This paper has been accepted at the 1IJCAI 2001 workshop on Modelling and Solving Problems with Constraints.

Using explanations for design patterns identification

Yann-Gaél Guehéneuc and Narendra Jussien
Ecole des Mines de Nantes
4, rue Alfred Kastler — BP 20722
F-44307 Nantes Cedex 3
{Yann-Gael.Gueheneuc|Narendra.Jussien t@emn.fr

Abstract identify and to correct micro-architectures similar to design
, , . , patterns. Section 2 introduces the notion of design pattern
Design patterns describe micro-architectures that pore precisely. Section 3 recalls the solutions proposed in

solve recurrent architectural problems in object- e jiterature for the identification and correction of program
oriented programming languages. It is impor- source code. Section 4 discusses notions on explanations for
tant to identify these micro-architectures during constraint programming. Section 5 presents our solution to

the maintenance of object-oriented programs. But jqentify architectures similar to design patterns and Section 6

these micro-architectures often appear distorted gives some results obtained on industrial libraries.
in the source code. We present an application

of explanation-based constraint programming for 2 Design patterns

identifying these distorted micro-architectures.)])
The architecture of a software system is unique. It depends

) on the context in which it is developed and on various as-
1 Introduction pects: Expected lifetime, cost of development, foreseen evo-

The production of quality source code is an important mattefUtions, experience of architects and developers, ... For a par-
for the software industry. A quality source code facilitatesticular problem, there does not exate optimal architecture
evolutions and maintenance: Addition of new functionalities,PUt rather an architecture adapted to a given context. There-
bug corrections, adaptation to new platforms, integration witHOre; We focus on general and context-independent architec-
new class libraries. tural problems.

In object-oriented programming, a quality source code ha§ 1 Definition
two aspects: Efficient and clearly-written algorithms, respect-_")))
ing conventions and idioms, and ategantclass architec- FOr recurring architectural problemsdesign patterns
ture. If many works studied the former aspdi@émeyeret [Gammaet al., 1994 represent _soluuops that are indepen-
al., 2004 gives a synthesis), the latter aspect is more diffi-dent of the context and of the object-oriented language. They

cult to define and has not been often studied (we can mentiof@Pture the experience of skillful developers. A definition of
[Jahnke and @ndorf, 1997). a design pattern contains four essential parts:

A micro-architecture describes the structure of a subset of 1. A unique name identifying the pattern

the classelsof an object-oriented program. The solutions pro- 5 description of the addressed architectural problem
posed by thelesign pattern§Gammaet al,, 1994 are exam-]))
ples ofgood micro-architectures. However, it is not easy to 3. A solution to the problem, with class diagrams rep-
write directly source code that carefully respects design pat- fesenting the involved classes and their roles (using
terns. Thus, most of the time, ontijstorteddesign patterns an OMT-like notation — Object Modelling Technique
are present in the source code(micro-architectures sim- [Rumbaugtet al, 1991)

ilar to — not identical to — those proposed by the design pat- 4. The consequences and possible trade-offs of the solution

terns). There is a lack of tools helping to identify distorted . . .
versions of design patterns in existing source code and in- For example, Th&€&omposite design pattern builds com-

dicating possible improvements by pointing out differencesP|€X Structures of objects by composing recursively objects
with the exactdesign pattern of same nature in a tree-like manner. It lets treat uniformly

In this article, we propose the use of explanation-base&’bJECts and compositions of objects. The general structure

; : . ; of the Composite design pattern is shown Example 1. The
constraint programmingJussien and Barichard, 2006 Composite design pattern definition presented Gammaet

IFor the sake of clarity, in the remainder of this article, we use@l- 1994, pp. 163-173, embodies eleven sections over ten
the object-oriented programming languagea: The termclass ~ Pages (ten pages is the average length of a design pattern def-
in particular, indifferently represents a class, an abstract class or dflition in this book). The first three sectioristent, Motiva-
interface. tion andApplicability, introduce the problem (part 2): How to

compose objects into tree structures representing part—whole We want to identify places in the architecture where qual-
hierarchies, and how to treat uniformly individual objects andity would be improved by the introduction of design patterns.
compositions of objects. The three next sectidisyucture Our approach consists in detecting groups of classes, whose
Participantsand Collaborations propose a solution (part 3) structures are close to a micro-architecture solution suggested
to the problem with class diagrams, instance diagrams, a lidity a design pattern (see Example 2). The class structure of
of participants i(e., a list presenting the class roles), and asuch a group could be improved by applying the solution of
list of collaborationsi(e., a list presenting the class interac- the design pattern. Our approach consi@sin a description
tions). TheConsequencesection (part 4) states the effects of the relationships among classes introduced by a design pat-
of applying this design pattern : Simplification of the clientstern; (b) in using an explanation-based constraint solver for
and of the implementation. Finally, the last four sections,detecting, in the source code, classes whose structure is close
ImplementationSample CodeKnown UsesandRelated Pat- to a (already referenced) design pattern; @)dh transform-
terns provide specific information about the implementationing the source code accordingly to the design pattern specifi-
and the use of the solution. cations.

The description of the problem solved by a design pattern In this article, we describe thi) phase, the identification
is always informal. It represents more a set of motivationgphase.
for which to apply this design pattern than a precise descrip-
tion of the addressed problem. We cannot directly use this| Example 2 (Identification of the Composite design pat-
description to detect architectural problems. On the other| tem):
hand, we can consider the architectural solution, described Let us consider the development of an application to produce

with class diagrams and source code examples, as an exarr-re‘l)refsf]”“"“olr?S of documents. f'” Fligure 2on tue 'eﬁ'f.the ker-
ole of agoodmicro-architecture. nel of the application consists of a cl&gement that defines

a common interface for all the elements of a document: Ti-
tles (classTitle), paragraphs (clasBaragraph), and in-
dented paragraphs (claBaralndent), ... A Document
class composes those elements to describe a document.

This architecture is similar to th@omposite design pattern.
But the specifications of the design pattern require that the
Document class be a subclass of teéement class, to unify
their interfaces and to allow the composition of documents
(Figure 2, on the right).

Example 1 (An overview of the Composite design pattern) :
The general structure of th€omposite design pattern is
shown Figure 1. The abstract class (or interfaéeinponent
defines aroperation() that is indifferently applied on an
object of typeLeaf or on a composition of objects of type
Component, Composite . The instances of th€ompos-
ite class are in charge of applyirgperation() on their

children.
3 State of the Art
Client | € t In software engineering and re-engineering, only few studies
Operation() exist on automating the identification and the correction of
Fomovom oot design defects. There are two reasons for this lack of mate-
GatChild{int) ' rial. On one hand, the automation of processes and techniques
)\ related to arintellectualactivity, such as software develop-
[| i ment, is not welcomed. This automation is not welcomed
Leat Composite o because of the seeming loss of control resulting from the au-
Operationl) Operation() B ——— - — e mee forall g n chidren H _tomation of a process aqting on so_ftware — software which
EZﬂEfQ?EZ;e;J;Bm is already d!fhcult to maintain. Thls_ loss of c_ontrol from _
GetChild(in) i the automatic detection and correction of design defects is

perceived as too important compared to the benefits brought
by the automation. On the other hand, when solutions have
been proposed, these solutions were reduced to the problems
of (semi-) automatically detecting or correcting design de-
. . fects of the classes themselMd&shnke and @ndorf, 1997;

2.2 Towards a higher quality code Fowler, 1999; Demeyeet al, 2004 (for example, problem

A software architecture is subject to evolutions and transforof long methods or lack of cohesion among the methods of
mations during its life cycle. These evolutions and transfor-a class); or to the problems of detecting design patterns in
mations slow the use of design patterns or impede their quakxisting source code to help documenting or understanding
ity. It is difficult to apply a priori design pattern solutions — legacy system$Brown, 1996; Kamer and Prechelt, 1996;
good micro-architectures — when the software is not finisheduyts, 1998; Mancoridigt al., 1998; Richner and Ducasse,
yet. Applying design patterns requires a thorough knowledgd999. Those works clearly show that a fully automatic ap-
of all the existing design patterns — knowledge that only a fewproach is too ambitious because of the software complexity:
developers possess —, and insight on the overall architectur&€he user input is really important.

Thus, we propose to use design patterns to improve source A few techniques exist to identify design patterns. Among
code quality rather than to produdérectly design pattern those techniques, the use of logic programming is of great in-
compliant source code. teres{Wuyts, 1998: A design pattern is described as a set of

Figure 1: TheComposite design pattern

||1u.tesls composite? shstraciDocwment | ||1u.tesls composite 2 AbstraciDocument |

| print() | | print(} |
ATy

.I jtutests composile2 Elermant | jRutests camposite? Elemant

i i
/ .‘l\
M tests cornposte2 Tl

-
iy tests composite 2 Faraaraph]

i tests composite 2 Document
aeiElement)
noOERmeants

ftu fests composite 2 Paralndent [tests.composite 2 Title |
_— -7

futests composite2 Paragraph |

futests compasiba2 Document ~ o = - - —=
getElemeant) ’ =T T =T ”_." !
nbOElemeants P P ‘) =T) L' flutests composite 2 Paraindent
A e wEt e e
o L R
jlu.tests compositad Main utests composile2 Main |~

Figure 2: Kernel of the application to describe documents: Onetitehe original architecture and on thight the corrected
architecture. A class is depicted as a box — with one ore more division — containing the class name — and possibly the class
associations, methods, and fields. An association is represented as a plain arrow from the aggregate class to its component.
Dotted arrows are instance creation and knowledge links. A square line with an empty triangle corresponds to inheritance.

logical rules. The logical rules unify with the facts represent-4.1 Explanations

ing the source code to identify design patterns. But this tech, the following, we consider a constraint satisfaction prob-

nique is limited. It only detects classes whose relationshipgsy, (csP (V, D, C). Decisions made during the enumeration

are described by the logical rules. It does not directly allowypage (variable assignments) correspond to adding or remov-

to detect similar rather than identical micro-architectures oﬁ]g constraints from the current constraint systeg, (upon

a design pattern. The rules must be extended to intmduoﬁacktracking).

the missing distorted cases to obtain more solutions. Conse- a contradiction explanation (a.k.a. nogood[Schiex and

quently, the rules become quickly impossible to manage. Theefajllie, 1994) is a subset of the current constraint system

addlt_lon of_new.de3|gn patterns requires thinking about all thg)s e problem that, left alone, leads to a contradiction (no

possible distortions when conceiving the system of rules. fgasjple solution contains a nogood). A contradiction expla-
Outside theobject-oriented languagesommunity, the nation divides into two parts: A subset of the original set of

search for sub-graphs in a grajiRegin, 199% presents sim- constraints ¢ C in equation 1) and a subset of decision

ilarities with our work. But, to our knowledge, the search of oonstraints introduced so far in the search.

sub-graphsimilar toand not merely identical to a given sub-

graph has not been studied yet. Another related work is the CF—(C'Avr = a1 A .. Aoy = az))

phase ofadaptationin case-based reasoninffuchset al., o i
2004 has recently presented a technique adapted to contin- In @ contradiction explanation composed of at least one de-

uous domains (with an order relation on the values) but thi§ision constraint, a variable; is selected and the previous
technique is unadapted to our discrete problem. formula is rewritten &%
To conclude, an acceptable solution to our problem must , B
favor a dialog with the developer: CHCA /\ (vi = a;) = v # a;
K . i€[1..k]\Jj
¢ Toexplain concretely why the architecture of a group of . ! S _ o
classes is a distorted version of an existing design pattern The left hand side of the implication constitutesedimi-

. . : nating explanation for the removal of value; from the do-
e To direct dynamically the search of such archltecturesmain of variables; and is notecbxpl (v; # a).

2% ;gﬁgf’i'snt?cné?mgggg tr? € :,[);SL%SE%” ac\)/fosig%f;? err?#i%?n Classicalcspsolvers use domain-reduction techniques (re-
anp Ynoval of values). Recording eliminating explanations is suf-

a priori the possible evolutions) ficient to compute contradiction explanations. Indeed, a con-
These are the reasons why we propose the use @fadiction is identified when the domain of a variablgis
explanations-based constraint programming. emptied. A contradiction explanation can easily be computed

with the eliminating explanations associated with each re-
4 Explanation-based constraint programming moved value:

Explaining and suggesting possible architectural modifi-

cations is an interesting way to improve object-oriented Ct - /\ expl(v; # a)

source code. Explanation-based constraint programming al- acd(v;)

ready proved its interest in many applicatiddsissien and

Barichard, 200D We recall in this section what itis and how 2 contradiction explanation that does not contain such a con-
it can be used. straint denotes an over-constrained problem.

There exist generally several eliminating explanations for over-constrained systemd,, a system with no possible
the removal of a given value. Recording all of them leads solutions). Such explanations are recursively obtained
to an exponential space complexity. Another technique relies after having tested all possible values for a given vari-
on forgetting (erasing) eliminating explanations that are no able. The interested reader should refefdussien and
longer relevaritto the current variable assignment. By doing Barichard, 200Dfor more information.

so, the space complexity remains polynomial. We keep only , 1, provide a data-driven searche(, through the user

oneexplanation at a time for a value removal. input): A contradiction explanation justifies the lack of

4.2 Computing explanations more solutions for the current problem. Selecting and
.) i)) relaxing a constraint given by the explanation allows the

Minimal (w.r.t. inclusion) explanations are the most interest- gjscovery ofnew solutions (distorted solutions of the

ing. They allow very precise information on emerging depen- griginal problem). The selection is left to the user who

dencies among variables and constraints, dependencies iden- knows which constraint to relax to keep thenciple of

tified during the search. Unfortunately, computing such ex- the design pattern being searched. Data-driven search of

planations is time-consumirigunker, 200 A good com- design patterns is detailed in Section 5.2.
promise between size and computability is the use of the

knowledge that insidethe solver. Indeed, constraint solvers aat

always know (although not often explicitly) why they remove Application to the problem

values from the domains of variables. Precise and interestin§he detection of micro-architectures similar to a design pat-

eliminating explanations can be computed by explicitly stattern using explanation-based constraint programming con-

ing such information. To achieve this behavior, it is necessarg!sts:

FO alt.er the SO!Vel' code iFse'lfJUSSien and BariChard, 2q00 1. In mode”ing a set of design patterns%p_ The micro-

is an introduction to modifying the solver. architecture solution proposed by a design pattern is
. . modelled as a set of constraints. A variable is associ-

4.3 Using explanations ated with each class defined by the design pattern. The

Explanations can be used in several wéysssienet al., variables of our model are integer-valued. The domain

2000; Jussien and Barichard, 2000; Jussien and Lhomme, of a variable is the set of all the existing classes in the

200d. Debugging purposes pop to the mind: To explain source code. Each class is identified by a unique inte-

clearly failures, to explain differences between intended and ger. The relationships among classes (inheritance, as-

observed behavior for a given problem (why is valliaot sociation,etc) are represented by constraints over the

assigned to variable ?). variables. See Example 4.

Explanations can be used also to determine direct or indi-
rect effects of a given constraint on the domains of the vari-
ables of the problem, and for dynamic constraint removal.
-{ggﬂ'ng;esg?\iﬁgvg%gmgffa_mg ?Z::i?ircnaltjisei[@sgzts:r;e,is relationships among classes — abstracted in tables at-

: el X tached to the library of constraints. See Example 5.
actually a partial explanation system. Moreover, being able
to explain failure and to dynamically remove a constraint fa- 3. In resolving thecspto search distorted solutions — solu-
cilitates the building of dynamic over-constrained problem tions that violates one or several constraints specified by
solver[Jussien and Boizumault, 1907 the design pattern: When all the real solutions ofcse

Less direct applications are possible as well, in particu- are found, the search is guided dynamically by the user
lar using explanation to guide the search. Indeed, classical 1o find interesting distorted solutions. Information (ex-
backtracking-based searches only proceed when encounter- planations of contradiction) provided by the constraint
ing failures (by backtracking to the last choice point). Con- Solver help the user.
tradiction explanation can be used to improve standard baclg . - .
tracking and to exploit information gathered to improve the2-1 A library of specialized constraints
search: To provide intelligent backtrackinGuéretet al., ¢ From the relationships among classes defing@ammaet
2004, to replace standard backtracking with a jump-basedl., 1994, we built a first library of constraints. Specialized
approacha la Dynamic Backtracking [Ginsberg, 1993; constraints express the inheritance, association, knowledge,
Jussieret al., 2004, or even to develop new local searchesetc. relationships. These constraints involve variables repre-

2. In modelling the user’s source code to keep only the
information needed to apply the constraints: The class
names — forming the domain of the variables —, and the

on partial instantiationglussien and Lhomme, 20000 senting one and only one class because the tools we use do
But, what is interesting in the design pattern identificationnot manage (yet) constraints on sets. We use a simple trick
context is the ability of explanation systems: to handle constraints on sets: Variables representing sets of

« To explain why no solution is found to a given prob- classes are not enumerated during the prqblem solving. The
lem. As stated before, a contradiction explanation thaPPropagation mechanism ensures _the consistency of the vart-
does not contain any decision constraints denotes aﬁble do_malns because ofth_e specmc_nature of our constraints.

Our library offers constraints covering a broad range of de-
3A nogood is said to be relevant if all the decision constraints inSign patterns. However, some design patterns are difficult to
it are still valid in the current search stdfayardo Jr. and Miranker, €xpress and need additional relationships or the decomposi-

1994. tion of some relationships into sub-relationships.

We provide the following symbolic constraints in our li- First, real solutions are computed. This computation ends
brary (these constraints can be combined to form more conby a contradiction (there is no more solution). Explanation-
plex constraints): based constraint programming provides a contradiction ex-

e Strict inheritance: Establishes an inheritance relation- Planation for this failure: The set of constraints justifying that

ship between two classes — between two variables — suciY other combination of classes do not verify the constraints

as defined in Example 3. This relationship is enforced?€sScribing the design pattern. We do not need to relax other
by the StrictinheritanceConstraint _ From constraints than the constraints provided by the contradiction

this notion of strict inheritance, we derive the notion €XPlanation: We would find no other real solutions. A contra-
of inheritance InheritanceConstraint) such as diction explanation provides insights on which distorted so-
A < BorA = B (the two variables may represent the lutions are a_vaﬂa;ble — more precisely, on which d!stornons
same class). (constraint violations) would lead to more results, if the as-
sociated constraints were relaxed. The user’s input is needed
Example 3 (Strict-inheritance constraint) : to select the constraints to be relaxed. Removing a constraint
An inheritance relationship links two classes in a parent—child- suggested by the contradiction explanation does not necessar-
like relationship -.e., superclass—subclass. When considering ily lead to a new solvablespbut the constraints are relaxed
single inheritance, the inheritance relationship is a partial or- recursively until a solvablespis obtained or no constraints
der, denoteds, on the set of classes. For any pair of distinct remain. The solutions of a new solvalisp are distorted
classeA andBin E, if Binherits fromAthen:A < B. ~ solutions to the original problem.
The constraint associated with the inheritance relationshipisa 1g facilitate user input, preferences are assigned to the con-
2g]efr%i%%r;?tsrzm;%?ige;nt;ﬁoc\garl:ls?rba:ienst Eg!a(srz?;?zggﬁ;htie straints of the problem reflectirgpriori a hierarchy among
domains of variable) ~ the constraints, but 'ghe_se prg—:ferences are not mandatory in
our system. A metric is derived from the preferences and

Velassa € da,Iclassp € dp, classa < classp measures the quality. This metric allows an automation of
our solver to find all the distorted solutions sorted by quality.
Velassp € dp, 3elassa € da, classa < classp The user-driven version is of great interest wieepriori

preferences are hard to determine (this is often the case!).

The user can restrict interactively the search to a subset of

e Knowledge Establishes a knowledge relationships be_dlgtorte_d solutions. Explanation-based constraint program-

tween two classes. The clas&nows about the clagif Ming gives a complete control to the user: This is important
methods defined iA invoke methods oB. This relation- 1N Such arintellectualactivity.

ship is binary, oriented, and not transitive. We denoteg 3 Application to the Composite design pattern

this relationship byA>> B and the constrairRRelated- . :
P DA : We model theComposite design pattern by mean of@sp
ClassesConstraint enforces it. . i
, , . (see Example 4). The input source code, presented in Ex-
e Non-knowledge Ensures aeciprocalrelationship. The ample 2, is then modelled: The classes and the relationships
class A must not know about the clad®. The con- 3mong classes are encoded into tables (see Example 5).
straintUnRelatedClassesConstraint expresses
this relationship. Example 4 (Modelling the Composite design pattern) :

e Composition: Ensures that two classes are composed.| The Composite design pattern, as presented in Example 1,
A classA is composed with instances of a cl&# the is modelled by associating a variable with each class defined
classA defines one or more fields of tyf We write (Component, Composite and Leaf) and by constrain-

. ; N f ing the values of these variables according to the relation-
A D B. This relationship is binary, oriented, and not ships among classesomposite < component , leaf <

transitive. It is enforced by the constrai@omposi- component , andcomposite S component .
tionConstraint ’

e Field type: Ensures that the fielfl of classA s of type Our explanation-based constraint solvesLM [Jussien
B: Af = B. The constrainPropertyTypeCon- and Barichard, 2040 solves thiscspto identify subsets of
straint establishes this link. We use this generic con-classes whose structures are similar to the micro-architecture
straint to define easily new constraints. of the design pattern by giving a set of distorted solutions (see

. Example 6).
5.2 Behavior of the solver The source code is then modified accordingly, leading to

Our dedicated constraint library is not sufficient to solve ourthe corrected kernel of our application presented in Exam-
problem. Indeed, solutions that fit exactly in the definition of ple 2, on the right.

a design pattern (theal solution of thecsP) are of no use to

improve the quality of the user’s source code. We need to fingg First results

distorted solutions — assignments that do not verify all the

features of the intended patterne., that violates at last one \IIDVSTdE?:VTelISEGAC\jNEé E,\?EQLTCEETANESNIRF%CRE J,IAI\D/,ETEZI’:TI?ISA;‘IJOS,;E

of the constraints defining the design pattern. Explanation-
based constraint programming is a key tool for solving that “A demonstration is available at:

problem. www.yann-gael.gueheneuc.net/Work/PtidejDemo.html

its interface on Figure 3). This tool performs the different

steps presented in Section 2.2 to improve the quality of a
Example 5 (Modelling the source code) : source code from an architectural point of view. This tool,
The source code of the application, Example 2, involves seven Written in JAVA, acceptgAvA source code. The solver is writ-
classesAbstractDocument , Element , Title , Para- ten incLAIRE [Caseau and Laburthe, 199&ing thePaLM
graph , Paraindent , Document, andMain . The domain explanation-based constraint sohidussien and Barichard,

of each variable of thesp presented Example 40mpo- 2000 developed on top of theHoCo constraints system
nent , composite , andleaf , is of size 7 (one slot for [Laburthe, 200D

each possible class from the source code). We define a generic It allows:

model to encode classes from the source code in our system. . .)) i
This generic model is a table: e Toload and to visualize (using an OMT-like notation) an

application written irAvA

PClass
name: string, e To generate a model of the application for the constraint
superclasses: Iist_[PCIass], system
ggmggzgngype_ Fll?:tl[aPSC;Iass], e To call the explanation-based constraint sysfxiM
relatesTo: .Iist[PCIa:ss], on this model to detect the referenced design patterns
doNotRelateTo: list{PClass] e To visualize the (real and distorted) solutions found

The relationships among classes are encoded in this model and

e To perform the needed transformations on the source

are used to check the relationships required by the design pat-

: code to make it similar to a design pattern and thus to
ern:

improve its quality
e And to load and to visualize the modified application

Three design patterns are referenced by the tool: The

Composite design pattern presented in Section 2.1; Fae

e components is the list of all the components aggre- cade design pattern, that models relationships between a set
gated by the class represented by this ephemeral object. of client classes and a set of classes formingul-system
ﬁgmpgﬂiﬂﬁfype Is the common super-class ofallthe 5k a uniquéacade class with no mutual knowledge

P ' (see Example 7); and thdediator design pattern, a design

e relatesTo s the list of all the classes that are known pattern similar tdracade in which the clients classes and the
by the class represented by this ephemeral object. classes of the sub-system may know about one another.

e doNotRelateTo is the list of all the classes that are
unknown to the class represented by this ephemeral ob-
ject.

e namerepresents the name of the class.

e superclasses s the list of the direct superclasses of
the class represented by this ephemeral object.

Example 7 (An overview of the Facade design pattern) :

The general structure of theacade design pattern is shown
Figure 4. TheFacade design pattern is composed of three
classes: Clients , Facade, and SubsystemClasses
such as: clients > facade > subsystemClasses
subsystemClasses ¥ facade £ clients , and
subsystemClasses » clients Theclients and
subsystemClasses variables, encoding sets, are not enu-
merated, letting the propagation system to remove unfeasible
solutions.

We can deduce automatically all the needed information from
the source code of the application.

Example 6 (Solutions) :

The resolution of thecsp modelling theComposite design
pattern on the application to produce representations of doct
ments (see Figure 2, on the left) produces results of the form:

client classes

o < dist.sol.#>.<Quality>.component <a class>
e < dist.sol.#>.<Quality>.composite < a class
o < dist.sol.#>.<Quality>.leaf =<a class>

Facade

subsystem classes

A solution, without constrain€omponent < Composite ,
of weight 50, is:

e 1.50.component = Element
e 1.50.composite = Document
e 1.50.leaf = Paragraph

There are five other solutions. The solutions are automatically
provided by our tool.

Figure 4: Tha~acade design pattern

Any design pattern may be modelled and referenced by our
tool. However, the structural design patterns (lkempos-

ITU (MACRY) 0.2 =101 x|
|||.| te<ts composite2 AbstraclDocument | o [~ Links
[Fielas
: I uemace
; [~ Associations
n jtutests composite2 Title
[Hierarchies

jtu.tests composite2 Paragraph

Observe componentsk-sites
el e Observe compos|ie
A P - Monifor instantiations
[P

jtu tests composite2 Main Create runner
J Load dynamic information
3

jiutests.composite2.Paralndent

Compute systam complexity

Mo value computed yet.

:
Generate Ptidej model
Solve constraints
Load inforration
Modify structure

jtufests.composite2 =
Frint
Exit

El

Figure 3: Interface oPTIDEJ.

ite or Facade) are easier to model than the behavioral or crefriendly system: Distorted design patterns are identified and
ational design patterns because these latter need statically uexplained, the search can be completely driven by the user,
decidable information (such as the type of a particular objecetc.

in a generic collection). The modelling of tdstract Fac- We developed a library of dedicated constraints to solve
tory, Observer andSingleton design patterns is in progress. this problem. These constraints are used in our {8DIDEJ.

An Abstract Factory provides an interface to build families The first results of our approach are satisfying because they
of related objects without specifying their concrete classesallow to propose, for the first time, a tool to solve this prob-
The behavioraDbserver design pattern defines dependen-lem.

cies among objects such that all dependent objects are no-Qur current work concerns the definition of more rela-
tified and updated when one of the related objects changegonships among classes, the extension of the library of con-
The creationabingleton design pattern ensures that a classstraints and the application of the constraints to other systems,
has a unique instance in a system, and provides a global entgyich asJHoTDRAW [Gamma, 1998 and of courseéPTIDEJ
point for it. itself!

We applied our tool on different systems. In particular,
we applied our approach on two packages of thex class
libraries: Thejava.awt andjava.net packages. All Acknowledgements
well-known occurrences of théomposite andFacade de- This work is partly funded by par Object Technology Interna-
sign patterns have been identified, as well as other less-knowbnal Inc. — 2670 Queensview Drive — Ottawa, Ontario, K2B
distorted occurrences. These results are promising but wgk1 — Canada
need to analyze manually the packages to check that all possi-
ble distorted solutions have been identified using our modelﬁ:'2

eferences

We need to check thmodellingof the design patterns not the
[Bayardo Jr. and Miranker, 19p@Roberto J. Bayardo Jr. and

method which has been proven to be complete.
Daniel P. Miranker. A complexity analysis of space-
7 Conclusion bounded learning algorithms for the constraint satisfaction

. . - . problem. INAAAI'96, 1996.
In this article, we presented an original use of explanation-
based constraint programming to propose a solution to a diffBessére, 1991 Christian Bessire. Arc consistency in dy-
ficult problem: The identification of design patterns in object- namic constraint satisfaction problems. MPnoceedings
oriented source code. Explanations are used to provide a user- AAAI'91, 1991.

[Brown, 1996 Kyle Brown. Design reverse-engineering and [Jussieret al, 2000 Narendra Jussien, Romuald Debruyne,
automated design pattern detection in smalltalk. Tech- and Patrice Boizumault. —Maintaining arc-consistency
nical Report TR-96-07, University of lllinois at Urbana- within dynamic backtracking. I®rinciples and Practice
Champaign, 1996. of Constraint Programming (CP 2000humber 1894 in

[Caseau and Laburthe, 1998ves Caseau and Francois L-€cture Notes in Computer Science, pages 249-261, Sin-
Laburthe. CLAIRE: Combining objects and rules for prob- ~ 9@pore, September 2000. Springer-Verlag.
lem solving. Proceedings of JICSLP, workshop on multi- [Kramer and Prechelt, 19p&hristian Kamer and Lutz
paradigm logic programmingl996. Prechelt. Design recovery by automated search for struc-

[Demeyeret al, 2000 Serge Demeyer, 8phane Ducasse, tural design patterns in object-oriented softwateoceed-
and Oscar Nierstrasz. Object-oriented reengineering OOP- ings of the Working Conference on Reverse Enginegring

SLA0O tutorial. OOPSLA Tutorial Note2000. pages 208-215, 1996.
[Fowler, 1999 Martin Fowler. Refactoring - Improving the [Laburthe, 200D Frangois Laburthe. CHOCO's API. Tech-
Design of Existing CodeAddison-Wesley, 1999. nical Report Version 0.13, OCRE Committee, 2000.

[Fuchset al, 2000 B. Fuchs, J. Lieber, A. Mille, and [Mancoridisetal, 1999 S. Mancoridis, B. S. Mitchell,
A. Napoli. An Algorithm for Adaptation in Case-Based Y. Chen, and E. R. Gansner. Bunch: A clustering tool for
Reasoning. IProceedings of the 14th European Confer- the recovery and maintenance of software system struc-
ence on Artificial Intelligence (ECAI-2000), Berlin, Ger- tures.Proceedings of ICSML998.

many pages 45-49, 2000. [Régin, 199% Jean-Charles &jin. Développement d’outils

[Gammeaet al, 1994 Erich Gamma, Richard Helm, Ralph algorithmiques pour I'Intelligence Artificielle. Application
Johnson, and John VlissideBesign Patterns - Elements & la chimie organique These de doctorat, Universitde
of Reusable Object-Oriented Softwardddison-Wesley, Montpellier 1, 21 December 1995. In French.

1994. [Richner and Ducasse, 1999amar Richner and 8phane
[Gamma, 199B Erich Gamma. JHotDraw, 1998. Available = Ducasse. Recovering high-level views of object-oriented
at http://members.pingnet.ch/gamma/JHD-5.1.zip. applications from static and dynamic informatiofro-

[Ginsberg, 1998 Matthew L. Ginsberg. Dynamic backtrack- ceedings of ICSML999. _
ing. Journal of Artificial Intelligence Research:25-46, [Rumbaugtet al, 1991 James Rumbaugh, Michael Blaha,

1993. William Premerlani, Frederick Eddy, and William Loren-
[Gueretet al, 200(Christelle Gret, Narendra Jussien, iggiObject-Onented Modeling and DesigRrentice Hall,

and Christian Prins. Using intelligent backtracking to im-
prove branch and bound methods: an application to operlSchiex and Verfaillie, 1994 Thomas Schiex and @&ard
shop problems. European Journal of Operational Re- Verfaillie. Nogood Recording fot Static and Dynamic Con-
search 127(2):344-354, 2000. straint Satisfaction Problembiternational Journal of Ar-

[Jahnke and @ndorf, 1997 Jens Jahnke and Albert tificial Intelligence Tools3(2):187-207, 1994.
Zundorf. Rewriting poor design patterns by good designWuyts, 1998 Roel Wuyts. Declarative reasoning about
patterns. Proceedings the Workshop on Object-Oriented the structure of object-oriented systemBroceedings of
Reengineering at ESEC/FS&eptember 1997. TOOLS USApages 112-124, 1998.

[Junker, 2000 Ulrich Junker. QUICKXPLAIN: Conflict de-
tection for arbitrary constraint propagation algorithms.
Technical report, llog SA, 2001.

[Jussien and Barichard, 2d06larendra Jussien and Vincent
Barichard. The palm system: explanation-based constraint
programming. InProceedings of TRICS: Techniques foR
Implementing Constraint programming Systems, a post-
conference workshop of CP 2QQféages 118-133, Singa-
pore, September 2000.

[Jussien and Boizumault, 199 Narendra Jussien and
Patrice Boizumault. Best-first search for property main-
tenance in reactive constraints systems.Intiernational
Logic Programming Symposiynpages 339-353, Port
Jefferson, N.Y., USA, October 1997. MIT Press.

[Jussien and Lhomme, 2000 arendra Jussien and Olivier
Lhomme. Local search with constraint propagation and
conflict-based heuristics. IBeventh National Conference
on Artificial Intelligence — AAAI'2000pages 169-174,
Austin, TX, USA, August 2000.

