.2016.10.004
http://dx.doi.org/10.14257/ijseia.2015.9.6.19
http://dx.doi.org/10.1145/2979779.2979855
http://dx.doi.org/10.20944/preprints201810.0059.v1
http://dx.doi.org/10.20944/preprints201810.0059.v1
http://dx.doi.org/10.1145/1878431.1878433
http://dx.doi.org/10.1145/1878431.1878433
http://dx.doi.org/10.20944/preprints201810.0059.v1
http://dx.doi.org/10.20944/preprints201810.0059.v1
http://dx.doi.org/10.1109/WCRE.2013.6671309
https://doi.org/10.1007/s11219-018-9424-8 http://link.springer.com/10.1007/s11219-018-9424-8
https://doi.org/10.1007/s11219-018-9424-8 http://link.springer.com/10.1007/s11219-018-9424-8
http://dx.doi.org/10.1007/s11219-018-9424-8

URL https://doi.org/10.1007/s11219-018-9424-8http://
link.springer.com/10.1007/s11219-018-9424-8

[119] E. V. d. P. Sobrinho, A. De Lucia, M. d. A. Maia, A system-
atic literature review on bad smells — 5 w’s: which, when,
what, who, where, IEEE Transactions on Software Engineer-
ing (2018) 1–1doi:10.1109/TSE.2018.2880977.

[120] A. Barrett, J. Edwards, Knowledge elicitation and knowledge
representation in a large domain with multiple experts, Expert
Systems with Applications 8 (1) (1995) 169 – 176. doi:https:
//doi.org/10.1016/0957-4174(94)E0007-H.
URL http://www.sciencedirect.com/science/article/pii/
0957417494E0007H

[121] J. A. Sheikh, B. Fields, E. Duncker, The cultural integration
of knowledge management into interactive design, in: M. J.
Smith, G. Salvendy (Eds.), Human Interface and the Manage-
ment of Information. Interacting with Information, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 48–57.

[122] M. Feathers, Working Effectively with Legacy Code, Prentice
Hall, 2004.

[123] A. J. Riel, Object-Oriented Design Heuristics, 1st Edition,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1996.

[124] E. Murphy-Hill, C. Parnin, A. P. Black, How we refactor, and
how we know it, IEEE Transactions on Software Engineering
38 (1) (2012) 5–18. doi:10.1109/TSE.2011.41.

[125] I. Griffith, S. Wahl, C. Izurieta, Truerefactor : An automated
refactoring tool to improve legacy system and application com-
prehensibility, in: Proceedings of the 24th International Con-
ference on Computer Applications in Industry and Engineering
(CAINE), 2011, p. 1.

[126] D. Jemerov, Implementing refactorings in intellij idea, in: Pro-
ceedings of the 2nd Workshop on Refactoring Tools, WRT ’08,
Association for Computing Machinery, New York, NY, USA,
2008, p. 1. doi:10.1145/1636642.1636655.
URL https://doi.org/10.1145/1636642.1636655

[127] H. Li, S. Thompson, A domain-specific language for scripting
refactorings in erlang, in: J. de Lara, A. Zisman (Eds.), Fun-
damental Approaches to Software Engineering, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012, pp. 501–515.

[128] H. Li, S. Thompson, L. Lövei, Z. Horváth, T. Kozsik, A. Víg,
T. Nagy, Refactoring erlang programs, in: The Proceedings of
12th International Erlang/OTP User Conference, Stockholm,
Sweden, 2006, p. 1.
URL https://kar.kent.ac.uk/14394/

[129] E. Murphy-Hill, A. P. Black, High velocity refactorings in
eclipse, in: Proceedings of the 2007 OOPSLA Workshop on
Eclipse Technology EXchange, eclipse ’07, Association for
Computing Machinery, New York, NY, USA, 2007, p. 1–5.
doi:10.1145/1328279.1328280.
URL https://doi.org/10.1145/1328279.1328280

[130] E. Murphy-Hill, A. P. Black, An interactive ambient visualiza-
tion for code smells, in: Proceedings of the 5th International
Symposium on Software Visualization, SOFTVIS ’10, Associ-
ation for Computing Machinery, New York, NY, USA, 2010,
p. 5–14. doi:10.1145/1879211.1879216.
URL https://doi.org/10.1145/1879211.1879216

[131] S. Easterbrook, J. Singer, M.-A. Storey, D. Damian, Select-
ing Empirical Methods for Software Engineering Research,
Springer London, London, 2008, Ch. 8, pp. 285–311. doi:
10.1007/978-1-84800-044-5_11.
URL https://doi.org/10.1007/978-1-84800-044-5_11

[132] F. Q. B. da Silva, A. L. M. Santos, S. C. B. Soares, A. C. C.
França, C. V. F. Monteiro, A critical appraisal of systematic
reviews in software engineering from the perspective of the re-
search questions asked in the reviews, in: Proceedings of the
2010 ACM-IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement, ESEM ’10, ACM, New
York, NY, USA, 2010, pp. 33:1–33:4. doi:10.1145/1852786.
1852830.
URL http://doi.acm.org/10.1145/1852786.1852830

[133] F. Q. da Silva, A. L. Santos, S. Soares, A. C. C. França,

C. V. Monteiro, F. F. Maciel, Six years of systematic liter-
ature reviews in software engineering: An updated tertiary
study, Information and Software Technology 53 (9) (2011) 899
– 913, studying work practices in Global Software Engineering.
doi:https://doi.org/10.1016/j.infsof.2011.04.004.
URL http://www.sciencedirect.com/science/article/pii/
S0950584911001017

[134] K. Petersen, S. Vakkalanka, L. Kuzniarz, Guidelines for con-
ducting systematic mapping studies in software engineering:
An update, Information and Software Technology 64 (2015) 1
– 18. doi:https://doi.org/10.1016/j.infsof.2015.03.007.
URL http://www.sciencedirect.com/science/article/pii/
S0950584915000646

[135] C. Wohlin, An analysis of the most cited articles in software
engineering journals - 2000, Information and Software Tech-
nology 49 (1) (2007) 2 – 11, most Cited Journal Articles in
Software Engineering - 2000. doi:https://doi.org/10.1016/
j.infsof.2006.08.004.
URL http://www.sciencedirect.com/science/article/pii/
S0950584906001133

[136] C. Wohlin, An analysis of the most cited articles in software
engineering journals – 2001, Information and Software Tech-
nology 50 (1) (2008) 3 – 9, special issue with two special sec-
tions. Section 1: Most-cited software engineering articles in
2001. Section 2: Requirement engineering: Foundation for soft-
ware quality. doi:https://doi.org/10.1016/j.infsof.2007.
10.002.
URL http://www.sciencedirect.com/science/article/pii/
S0950584907001152

[137] V. Garousi, J. M. Fernandes, Highly-cited papers in software
engineering: The top-100, Information and Software Technol-
ogy 71 (2016) 108 – 128.

[138] V. Garousi, J. M. Fernandes, Highly-cited papers in software
engineering: The top-100, Information and Software Technol-
ogy 71 (2016) 108 – 128. doi:https://doi.org/10.1016/j.
infsof.2015.11.003.
URL http://www.sciencedirect.com/science/article/pii/
S0950584915001871

[139] International Standards Organisation (ISO), International
standard ISO/IEC 9126. information technology: Software
product evaluation: Quality characteristics and guidelines for
their use (1991).

[140] J. McCall, Factors in Software Quality: Preliminary Hand-
book on Software Quality for an Acquisiton Manager, Vol.
1-3, General Electric, 1977.
URL http://oai.dtic.mil/oai/oai?verb=getRecord&
metadataPrefix=html&identifier=ADA049055

[141] C. L. Goues, C. Jaspan, I. Ozkaya, M. Shaw, K. T. Stolee,
Bridging the gap: From research to practical advice, IEEE
Software 35 (5) (2018) 50–57. doi:10.1109/MS.2018.3571235.

[142] G. Canfora, M. D. Penta, L. Cerulo, Achievements and chal-
lenges in software reverse engineering, Communications of the
ACM 54 (4) (2011) 142–151.

[143] M. Leppänen, S. Lahtinen, K. Kuusinen, S. Mäkinen, T. Män-
nistö, J. Itkonen, J. Yli-Huumo, T. Lehtonen, Decision-making
framework for refactoring, in: 2015 IEEE 7th International
Workshop on Managing Technical Debt (MTD), 2015, pp. 61–
68. doi:10.1109/MTD.2015.7332627.

[144] W. G. Griswold, W. F. Opdyke, The birth of refactoring: A
retrospective on the nature of high-impact software engineering
research, IEEE Software 32 (6) (2015) 30–38. doi:10.1109/
MS.2015.107.

[145] M. Leppänen, S. Mäkinen, S. Lahtinen, O. Sievi-Korte,
A. Tuovinen, T. Männistö, Refactoring - a shot in the dark?,
IEEE Software 32 (6) (2015) 62–70. doi:10.1109/MS.2015.
132.

[146] E. Tempero, T. Gorschek, L. Angelis, Barriers to refactoring,
Commun. ACM 60 (10) (2017) 54–61. doi:10.1145/3131873.
URL http://doi.acm.org/10.1145/3131873

[147] T. Mens, S. Demeyer, B. D. Bois, H. Stenten, P. V. Gorp,
Refactoring: Current research and future trends, Electronic

43

https://doi.org/10.1007/s11219-018-9424-8 http://link.springer.com/10.1007/s11219-018-9424-8
https://doi.org/10.1007/s11219-018-9424-8 http://link.springer.com/10.1007/s11219-018-9424-8
http://dx.doi.org/10.1109/TSE.2018.2880977
http://www.sciencedirect.com/science/article/pii/0957417494E0007H
http://www.sciencedirect.com/science/article/pii/0957417494E0007H
http://dx.doi.org/https://doi.org/10.1016/0957-4174(94)E0007-H
http://dx.doi.org/https://doi.org/10.1016/0957-4174(94)E0007-H
http://www.sciencedirect.com/science/article/pii/0957417494E0007H
http://www.sciencedirect.com/science/article/pii/0957417494E0007H
http://dx.doi.org/10.1109/TSE.2011.41
https://doi.org/10.1145/1636642.1636655
http://dx.doi.org/10.1145/1636642.1636655
https://doi.org/10.1145/1636642.1636655
https://kar.kent.ac.uk/14394/
https://kar.kent.ac.uk/14394/
https://doi.org/10.1145/1328279.1328280
https://doi.org/10.1145/1328279.1328280
http://dx.doi.org/10.1145/1328279.1328280
https://doi.org/10.1145/1328279.1328280
https://doi.org/10.1145/1879211.1879216
https://doi.org/10.1145/1879211.1879216
http://dx.doi.org/10.1145/1879211.1879216
https://doi.org/10.1145/1879211.1879216
https://doi.org/10.1007/978-1-84800-044-5_11
https://doi.org/10.1007/978-1-84800-044-5_11
http://dx.doi.org/10.1007/978-1-84800-044-5_11
http://dx.doi.org/10.1007/978-1-84800-044-5_11
https://doi.org/10.1007/978-1-84800-044-5_11
http://doi.acm.org/10.1145/1852786.1852830
http://doi.acm.org/10.1145/1852786.1852830
http://doi.acm.org/10.1145/1852786.1852830
http://dx.doi.org/10.1145/1852786.1852830
http://dx.doi.org/10.1145/1852786.1852830
http://doi.acm.org/10.1145/1852786.1852830
http://www.sciencedirect.com/science/article/pii/S0950584911001017
http://www.sciencedirect.com/science/article/pii/S0950584911001017
http://www.sciencedirect.com/science/article/pii/S0950584911001017
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2011.04.004
http://www.sciencedirect.com/science/article/pii/S0950584911001017
http://www.sciencedirect.com/science/article/pii/S0950584911001017
http://www.sciencedirect.com/science/article/pii/S0950584915000646
http://www.sciencedirect.com/science/article/pii/S0950584915000646
http://www.sciencedirect.com/science/article/pii/S0950584915000646
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2015.03.007
http://www.sciencedirect.com/science/article/pii/S0950584915000646
http://www.sciencedirect.com/science/article/pii/S0950584915000646
http://www.sciencedirect.com/science/article/pii/S0950584906001133
http://www.sciencedirect.com/science/article/pii/S0950584906001133
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2006.08.004
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2006.08.004
http://www.sciencedirect.com/science/article/pii/S0950584906001133
http://www.sciencedirect.com/science/article/pii/S0950584906001133
http://www.sciencedirect.com/science/article/pii/S0950584907001152
http://www.sciencedirect.com/science/article/pii/S0950584907001152
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2007.10.002
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2007.10.002
http://www.sciencedirect.com/science/article/pii/S0950584907001152
http://www.sciencedirect.com/science/article/pii/S0950584907001152
http://www.sciencedirect.com/science/article/pii/S0950584915001871
http://www.sciencedirect.com/science/article/pii/S0950584915001871
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2015.11.003
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2015.11.003
http://www.sciencedirect.com/science/article/pii/S0950584915001871
http://www.sciencedirect.com/science/article/pii/S0950584915001871
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA049055
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA049055
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA049055
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA049055
http://dx.doi.org/10.1109/MS.2018.3571235
http://dx.doi.org/10.1109/MTD.2015.7332627
http://dx.doi.org/10.1109/MS.2015.107
http://dx.doi.org/10.1109/MS.2015.107
http://dx.doi.org/10.1109/MS.2015.132
http://dx.doi.org/10.1109/MS.2015.132
http://doi.acm.org/10.1145/3131873
http://dx.doi.org/10.1145/3131873
http://doi.acm.org/10.1145/3131873
http://www.sciencedirect.com/science/article/pii/S1571066105826246

Notes in Theoretical Computer Science 82 (3) (2003) 483 – 499,
lDTA’2003 - Language descriptions, Tools and Applications.
doi:https://doi.org/10.1016/S1571-0661(05)82624-6.
URL http://www.sciencedirect.com/science/article/pii/
S1571066105826246

[148] I. C. Society, P. Bourque, R. E. Fairley, Guide to the Software
Engineering Body of Knowledge (SWEBOK(R)): Version 3.0,
3rd Edition, IEEE Computer Society Press, Los Alamitos, CA,
USA, 2014.

[149] A. Goldman, F. Kon, P. J. S. Silva, J. W. Yoder, Being
extreme in the classroom: Experiences teaching xp, Jour-
nal of the Brazilian Computer Society 10 (2) (2004) 4–20.
doi:10.1007/BF03192356.
URL https://doi.org/10.1007/BF03192356

[150] S. Smith, S. Stoecklin, C. Serino, An innovative ap-
proach to teaching refactoring, in: Proceedings of the 37th
SIGCSE Technical Symposium on Computer Science Educa-
tion, SIGCSE ’06, ACM, New York, NY, USA, 2006, pp. 349–
353. doi:10.1145/1121341.1121451.
URL http://doi.acm.org/10.1145/1121341.1121451

[151] S. Stoecklin, S. Smith, C. Serino, Teaching students to build
well formed object-oriented methods through refactoring, in:
Proceedings of the 38th SIGCSE Technical Symposium on
Computer Science Education, SIGCSE ’07, ACM, New York,
NY, USA, 2007, pp. 145–149. doi:10.1145/1227310.1227364.
URL http://doi.acm.org/10.1145/1227310.1227364

[152] T. Haendler, G. Neumann, F. Smirnov, An interactive tu-
toring system for training software refactoring, in: 11th In-
ternational Conference on Computer Supported Education
(CSEDU), Vol. 1, 2019, p. 1.

[153] M. Sandalski, A. Stoyanova-Doycheva, I. Popchev, S. Stoy-
anov, Development of a refactoring learning environment, Cy-
bernetics and Information Technologies (CIT) 11 (2).

[154] T. Haendler, G. Neumann, Serious refactoring games, in: 52nd
Hawaii International Conference on System Sciences (HICSS-
52), 2019, p. 1.

[155] D. Dig, The landscape of refactoring research in the last decade
(keynote), SIGPLAN Not. 52 (12) (2017) 1–1. doi:10.1145/
3170492.3148040.
URL http://doi.acm.org/10.1145/3170492.3148040

[156] V. Garousi, G. Giray, E. Tuzun, C. Catal, M. Felderer, Clos-
ing the gap between software engineering education and indus-
trial needs, IEEE Software (2019) 1–1doi:10.1109/MS.2018.
2880823.

[157] V. Garousi, D. C. Shepherd, K. Herkiloglu, Successful engage-
ment of practitioners and software engineering researchers:
Evidence from 26 international industry-academia collabora-
tive projects, IEEE Software (2019) 1–1doi:10.1109/MS.2019.
2914663.

[158] V. Garousi, D. Pfahl, J. M. Fernandes, M. Felderer, M. V.
Mäntylä, D. Shepherd, A. Arcuri, A. Coşkunçay, B. Tekin-
erdogan, Characterizing industry-academia collaborations in
software engineering: evidence from 101 projects, Empirical
Software Engineeringdoi:10.1007/s10664-019-09711-y.
URL https://doi.org/10.1007/s10664-019-09711-y

[159] D. Taibi, A. Janes, V. Lenarduzzi, How developers perceive
smells in source code: A replicated study, Information and
Software Technology 92 (2017) 223 – 235.

[160] M. Hozano, A. Garcia, B. Fonseca, E. Costa, Are you smelling
it? investigating how similar developers detect code smells,
Information and Software Technology 93 (2018) 130 – 146.

[161] B. F. dos Santos Neto, M. Ribeiro, V. T. da Silva, C. Braga,
C. J. P. de Lucena, E. de Barros Costa, Autorefactoring: A
platform to build refactoring agents, Expert Systems with Ap-
plications 42 (3) (2015) 1652 – 1664.

[162] E. Murphy-Hill, A. Black, Why don’t people use refactoring
tools?, in: Proceedings of the 1st Workshop on Refactoring
Tools (WRT’07), Berlin, Germany, 2007, p. 1.

[163] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey,
R. E. Johnson, Use, disuse, and misuse of automated refactor-
ings, in: 2012 34th International Conference on Software Engi-

neering (ICSE), 2012, pp. 233–243. doi:10.1109/ICSE.2012.
6227190.

[164] E. Murphy-Hill, Improving usability of refactoring tools,
in: Companion to the 21st ACM SIGPLAN Symposium on
Object-oriented Programming Systems, Languages, and Ap-
plications, OOPSLA ’06, ACM, New York, NY, USA, 2006,
pp. 746–747. doi:10.1145/1176617.1176705.
URL http://doi.acm.org/10.1145/1176617.1176705

44

http://dx.doi.org/https://doi.org/10.1016/S1571-0661(05)82624-6
http://www.sciencedirect.com/science/article/pii/S1571066105826246
http://www.sciencedirect.com/science/article/pii/S1571066105826246
https://doi.org/10.1007/BF03192356
https://doi.org/10.1007/BF03192356
http://dx.doi.org/10.1007/BF03192356
https://doi.org/10.1007/BF03192356
http://doi.acm.org/10.1145/1121341.1121451
http://doi.acm.org/10.1145/1121341.1121451
http://dx.doi.org/10.1145/1121341.1121451
http://doi.acm.org/10.1145/1121341.1121451
http://doi.acm.org/10.1145/1227310.1227364
http://doi.acm.org/10.1145/1227310.1227364
http://dx.doi.org/10.1145/1227310.1227364
http://doi.acm.org/10.1145/1227310.1227364
http://doi.acm.org/10.1145/3170492.3148040
http://doi.acm.org/10.1145/3170492.3148040
http://dx.doi.org/10.1145/3170492.3148040
http://dx.doi.org/10.1145/3170492.3148040
http://doi.acm.org/10.1145/3170492.3148040
http://dx.doi.org/10.1109/MS.2018.2880823
http://dx.doi.org/10.1109/MS.2018.2880823
http://dx.doi.org/10.1109/MS.2019.2914663
http://dx.doi.org/10.1109/MS.2019.2914663
https://doi.org/10.1007/s10664-019-09711-y
https://doi.org/10.1007/s10664-019-09711-y
http://dx.doi.org/10.1007/s10664-019-09711-y
https://doi.org/10.1007/s10664-019-09711-y
http://dx.doi.org/10.1109/ICSE.2012.6227190
http://dx.doi.org/10.1109/ICSE.2012.6227190
http://doi.acm.org/10.1145/1176617.1176705
http://dx.doi.org/10.1145/1176617.1176705
http://doi.acm.org/10.1145/1176617.1176705

	Introduction
	Background
	Smells
	Definitions
	Categorization

	Refactoring
	Definition
	Process and Automation

	Study Design
	Goal and Research Questions
	Identification of Relevant Literature
	Selection criteria
	Quality Assessment
	Data Extraction
	Execution

	Findings
	RQ1: What refactoring-related topics have been investigated in secondary studies?
	Refactoring Techniques Highlights
	Refactoring Opportunities
	Impact on Software Quality
	Software Evolution and Technical Debt

	RQ2: What smells-related topics have been investigated in secondary studies?
	Design Smells Highlights
	Code Smells Highlights
	Smell Detection Approaches
	Impacts and Effects

	RQ3: Which tools have been mentioned for code-smell detection and refactoring support?
	Platforms/Programming Languages
	Smells Detection Tools
	Refactoring Tools
	Tool Considerations

	RQ4: Which RQs have been studied on smells and refactoring? What are the highest cited secondary studies?
	Analysis of RQs
	Ranking of Cited Secondary Studies

	RQ5: What are the annual trends of types, quality, and the number of primary studies reviewed by the secondary studies?
	Paper types and references
	Projects
	Analysis of Selected Studies

	The relationship between Code Smells and Refactoring
	Quality models, Code Smells and Refactoring
	Analysis

	Implications
	Open Issues
	Threats to validity
	Conclusion and Future Work

