
July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

International Journal of Cooperative Information Systems
Vol. 26, No. 2 (2017) 1742001 (37 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0218843017420011

Semantic Analysis of RESTful APIs for the Detection of
Linguistic Patterns and Antipatterns

Francis Palma∗

Department of Electrical and Computer Engineering
Concordia University

1515 St. Catherine West, Montréal, QC, Canada H3G 2W1
francispalmaphd@gmail.com

Javier Gonzalez-Huerta

Software Engineering Research Lab Sweden
Blekinge Institute of Technology

Campus Gräsvik, SE-371 79 Karlskrona, Sweden

Mohamed Founi, Naouel Moha and Guy Tremblay

Département d’informatique
Université du Québec à Montréal, C. P. 8888, Succ. Centre-ville

Montréal, QC, Canada H3C 3P8

Yann-Gaël Guéhéneuc

Ptidej Team, Département de Génie Informatique et Génie Logiciel
École Polytechnique de Montréal, C.P. 6079, Succ. Centre-ville

Montréal, QC, Canada H3C 3A7

Received 15 December 2016
Accepted 21 December 2016

Published 16 May 2017

Identifier lexicon may have a direct impact on software understandability and reusability
and, thus, on the quality of the final software product. Understandability and reusability
are two important characteristics of software quality. REpresentational State Transfer
(REST) style is becoming a de facto standard adopted by software organizations to
build their Web applications. Understandable and reusable Uniform Resource Identifers
(URIs) are important to attract client developers of RESTful APIs because good URIs
support the client developers to understand and reuse the APIs. Consequently, the use
of proper lexicon in RESTful APIs has also a direct impact on the quality of Web appli-
cations that integrate these APIs. Linguistic antipatterns represent poor practices in the
naming, documentation, and choice of identifiers in the APIs as opposed to linguistic
patterns that represent the corresponding best practices. In this paper, we present the
Semantic Analysis of RESTful APIs (SARA) approach that employs both syntactic and
semantic analyses for the detection of linguistic patterns and antipatterns in RESTful
APIs. We provide detailed definitions of 12 linguistic patterns and antipatterns and
define and apply their detection algorithms on 18 widely-used RESTful APIs, including
Facebook, Twitter, and Dropbox. Our detection results show that linguistic patterns
and antipatterns do occur in major RESTful APIs in particular in the form of poor

∗Corresponding author.

1742001-1

http://dx.doi.org/10.1142/S0218843017420011

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

F. Palma et al.

documentation practices. Those results also show that SARA can detect linguistic pat-
terns and antipatterns with higher accuracy compared to its state-of-the-art approach
— DOLAR.

Keywords: RESTful APIs; linguistic antipatterns; patterns; detection; semantic analysis;
Latent Dirichlet Allocation (LDA); second-order similarity; documentation.

1. Introduction

Service-Oriented Architecture (SOA) has changed the way software systems
are developed, deployed, and consumed.11 The REpresentational State Transfer
(REST) architectural style12 is becoming a de facto standard, adopted by large
software organizations like Facebook, Twitter, Dropbox, and YouTube, for devel-
oping and publishing their services, also known as their RESTful APIs.

In REST, understandable and reusable Uniform Resource Identifiers (URIs)
facilitate the task of RESTful API developers, firstly with the comprehension of
APIs, and secondly, with the maintenance and evolution of RESTful APIs. More-
over, RESTful APIs with consistent naming practices may attract client develop-
ers more than poorly designed or named ones24 because client developers must
understand the providers’ APIs while designing and developing their Web-based
applications that use these APIs. Therefore, in the design, development, and use of
RESTful APIs understandability and reusability are two major quality factors.

Source code lexicon impacts the understandability, reusability, and, overall, the
quality of software systems.20 APIs designers tend to use relevant identifiers to
name software entities.19 In REST, linguistic relations among resources, services,
and parameters are crucial13 and the lack of such linguistic relations and/or poor
naming may degrade the overall design of RESTful APIs and translate into linguis-
tic antipatterns (LAs).

In the context of REST, LAs are poor solutions to common recurring nam-
ing problems, which may hinder (1) the consumption of RESTful APIs by client
developers and (2) the maintenance and evolution of RESTful APIs by API devel-
opers. Linguistic patterns, in contrast, represent good solutions to common naming
problems and facilitate the consumption and maintenance of APIs.

A number of best and poor linguistic practices for RESTful APIs design
have been reported in the literature6,13,24 but they do not provide clear and
detailed descriptions to allow their automated detection. In our previous work,30

we redefine those best and poor practices as patterns and antipatterns, respec-
tively. For example, Contextless Resource Names13 is a linguistic antipattern
that describes a URI composed of nodes from different semantic contexts as in
the URI www.example.com/newspaper/player where “newspaper” and “player”
do not belong to the same semantic context or domain. On the contrary,
Contextualized Resource Names13 is a linguistic pattern describing a URI com-

posed of nodes that belong to the same semantic context, which help develop-
ers to better understand the resources or the interaction context with the server

1742001-2

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

Semantic Analysis of RESTful APIs

and, thus, increase the understandability and reusability of a given API. The
URI www.example.com/newspapers/media is an example of this pattern, since
“newspapers” and “media” belong to the same semantic context or domain. In
RESTful APIs development, the automatic detection of such linguistic patterns and
antipatterns is a means to assess their understandability and reusability. However,
no previous work except Detection of Linguistic Antipatterns in REST (DOLAR),
the approach presented in our previous work,30 analyzed linguistic patterns and
antipatterns in RESTful APIs.

DOLAR30 relies on WordNeta and Stanford’s CoreNLP,b two general-purpose
English dictionaries, to perform syntactic and semantic analyses of RESTful APIs
for detecting linguistic patterns and antipatterns in RESTful APIs. In addi-
tion, in that work we also defined a set of five linguistic antipatterns and their
corresponding patterns inspired from the literature6,13,24 by using a consistent
template. We applied DOLAR in an empirical study to assess the linguistic qual-
ity of 15 well-known RESTful APIs including Facebook, Twitter, Dropbox, and
YouTube. Finally, we also empirically validated the precision and recall of DOLAR,
in which we obtained, on average, precision and recall higher than 75%. Indeed,
the detection accuracy of DOLAR was higher than 95% for those patterns and
antipatterns that require only syntactic analysis. However, our semantic analy-
sis suffered of lower detection accuracy, just over 60% since: (1) it used general-
purpose English dictionaries (i.e. WordNet and Stanford CoreNLP) instead of using
domain-specific dictionaries; and (2) it applied limited semantic analysis techniques,
e.g. used only the sets of synonyms for two identifiers to decide their semantic
similarity.

In this paper, we extend our previous work to overcome some of the observed lim-
itations. We revisit the DOLAR approach and propose Semantic Analysis of REST-
ful APIs (SARA), a detection approach capable of performing improved semantic
analysis of RESTful APIs. In addition to using WordNet and Stanford’s CoreNLP
general-purpose English dictionaries, SARA combines the Latent Dirichlet Alloca-
tion (LDA)8 topic modeling technique from the natural language processing (NLP)
domain and employs second-order semantic similarity metric16,17 based on the dis-
tributional similarity between URI nodes to decide their semantic similarity. SARA
improves DOLAR by capturing the proper context (e.g. in the form of topics) for
the nodes in a URI from its documentation. In addition, we defined a new linguis-
tic (anti)pattern — Pertinent versus Nonpertinent Documentation — inspired from
the object-oriented (OO) programming domain.3 Finally, we also provide a more
detailed and up-to-date description of related works, showing the lack of a compre-
hensive approach for the semantic analysis of RESTful APIs. Finally, we describe
the Service-Oriented Framework for Antipatterns (SOFA) framework showing the
architecture of the integration of SARA and SOFA.

awordnet.princeton.edu.
bnlp.stanford.edu/software/corenlp.shtml.

1742001-3

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

F. Palma et al.

In addition, we report the results of an empirical study that aims to assess
SARA’s detection accuracy, in which we use the same validation dataset as in our
previous work.30 The comparison of the detection accuracies of SARA and DOLAR
confirms a significant improvement and shows that SARA overcomes DOLAR’s
limitations related to semantic analysis. We also applied SARA to analyze 12 REST
linguistic patterns and antipatterns on the set of 18 well-known RESTful APIs
— including Facebook, Twitter, Dropbox, and YouTube.

The remainder of the paper is organized as follows: Section 2 discusses related
work. Section 3 presents the 12 linguistic patterns and antipatterns in REST. Sec-
tion 5 introduces the SARA approach. Section 6 presents a validation of SARA and
a comparison with the DOLAR approach. Finally, Sec. 7 concludes the paper and
sketches future work.

2. Related Work

Researchers have used linguistic analysis techniques to detect linguistic antipat-
terns and to check for consistency between source code and comments in OO sys-
tems.1,4,5,21,25,34 Various NLP techniques have been applied in software engineering,
in particular, for assessing the quality of OO software systems documentation15 and
Web APIs18,23,24,28,31,40 documentation.

In the following, we discuss some relevant researches done on assessing the lin-
guistic quality of source code and documentation, which employ both the syntactic
and semantic analyses.

2.1. Syntactic and semantic analyses of source code

Abebe et al.1 present the first set of lexicon bad smells in OO source code and a tool-
suite that uses semantic analysis techniques for their detection. Arnaoudova et al.4

present the first definition of linguistic antipatterns, define 17 linguistic antipat-
terns in OO programming (i.e. recurring poor practices related to inconsistencies
among the naming, documentation, and implementation of a software entity), and
implement their detection algorithms. The authors search for differences between
the identifiers used for software entities (e.g. method names and return types) and
their implementation and/or documentation. For example, one antipattern is called
“Is” returns more than a Boolean, which analyzes the name of a method starting
with “Is” and checks if the method returns a Boolean.4

Semantic analyses are also applied to Web services design and development.25,36

Rodriguez et al.36 present a study on poor linguistic practices identified on a set of
WSDL descriptions and provide a catalog of Web services discoverability antipat-
terns. These antipatterns focus on the comments, elements names, or types used
for representing the data models in WSDL documents. Mateos et al.25 present a
tool to detect a subset of the antipatterns presented in Ref. 36.

Other researchers also use semantic analyses in different aspects of the software
development life cycle.5,21,34 For example, Lu et al.21 define an approach to improve

1742001-4

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

Semantic Analysis of RESTful APIs

code searches by identifying relevant synonyms using the WordNet English lexical
database. Arnaoudova et al.5 perform analyses of identifiers renaming in OO sys-
tems and classify them. Finally, Rahman and Chanchal34 present an approach to
automatically suggest relevant search terms based on the textual descriptions of
software change tasks. These approaches are tailored to OO identifiers and their
consistencies with comments1,4 or to traditional SOAP-based Web services inter-
faces.25,36 Therefore, they cannot be applied to RESTful APIs due to the peculiari-
ties of their development life cycle and their consumption nature. For example, the
invocation of RESTful services relies on a uniform interface formed using HTTP
methods to access or modify resources via URIs.

In addition, some researchers try to deal with the linguistic aspect of REST-
ful APIs. For example, Hausenblas14 performs a subjective analysis of RESTful
APIs to assess the quality of the URIs naming. Yet, he does not perform an
automatic nor a systematic analysis. Parrish32 also performs a subjective lexical
comparison between two well-known RESTful APIs, e.g. Facebook and Twitter.
He analyzes, for example, the use of verbs and nouns in URIs naming and con-
cludes that developers should use nouns instead of verbs while designing REST
URIs.

Although the above approaches deal with linguistic aspects of RESTful APIs,
they only rely on the subjective view of a set of good linguistic practices and
recommendations. Thus, there is no dedicated approach to automatically assess
the linguistic quality of RESTful APIs by detecting poor and best practices.

2.2. Semantic analysis of software documentation

High quality and self-descriptive source code comments help in developing highly
maintainable systems. Khamis et al.15 propose the JavadocMiner approach for
assessing the quality of inline documentation relying on heuristics both in terms of
language quality and consistency between source code and comments. The defined
heuristics belong to two different categories: (1) internal (natural language quality)
comment analysis where quality of natural language used are assessed (e.g. Words
Per Javadoc Comment Heuristic checks if the methods or classes are under- or
over-documented); and (2) code/comment consistency analysis where the consis-
tency between source code and comments are checked (e.g. Documentable Item
Ratio Heuristic checks if a method documents all its aspects including return type,
parameters, and thrown exceptions).

RESTful APIs are being adopted by large software companies, such as
Facebook, Dropbox, or Twitter, to develop and offer their services. Client develop-
ers must follow well-documented RESTful APIs to properly consume the services
and resources offered by those APIs. However, there are only a few standards and
guidelines that guide RESTful API development process.24,28

In a book on RESTful APIs design principles, Masse24 proposes an exhaustive
list of RESTful APIs design principles including those related to the design of

1742001-5

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

F. Palma et al.

URIs, proper use of HTTP methods and HTTP status codes, metadata design, and
best practices for resource representations. Also, the Open Mobile Alliance (OMA)
provides guidelines for designing RESTful APIs exhibiting REST fulness and for
properly documenting the APIs, for example, not using verbs as resource identifiers
or specifying API versioning within URIs.

Several works (e.g. Refs. 18, 23 and 31) deal with the generation of semantically
richer documentations of RESTful APIs because the majority of the RESTful APIs
are textually described in PDF or HTML documents that are not machine-readable
and useful only to developers. Kopecky et al.18 propose HTML for RESTful Services
(hRESTS) to facilitate the generation of machine-readable APIs documentation.
hRESTS focuses only on service’s operations, inputs, and outputs.

Panziera and Paoli31 propose a set of best practices for building self-descriptive
RESTful services, which can be both human-readable and machine-processable (e.g.
by using a common vocabulary for RESTful resources). The authors also propose a
framework to collect documentation information for semiautomatically generating
complete and updated descriptions of RESTful services. They evaluate their frame-
work and report the accuracy of identifying resources correctly with precision and
recall of 72% and 77%, respectively. Maleshkova et al.23 devise an approach to for-
mally describe RESTful APIs with the goal of enabling their wider adoption. The
authors relied on hRESTS18 and developed a tool called SWEET that supports users
in automatically creating the semantic descriptions and adding semantic annota-
tions to RESTful APIs to facilitate resource and service discovery, their composi-
tion, and the invocation of RESTful APIs.

Finally, Treude et al.40 develop a search-based approach for automatically
extracting tasks (i.e. a set of specific programming actions to be undertaken) from
software documentations. The authors try to minimize the gap between the infor-
mation needs of software developers and the documentation structure/content and,
thus, assist developers in documentation navigation. Using the proposed approach,
which utilizes NLP techniques, the authors extract more than 70% tasks from
two large corpuses of software documentation. However, unlike our goal in this
paper, the goal of this work is not to assess the linguistic quality of software
documentations.

2.3. Semantic analysis of web interfaces

Studies have been performed to investigate and analyze services interfaces to mea-
sure their linguistic quality, in particular for SOAP Web services7,41 and for REST-
ful APIs.33,35

For example, Wei et al.41 present a novel framework and algorithms to ana-
lyze service interfaces, the SOAP Web services, in particular. The authors target
the large and overloaded services with the goal to ease their integration and inter-
operability. The proposed framework proposes to refactor large interfaces and is
validated with real commercial logistic systems like FedEx. However, the goal of

1742001-6

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

Semantic Analysis of RESTful APIs

this work is far from ours: we target the linguistic design quality of Web interfaces,
namely for RESTful APIs.

In another work, Bertolino et al.7 model the SOAP Web service behavior pro-
tocol, i.e. how clients should behave while interacting with the service. The authors
propose the StrawBerry7 method to automatically derive the Web service behav-
ior protocol from its WSDL interface. The proposed StrawBerry method relies on
data-type analysis and is evaluated on the Amazon e-commerce service. The main
goal of this work is to facilitate the automatic discovery of the behavior protocol of
a Web service, and, if required, to compensate the lack of information through its
behavior model created by the StrawBerry.

Works have also been done in the domain of RESTful APIs to perform their
automatic analysis. For example, Petrillo et al.33 perform a thorough survey on the
REST literature and report a collection of 73 best practices in designing RESTful
APIs. The assumption is that those best design practices facilitate APIs under-
standability and reusability. The authors perform a study with three well-known
RESTful APIs from three cloud providers, namely Google Cloud Platform, Open-
Stack, and Open Cloud Computing Interface (OCCI). The goal of this work is to
evaluate those three APIs based on the identified best practices and results show
that Google Cloud Platform, OpenStack, and the OCCI, respectively, conform to
66%, 62%, and 56% of the identified best design practices from the literature. How-
ever, this work does not target the semantic analysis of RESTful APIs and analyzed
a limited number of RESTful APIs.

Moreover, Rodŕıguez et al.35 analyze high volume of REST HTTP traffic, i.e.
HTTP requests, to evaluate how well or bad REST developers implement their
APIs in practice. The authors compare the wellness with theoretical Web engi-
neering principles and guidelines. The authors rely on heuristics and metrics to
measure the implementation quality by means of antipatterns. Results are evident
with a gap between the theory and practice. However, the work focuses only on
REST requests and not responses. Moreover, the linguistic design quality of REST
requests/responses is out of the scope of their work.

2.4. Discussion

The analysis of the aforementioned studies allows us to identify some limitations:

(1) There exist several works that deal with the linguistic assessment or consis-
tency of identifiers in the OO domain (e.g. Refs. 4 and 15), however, these
approaches are not applicable to the domain of Web and to the RESTful APIs
documentation.

(2) The guidelines (e.g. Refs. 24 and 28) for designing RESTful APIs in a proper
RESTful manner proposed an exhaustive list of best and poor design guidelines
but do not discuss how, in practice, they can be detected.

1742001-7

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

F. Palma et al.

(3) The approaches in the domain of REST (e.g. Refs. 4 and 15 and Web
APIs2,18,22,23,31) contributed to the automatic generation of richer and sim-
pler representation and organization of RESTful resources and their underlying
access methods, however, there is still a lack of methods and tools to assess the
existing documentation of RESTful APIs.

(4) Except for DOLAR,30 there is no empirical evidence on the linguistic quality
of the RESTful APIs documentation. Empirical assessment and evidences are
needed because the current textual and machine-unreadable documentations of
RESTful APIs already hinder the consumption of those APIs18,22,23,31

In the following section, we describe 12 REST linguistic patterns and antipat-
terns from the literature with examples. Then, we propose an automatic approach
for assessing the linguistic quality of REST URIs and their API documentation. The
goal of assessing the documentations of RESTful APIs is to check the consistency
between the API documentation and the resources they describe.

3. REST Linguistic Patterns and Antipatterns

The following subsections present the 12 linguistic patterns and antipatterns that
we consider in this paper, which we extracted from existing literature.6,13,24,39 We
summarize their definitions and provide good and bad examples of each one.

3.1. Contextualized versus contextless resource names

URIs should be contextual, i.e. nodes in URIs should belong to semantically-related
contexts. Thus, the Contextless Resource Names antipattern appears when URIs
are composed of nodes that do not belong to a same semantic context.

Example. www.example.com/newspapers/players?id=123 is a Contextless
Resource Names antipattern because “newspapers” and “players” do not belong
to same semantic context. www.example.com/newspapers/media/page?id=123 is
a Contextual Resource Names pattern because “soccer”, “team”, and “players”
belong to a same semantic context.

Consequences. Contextless Resource Names do not provide a clear context for a
request, which may mislead the API clients by decreasing the understandability of
the API.13

3.2. Hierarchical versus nonhierarchical nodes

Each node forming a URI should be related hierarchically to its neighbor nodes. In
contrast, Nonhierarchical Nodes is an antipattern that appears when at least one
node in a URI is not related hierarchically to its neighbor nodes.

Example. www.example.ca/profs/university/faculty/ is a Nonhierarchical
Nodes antipattern because “profs”, “faculty”, and “university are not in a hier-
archical relationship. www.example.com/university/faculty/professors/ is a

1742001-8

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

Semantic Analysis of RESTful APIs

Hierarchical Nodes pattern because “university”, “faculty”, and “professors” are
in a hierarchical relationship.

Consequences. Using nonhierarchical names may confuse users on the real pur-
pose of the API and hinders its understandability and, therefore, its usability.13

3.3. Tidy versus Amorphous URIs

REST resource URIs should be tidy and easy to read. A Tidy URI is a URI
with appropriate lower-case resource naming, no extensions, underscores, or trailing
slashes. The Amorphous URI antipattern appears when URIs contain symbols or
capital letters that make them difficult to read and use. As opposed to good prac-
tices,24 a URI is amorphous if it contains: (1) upper-case letter (except for Camel
Cases26), (2) file extensions, (3) underscores, and (4) a final trailing-slash.

Example. www.example.com/NEW Customer/ photo01.jpg/ is an Amorphous
URI antipattern because it includes a file extension, upper-case resource names, and
underscores. www.example.com/customers/1234 is a Tidy URI pattern because
it only contains lower-case resource naming, without extensions, underscores, or
trailing slashes.

Consequences. (1) Upper/lower-case names may refer to different resources, RFC
3986.6 (2) File extensions in URIs violate RFC 3986 and affect service evolution. (3)
Underscores are hidden when highlighting URIs, decreasing readability. (4) Trailing-
slashes mislead users to provide more resources.

3.4. Verbless versus CRUDy URIs

Appropriate HTTP methods, e.g. GET, POST, PUT, or DELETE, should be used
in Verbless URIs instead of using CRUDy terms (e.g. create, read, update, delete,
or their synonyms).13 The use of such terms as resource names or requested actions
is highly discouraged.24

Example. POST www.example.com/update/players/age?id=123 is a CRUDy
URIs antipattern because it contains a CRUDy term “update” while updat-
ing the user’s profile color relying on an HTTP POST method. POST
www.example.com/players/age?id=123 is a Verbless URIs pattern because this
is an HTTP POST request without any verb.

Consequences. Using CRUDy terms in URIs can be confusing for API clients,
i.e. in the best cases they overload the HTTP methods and in the worst cases they
go against HTTP methods. CRUDy terms in a URI confuse and prohibit users to
use proper HTTP methods in a certain context and may introduce another REST
antipattern, Tunneling through GET/POST.39

1742001-9

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

F. Palma et al.

3.5. Singularized versus pluralized nodes

URIs should use singular/plural nouns consistently for resources naming across an
API. When clients send PUT/DELETE requests, the last node of the request URI
should be singular. In contrast, for POST requests, the last node should be plural.
Therefore, the Pluralized Nodes antipattern appears when plural names are used
for PUT/DELETE requests or singular names are used for POST requests. GET
requests are not affected by this antipattern.13

Example. The first example URI is a POST method that does not use a pluralized
resource, thus leading to Pluralized Nodes antipattern. On the other hand, for the
Singularized Nodes pattern, the DELETE request acts on a single resource for

deleting it:

DELETE www.example.com/team/players or

POST www.example.com/team/player;

DELETE www.example.com/team/player or
POST www.example.com/team/players.

Consequences. If a plural node for PUT (or DELETE) request is used at the end
of a URI, the API clients cannot create (or delete) a collection of resources, which
may result in, for example, a 403 Forbidden server response. In addition, even if
the resources can be filtered through query-like parameters, it confuses the user if
one or multiple resources are being accessed/deleted.13

3.6. Pertinent versus nonpertinent documentation

The Nonpertinent Documentation linguistic antipattern occurs when the documen-
tation of a REST resource URI is in contradiction with its structure (e.g. nodes
separated by slashes in URIs). This antipattern applies to both a resource URI
and its corresponding documentation. In contrast, a well-documented URI should
properly and clearly describe its purpose using semantically-related terms.

Example. https://api.twitter.com/1.1/favorites/list — Returns the 20

most recent Tweets liked by the authenticating or specified user. Note: The like action was

known as favorite before 3, November 2015; the historical naming remains in API methods

and object properties. This URI–documentation pair from Twitter shows no seman-
tic similarity between them and, thus, appears as Nonpertinent Documentation
antipattern. https://instagram.com/media/media-id/comments — Gets a list of

recent comments on a media object. The public content permission scope is required to get

comments for a media that does not belong to the owner of the access token. In contrast to
the previous example, this URI–documentation pair shows a high relatedness and
is a Pertinent Documentation pattern.

Consequences. Developers can make wrong assumptions on resource URIs, which
may hinder their understandability and reusability. Overall, this is misleading

1742001-10

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

Semantic Analysis of RESTful APIs

because the client developer might be unsure whether to follow the documenta-
tion or the URI structure when trying to understand its purpose. Moreover, for the
API providers, it might cause comprehension difficulties during the maintenance
and evolution of APIs.

4. Background

This section introduces the second-order semantic similarity16,17 and the LDA8 that
are useful in our SARA approach as we propose in Sec. 5.

4.1. Second-order semantic similarity

Second-order distributional similarity16,17 metric allows obtaining distributionally
the most similar words for an input word and computes similarity scores among
them based on the second-order word vectors. Two words are distributionally sim-
ilar if they have multiple co-occurring words in the same syntactic relations, in
contrast to the distributional relatedness metric that uses a bag-of-words to cap-
ture these distributional relations.9 Taking as input a big corpus, for each word, it
builds a vector of the collocated words that appear together within a window of
window-size. To compare the similarity between two words, the vectors of collated
words are analyzed, calculating the extent to which those two words appear in the
corpus together with the same collated words.

As shown in Table 1, for example, let us analyze the occurrences of the word
newspaper. With window size = ±3, we have two occurrences of the word newspa-
per. If we take into account the position, newspaper has eight different features (by
omitting stop words, e.g. “are”, “the”, “and”) as shown in Table 2 in the WPT col-
umn. If we do not take into account the window position, then the word newspaper
has seven different features (after omitting stop words), as shown in Table 2 under

Table 1. Window setup for the calculation of Window Posi-
tion Triples (WPT).

−3 −2 −1 — +1 +2 +3

radio news and newspapers are more accurate
TV radio and newspapers are the most

Table 2. Examples of the WPT and co-occurrences for the
example in Table 1.

WPT Co-occurrence

〈newspaper,−3, radio〉 1 〈newspaper, radio〉 2
〈newspaper,−3, TV 〉 1 〈newspaper, TV 〉 1
〈newspaper,−2, news〉 1 〈newspaper, news〉 1
〈newspaper,−2, radio〉 1 〈newspaper, are〉 1
〈newspaper,+1, are〉 2 〈newspaper,more〉 2
〈newspaper,+2, more〉 1 〈newspaper, accurate〉 1
〈newspaper,+3, accurate〉 1 〈newspaper,most〉 1
〈newspaper,+3, most〉 1

1742001-11

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

F. Palma et al.

the “co-occurrences” column. Moving the window over the corpus gives the word
vectors for each word. With these word vectors and by normalizing the counts,17

the distributionally similar words used in the similar context are calculated. For
example, if newspaper co-occurs with {radio, TV, news, and print} and the media
co-occurs with the same three words, we will conclude that they are distribution-
ally similar. However, the two words are distributionally similar does not necessarily
mean that they appear together. Distributional similarity allows capturing the dif-
ferent senses that a word has, and, therefore, mixes up the different similar words
for all the senses that a word might have.

This technique allows one to obtain the list of the n most similar words for a
given input word. The list is then used as the second-order word vector for the
given word, which contains the words that occur together in the similar contexts.
Applying the same principle the technique allows comparing the second-order word
vectors to compute the second-order distributional similarity.16,17

Distributional semantic similarity strategies allows one to go beyond is-a rela-
tionships between nouns and verbs as allowed by WordNet-based approaches9,17

that only benefit from the synonym (warm–hot), meronym (car–wheel), and
antonym (hot–cold) relations. Second-order similarity has been demonstrated to
hold a higher correlation with semantic similarities derived from WordNet than the
latent semantic analysis (LSA) and Web-based PMI-IR.17

4.2. Latent DIRICHLET allocation

In machine learning and NLP, topic models are defined based on the idea that a
document is a mixture of latent topics and each topic is characterized by a distri-
bution over words.8 The LDA is a generative probabilistic model of a corpus based
on the idea of topic models.8 The LDA allows extracting the different topic models
from a corpus that can be used as a low-dimensional representation for the content
of the set of documents constituting the corpus.

The dimensionality k for the Dirichlet distribution is assumed to be known and
fixed, and should be provided as input to build the desired topic model. The LDA
model, as opposed to many other clustering models that restrict a document to be
associated with a single topic, allows a document to be associated with multiple
topics, giving the probability of the document belonging to a particular topic.

The large vocabulary size inherent to the majority of document corpora is one of
the drawbacks of topic models due to the problems of sparsity.8 A new document,
we want to classify, will contain unobserved words that did not appear in the
documents of the training corpus. This problem together with the bag-of-words
assumptions that allow words that should appear or be generated by the same topic
to be allocated in several different topics8 drives us to define a hybrid approach by
combining LDA topic modeling to obtain the low-dimensional representation of the
corpus and the distributional semantic similarity to measure the semantic similarity
between the words.

1742001-12

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

Semantic Analysis of RESTful APIs

In the next section, we describe the SARA approach that takes the advan-
tage of second-order semantic similarity metric and LDA topic modeling tech-
nique to perform semantic analysis of RESTful APIs for the detection of linguistic
(anti)patterns.

5. The SARA Approach

Now that we defined 12 linguistic patterns and antipatterns, we present an approach
to identify their occurrences.

In this section, we describe the SARA approach for the analysis and detection
of linguistic patterns and antipatterns in RESTful APIs. SARA takes advantage
of a second-order semantic similarity metric and LDA topic modeling technique to
detect linguistic patterns and antipatterns.

SARA consist of four steps (as shown in Fig. 1), which are briefly described
below and presented in more details in the following subsections.

Step 1. (Analysis of linguistic patterns and antipatterns). This manual step consists
in analyzing the description of REST linguistic patterns and antipatterns from the
literature to identify the properties relevant to their detection. We use these relevant
properties to define algorithmic rules for patterns and antipatterns.

Step 2. (Implementation of interfaces and detection algorithms). This manual step
involves the implementation of detection algorithms for patterns and antipatterns
based on the rules defined in step 1 and the service interfaces for RESTful APIs,
which include the list of methods to be invoked.

Step 3. (REST methods invocation). This automatic step deals with the consump-
tion of RESTful APIs by calling their methods to access their underlying methods
automatically from the interfaces defined in step 2.

Step 4. (Detection of linguistic patterns and antipatterns). The last automatic
step deals with the semantic analysis of resource URIs and API documentations
by applying automatically the detection algorithms (implemented in step 2) on
resource URIs and documentations of RESTful APIs obtained in step 3 for the
detection of linguistic patterns and antipatterns.

Fig. 1. Overview of the SARA approach.

1742001-13

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

F. Palma et al.

5.1. Step 1 — Analysis of linguistic patterns and antipatterns

We analyze the definitions of the patterns and antipatterns defined in Sec. 3 to
identify their linguistic aspects. For example, a linguistic aspect for the detection
of the Contextless Resource Names antipattern is to check if a URI node belongs
to the same semantic context.

Figure 2 shows the algorithmic rule that we define for the Contextless Resource
Names antipattern based on WordNet. We compare the context of every pair of
nodes or resources in a URI using WordNet (lines 3–6). We report a URI as an
occurrence of this antipattern if we find at least one contextless relation among all
possible resource pairs. Conversely, we report an occurrence of the corresponding
pattern if and only if all possible resource pairs share at least one common context
and are relevant for that particular URI.

WordNet is a widely-used lexical database, which groups nouns, verbs, and
adjectives into sets of cognitive synonyms — synsets — each representing unique
concepts that can be used interchangeably in a context. WordNet is useful in find-
ing semantic similarity between words using its underlying hypernym–hyponym
and meronym–holonym relations as depicted in Fig. 3. In Fig. 3(a), medium is
one of 11 synsets of “media” and there exist different types of medium includ-
ing newspaper, film, telecommunication, and so on, defined in WordNet. Based
on WordNet, medium is thus the hypernym of newspaper and newspaper is the
hyponym of medium. Such relations also exhibit contextual relevance between words
and can be useful for analyzing Contextless Resource Names antipattern13 in URIs.

Fig. 2. Algorithmic rule of the Contextless Resource Names antipattern (using WordNet).

(a)Hypernym–Hyponym relation (b) Holonym–Meronym relation

Fig. 3. Hypernym–hyponym and meronym–holonym relations in WordNet.

1742001-14

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

Semantic Analysis of RESTful APIs

In addition, there exist part-of relations, i.e. holonym–meronym, between words
defined in WordNet [see Fig. 3(b)]. For example, a university consists of faculty
member, student, and department and the department may include biology and
chemistry. Thus, university is a holonym for faculty member and faculty

member is a meronym of university. Such hierarchical relations defined in Word-
Net between words are useful in analyzing the Nonhierarchical Nodes antipattern.13

Moreover, Stanford’s CoreNLP annotates nodes (after splitting CamelCase nodes)
with its underlying part-of-speech (POS) tagger to differentiate verbs (i.e. actions)
and nouns (i.e. resources). We thus define algorithmic rules for 11 other linguistic
patterns and antipatterns.

WordNet and Stanford’s CoreNLP dictionaries are general-purpose English dic-
tionaries and do not provide any domain-specific knowledge (i.e. they are not suited
to identify domain-specific semantic relationships between concepts). We overcome
such limitations of WordNet and Stanford’s CoreNLP by using well-known LDA
topic modeling8 technique and a second-order semantic similarity metric.16,17 The
use of these two techniques helps us capture the proper context (from URIs docu-
mentation) and check semantic relatedness between words and/or identifiers.

Figure 4 shows the algorithmic rule that we defined for the Contextless Resource
Names antipattern based on the LDA and a second-order similarity metric. With
WordNet-based analysis, we perform pairwise similarity of URI nodes to check if
they have any hypernym–hyponym and meronym–holonym relations. In contrast,
with LDA-based analysis we do not rely on general relations; instead, we extract
domain knowledge from the API documentation to check if the URI nodes are in
the same context. To measure similarity between URI nodes, we rely on (DISCO)-
based extracting DIStributionally similar words using CO-occurrences16 second-
order similarity metric. DISCO uses an English Wikipedia precomputed database
of word similarities to compute the similarity. The database contains more than
420,000 words and uses a window size of 3. We report a URI as an occurrence of
this antipattern if we find the similarity value to be less than a predefined threshold.
Conversely, we report an occurrence of the corresponding pattern for the similarity
value being equal to or higher than that threshold. We set the threshold value as
0.3 to determine if two words are semantically related based on the second-order
similarity metric. For DISCO, Kolb17 showed the threshold value of 0.3 as a gold
standard with a good accuracy in terms of semantic relatedness.

Fig. 4. Algorithmic rule of the Contextless Resource Names antipattern (using LDA topic mod-
eling and second-order similarity metric).

1742001-15

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

F. Palma et al.

5.2. Step 2 — Implementing interfaces and detection algorithms

This step includes the implementation of the interfaces of the services to be assessed
and the implementation of detection algorithms of linguistic patterns and antipat-
terns. For each RESTful API to be assessed, we implemented its service interface
using Java, which contains the methods callable to access or modify its underlying
resources. Each interface method is mapped to a HTTP method. Using the appro-
priate HTTP methods, our DOLAR approach sends HTTP requests to the real
RESTful APIs and receives HTTP responses. Linguistic patterns and antipatterns,
for example, Amorphous URIs (or Tidy URIs), require the fully-parameterized
request URIs to be detected, which can only be obtained after HTTP requests are
made. For each RESTful API, the details required to implement its service inter-
faces (i.e. resources, HTTP actions to perform on its resources, and parameters for
each HTTP request) can be found in its online documentation as shown in Table 5.
For other linguistic patterns and antipatterns, we can perform the analysis just
with the URIs extracted from the documentation of the RESTful APIs.

Like the RESTful APIs interfaces, the detection algorithms for linguistic pat-
terns and antipatterns are also written in Java. We manually transform the algo-
rithmic rules defined in the previous subsection into executable programs. This is
because some of the detection algorithms can be defined as the combination of some
building blocks (i.e. various segments of algorithmic rules) where the gluing of these
blocks is currently done manually. However, in the future version of our approach,
we will explore the use of a domain-specific language (DSL) and also try obtaining
through model-to-text transformations automatically the executable code of the
algorithmic rules.

5.3. Step 3 — REST methods invocation

For each RESTful API, besides its interface, we also implement a client to call the
methods in its interface, methods that perform read, write, update, or delete oper-
ations on resources. These explicit calls are done at detection time to obtain fully-
parameterized request URIs sent to the servers, which are required for detecting
antipatterns like Amorphous URI. In REST, a resource may be related to multiple
Java methods because any of the four basic operations (GET, POST, PUT, and
DELETE) can be performed. As for the clients’ authentication, large companies
often require clients’ authentication to accept secured HTTP requests. Thus, we
also implement the OAuth 2.0 authentication protocol. This step results in sets of
parameterized request URIs and their responses for the APIs being assessed.

5.4. Step 4 — Detection of linguistic patterns and antipatterns

After having defined the algorithmic rules for antipatterns, implemented the inter-
face for the RESTful APIs, derived the detection algorithms for antipatterns, and
concretely invoked the REST services using resource URIs, we can now perform

1742001-16

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

Semantic Analysis of RESTful APIs

Step 2Step 1 Step 3

Number
of Topics

Step 4

Removal Topic Modeling

Mallet

Topic Model

Full
English Wikipedia

Relatedness
Calculation

Automatic Step

-

Fig. 5. The semantic analysis part of SARA approach.

the detection of the linguistic antipatterns on those resource URIs, which involves
two phases (Fig. 1, step 4). The first phase involves performing the semantic anal-
ysis of the URIs and their corresponding documentation, whereas the second phase
involves applying detection algorithms using the semantic relatedness (e.g. similar-
ity values) determined from the semantic analysis. We discuss these two phases in
the following sub-subsections.

5.4.1. Semantic analysis of RESTful APIs

The semantic analysis of REST URIs and documentation involves four automatic
steps (as shown in Fig. 5): (1) collection of APIs documentation corpuses and
performing some preprocessing, e.g. exclusion of stop words; (2) truncating URI
nodes to their base form, i.e. lemmatization, using Stanford’s CoreNLP; (3) based
on the collected corpora, performing topic model extraction relying on LDA; and
(4) measuring the second-order similarity between the acquired topic model and
nodes in a URI.

In the following, we illustrate the semantic analysis showing the detection of
our running example antipattern Contextless Resource Names (and, vice versa,
Contextual Resource Names pattern) using LDA8 topic modeling and second-order
semantic similarity.16,17

Semantic analysis procedure. To infer the contextual relationships between
resource identifiers, we rely on the Mallet LDA topic modeling tool-set.c LDA builds
a model for a given text corpora that represents a short description of the mem-
bers of the corpus and preserves the essential relationships critical for classification
and/or summarization.8 The LDA topic model therefore is a low-dimensional rep-
resentation of the content of a set of documents.38 We use Mallet for building a
topic model taking the descriptions of the RESTful APIs resources as input, which
exclude the list of parameters, response formats, and example code snippets.

chttp://mallet.cs.umass.edu.

1742001-17

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

F. Palma et al.

Table 3. Top 10 words for Twitter topic model with k = 18 (we only
show the first five topic sets).

Topic 0 Topic 1 Topic 2 Topic 3 Topic 4

list search user profile user
member place authenticate user id
add save block banner collection
remove create follow image cursor
create query post account follow
note geo friendship update order
rapidly request account url request
post match set upload navigate
membership location relationship post information
user longitude screen authenticate give

We first remove the stop words and extend the acronyms by using API-specific
acronym lists. Then, we perform the lemmatization process to obtain the base
form of each word by using Stanford’s CoreNLP. We derive the LDA topic model
accumulating k topics using Mallet. The total number of unique end-points for an
API is the k number of topics in our LDA topic model. These unique end-points
are the group of most significant concepts on the API as they are on the top of the
URI hierarchy, if we consider the hierarchical organization of URIs as suggested in
Ref. 13.

Table 3 shows an excerpt of the LDA topic model created using Mallet for the
whole Twitter documentation corpus. The complete topic model consists of 18
topics and we consider the 10 most relevant words in each topic. This set of topics
derived from an API corpus can be used to measure similarity between resource
identifiers or words, i.e. if two words are semantically related, then they appear in
the same topic.38

To calculate the semantic similarity between identifiers, we use the second-order
semantic similarity metric. We rely on the distributional second-order similarity
because the nodes in the URI can be slightly different from the text used for their
description in terms of structure and form. A pair of words is said to be distribution-
ally similar if it has common co-occurring words (i.e. words that appear frequently
with the same set of words as neighbors). As described in Section 4.1, the calcu-
lation of this distributional similarity is based on a corpus, which we analyze to
find the words that occur together within a context of ±window size words. The
resulting word matrix is then processed to build word vectors that represent the
distribution of a word in the corpus and show the words sharing a maximum num-
ber of co-occurrences. These vectors are used to compare two words by analyzing
the extent to which these two words have similar second-order word vectors.17 We
use DISCO16 to compute such distributional similarity between identifiers.

Determining antipatterns. To compare the contexts of every pair of nodes in a
URI, we measure the second-order semantic similarity between each node in a URI
and the 10 top words of each topic. Based on the similarity value, we determine

1742001-18

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

Semantic Analysis of RESTful APIs

Table 4. An example analysis of two Twitter URIs.

Topic 0 lists/memberships.json?... Topic 2 account/settings.json

Lists Memberships Account Settings

list 2.000 0.113 user 0.109 0.217
member 0.233 0.752 authenticate 0.118 0.066
add 0.118 0.007 block 0.013 0.156
remove 0.085 0.000 follow 0.104 0.034
create 0.234 0.043 post 0.080 0.043
note 0.440 0.024 friendship 0.190 0.224
rapidly 0.013 0.037 account 2.000 0.666
post 0.165 0.135 set 0.158 0.372
membership 0.113 2.000 relationship 0.641 0.799
user 0.063 0.015 screen 0.038 0.192

Average similarity: 2.000 Average similarity: 1.399

to which topics a node belongs. We consider that a node belongs to a topic if
the average second-order semantic similarity value is greater than a predefined
threshold, i.e. 0.3, for any words in each topic.

If for a given nodes pair of a URI, the intersection of topic sets to which each
node belongs to is empty (i.e. there is no common topic for that pair of nodes in
the URI), then the URI is reported as a Contextless Resource Names antipattern.
Otherwise, if each pair of nodes in the URI share at least one common topic, then
the URI is reported as a Contextual Resource Names pattern.

Table 4 shows the results for two resource URIs from the Twitter API:
(1) https://api.twitter.com/1.1/lists/memberships.json and (2) https://

api.twitter.com/1.1/account/settings.json. For the first URI, the base forms
of each node (i.e. membership and list) both appear in topic 0 and are represen-
tative enough in Twitter API. Hence, we can report the first URI as Contex-
tual Resource Names. For the second URI, the word account appears in topic
2 but settings does not appear in the list of the 10 most relevant words for
the same topic. However, the word settings is semantically related to the word
relationship with a second-order similarity metric value equal to 0.799 (greater
than the threshold of 0.3). Therefore, we can report the second URI as Contextual
Resource Names pattern because both nodes are semantically related.

5.4.2. Application of detection algorithms

The SOFA framework27 automatically applies the algorithmic rules in the form of
detection algorithms on the parameterized request URIs from the clients, collected
in the previous step. Finally, SOFA returns a set of detected RESTful linguistic
patterns and antipatterns.

The SOFA framework uses a Service Component Architecture (SCA).10 It relies
on FraSCAti37 for its runtime support. In a previous work,29 we added 13 REST
patterns and antipatterns related to the design of RESTful requests/responses.
Then, we extended SOFA with detection support of RESTful linguistic patterns and

1742001-19

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

F. Palma et al.

antipatterns using linguistic analyses based on WordNet and Stanford’s CoreNLP.30

For this paper, we further extend SOFA for the semantic analyses of RESTful
resource URIs and their documentations for the detection of REST linguistic pat-
terns and antipatterns relying on LDA topic modeling technique8 and DISCO-based
second-order semantic similarity metric.

Specifically, we extended the REST Handler component to facilitate the detec-
tion of RESTful linguistic patterns and antipatterns by wrapping each RESTful API
in an SCA component and applying the detection algorithms on the SCA-wrapped
RESTful APIs. By wrapping each API, we can introspect each full request URI with
its actual runtime parameters, relying on FraSCAti IntentHandler, a runtime inter-
ceptor. We invoke methods from a service interface defined with an IntentHandler
to introspect the request details, which allows on-the-fly syntactic and semantic
analyses of parameterized request URIs and their corresponding documentations.
Figure 6 outlines the SOFA framework positioning the end-user who executes the
framework to perform the detection.

6. Validation

In this section, we assess SARA’s effectiveness by analyzing the accuracy of the
defined algorithmic rules, the extensibility of SOFA, and the performance of the
detection algorithms. In our previous work,30 we reported the results of an empir-
ical study aimed at assessing the linguistic quality (i.e. syntactic and semantic) of
RESTful APIs relying on WordNet. In this paper, we perform the validation study
over the same dataset (310 URIs from 15 APIs30). Then, we perform a comparison

Fig. 6. The SOFA framework (the dotted box shows the position of SARA within SOFA).

1742001-20

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

Semantic Analysis of RESTful APIs

of the accuracy, in terms of precision and recall, of SARA compared with our
previous DOLAR approach. In addition, we perform an analysis of the 15 RESTful
APIs adding also three new APIs to assess the semantic quality of RESTful APIs
using the new LDA topic modeling and second-order similarity metric in addition
to linguistic analyses as in our previous paper.30

6.1. Hypotheses

We formulate three hypotheses to assess SARA’s effectiveness:

H1 (Accuracy). The set of all defined rules have an average precision and recall
of more than 75%, i.e. at least three out of four are true positives and we do not
miss more than one out of four of all existing patterns and antipatterns.

H2 (Extensibility). Our SOFA framework is extensible and allows adding new
service-oriented and REST patterns and antipatterns. In addition, SOFA facilitates
the integration of new RESTful APIs.

H3 (Performance). The implemented detection algorithms can perform their task
with low detection times — namely, on average, in the order of seconds.

6.2. Subjects and objects

The subjects of our study are the 12 REST linguistic patterns and antipatterns
described in Sec. 3. The objects are 18 common and well-known RESTful APIs for
which documentations are available. From our previous work30 where we analyzed
15 APIs, in this paper, we added three new APIs, namely GoogleBook, LinkedIn,
and Walmart. We choose APIs whose underlying HTTP methods, APIs end-points,
and authentication mechanisms are well explained by RESTful API developers, e.g.
Facebook, Twitter, Dropbox, or YouTube; these are summarized in Table 5.

6.3. Validation process

For the validation of SARA, we followed the instructions in the online documen-
tations for the APIs and implemented related (authenticated) clients. We invoked
a set of 310 REST methods from 15 RESTful APIs to access their resources. We
collected all fully-parameterized request URIs from the clients and responses from
the servers. Subsequently, we applied our algorithmic rules in the form of detection
algorithms implemented manually on the REST request URIs and reported patterns
and antipatterns detected by our SOFA framework. We validated the results in two
phases: (1) all the Dropbox URIs and (2) four representative APIs — Facebook,
Twitter, Dropbox, and YouTube — for which we randomly selected some candidate
request URIs detected by DOLAR as patterns and antipatterns. We chose those
four APIs based on our previous findings,29 which concluded that Facebook and
YouTube were well-designed APIs whereas Twitter and Dropbox were more prob-
lematic. We compared the accuracies between our previous DOLAR approach30

1742001-21

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

F. Palma et al.

Table 5. List of the 18 analyzed RESTful APIs and their online docu-
mentations.

RESTful APIs Online documentations

Alchemy alchemyapi.com/api
BestBuy developer.bestbuy.com/documentation
Bitly dev.bitly.com/api.html
CharlieHarvey charlieharvey.org.uk/about/api
Dropbox dropbox.com/developers/core/docs
Externalip api.externalip.net
Facebook developers.facebook.com/docs/graph-api
GoogleBook developers.google.com/books/
Instagram instagram.com/developer
LinkedIn developer.linkedin.com/docs
MusicGraph developer.musicgraph.com/api-docs/overview

Ohloh github.com/blackducksw/ohloh api
StackExchange api.stackexchange.com.docs
TeamViewer integrate.teamviewer.com/en/develop/documentation
Twitter dev.twitter.com/rest/public
Walmart developer.walmartlabs.com/
YouTube youtube.com/yt/dev/api-resources.html
Zappos developer.zappos.com/docs/api-documentation

and SARA. In addition to the 310 REST methods tested in the DOLAR valida-
tion, we also included three new RESTful APIS. Moreover, for the newly added
(anti)pattern Pertinent versus Nonpertinent Documentation, we needed the URIs’
documentations. In total, we collected 555 REST resource URIs and their docu-
mentations to assess the documentations’ pertinence.

Three professionals evaluated manually the URIs to identify the true positives
and false negatives to define a ground truth for a predefined subset of the analyzed
URIs and documentations. These professionals had knowledge about REST and
were not involved in the detection steps. We provided them with the descriptions
of the REST linguistic patterns and antipatterns, the sets of all URIs collected
during the service invocations, and the documentation collected for each URI. We
resolved conflicts with majority votes.

For assessing the accuracy, extensibility, and performance of DOLAR,30 due
to the large size of the datasets, we performed the validation on two sample sets
because it was a laborious task to validate all APIs and all patterns and antipatterns
but also because Facebook, Dropbox, Twitter, and YouTube are representative
APIs.29 In the first phase, we chose one medium-sized API, Dropbox, to calculate
the recall on one API — the entire validation would have required 1,550 questions
for 310 test methods. In the second phase, we randomly selected 50 validation
questions (out of 630 possible candidates) to measure the overall accuracy.

We assessed SARA in two phases: (1) we compared the accuracy of SARA with
DOLAR’s accuracy30 on the same dataset and (2) we selected a separate dataset
by applying a similar technique described above for selecting test URIs (and their
corresponding documentations) to measure SARA’s accuracy on 18 RESTful APIs,
including the three new APIs — namely, GoogleBook, LinkedIn, and Walmart.

1742001-22

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

Semantic Analysis of RESTful APIs

We used precision and recall to measure the detection accuracy. Precision is
the ratio between the true detected (anti)patterns and all detected (anti)patterns.
Recall is the ratio between the true detected (anti)patterns and all existing true
(anti)patterns.

6.4. Interpretation of the results

The mosaic plot in Fig. 7 represents the regenerated and improved detection results
for each (anti)pattern on the 15 RESTful APIs using SARA. In our previous work,30

we showed DOLAR detection results on the same dataset. Each column corresponds
to a pattern and antipattern while rows represent the detected patterns and antipat-
terns on each API. In each row, the height of the mosaic represents the size of the
method suite that we tested for an API. The most frequent patterns are Verbless
URI and Contextualized Resource Names — the majority of the analyzed APIs did
not include any CRUDy terms or any of their synonyms and the nodes in these URIs
belong to the same semantic context. In contrast, the most frequent antipatterns
are Amorphous URI and Nonhierarchical Nodes — the majority of the analyzed
APIs involve at least one syntactical problem and URI nodes for those APIs were
not organized in a hierarchical manner.

Table 6 presents the detailed detection results for the 10 linguistic patterns and
antipatterns on 15 RESTful APIs. The table reports the patterns and antipatterns

Hierarchical
versus

Nonhierarchical

Singularized
versus

Pluralized

Pattern

No Detection

Antipattern

Tidy
versus

Amorphous

Contextualized
versus

Contextless

Verbless
versus
CRUDy

Fig. 7. Linguistic patterns and antipatterns detected in 15 RESTful APIs using SARA approach.

1742001-23

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

F. Palma et al.
T
a
b
le

6
.

D
et

ec
ti

o
n

re
su

lt
s

o
f
th

e
1
0

R
E

S
T

li
n
g
u
is

ti
c

p
a
tt

er
n
s

a
n
d

a
n
ti

p
a
tt

er
n
s

(n
u
m

b
er

s
in

p
a
re

n
th

es
is

sh
ow

th
e

n
u
m

b
er

o
f
m

et
h
o
d
s

te
st

ed
fo

r
ea

ch
A

P
I)

.

z

z

z

1742001-24

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

Semantic Analysis of RESTful APIs

in the first column followed by the analyzed RESTful APIs in the following 15
columns. For each RESTful API and for each pattern and antipattern, we report
the total number of occurrences reported as positives by our detection algorithms.
The last two columns show the total number of detected occurrences across the
15 APIs (with percentages) and the average detection time. The detailed detection
results for all the 310 tested methods from 15 RESTful APIs are available on our
project website: http://sofa.uqam.ca/sara/.

As shown in Table 6, more than 60% of the analyzed URIs (202 out of 310)
show amorphousness. Exceptionally, BestBuy and Instagram have all the URIs
detected as Tidy URIs. In contrast, all the URIs in Twitter have syntactic problems
and all of them are detected as Amorphous URIs. Compared to DOLAR,30 SARA
better classifies the URIs (i.e. there are no gray boxes), which is made possible by
using LDA-based topic modeling and DISCO-based second-order similarity metric
measurement. There are significant numbers of APIs not using verbs in their URIs
design, which, according to REST URI good design principles, is a good practice
to avoid confusing API client developers.39

We observe detection results of inferior quality for Hierarchical Nodes pattern
(i.e. the dictionaries could not find hierarchical relations among URI nodes). Indeed,
we have zero detection for Hierarchical Nodes pattern because: (1) around 50% of
tested URIs used only one node (excluding the base URI) in which case we cannot
check the hierarchical relation and (2) more than 20% of URIs contain digits or
numbers as nodes, which again do not fall under any hierarchical relations.

The occurrences of the CRUDy URI antipattern were detected in 12% (38 out
of 310) tested URIs. In contrast, 88% (272 out of 310) of the tested URIs are Verb-
less URI. APIs designers seem aware of not mixing the definition of traditional Web
service operations and resource-oriented HTTP requests in REST. In traditional
Web services, operation identifiers reflect what they are doing whereas, in REST,
actions to be performed on a resource should be explicitly mentioned only using
HTTP methods and not within a URI through a CRUDy term. Finally, there is a
significant amount of No Detection for Singularized versus Pluralized Nodes because
about 90% of our tested requests used HTTP GET methods — such requests can
retrieve both single and multiple resource instances. However, for the remaining
10%, the Pluralized Nodes antipattern appeared more frequently than the Singu-
larized Nodes pattern.

Now, we discuss the Contextless Resource Names antipattern in detail, as it is
our running example. Out of 310 tested URIs, 40% (123 occurrences) were identi-
fied as Contextless Resource Names antipatterns and 60% (187 occurrences) were
detected as Contextualized Resource Names patterns. For example, in BestBuy,
most of the URIs have a single node followed by parameters. We ignored parame-
ters while we captured the context because they have variable values only, which
are not the part of the base URI design. Thus, if there is only one node in a URI,
it is not possible to capture meaningful contextual relationship. In DOLAR,30 we
faced this problem because we relied on WordNet to identify the context regardless

1742001-25

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

F. Palma et al.

of the underlying domain. However, SARA overcomes this limitation by creating
API-specific topic models relying on LDA8 and, then, by semantically matching the
URI nodes with various topics. Therefore, in general, SARA can clearly distinguish
between identifiers, and thus, in Table 6, the number of No Detection is zero for
Contextless versus Contextualized Resource Names.

In contrast to the BestBuy API, the Dropbox, Facebook, StackExchange,
Twitter, and YouTube APIs involve a high number of contextualized URIs nam-
ing. These good practices may help their APIs clients better understand and reuse
them. For instance, the following snippet shows two request URIs from Facebook

where the nodes in each URI are considered to be in the same semantic context:

1. https://graph.facebook.com/v2.2/{user id1}/mutualfriends/{user id2}?access token=CAATt8...

2. https://graph.facebook.com/v2.2/{user id1}/friendlists?access token=CAATt8...

For Facebook, SARA reported 24 methods (out of 67) as Contextualized
Resource Names patterns.

Figure 8 shows the comparison between DOLAR and SARA for the detection of
Contextualized versus Contextless Resource Names on 15 RESTful APIs. The figure
shows the detection improvement by SARA over DOLAR by classifying the APIs
in gray boxes (Fig. 8, left). In general, a majority of the URIs from gray boxes (no
conclusive detection) are moved to white boxes (pattern detected), i.e. LDA and
DISCO-based analysis overcome the limitations of the WordNet English dictionary.

The mosaic plot in Fig. 9 shows the detection results for Pertinent versus Non-
pertinent Documentation in 16 RESTful APIs — including three newly added APIs,
e.g. GoogleBook, LinkedIn, and Walmart, but excluding Externalip and Zappos

APIs since their documentations were not available online. The figure suggests
that Dropbox and StackExchange document their resource URIs with higher per-
tinence compared to other APIs considered in this study. By contrast, YouTube,
GoogleBook, and Instagram provide little documentation for their URIs and do
not exhibit high pertinence between URIs and documentation.

Table 7 shows the detection summary for Pertinent versus Nonpertinent Doc-
umentation on 16 RESTful APIs. In total, we analyzed 555 URI–documentation
pairs from those APIs of which 72% (400 out of 555) of tested URIs show per-
tinence with their corresponding documentations. By contrast, 28% (155 out of
555) of the tested URIs are not well described in their documentations according
to SARA. This finding suggests major RESTful APIs developers, like Dropbox,
Facebook, StackExchange, and Twitter, are concerned with documenting their
APIs with consistency and expressiveness. However, SARA also reports compara-
tively a high number (28%, 155 out of 555) of nonpertinent documentations because
LDA topic modeling underperforms (i.e. we had many false positives) for small cor-
pus. Some URI documentations have only a single to a few lines of textual documen-
tation, which is not enough for building a proper and correct topic modeling for any
URI.8

1742001-26

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

Semantic Analysis of RESTful APIs

DOLAR Approach SARA Approach

Alchemy

Bestbuy

CharlieHarvey

Dropbox
Externalip

Instagram

StackExchange

TeamViewer

Ohloh

YouTube

Twitter

Zappos

Musicgraph

Facebook

Bitly

Pattern

No Detection

Antipattern

Fig. 8. Comparison between the DOLAR and SARA approaches for the detection of Contextu-
alized versus Contextless Resource Names.

Pertinent versus Nonpertinent
Documentation

Pertinent Documentation

Nonpertinent Documentation

No Detection

Alchemy
BestBuy

Bitly
CharlieHarvey
DropBox

Facebook

GoogleBook
Instagram
LinkedIn
MusicGraph

StackExchange

Ohloh

TeamViewer

Twitter

Walmart

YouTube

Fig. 9. Detection results for Pertinent versus Nonpertinent Documentation on 16 RESTful APIs.

1742001-27

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

F. Palma et al.

Table 7. Detection results for Pertinent versus Nonpertinent Documentation: numbers in paren-
thesis are numbers of URI documentations analyzed for each API.

6.5. Further discussion of the results

In this subsection, we validate our detection results also in two phases. In the first
phase, we compare the accuracy of SARA with DOLAR30 on a complete API —
namely, DropBox — by means of precision and recall (see Table 8, validation 1). In
the second phase, we compare the overall precisions of DOLAR and SARA by ran-
domly selecting a subset of all tested URIs (see Table 8, validation 2). In addition,
we also perform the validation of detection results of newly defined antipattern on
16 RESTful APIs (see Table 9).

Table 8 shows the comparison of validation results on Dropbox (validation 1)
and on four representative APIs (validation 2) between DOLAR and SARA. In the
first validation for DOLAR, the average precision is 81.3% and recall is 78.0% for
all patterns and antipatterns, whereas, for the same dataset, SARA has an average
precision and recall of 80.9% and 81.0%, respectively. As for the second validation,
the average precision for DOLAR is 79.7%, which is significantly improved by SARA
with an average precision of 87.3%.

We illustrate with one example: in the first validation of Dropbox using DOLAR,
two occurrences of Verbless URI are false positives. The terms copy and search (or
their synonyms) were not considered CRUDy by our algorithm in /1/copy ref/

dropbox/MyDropboxFolder/and/1/search/dropbox/MyDropboxFolder/. How-
ever, the manual validation considered those terms CRUDy. Thus, on Dropbox,
we had a precision of 100% and a recall of 75.0% for CRUDy URI and a precision
of 80.0% and recall of 100% for Verbless URI. However, we improved the detection
and excluded such CRUDy terms in SARA detection algorithms, which improved
the detection precision of Verbless URI pattern by 20.0%.

The Nonhierarchical Nodes antipattern was detected by our detection algorithm
in 14 cases whereas the manual validation suggested that only three of them actu-
ally are organized in a nonhierarchical order. We investigated the cause of such
discrepancies and we found that the URIs identified as antipatterns by our algo-
rithm were manually validated as patterns and have the following structure:

1742001-28

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

Semantic Analysis of RESTful APIs

T
a
b
le

8
.

C
o
m

p
a
ri

so
n

o
f
D

O
L
A

R
a
n
d

S
A

R
A

va
li
d
a
ti

o
n

re
su

lt
s

o
n
D
r
o
p
b
o
x

(v
a
li
d
a
ti

o
n

1
)

a
n
d

p
a
rt

ia
l
va

li
d
a
ti

o
n

re
su

lt
s

o
n
F
a
c
e
b
o
o
k
,
D
r
o
p
b
o
x
,
T
w
i
t
t
e
r
,

a
n
d
Y
o
u
T
u
b
e

(v
a
li
d
a
ti

o
n

2
).

“
P

”
re

p
re

se
n
ts

th
e

n
u
m

b
er

s
o
f
d
et

ec
te

d
p
o
si

ti
v
es

a
n
d

“
T

P
”

th
e

n
u
m

b
er

s
o
f
tr

u
e

p
o
si

ti
v
es

.

z
z

z

1742001-29

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

F. Palma et al.

Table 9. Validation of Pertinent versus Nonpertinent Documentation and Contextual versus
Contextless Resource Names using SARA.

z

1. {baseURI}/{media|revisions|shares}/dropbox/MyDropboxFolder/...
2. {baseURI}/fileops/{copy|delete|move|create folder}/?root=dropbox&path=...

Our dictionary-based analyses did not find any hierarchical relations between
{media,revisions,shares} and {dropbox}, between {MyDropboxFolder} and
{dropbox}, and so on. Yet, these hierarchical relations are obvious for develop-
ers and it was possible for the manual validation to infer the hierarchical relations
among those pairs simply because they use a natural naming scheme.19 Similarly,
for the second example, fileops and {copy,delete,move,create folder} are
manually validated as being in a hierarchical relation while the English dictionaries
could not find any hierarchical relations. Consequently, SARA considered them as
Nonhierarchical Nodes antipattern. Therefore, for this antipattern, we had a low
precision of 21.4%.

In the second validation, also for the Nonhierarchical Nodes antipattern, SARA
faced a similar problem for Twitter as illustrated in these example URIs:

1. {baseURI}/help/privacy.json
2. {baseURI}/statuses/{show.json|user timeline.json}?screen name=...

The dictionary-based analyses did not find any hierarchical relations between
help and privacy or between statuses and {show,user,timeline} and reported
them as nonhierarchical. The precision for Nonhierarchical Nodes antipattern is
therefore 16.7%.

Finally, an interesting observation for DOLAR from Table 8: it identified two
occurrences of the Contextless Resource Names antipattern that were manually
validated as Contextualized Resource Names pattern. Our investigation showed that
the English dictionaries suggested Canucks and albums in Facebook and followers

and list in Twitter to be in two different contexts. However, manual validation
considered them as being in similar contexts, which drove the precision down to
0% for this antipattern in four representative APIs, with an average precision of
53.3%. SARA captures the context from URI’s documentation based on LDA topic
modeling and produces more precise context model. Therefore, it considers Canucks
and albums in Facebook and followers and list in Twitter as contextual. With
a significant improvement in capturing proper APIs context, SARA improves the

1742001-30

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

Semantic Analysis of RESTful APIs

detection of Contextless versus Contextual Resource Names by 38.4% (see Table 8,
validation 2).

1. https://graph.facebook.com/Canucks/albums?access token=CAA2...

2. https://api.twitter.com/1.1/followers/list.json?screen name=...

More precisely, the summary of improvement in the detection accuracy from
Table 8 is the following:

• Overall, for validation 1, SARA improves the average recall by 3.0% while com-
promising the average precision by 0.5%.

• SARA improves the recall of CRUDy URI antipattern by 25.0% and the precision
of Verbless URI by 20.0%, and, thus, the average precision and recall for Verbless
versus CRUDy URI by 10.0% and 12.5%, respectively.

• For validation 2, SARA improves the detection accuracy for Contextual versus
Contextless Resource Names by 38.3% i.e. from 53.3% to 91.7%.

• Overall, for validation 2, SARA improves the average precision by 7.6%.

Table 9 shows the validation results obtained for the newly defined Perti-
nent Documentation pattern and Nonpertinent Documentation antipattern. SARA
obtained an average precision of 66.0% after we randomly selected 25 URI–
documentation pairs and asked three professionals to validate our detection results.
We sampled and revalidated SARA with 25 new sets of REST resource URIs to
verify if the nodes in URIs pertained to the same semantic context. The valida-
tion result in Table 9 shows an average precision of 80.4% for Contextual versus
Contextless Resource Names, which confirms that SARA can capture contexts and
classify identifiers with high accuracy.

We briefly describe two additional SARA detection results: SARA identified
https://api.remix.bestbuy.com/v1/products/mostViewed from BestBuy as Perti-
nent Documentation linguistic pattern. After manually investigating its documen-
tation,d which clearly describes the purpose and use of the URI, we found this
detection appropriate. The manual validation also confirms this detection, i.e. all
three professionals agreed on this URI–documentation pertinence.

On the other hand, https://api.twitter.com/1.1/users/suggestions/:slug/memb-
ers from Twitter was identified as Nonpertinent Documentation linguistic antipat-
tern. Our investigation of its documentatione and the manual validation also

dhttps://api.remix.bestbuy.com/v1/products/mostViewed — The Trending Products endpoint
returns top 10 products, by rank, based on customer views of the bestbuy.com product detail-page
over a rolling 3-h time period. Trending growth is based on a comparison against the previous 3-h
time period. You can also pull this same information by category or subcategory. For more infor-
mation about identifying category ids please refer to our Categories API documentation. Note:
Minimum of 50 page views/h required for inclusion. In addition, deep subcategories may not have
enough user traffic to generate trending data.
ehttps://api.twitter.com/1.1/users/suggestions/:slug/members — accesses the users in a given
category of the Twitter-suggested user list and returns their most recent status if they are not a
protected user.

1742001-31

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

F. Palma et al.

confirmed this detection because the documentation does not seem to relate with its
corresponding URI. The detailed detection results with all 555 URI–documentation
pairs are available on our site: http://sofa.uqam.ca/sara.

6.6. Discussion on the hypotheses

We now discuss the hypotheses stated in Sec. 6.1.

H1 (Accuracy). Table 8 shows the results for the first DOLAR and SARA val-
idation on Dropbox API (validation 1) where we obtained an average precision of
81.3% and recall of 78.0% for DOLAR and an average precision of 80.9% and recall
of 81.0% for SARA. As for the second validation (validation 2), for DOLAR, on a
partial set of tested methods on Facebook, Dropbox, Twitter, and YouTube (i.e.
50 out of 125 tested methods), we obtained an average precision of 79.7%, and
using SARA we further improved the detection accuracy and obtained an average
precision of 87.3%.

For the validation 2, we cannot compute recall because we validated only a
part of all tested methods. For the manually validated subset of URIs, we had a
lower precision ranging between 16.7% and 21.4% only for Nonhierarchical Nodes
antipattern. However, on average, we have precision of 80.9% (validation 1) and
87.3% (validation 2) and a recall of 78.0% (validation 1), with which we can support
our first hypothesis on accuracy.

Finally, for the validation in Table 9, we have an average precision of 73.2% for
Pertinent versus Nonpertinent Documentation and Contextual versus Noncontex-
tual Resource Names revalidation.

H2 (Extensibility). In our previous work,30 we added to SOFA 10 new REST lin-
guistic patterns and antipatterns, which required semantic analyses for their detec-
tion. Currently, SOFA can detect a set of 25 REST patterns and antipatterns from
both syntactic and semantic aspects. Furthermore, we added three new RESTful
APIs (i.e. Instagram, StackExchange, and Externalip) and more than 190 new
HTTP requests from Ref. 29. To add new patterns and antipatterns, one needs to
implement and integrate their detection algorithms within SOFA. To add a new
RESTful API, one must add its service interface, the underlying methods of the
service, an authenticated client that can invoke these methods, and a wrapper SCA
component, which specifies the bindings, base URI, and runtime properties. For this
paper, we added three new APIs (namely, GoogleBook, LinkedIn, and Walmart)
and two new linguistic patterns/antipatterns (namely, Pertinent Documentation
pattern and Nonpertinent Documentation antipattern) following the same process.
Therefore, it is possible to add new RESTful APIs and patterns and antipatterns,
which supports our second hypothesis.

H3 (Performance). The last column of Table 6 shows the detection times for each
pattern and antipattern, ranging between 0.565 s and 0.984 s, with an average of
0.709 s. In fact, the total required time also includes the execution time, i.e. sending

1742001-32

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

Semantic Analysis of RESTful APIs

requests and receiving responses (ranges from 2.074 s to 20.656 s, with an average of
6.920 s). We performed our experiment on an Intel Core-i7 with a processor speed
of 2.50GHz and 8GB of memory. The reported detection times are comparatively
low — on average, 10% of the total required time. However, the total required time
also depends on the number of tested methods for each API. Moreover, the average
detection time for the new pattern and antipattern, i.e. Pertinent Documentation
and Nonpertinent Documentation, is 0.850 s, which is again in the order of seconds.
With such a low average detection time of 0.709 s and execution time of 6.920 s, we
can positively support our third hypothesis on performance.

6.7. Threats to validity

To minimize the threat to the external validity of our results, we performed exper-
iments on 18 well-known APIs by invoking over 300 methods and by analyzing the
documentation of over 550 URIs.

In DOLAR, we used WordNet for lexical and semantic analyses of URIs. How-
ever, one major limitation of WordNet is that it does not include information on
the semantic similarity between words. In addition, the number of defined relation-
ships among words is limited and it lacks compound words. For example, we found
URIs with compound resource identifiers that, when split, may cause loosing con-
textual information. We minimize the threat to the internal validity by employing
LDA topic modeling technique for capturing proper domain-specific context and by
using DISCO-based second-order similarity metric for measuring similarity between
identifiers.

The detection results may deviate depending on the defined algorithmic rules
of linguistic patterns and antipatterns. Engineers may have their own views and
levels of expertise on REST linguistic patterns and antipatterns, which may affect
the definition of algorithmic rules. We tried to minimize this threat to the con-
struct validity by defining all rules after a thorough review of definitions in existing
literature on REST linguistic patterns and antipatterns. We also involved three pro-
fessionals in the validation of the results who decided the patterns or antipatterns
on majority.

Finally, to minimize the threat to reliability validity — the possibility to repli-
cate this study — we gathered the details to replicate this study, including the
algorithmic rules and the client request URIs, on our website.

7. Conclusion and Future Work

REST client developers need to correctly understand RESTful APIs while design-
ing and developing their own Web-based systems. Understandability and reusabil-
ity are thus two major factors that APIs providers must consider when designing
such APIs. This paper presented the SARA approach, an improved version of the
state-of-the-art DOLAR approach.30 SARA is supported by the SOFA framework27

1742001-33

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

F. Palma et al.

extended with syntactic and semantic analyses for the detection of linguistic pat-
terns and antipatterns in RESTful APIs.

We applied SARA to specify 12 linguistic patterns and antipatterns. We vali-
dated the SARA detection strategy by analyzing 18 RESTful APIs after invoking
310 methods and assessing 555 URI documentations and showed its accuracy: (1) an
average precision of 80.9% and recall of 81.0% on Dropbox and (2) an average preci-
sion of 87.3% for a partial validation on Facebook, Dropbox, Twitter, and YouTube.
We also observed that, out of the 18 analyzed RESTful APIs, most of them involved
syntactical URIs design problems and did not organize URI nodes in a hierarchical
manner. However, the REST APIs designers, in general, use appropriate resource
names fit for a context, and they do not use verbs in URIs, which is a good URI
design practice in REST.

The observed accuracy for SARA in terms of precision and recall shows that it
is a feasible technique for detecting linguistic patterns and antipatterns in RESTful
APIs, which can help RESTful API developers and vendors when assessing the
linguistic quality of their APIs. Although we did not discuss in this paper, the
proposed approach also has broader applicability for facilitating the cataloging of
services, at least in part, for the purposes of service discovery and service brokerage
applications.

A further investigation is required on the hierarchical relations among the
resources, for example, in the case of composite RESTful resources which might
not necessarily exhibit semantically meaningful hierarchical relations. As future
work, we want to improve SARA by building API-specific hierarchical models to
properly capture and identify the hierarchical relationships among URI nodes. We
also want to perform additional validation of SARA’s results with RESTful APIs
developers. Since SARA does not perform well for the Non-pertinent Documentation
antipattern with small-sized documentations while creating topic models with small
corpus size, we plan to improve its detection. Moreover, with a thorough empirical
evidence, we plan to confirm the useful implications for well-designed naming.

Acknowledgments

The authors thank Charlie Faucheux for initiating this study. This work was sup-
ported by the Natural Sciences and Engineering Research Council of Canada
(NSERC) and the Fonds de Recherche du Québec — Nature et Technologie
(FRQNT) Research Grants.

References

1. S. L. Abebe, S. Haiduc, P. Tonella and A. Marcus, Lexicon bad smells in software, in
Proc. 2009 16th Working Conf. Reverse Engineering (IEEE, 2009), pp. 95–99.

2. R. Alarcón and E. Wilde, RESTler: Crawling RESTful services, in Proc. 19th Int.
Conf. World Wide Web (ACM, 2010), pp. 1051–1052.

1742001-34

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

Semantic Analysis of RESTful APIs

3. V. Arnaoudova, M. Di Penta, G. Antoniol and Y. G. Guéhéneuc, A new family of
software anti-patterns: Linguistic anti-patterns, in Proc. 2013 17th European Conf.
Software Maintenance and Reengineering (IEEE, 2013), pp. 187–196.

4. V. Arnaoudova, M. Di Penta and G. Antoniol, Linguistic antipatterns: What
they are and how developers perceive them, Empir. Softw. Eng. 21(1) (2015)
104–158.

5. V. Arnaoudova, L. M. Eshkevari, M. Di Penta, R. Oliveto, G. Antoniol and
Y. G. Guéhéneuc, REPENT: Analyzing the nature of identifier renamings, IEEE
Trans. Softw. Eng. 40(5) (2014) 502–532.

6. T. Berners-Lee, R. T. Fielding and L. Masinter, Uniform Resource Identifier (URI):
Generic syntax (2005), https://tools.ietf.org/html/rfc3986.

7. A. Bertolino, P. Inverardi, P. Pelliccione and M. Tivoli, Automatic synthesis of behav-
ior protocols for composable web-services, in Proc. 7th Joint Meeting of the European
Software Engineering Conf. and the ACM SIGSOFT Symp. Foundations of Software
Engineering (ACM, 2009), pp. 141–150.

8. D. M. Blei, A. Y. Ng and M. I. Jordan, Latent Dirichlet allocation, J. Mach. Learn.
Res. 3(4–5) (2003) 993–1022.

9. A. Budanitsky and G. Hirst, Evaluating WordNet-based measures of lexical semantic
relatedness, Comput. Linguist. 32(1) (2006) 13–47.

10. M. Edwards, Service Component Architecture (SCA) (2011), http://www.oasis-
opencsa.org/sca.

11. T. Erl, Service-Oriented Architecture: Concepts, Technology and Design (Pearson Edu-
cation, Boston, 2005).

12. R. T. Fielding, Architectural styles and the design of network-based software archi-
tectures, Ph.D. thesis, University of California, Irvine (2000).

13. T. Fredrich, RESTful service best practices: Recommendations for creating Web ser-
vices (2012), http://www.restapitutorial.com/resources.html.

14. M. Hausenblas, On entities in the web of data, in REST from Research to Practice,
eds. E. Wilde and C. Pautasso (Springer, 2011), pp. 425–440.

15. N. Khamis, R. Witte and J. Rilling, Automatic quality assessment of source code com-
ments: The JavadocMiner, in NLDB 2010: Natural Language Processing and Infor-
mation Systems (Springer, 2010), pp. 68–79.

16. P. Kolb, DISCO: A multilingual database of distributionally similar words, in Proc.
9th Conf. Natural Language Processing (KONVENS-2008), Berlin, Germany (2008),
pp. 37–44.

17. P. Kolb, Experiments on the difference between semantic similarity and relatedness,
in Proc. 17th Nordic Conf. Computational Linguistics (NODALIDA 2009), Odense,
Denmark (2009).

18. J. Kopecky, K. Gomadam and T. Vitvar, hRESTS: An HTML microformat for
describing RESTful Web services, in Proc. IEEE/WIC/ACM Int. Conf. Web Intelli-
gence and Intelligent Agent Technology, Vol. 1 (IEEE, 2008), pp. 619–625.

19. K. Laitinen, Estimating understandability of software documents, SIGSOFT Softw.
Eng. Notes 21(4) (1996) 81–92.

20. D. Lawrie, C. Morrell, H. Feild and D. Binkley, Effective identifier names for compre-
hension and memory, Innov. Syst. Softw. Eng. 3(4) (2007) 303–318.

21. M. Lu, X. Sun, S. Wang, D. Lo and Y. Duan, Query expansion via WordNet for
effective code search, in Proc. 22nd IEEE Int. Conf. Software Analysis, Evolution,
and Reengineering, Montreal, Canada (2009), pp. 545–549.

1742001-35

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

F. Palma et al.

22. P. A. Ly, C. Pedrinaci and J. Domingue, Automated information extraction from web
APIs documentation, in Proc. 13th Int. Conf. Web Information System Engineering
(WISE 2012) (2012), pp. 497–511.

23. M. Maleshkova, C. Pedrinaci and J. Domingue, Supporting the creation of semantic
RESTful service descriptions, in Proc. 8th Int. Semantic Web Conf. (ISWC 2009)
(2009).

24. M. Masse, REST API Design Rulebook, O’Reilly and Associate Series (O’Reilly Media,
2011).

25. C. Mateos, J. M. Rodriguez and A. Zunino, A tool to improve code-first web services
discoverability through text mining techniques, Softw. — Pract. Exp. 45(7) (2015)
925–948.

26. Microsoft, Microsoft MSDN: Capitalization Styles (2016), https://msdn.microsoft.
com/en-us/library/x2dbyw72(v=vs.71).aspx.

27. N. Moha, F. Palma, M. Nayrolles, B. J. Conseil, Y. G. Guéhéneuc, B. Baudry and
J. M. Jézéquel, Specification and detection of SOA antipatterns, in Proc. 10th Int.
Conf. Service-Oriented Computing, Lecture Notes in Computer Science, Vol. 7636
(Springer, 2012), pp. 1–16.

28. Open Mobile Alliance, Guidelines for RESTful Network APIs (OMA, 2012).
29. F. Palma, J. Dubois, N. Moha and Y. G. Guéhéneuc, Detection of REST patterns

and antipatterns: A heuristics-based approach, in Service-Oriented Computing, eds.
X. Franch, A. Ghose, G. Lewis and S. Bhiri, Lecture Notes in Computer Science, Vol.
8831 (Springer, Berlin, 2014), pp. 230–244.

30. F. Palma, J. Gonzalez-Huerta and N. Moha, Are RESTful APIs well-designed? Detec-
tion of their linguistic (anti)patterns, in Proc. 13th Int. Conf. Service Oriented Com-
puting, Goa, India (Springer, 2015), pp. 171–187.

31. L. Panziera and F. D. Paoli, A framework for self-descriptive RESTful services, in
Proc. 22nd Int. Conf. World Wide Web (IW3C2, 2013), pp. 1407–1414.

32. A. Parrish, Social network APIs: A revised lexical analysis (2010), http://www.
decontextualize.com/2010/04/social-network-apis-a-revised-lexical-analysis/.

33. F. Petrillo, P. Merle, N. Moha and Y. G. Guéhéneuc, Are REST APIs for cloud
computing well-designed? An exploratory study, in Proc. Int. Conf. Service-Oriented
Computing (Springer International Publishing, 2016), pp. 157–170.

34. M. M. Rahman and R. K. Chanchal, TextRank based search term identification for
software change tasks, in Proc. 22nd IEEE Int. Conf. Software Analysis, Evolution,
and Reengineering, Montreal, Canada (2015), pp. 540–544.

35. C. Rodŕıguez, M. Baez, F. Daniel, F. Casati, J. C. Trabucco, L. Canali and G. Per-
cannella, REST APIs: A large-scale analysis of compliance with principles and best
practices, in ICWE 2016, Lecture Notes in Computer Science, Vol. 9671 (Springer
International Pubishing, 2016), pp. 21–39.

36. J. M. Rodriguez, M. Crasso, A. Zunino and M. Campo, Improving web service descrip-
tions for effective service discovery, Sci. Comput. Program. 75(11) (2010) 1001–1021.

37. L. Seinturier, P. Merle, R. Rouvoy, D. Romero, V. Schiavoni and J. B. Stefani, A
component-based middleware platform for reconfigurable service-oriented architec-
tures, Softw. — Pract. Exp. 42(5) (2012) 559–583.

38. M. Steyvers and T. Griffith, Probabilistic topic models, in Latent Semantic Analysis:
A Road to Meaning, eds. T. Landauer, D. McNamara, S. Dennis and W. Kintsch
(Laurence Erlbaum, 2007).

39. S. Tilkov, REST antipatterns (2008), www.infoq.com/articles/rest-anti-patterns.

1742001-36

July 6, 2017 14:12 WSPC/S0218-8430 111-IJCIS 1742001

Semantic Analysis of RESTful APIs

40. C. Treude, M. P. Robillard and B. Dagenais, Extracting development tasks to navigate
software documentation, IEEE Trans. Softw. Eng. 41(6) (2015) 565–581.

41. F. Wei, A. Barros and C. Ouyang, Deriving artefact-centric interfaces for over-
loaded web services, in Proc. Int. Conf. Advanced Information Systems Engineering
(Springer, 2015), pp. 501–516.

1742001-37

