Performance Analysis of Metaheuristic and Constraint Programming
Approaches to Generate Structural Test Cases

Neelesh Bhattacharya'2, Abdelilah Sakti®3, Giuliano Antoniol’, Yann-Gaél Guéhéneuc?, and Gilles Pesant®
1 SOCCER Lab, DGIGL, Ecole Polytechnique de Montréal, Canada
2 Ptidej Team, DGIGL, Ecole Polytechnique de Montréal, Canada
3 Quosséca Lab, Department of Computer and Software Engineering
Ecole Polytechnique de Montréal, Québec, Canada

I. INTRODUCTION

Structural test case generation has been carried out by
various approaches in software testing. Metaheuristics and
constraint programming approaches are two of the more im-
portant approaches used for generating structural test cases
[1], [2]. However, both of these approaches have limitations,
which prevent them to be used in various applications,
like wireless communication and aeronautical engineering,
because the problems in these areas involve variables with
large domains and complex constraints.

A. Limitations of CP and Metaheuristic Approaches

Metaheuristics have proved relevant to generate test cases
for feasible test targets (e.g., executing a statement in the
program under test). However, in most cases, they get stuck
in local optima and fail to prove that a test target is infea-
sible. This limitation is a major drawback considering that
a program may contain a significant number of infeasible
paths (which can be a part of the test requirement).

Constraint programming overcomes the limitations of
metaheuristics but suffers in terms of execution time when
the input domain is large. When the number of input
variables of the problem to solve to generate test cases is
large or when the constraints are too complex constraint
programming takes a long time to reach a good solution.

B. Goal

To overcome the limitations of constraint programming
and metaheuristic approaches and get the best of both
worlds, we want to propose a way to combine both ap-
proaches and the order in which they should be executed.
Combining both of the approaches would allow their use in
the various applications where they could not apply before.

C. Problem

For combining both metaheuristic and constraint program-
ming approaches, we must have sufficient information about
properties of both these approaches. One such property is
their performance. Performances can be compared in terms
of execution time, coverage criteria (like branch and path
coverage), number of fitness calculations required by an

approach to reach a test goal, etc. In our case, we use the of
number of fitness calculations required and execution time.
Comparison of the relative performance of constraint
programming and metaheuristic approaches gives us the
information with which to decide of the order in which the
approaches would be executed on a sample code.

D. Solution

To compare their performance, we generate test cases
to fire divide-by-zero exceptions in a sample code and
compare the number of fitness calculations and execution
time required by both of these approaches.

II. EMPIRICAL STUDY DESIGN
A. GOM

Our goal is to compare the performance of constraint
programming and metaheuristic approaches for generating
test cases to fire divide-by-zero exceptions on a sample
code. Our question is which is the most efficient approach
to generate such test cases. We use the required number of
fitness calculations and execution time as our metrics.

B. Independent/Dependent Variables

Our independent variable is the choice of the approach,
either metaheutistics or constraint programming. Number of
fitness calculations and execution time are the dependent
variables. The input variable domains of the program under
test vary in the range of +500 to £500,000.

C. Subject Program

We use a modified form of the code presented in [3] as
our program under test (PUT). We characterize the PUT
using five dimensions: the domain size of the program
input parameters, the program size (number of lines of
code), the level of nested conditional statements (number
of nested conditional statements), existence of pointers in
the program, and presence of function calls in the program.
The characteristics are: -500000 < Domain size < 500,000;
LOC < 50; no pointers; no function call; nested-If=1.



D. Subject Target

We categorize the test targets into goal-oriented target
(which aims to generate test case for a specific criteria in the
PUT) or path-oriented target (which aims to cover as many
paths as possible in the PUT according to a specific coverage
criteria). The test target for our PUT is goal-oriented and,
firing the divide-by-zero exception(s) in the PUT.

E. Procedure

We carry out the preliminary instrumentation of the PUT
by adding sufficient guard conditions, so that the generated
test cases fire divide-by-zero exceptions (targets for our
program) in the PUT. Thus, we generate test cases for the
PUT using both metaheuristic and constraint programming.

The program, after being instrumented by constraint pro-
gramming, is put into the CP model. To generate test cases
using the constraint programming model, we follow the
approach proposed in [4]. This approach translates a whole
program and its control graph flow into a constraint satis-
faction problem (CSP). Solving this CSP, we can generate
test cases corresponding to a given statement, branch, path,
or cover a given test criteria.

We compare two different metaheuristic approaches (hill
climbing and genetic algorithm) and random generation to
choose the best in terms of number of required fitness
calculations. For the hill climbing, we use three strate-
gies (variable neighbourhood search, gaussian generated
neighbourhood search, and two sets of gaussian generated
neighbourhood search) and choose the best one out of them.

Based on the number of fitness calculations required (to
reach the goal every time) by each strategy, we choose two
sets of gaussian generated neighbourhood search strategy for
hill climbing and then compared its perfomance with random
and genetic algorithm approaches. The fitness function used
for the analysis considers both the branch distance and
approach level [5]. We used the GA framework jMetal to
obtain the candidate solutions for genetic algorithm.

We choose the best metaheuristic approach and compare
with constraint programming. Test cases are generated and
the execution time required for generating test cases (which
fires an exception) are compared.

F. Analysis

We report the result of the empirical study in terms of
number of fitness calculations required (for metaheuristic
and random approaches), execution time (for metaheuristic
and constraint programming approaches) and input domain
size. We also carry out the performance comparison for ran-
dom and two metahauristic approaches (Genetic Algorithm
and Hill Climbing) in terms of execution time. We perform
a statistical analysis on the obtained data using box-plots.

III. EMPIRICAL STUDY RESULTS

For the various input domain ranges, the genetic algorithm
requires the least number of fitness calculations for generat-
ing test cases. Hill climbing performs poorer to the genetic
algorithm but much better than the random approach, which
performs reasonably well when the input domain is very
small (£500) but takes too long time to generate test cases
when the domain goes beyond +5,000. The result is similar
when the approaches are compared in terms of execution
time.

IV. CONCLUSION

Comparing the execution times required for generating
test cases using constraint programming and genetic algo-
rithm, we found that, for all the input domains, constraint
programming performs better in terms of execution time.
When the goal is to fire divide-by-zero exceptions, constraint
programming performs better, in terms of execution time,
than even the best metaheuristic approach. We thus conclude
that when we will combine both the approaches, constraint
programming should be executed before metaheuristics, be-
cause constraint programming reaches a solution faster than
any other metaheuristic approach.

V. FUTURE WORK

The order of execution of the approaches can only be
generalized when we get similar results after carrying out
experiments with many programs of various levels of size
and complexity. Further, other parameters, apart from execu-
tion time, should be considered when comparing both the ap-
proaches. In the future, we will conducting experiments with
well known programs so as to generalize our conclusion.
Further, we are working on combining both metaheuristic
and constraint pogramming approaches in an effective way.

REFERENCES

[1] E. Diaz, J. Tuya, and R. Blanco, “Automated software testing
using a metaheuristic technique based on tabu search,” in
International Conference on Automated Software Engineering,
2003.

[2] A. Gotlieb, “Euclide: A constraint-based testing framework for
critical ¢ programs,” in International Conference on Software
Testing Verification and Validation, 2009, pp. 151-160.

[3] N. Tracey, J. Clark, and J. Mcdermid, “Automated test-data
generation for exception conditions,” Software - Practice and
Experience, vol. 30, pp. 61-79, 2000.

[4] A. Sakti, Y.-G. Guéhéneuc, and G. Pesant, “Structural test case
generation for combined criteria,” in International Conference
on Tests and Proofs, Submitted, 2011.

[5] A. Baresel, H. Sthamer, and M. Schmidt, “Fitness function
design to improve evolutionary structural testing,” in Proceed-
ings of the Genetic and Evolutionary Computation Conference,
2002, pp. 1329-1336.



