SopA: A Tool Support for the Detection of SOA
Antipatterns

Mathieu Nayrolles!>2, Francis Palma?3,

Naouel Moha?, and Yann-Gaél Guéhéneuc?

1 Ecole Supérieur en Informatique Appliquée, France
mathieu.nayrolles@viacesi.fr
2 Département d’Informatique, Université du Québec & Montréal, Canada
moha.naouel@uqgam. ca
3 Ptidej Team, DGIGL, Ecole Polytechnique de Montréal, Canada
{francis.palma, yann-gael.gueheneuc}@polymtl.ca

Abstract. During their evolution, Service Based Systems (SBSs) need
to fit new user requirements and execution contexts. The resulting changes
from the evolution of SBSs may degrade their design and Quality of Ser-
vice (QoS), and thus may cause the appearance of common poor solu-
tions, called Antipatterns. Like other complex systems, antipatterns in
SBSs may hinder the future maintenance and evolution. Therefore, the
automatic detection of such antipatterns is an important task for as-
sessing the design and QoS of SBSs, to facilitate their maintenance and
evolution. However, despite of their importance, no tool support exists
for the detection of antipatterns in SBSs. In this paper, we introduce a
prototype tool, called SODA, for detecting SOA (Service Oriented Archi-
tecture) antipatterns in SBSs. SODA also supports specification of SOA
antipatterns.

Keywords: Antipatterns, Service Based Systems, Detection, Specification.

1 Introduction

Service Based Systems (SBSs) evolve to fit new user requirements, e.g., addi-
tional functionalities or better Quality of Service (QoS). These technical and
functional changes may degrade the design and QoS of SBSs and often intro-
duce poor solutions, called Antipatterns, by opposition to patterns which are
good solutions to recurring problems. Multi Service and Tiny Service are two
common and recurring antipatterns in SBSs, and it is revealed, in particular,
that Tiny Service is the root cause of many SOA failures [4]. Multi Service is an
SOA antipatterns that corresponds to a service that implements a multitude of
methods related to different business and technical abstractions. Such a service
is not easily reusable because of the low cohesion of its methods and is often
unavailable to end-users [1]. Conversely, Tiny Service is a small service with just
a few methods, which only implements part of an abstraction. Such service often
requires several coupled services to be used together, resulting in higher develop-
ment complexity and reduced usability [1]. While degrading the design and QoS
of SBSs, antipatterns may make it harder for engineers to perform maintenance
and evolution tasks. SOA antipatterns are more dynamic in nature, thus more

2 Nayrolles et al.

challenging to detect. Therefore, the automatic detection of such SOA antipat-
terns is an important activity to assess the design and QoS of SBSs, and thus
ease the maintenance and evolution tasks of the engineers. However, a number
of works have been devoted for the development of detection tools within OO
systems [2 ; 5 ; 6]. Yet, for the detection of SOA antipatterns in SBSs, there is
no tool support.

Thus, in this paper, we present a SOA antipattern detection tool, SODA
(Service Oriented Detection for Antipatterns) to help engineers, for detecting
SOA antipatterns automatically in SBSs. This tool provides the means for both
static and dynamic analysis of SBSs.

The remainder of this paper is organized as follows. Section 2 surveys related
work on tool support for the detection of OO code and design issues. Section
3 presents our detection tool, SODA, along with the underlying approach and
some results. Finally, section 4 concludes and sketches future work.

2 Related Work

With the goal of detecting OO code and design related issues, a number of tools
have been introduced in the literature [2 ; 5 ; 6]. Nevertheless, researchers and
developers have rarely considered tools to perform detection for SOA antipat-
terns, i.e., in SBSs. Kral et al. [3] specified briefly seven SOA antipatterns, but
did not discuss their detection. To this end, we try to fill the gap, by proposing
a tool, called SODA, as the tool support for detecting SOA antipatterns.

3 Overview of SODA Approach

We developed the tool SODA being inspired from our approach of the same name,
SODA, proposed in [7]. Figure 1 represents the three main steps of SODA:
(1) Specifying SOA antipatterns in the form of rule cards from their textual
descriptions, (2) Generating detection algorithms conformed to the antipattern
specifications, and (3) Detecting automatically SOA antipatterns and involved
suspicious service(s) in the analyzed SBS.

1 2 3
(2]

s s c

Textual = Rule Card 3= |Detection Algorithm| O .
Description of S © ° Suspicious
SOA Antipatterns = e 2 Services

3 o e
Q () (a]
w

Fig. 1. SODA Approach for the Detection of SOA Antipattern

In [7], we perform a domain analysis to specify SOA antipatterns by study-
ing their definitions and specifications from the literature to pinpoint significant
static and dynamic properties (represented as metrics). We then use these prop-
erties as the basis for the vocabulary to define our own domain specific language
(DSL), and formalize rule cards. A rule card is the specification of a certain
SOA antipattern at a high-level of abstraction using a combination of multiple

SODA: A Tool Support for the Detection of SOA Antipatterns

singleton rules. Starting from the specifications of SOA antipatterns described
with rule cards, we generate detection algorithms automatically from rule cards,
by applying a simple template-based technique. We also develop a framework,
called SOFA (Service Oriented Framework for Antipatterns) [7], that supports
metric-based detection of SOA antipatterns in SBSs. SOFA assists the tool SODA,
and provides all services needed for the detection of SOA antipatterns, such as,
static and dynamic analyses, essentially in the form of metrics.

3.1 Description of SODA Tool
Figure 2 presents the snap-shot of our SODA tool. We mark different sections of
the tool from 1 to 7. Section 1 enlists the SOA antipatterns that can be detected.
For the selected antipattern, Section 2 provides textual description, while Section
3 shows the corresponding rule card; Section 4 presents the results, i.e., suspicious
service(s); Section 5 provides values for all metrics (from the associated rule
card), for each service; Section 6 exposes the generated association rules. Finally,
Section 7 helps to visualize the suspicious service(s) within the analyzed SBS.
Most of the dynamic and static metrics calculated by SOFA use only the
service interfaces that are freely available. An extension of our tool, called So-
DAAR (Service Oriented Detection for Antipatterns based on Association Rules)
enables SODA to identify suspicious service(s) by mining association rules [8]
to discover interesting relations between services, i.e., patterns, using execution
traces. Association rules are implications of the form A — B (i.e., if-then state-
ment), where A and B may be a single service or a subset of services. In SODAAR,
each execution trace is considered as a transaction and invoked methods iden-
tified within traces as items. Based on these association rules, we can classify
suspicious services. Considering the metric-based framework, i.e., SOFA and our
extended SODAAR, we developed a complete tool, SODA.

Principal Features of SopA:

1. SopaA does direct import of an SBS as a JAR package.

2. SODA has a straight forward detection interface for the users, which is handy
both for beginners and experts.

3. SoDA shows all the detection details, i.e., metric values, corresponding rule
cards, antipattern descriptions etc.

4. For the detection, SODA supports both well-known metric based and execu-
tion trace based analysis of SBSs.

5. Also, SODA exposes all the execution traces, association rules generated from
those traces, and relations among them, that is also useful to the users to
better understand the SBS analyzed.

Figure 2 shows the detection results for Multi Service antipattern. An elab-
orative presentation about the SODA tool, more detection results and further
materials are available at http://sofa.uqam.ca/tool.html.

4 Conclusion and Future Work

The detection of SOA antipattern is important for assessing the design and
QoS of SBSs, to ease the maintenance and evolution of SBSs. In this paper, we

4 Nayrolles et al.

) orchestration,composite_diagram 5% | ¥ communication.composite = O 5% Outline 52 2 =] m = d
EJ MultiSenice Q@@ 1o 1S Description:
ir = — F—A’ % Multi Service also known as God Object
RESULTS 4 l\ == corresponds to a service that
W) : : Vv MultiService implements a multitude of methods
[frinria.galaxy. demo.net api. V Tiny Service 1 related to different business and
v SandPile technical abstractions. This aggregates
DETAILS : V Chatty Service too much into a single senice, such a
LOITQResDonse ¥ The Knot service is not easily reusable because of
nui the ow cohesion of its methods and is
v Naobody Hi
null v DO wa 0;‘9 often unavailable to end-users because
InterfaceManyMethod N of its overload, which may induce a high
Results of the Boxplot ###### 12 values v Bottleneck senvice response time.
frinria.galaxy.demo.nethomeautomation.api.RFIDSemice 2.0 v Senice Chain
frinria.galaxy.demo.net homeautomation.api.lMediator 13.0 v Data Service 3
frinria.galaxy.demo.nethom api.G: 6.0 v .

A-R] Chatty Service 5 i i
fr.inria.galaxy.demo.nethomeautomation.api.PatientDAO2 1.0 7 :A-R; Bome’;deck i%llicﬁ?émumsem%; MultiMethod
frinria.galaxy.demo.net homeautomation.api.PatientDAO 4.0 5 -MutiService { S .Vu N
frinria galaxy.demo.nethomeautomation api PatientDAO4 1.0 v [A-R] Knot EL&:E?:::Z: ;OWAVSI'SD'“‘Y
frinria.galaxy.demo.net ion.api.C i 3

e ol RULE: Multittethod { NMD VERY HIGH };
RULE: HighResponse { RT VERY HIGH
— e : %
805608 Bs.-AE8 RULE: LowAvailability { ALOW };
E RULE: LowCohesion { COH LOW };
)
1

Bl Console 52

6 | X% “B8-r3~
MainFrame [Java Application] C:\Program Files (486)\Java\jre§\bin\javaw.exe (27 juil. 2012 19:54:
Frequent 4-itemsets
[13 46 (5:42.0%),] _ '

[Type : 1 MAP : {3=0.8421052631578947, 1=0.5789473684210527, 6-0.42105263157894735, 5=0.52 '
Execution time is: 0.€010 seconds. '
ASSOC[3, 4, 6,] implies [1] with [Supp: 42.8X, Prob: 42/42, Conf: 100.0 ¥, Lift: 2.0) -

» [1, 4, 6,7 implies [3] with [Supp: 42.0%, Prob: 42/42, Conf: 100.0 %, Lift: 2.0]

. [4. 6,1 implies [1] with [Supp: 42.@%, Prob: 42/42, Conf: 100. %, Lift: 2.0] =
“ »

Fig. 2. Detection of SOA Antipatterns with SODA

presented a tool, SODA, for the detection of SOA antipatterns. SODA incorporates
the framework, SOFA, i.e., metrics and rule-cards based analysis. SODAAR, an
extension of SODA is also introduced that is based on execution trace analysis.
As the future work, we intend to develop a version of SODA as an Eclipse plug-in
and provide a graphical interface to visualize the detected antipatterns easily by
engineers.

References

1. Dudney, B., Asbury, S., Krozak, J., Wittkopf, K.: J2EE AntiPatterns. John Wiley
& Sons Inc (2003)

2. Fokaefs, M., Tsantalis, N., Chatzigeorgiou, A.: JDeodorant: Identification and Re-
moval of Feature Envy Bad Smells. In: Software Maintenance, 2007. ICSM 2007.
IEEE International Conference on. pp. 519-520 (October 2007)

3. Kral, J., Zemlicka, M.: Crucial Service-Oriented Antipatterns. vol. 2, pp. 160-171.
International Academy, Research and Industry Association (IARIA) (2008)

4. Kral, J., Zemlicka, M.: Popular SOA Antipatterns. Future Computing, Service Com-
%mtati)on, Cognitive, Adaptive, Content, Patterns, Computation World 0, 271-276
2009

5. Marinescu, R.: Detection Strategies: Metrics-based Rules for Detecting Design
Flaws. In: In Proc. IEEE International Conference on Software Maintenance (2004)

6. Moha, N., Gueheneuc, Y.G., Duchien, L., Le Meur, A.F.: DECOR: A Method for
the Specification and Detection of Code and Design Smells. IEEE Trans. Softw.
Eng. 36(1), 20-36 (Jan 2010), http://dx.doi.org/10.1109/TSE.2009.50

7. Moha, N., Palma, F., Nayrolles, M., Conseil, B.J., Guéhéneuc, Y.G., Baudry, B.,
Jézéquel, J.M.: Specification and Detection of SOA Antipatterns. International Con-
ference on Service Oriented Computing (To appear in ICSOC, 2012)

8. Oracle: Data Mining Concepts 11g Release 1 (11.1) Part Number B28129-04, docs.
oracle.com

