
A Study of the Energy Consumption of
Databases and Cloud Patterns

Béchir Bani1,2, Foutse Khomh1, and Yann-Gaël Guéhéneuc2

1 SWAT Lab., Polytechnique Montréal, Québec, Canada
{bechir.bani,foutse.khomh}@polymtl.ca

2 Ptidej Team, Polytechnique Montréal, Québec, Canada
yann-gael.gueheneuc@polymtl.ca

Abstract. Nowadays, databases have become the backbone of cloud-
based applications. Cloud-based applications are used in about every
industry today; from financial, retail, education, and communications,
to manufacturing, utilities, and transportation. Despite their popularity
and wide adoption, little is still known about the energy footprint of
these applications and, in particular, of their databases. Two families of
databases are currently used in cloud-based applications: relational and
non-relational databases. Yet, reducing the energy consumption of ap-
plications is a major objective for society and will continue to be so in
the near to far future. In this paper, we study the energy consumption of
three databases used by cloud-based applications: MySQL, PostgreSQL,
and MongoDB, through a series of experiments with three cloud-based
applications (a RESTful multi-threaded application, DVD Store, and
jPETStore). We also study the impact of cloud patterns on the energy
consumption because databases in cloud-based applications are often im-
plemented in conjunction with patterns, like Local Database Proxy, Lo-
cal Sharding Based Router, or Priority Message Queue. We measure the
energy consumption using the Power-API tool to keep track of the en-
ergy consumed at the process-level by the variants of the cloud-based
applications. We report that the choice of the databases can reduce the
energy consumption of a cloud-based application regardless of the cloud
patterns that are implemented.

Keywords: Energy Consumption, Relational Databases, NoSQL Databases,
Performance, Sharding, Priority Message Queue.

1 Introduction

With the continuous development of the Internet and cloud computing, compa-
nies use databases to store and perform analyses on large data-sets in cloud envi-
ronments. These companies demand high performance databases when reading
and writing data. In addition, they want to benefit from best practices encoded
in the form of cloud patterns [?], which are general and reusable “good" solutions
to recurring design problems for cloud-based applications.



Design Patterns were introduced by Beck and Cunningham [?] and Gamma
et al. [?]. Since then, design patterns have been applied to all fields of software
engineering, including cloud computing. These patterns were refined to take into
account the specificities and requirements of the cloud.

In this paper, we evaluate the impact on energy consumption of three cloud
patterns: Local Database Proxy, Local Sharding Based Router, and Priority
Message Queue, with three databases: two relational databases, Postgresql and
MySQL, and one NoSQL database, MongoDB. To achieve this goal, we use three
versions of three cloud-based applications (a RESTful multi-threaded applica-
tion, DVD Store, and jPETStore) that use respectively MySQL, Postgresql, and
MongoDB databases. We also implement the three studied patterns in each ver-
sion of these applications.

We measure energy consumption using the Power-API [?], which estimates
the energy consumed by an application at the process-level.

Our results show that MySQL database is the least energy consuming among
the three databases and PostgreSQL is the most energy consuming among them.
MongoDB consumes more energy than MySQL but less than PostgreSQL. We
also show that various combinations of patterns impact energy consumption.

The rest of the paper is structured as follows. Section ?? provides some
background information describing the studied patterns and databases along
with some related works. Section ?? presents the cloud-based applications used
by our study and the design of our experiments. Section ?? discusses the results
of our experiments. Section ?? discusses our results and possible threats to their
validity. Section ?? concludes with some future works.

2 Background and Related Work

In this section, we introduce a brief description of the three cloud patterns that
have been used in this study. Also, we present a description of SQL and NoSQL
databases and the differences between them. We also include a discussion about
the Power-API software tool.

2.1 Cloud Patterns

Local Database Proxy: The Local Database proxy pattern is characterized by
data replication between master/slave databases and a proxy to route requests
[?]. All write requests are handled by the master and they are replicated on
its slaves while read requests are processed by the slaves. Components must
use a local proxy whenever they need to retrieve or write data. The proxy has
the responsibility to distribute requests between master and slaves depending of
their type and workload. Slaves may be added or removed during the execution
to gain elasticity.

Local Sharding Based Router: This pattern is useful when an application
needs scalability both for read and write operations [?]. Sharding is a technique
that consists in splitting data between multiple databases into functional groups

2



called shards. Requests are processes by a local router to determine the suitable
databases. The Sharding pattern is applicable through multiple strategies: hash-
ing, a range of value or a specific shard key can be used to distribute data among
the databases [?]. It is possible to scale the system out by adding further shards
running on redundant storage nodes. Sharding reduces contentions and improves
the performance of applications by balancing the workload across shards [?].

Priority Message Queue: This pattern which implements a First In First
Out (FIFO) queue is especially used to allow asynchronous communications
between components. Priority Message Queue is recommended when there are
different types of messages. Message Queues enable designing loosely coupled
components and improve the scalability of applications [?]. Messages with high
priority values are received and processed more quickly than those with lower
priority values [?].

2.2 Relational Databases

Relational Databases as a basic definition, these are databases that have dynamic
relationships between tables. Contrary to NoSQL databases, relational databases
follow the ACID Transaction support [?]. In this paper, we use MySQL and
PostgreSQL as two relational databases. We choose these two databases because
they are the most popular relational databases in the last few years [?]. Previous
works have studied the impact of relational databases with cloud applications
[?], but their impact on the energy consumption of cloud applications is still
unknown.

2.3 NoSQL Databases

NoSQL databases [?] are non-relational and distributed databases that enable
rapid, ad-hoc organization, and analysis of high-volume, disparate data types.
NoSQL databases follow the famous CAP theorem [?] that is Consistency, Avail-
ability, tolerance of Partition. NoSQL databases are categorized based on the
way they store data such as document store (e.g MongoDB) and key-value
stores (e.g., BigTable, Dynamo). In our study, we use MongoDB database as
a NoSQL database because it’s the most popular NoSQL databases available
today which is widely used by eBay, IBM, Expedia, and The New York Times.
Previous works have compared SQL and MongoDB databases [?], but only for
the response time of these databases. To the best of our knowledge, there is no
previous work that investigated the impact of NoSQL databases on the energy
consumption of cloud-based applications.

2.4 Power-API

PowerAPI is a profiler that provides power information (in watts which we con-
verted to joules in order to measure the energy) per PID (Process Identifier) for
each system component (e.g., CPU, memory, etc.) [?]. PowerAPI uses sensors

3



and analytical models for its energy estimation. Noureddine et al. [?] performed
a test to evaluate the accuracy of Power-API profiler using PowerSpy [?]. The
results of this experiment showed that there is only minor variations between
the energy consumption measured by PowerSpy and the energy estimations of
Power-API profiler [?], and for this reason (i.e., high accuracy), we selected
Power-API profiler for our study. Besides that, according to an experiment per-
formed by Abtahizadeh et al. [?], PowerAPI profiler does not introduce noise in
its measurements.

3 Study Design

We want to empirically evaluate the impact of three different Databases (MySQL,
PostgreSQL, and MongoDB) on the energy consumption of cloud-based appli-
cations. We also want to evaluate the impact of three cloud patterns (i.e., Local
Database Proxy, Local Sharding Based Router, and Priority Queue) in these
three different databases on the energy consumption. We select these databases
because they were used in previous studies [?], [?], [?] and they are the most pop-
ular databases available today. We select also these three cloud patterns because
they are used in previous studies [?]. We now introduce our research questions,
describe the objects of our study, as well as our experimental design and analysis
method.

Our research questions are:

– RQ1: Does the choice of MySQL, PostgreSQL and MongoDB Databases
affect the energy consumption of cloud applications (when no cloud patterns
are implemented)?

– RQ2: Does the implementation of Local Database Proxy, Local Sharding
Based Router or Priority Message Queue patterns affect the energy con-
sumption of cloud applications using MySQL, PostgreSQL and MongoDB
Databases?

– RQ3: Do the interactions between Local Database Proxy, Local Sharding
Based Router and Priority Message Queue patterns affect the energy con-
sumption of cloud applications using MySQL, PostgreSQL and MongoDB
Databases?

3.1 Objects

We choose three systems for each experiment, two applications developed in Java
and one application developed by a combination between PHP and Microsoft
.NET. We performed each experiment on three different systems, because one
system could be intrinsically more complex to understand.

At first, for Experiment 1, we implement and deploy a multi-threaded dis-
tributed application that communicates through REST calls. We use GlassFish
4 as an application server. The application interacts with one of the three chosen
databases management system. Sakila sample database [?] provided by MySQL

4



is used as it contains a large number of records, making it interesting for exper-
iments. We adapted The schema of the Sakila database (provided by MySQL)
to PostgreSQL and MongoDB databases.

For Experiment 2 and 3, we use DVDStore and JPetStore systems. DVDStore
3 is an open source simulation of an E-commerce site, provided with the imple-
mentation of Microsoft SQL Server, Oracle, MySQL and PostgreSQL databases.
We refactor the code of DVD Store to allow it to connect with a MongoDB
database. Similarly to DVD Store application, we also modified the code of
JPetStore4, Commerce web application, to implement connections to MySQL,
PostgreSQL and MongoDB databases.

3.2 Design

In our experiments, we use a combination of databases and cloud patterns en-
coded using a letter and a number. The Local Database Proxy pattern has
three implementation strategies: Random Allocation (P1), Round-Robin (P2),
and Custom Load Balancing (P3). The Local Sharding Based Router pattern
also has three strategies: Modulo Algorithm (P4), Consistent Hashing (P5), and
Lookup Algorithm (P6). The Priority Message Queue pattern is called P7. The
databases are named: MySQL (D1), PostgreSQL (D2), and MongoDB (D3).

The Round-Robin strategy chooses an instance of the pool in a round-robin
fashion, whereas the Random Allocation strategy selects the instance randomly.
On the other hand, the Custom strategy uses a more sophisticated method to
pick the best instance to choose. The choice is based on the response time and the
number of open connections on the slave nodes. Sharding pattern requires using
many clones of the same database in different shards. We used a subset of the
Sakila database because the sharing pattern requires the use of an independent
data. Three flavors of the Sharding pattern are used. In the Modulo strategy,
the primary key is divided by the number of shards, and the remainder is used
to select the server which will execute the request. The Lookup strategy, a table
with a number of slots bigger than the number of servers is used to select the
instance. The consistent hashing algorithm uses hashes to select the server.

In the Priority Message Queue pattern, requests are processed by the server
based on their priority. There is only one strategy to implement this pattern.

On the other hand, we extend our experiments by using DVDStore and JPet-
Store cloud applications (but without applying any pattern). By default, those
applications only support MySQL and PostreSQL databases. So, we decided to
extend them to support also MongoDB database so that we can have a complete
comparison.

We also perform experiments using different numbers of clients, which are
simulated using a multi-threaded architecture. The number of clients simulated
varies from 100 to 1500 clients (100, 250, 500, 1000, 1500). Each execution is
done using different databases and different cloud patterns. We measured the
3 http://linux.dell.com/dvdstore/
4 https://github.com/mybatis/jpetstore-6

5



energy consumption and the response time of the database in each scenario. To
get precise results, we repeated each scenario five times and we computed the
average for each performance metric.

3.3 Independent Variables

MySQL, PostgreSQL and MongoDB management system databases are the inde-
pendent variables of our study. Also, the Local Database Proxy, Local Sharding
Based Router, and Priority Message Queue patterns, as well as the strategies of
these patterns are considered as independent variables.

3.4 Dependent Variables

In this study, the application response time (corresponding to select and insert
requests) where it is measured in nanoseconds and then converted tomilliseconds
and the energy consumption measured by Power-API profiler (provided in watts,
which is converted to joules (J)). are considered as dependent variables.

3.5 Hypotheses

To answer our research questions, we formulate the following null hypotheses,
where P0 is the experiment consisting in comparing the energy consumption
and response time of the three versions of each application using respectively
MySQL, PostgreSQL, and MongoDB databases. Px (x ∈ {1 ... 6}), and P7 are
the different patterns.
In each experiment we compare two versions of a same application implementing
two different databases Dy, Dz (y,z ∈ {1,2,3} and y 6=z), with the same (combi-
nation) of patterns.

– H1
0yz: There is no difference between the average amount of energy consumed

by applications implementing databases Dy and Dz (without any cloud pat-
tern).

– H1
xyz: There is no difference between the average amount of energy con-

sumed by applications implementing databases Dy and Dz in conjunction
with patterns Px.

– H1
xyz7: There is no difference between the average amount of energy con-

sumed by applications implementing databases Dy and Dz in conjunction
with the combination of patterns Px and P7.

To have more clear comprehension regarding the trade-offs between the en-
ergy consumption and the performance of a cloud-based application measured
in terms of response time, we also formulate the following null hypotheses:

– H2
0yz: There is no difference between the average response time of databases

Dy and Dz by applying the design P0.
– H2

xyz: There is no difference between the average response time of databases
Dy and Dz by applying the design Px.

– H2
xyz7: There is no difference between the average response time of databases

Dy and Dz by applying the combination of designs Px and P7.

6



3.6 Analysis Method

To analyze our collected data (i.e., response time and energy consumption mea-
surements), we performed the Mann-Whitney U test [?] to test the following
hypotheses: H1

0yz, H2
0yz, H1

xyz, H2
xyz, H1

xyz7, H2
xyz7. We believe that the Mann-

Whitney U test is a non-parametric statistical test where its relevance is reflected
in the assessment of two independent distributions.

We also computed the Cliff’s δ effect size [?] because effect sizes are very
important to understand the magnitude of the difference between 2 distributions.
In addition, it represents the degree of overlap between two sample distributions
[?]. We should mention that the selection that was not arbitrary: Cliff’s δ is
more reliable and robust than the Cohen’s d effect size [?]. The Cliff’s δ effect
size value expanses from -1 to +1, and it is zero when two sample distributions
are the same [?]. In all our tests, we reject the corresponding null hypothesis
(i.e., there is a significant difference between the the 2 distributions) when its
p-value < 0.05.

Table 1. Energy Consumption p-value and Cliff’s δ

max width=
Pattern MySQL PostgreSQL p-value Cliff’s δ MySQL MongoDB p-value Cliff’s δ PostgreSQL MongoDB p-value Cliff’s δ

P0 262.5 568.2 0.01 medium 262.5 354.7 0.24 small 568.2 354.7 0.09 small
P1 490.2 1391.1 < 10e−6 large 490.2 890.0 < 10e−6 large 1391.1 890.0 0.09 small
P2 495.2 1529.9 < 10e−6 large 495.2 915.9 < 10e−6 large 1529.9 915.9 0.04 medium
P3 495.0 1476.5 < 10e−6 large 495.0 904.5 < 10e−6 large 1476.5 904.5 0.04 medium
P4 1331.9 6330.2 < 10e−6 large 1331.9 5826.4 < 10e−6 large 6330.2 5826.4 0.23 small
P5 611.6 4245.1 < 10e−6 large 611.6 3821.8 < 10e−6 large 4245.1 3821.8 0.23 small
P6 824.1 4929.4 < 10e−6 large 824.1 4194.4 < 10e−6 large 4929.4 4194.4 0.23 small

P1+P7 442.7 1379.8 < 10e−6 large 442.7 814.3 < 10e−6 large 1379.8 814.3 0.03 medium
P2+P7 468.8 1482.5 < 10e−6 large 468.8 891.9 < 10e−6 large 1482.5 891.9 0.03 medium
P3+P7 490.2 1391.1 < 10e−6 large 490.2 890.0 < 10e−6 large 1391.1 890.0 0.09 small
P4+P7 1255.5 5777.4 < 10e−6 large 1255.5 5622.9 < 10e−6 large 5777.4 5622.9 0.82 negligible
P5+P7 492.2 3884.5 < 10e−6 large 492.2 3386.6 < 10e−6 large 3884.5 3386.6 0.23 small
P6+P7 775.9 4526.8 < 10e−6 large 775.9 4127.4 < 10e−6 large 4526.8 4127.4 0.23 small

4 Study Results

This section presents and discusses the results of our research questions.

4.1 RQ1: Does the choice of MySQL, PostgreSQL and MongoDB
Databases affect the energy consumption of cloud applications
(when no cloud patterns are implemented)?

Tables?? and ?? summarizes the results of Mann-Whitney U test and Cliff’s δ
effect sizes for the energy consumption and the response time.

7



Table 2. Response Time p-value and Cliff’s δ

max width=
Pattern MySQL PostgreSQL p-value Cliff’s δ MySQL MongoDB p-value Cliff’s δ PostgreSQL MongoDB p-value Cliff’s δ

P0 36018.6 28615.7 0.09 small 36018.6 4253.8 < 10e−6 large 28615.7 4253.8 < 10e−6 large
P1 30430.0 27867.8 0.23 small 30430.0 3639.8 < 10e−6 large 27867.8 3639.8 < 10e−6 large
P2 29504.1 27036.5 0.23 small 29504.1 3214.2 < 10e−6 large 27036.5 3214.2 < 10e−6 large
P3 29825.2 26129.6 0.23 small 29825.2 3275.0 < 10e−6 large 26129.6 3275.0 < 10e−6 large
P4 170693.1 138026.6 0.09 small 170693.1 26259.5 < 10e−6 large 138026.6 26259.5 < 10e−6 large
P5 165250.7 145382.6 0.09 small 165250.7 27897.8 < 10e−6 large 145382.6 27897.8 < 10e−6 large
P6 168786.5 130585.0 0.09 small 168786.5 24680.3 < 10e−6 large 130585.0 24680.3 < 10e−6 large

P1+P7 27826.2 22299.8 0.48 negligible 27826.2 3747.1 < 10e−6 large 22299.8 3747.1 < 10e−6 large
P2+P7 26703.4 25706.8 0.48 negligible 26703.4 3127.5 < 10e−6 large 25706.8 3127.5 < 10e−6 large
P3+P7 29339.7 23153.6 0.23 small 29339.7 4210.2 < 10e−6 large 23153.6 4210.2 < 10e−6 large
P4+P7 37584.7 29287.7 0.23 small 37584.7 2716.3 < 10e−6 large 29287.7 2716.3 < 10e−6 large
P5+P7 38153.7 26445.6 0.09 small 38153.7 2869.7 < 10e−6 large 26445.6 2869.7 < 10e−6 large
P6+P7 34183.0 27507.3 0.23 small 34183.0 20609.3 0.03 medium 27507.3 20609.3 0.09 small

Average Amount of Consumed Energy: Results presented in ?? show
that, without using any pattern (in other words, by applying the design P0),
there is a statistically significant difference between the average amount of en-
ergy consumed by application using MySQL database and application using
PostgreSQL. The effect size in this case is medium. Therefore, we reject H1

0yz

for Dy, Dz (y=1, z=2). However, there is not a statistically significant difference
between the average amount of energy consumed by application using MySQL
database and application using MongoDB database. Therefore, we cannot reject
H1

0yz for Dy, Dz (y=1, z=3). Similarly, there is not a statistically significant
difference between the average amount of energy consumed by application using
PostgreSQL database and application using MongoDB database. in these two
cases the effect size is small. Therefore, we cannot reject H1

0yz for Dy, Dz (y=2,
z=3).

Average Response Time: Results presented in ?? show that, by apply-
ing the design P0, there is not a statistically significant difference between the
average response time of application using MySQL database and application us-
ing PostgreSQL database. Therefore, we cannot reject H2

0yz for Dy, Dz (y=1,
z=2). In fact, there is a statistically significant difference between the average
response time of application using MySQL database and application using Mon-
goDB database. Similarly,there is a statistically significant difference between
the average response time of application using PostgreSQL database and appli-
cation using MongoDB database. Therefore, we cannot reject H2

0yz for Dy, Dz

((y=1, z=3), (y=2, z=3)).

8



4.2 RQ2: Does the implementation of Local Database Proxy, Local
Sharding Based Router or Priority Message Queue patterns
affect the energy consumption of cloud applications using
MySQL, PostgreSQL and MongoDB Databases?

We now report on the results and answers to RQ2.
Average Amount of Consumed Energy: These results show that by

applying the Local Database Proxy pattern, there is a statistically significant
difference between the average amount of energy consumed by application using
MySQL database and application using PostgreSQL database. Similarly, also,
between application using MySQL and application using MongoDB. Similarly
also by application using PostgreSQL database and application using MongoDB
database (where the effect size is large). But, except for the case where the
proxy pattern is implemented using the random strategy, there is not a statisti-
cally significant difference between application using PostgreSQL database and
application using MongoDB database. Therefore we reject H1

xyz for Px Dy, Dz

(x ∈ {2,3}, (y=1, z=2), (y=1, z=3)), but we cannot reject H1
xyz for Px, Dy, Dz

(x=1, y=2, z=3).
Further results, by applying the Local Sharding Based Router, there is a

statistically significant difference between the average amount of energy con-
sumed by application using MySQL database and application using PostgreSQL
database. Similarly also between application using MySQL and application using
MongoDB (the effect size is large). But, there is not a significant difference be-
tween application using PostgreSQL database and application using MongoDB
database. Therefore, we reject H1

xyz for Px Dy, Dz (x ∈ {4,5,6}, (y=1, z=2),
(y=1, z=3)), but we cannot reject H1

xyz for Px, Dy, Dz (x ∈ {4,5,6}, y=2, z=3).
Average Response Time: Results show that by applying the Local Database

Proxy pattern, there is not a statistically significant difference between the av-
erage response time of application using MySQL database and application using
PostgreSQL database. Therefore, we cannot reject H2

xyz for Px, Dy, Dz (x ∈
{1,2,3}, (y=1, z=2)). In fact, there is a statistically significant difference between
the average response time of application using MySQL database and application
using MongoDB database. Similarly,there is a statistically significant difference
between the average response time of application using PostgreSQL database
and application using MongoDB database. Therefore, we reject H2

xyz for Px,
Dy, Dz (x ∈ {1,2,3}, (y=1, z=3), (y=2, z=3)).

Further results, by applying the Local Sharding Based Router, there is not
a statistically significant difference between the average response time of ap-
plication using MySQL database and application using PostgreSQL database.
Therefore, we cannot reject H2

xyz for Px, Dy, Dz (x ∈ {4,5,6}, (y=1, z=2)). In
fact, there is a statistically significant difference between the average response
time of application using MySQL database and application using MongoDB
database. Similarly,there is a statistically significant difference between the av-
erage response time of application using PostgreSQL database and application
using MongoDB database. Therefore, we reject H2

xyz for Px, Dy, Dz (x ∈ {4,5,6},
(y=1, z=3), (y=2, z=3)).

9



4.3 RQ3: Do the interactions between Local Database Proxy, Local
Sharding Based Router and Priority Message Queue patterns
affect the energy consumption of cloud applications using
MySQL, PostgreSQL and MongoDB Databases?

The study is extended to conduct a series of experimentation in regard to the
combination of Local Database Proxy pattern with the priority Message Queue
pattern and also the combination of Local Sharding Based Router pattern with
Priority Message Queue pattern.

Average Amount of Consumed Energy: When we combine the Local
Database Proxy pattern with the priority Message Queue pattern, results show
that there is a statistically significant difference between the average amount of
energy consumed by application using MySQL database and application using
PostgreSQL database. Similarly also between application using MySQL and ap-
plication using MongoDB (the effect size is large). Similarly also by application
using PostgreSQL database and application using MongoDB database (where
the effect size is large), But except applying the combination of the custom
strategy with the Priority Message Queue pattern, there is not a statistically
significant difference between application using PostgreSQL database and appli-
cation using MongoDB database. Therefore, we reject H1

xyz7 for Px Dy, Dz (x
∈ {1,2,3}, (y=1, z=2), (y=1, z=3)), but we cannot reject H1

xyz7 for Px, Dy, Dz

(x = 3, y=2, z=3).
Also, when we combine the Local Sharding Based Router pattern with the

priority Message Queue pattern, results show that there is a statistically signifi-
cant difference between the average amount of energy consumed by application
using MySQL database and application using PostgreSQL database. Similarly
also between application using MySQL and application using MongoDB (the ef-
fect size is large). In fact, there is no a significant difference between application
using PostgreSQL database and application using MongoDB database. There-
fore, we reject H1

xyz7 for Px Dy, Dz (x ∈ {4,5,6}, (y=1, z=2), (y=1, z=3)), but
we cannot reject H1

xyz7 for Px, Dy, Dz (x ∈ {4,5,6}, y=2, z=3).
Average Response Time: By applying the Local Database Proxy pattern

with the priority Message Queue pattern, there is not a statistically signifi-
cant difference between the average response time of application using MySQL
database and application using PostgreSQL database. Therefore, we cannot re-
ject H2

xyz7 for Px, Dy, Dz (x ∈ {1,2,3}, (y=1, z=2)). In fact, there is a statisti-
cally significant difference between the average response time of application using
MySQL database and application using MongoDB database. Similarly,there is
a statistically significant difference between the average response time of ap-
plication using PostgreSQL database and application using MongoDB database.
Therefore, we reject H2

xyz7 for Px, Dy, Dz (x ∈ {1,2,3}, (y=1, z=3), (y=2, z=3)).
Besides that, when we combine the Local Sharding Based Router pattern

with the priority Message Queue pattern, results show that there is not a sta-
tistically significant difference between the average response time of application
using MySQL database and application using PostgreSQL database. Therefore,
we cannot reject H2

xyz7 for Px, Dy, Dz (x ∈ {4,5,6}, (y=1, z=2)). However,

10



there is a statistically significant difference between the average response time of
application using MySQL database and application using MongoDB database,
but except applying the combination of the Lookup strategy with the Priority
Message Queue pattern, there is not a significant difference. Similarly, there is
a statistically significant difference between the average response time of appli-
cation using PostgreSQL database and application using MongoDB database,
but except applying the combination of the Lookup strategy with the Priority
Message Queue pattern, there is not a significant difference. Therefore, we reject
H2

xyz7 for Px, Dy, Dz (x ∈ {4,5}, (y=1, z=3), (y=2, z=3)), and we cannot reject
H2

xyz7 for Px, Dy, Dz (x = 6, (y=1, z=3), (y=2, z=3)).

5 Discussion

This section discusses some of the key aspects and findings of our study. We
showed that MySQL database is the least energy consuming but is the slowest
among the three databases. PostgreSQL is the most energy consuming among the
three databases, but is faster than MySQL but slower than MongoDB. MongoDB
consumes more energy than MySQL but less than PostgreSQL and is the fastest
among the three databases. First, we can explain this result that made the
PostgreSQL database generates multiple parallel process to run the requests sent
by the RESTful cloud-based application, while MySQL and MongoDB generate
only one process at a time to handle requests sent by the cloud-based application.
According to our interpretation, it seems that for the reason of using these
multiple processes, PostgreSQL database is the most energy consuming among
the three studied databases. As mentioned in ??, the two relational databases
MySQL and PostgreSQL follow the ACID theorem while the MongoDB database
follow the CAP theorem. Based on this aspect, we believe that the NoSQL
database studied MongoDB is faster than the other two relational databases
because the requests processed by relational databases must be executed one by
one and can not be executed in a Simultaneous way. This aspect is similar to
the phenomenon of mutual exclusion used in the treatment process.

6 Threats to validity

Our experiments, as any other experiment, are subject to threats to their validity.
We now discuss these threats based on the guidelines provided by Wohlin et al.
[1].

Construct validity threats concern the relation between theory and obser-
vations. In this study, they could be due to measurement errors. These mea-
surements are subject to variation depending of hardware and network. For
this reason, we did several experiments, we conducted each experiment (i.e for
each number of clients) five times, and computed average values of these mea-
surements, in order to mitigate the potential biases that could be induced by
perturbations on the network or the hardware, and our tracing. Before each
measurement,

11



Internal validity threats concern our selection of subject systems and anal-
ysis methods. Despite of using the well known benchmark (the Sakila sample
database [2]) for the implemented RESTful multi-threaded cloud-based applica-
tion interacted each time with one of the three databases, the well-know patterns
and strategies, and the two standard cloud applications (DVD Store, JPetStore)
some of our findings may still be specific to our studied application which was
designed specifically for the experiments. Future studies should consider using
different RDBMS and NoSQL databases, and also other cloud standard appli-
cations implementing the cloud patterns.

External validity threats concern the possibility to generalize our findings.
Further validation should be done on different cloud applications and with dif-
ferent relational and NoSQL databases and applying different cloud patterns to
these databases can extend our understanding of the impact of databases on
the energy consumption of cloud applications, providing software engineers with
guideline to about the usage of relational and NoSQL databases when developing
cloud-based applications.

Reliability validity threats concern the possibility of replicating this study.
We attempt to provide all the necessary details to replicate our study.

Finally, the conclusion validity threats refer to the relation between the treat-
ment and the outcome. We paid attention not to violate the assumptions of the
performed statistical tests. We mainly used non-parametric tests that do not
require making assumptions about the distribution of the metrics.

7 Conclusion

Nowadays, reducing energy consumption is a challenge for cloud-based applica-
tions. We contrasted the performance of various combinations of databases and
cloud patterns in terms of energy consumption and response time of the cloud-
based applications, with the aim to provide some guidance to software engineers
about the usage of databases and cloud patterns for cloud-based applications.
We carried on a series of experiments on different versions of a RESTful multi-
threaded application implemented with three different databases and three dif-
ferent cloud patterns: PostgreSQL, MySQL, and MongoDB and Local Database
Proxy, Local Sharding Based Router, and Priority Message Queue. We also used
two standard cloud applications (DVD Store application and jPETStore appli-
cation) to validate our results.

We showed that MySQL database is the least energy consuming but is the
slowest among the three databases. PostgreSQL is the most energy consuming
among the three databases, but is faster than MySQL but slower than MongoDB.
MongoDB consumes more energy than MySQL but less than PostgreSQL and
is the fastest among the three databases.

References

1. C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Ex-
perimentation in software engineering. Springer, 2012.

12



2. “Mysql sakila sample database,” http://dev.mysql.com/doc/sakila/en/, 2014, [On-
line; accessed August-2015].

13


