Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

Volume 52, Issue 2, February 2010 |55 0B50-5549

INFORMATION
AND
SOFTWARE
TECHNOLOGY

Avallsbie orlire atwww saencedirectaom

i;" ScienceDirect

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Information and Software Technology 52 (2010) 152-168

=1.v:-::mm ON |

TECHNOLOGY |

Contents lists available at ScienceDirect

Information and Software Technology

)

[

journal homepage: www.elsevier.com/locate/infsof

Identification of design motifs with pattern matching algorithms

Olivier Kaczor, Yann-Gaél Guéhéneuc *, Sylvie Hamel

DIRO, Université de Montréal, C.P. 6128 succursale Centre Ville, Montréal, Québec, Canada H3C 3]7

ARTICLE INFO ABSTRACT

Article history:

Received 21 January 2009

Received in revised form 22 August 2009
Accepted 24 August 2009

Available online 31 August 2009

Design patterns are important in software maintenance because they help in understanding and re-engi-
neering systems. They propose design motifs, solutions to recurring design problems. The identification
of occurrences of design motifs in large systems consists of identifying classes whose structure and orga-
nization match exactly or approximately the structure and organization of classes as suggested by the
motif. We adapt two classical approximate string matching algorithms based on automata simulation
and bit-vector processing to efficiently identify exact and approximate occurrences of motifs. We then
carry out two case studies to show the performance, precision, and recall of our algorithms. In the first
case study, we assess the performance of our algorithms on seven medium-to-large systems. In the sec-
ond case study, we compare our approach with three existing approaches (an explanation-based con-
straint approach, a metric-enhanced explanation-based constraint approach, and a similarity scoring
approach) by applying the algorithms on three small-to-medium size systems, JHorDraw, Juzzie, and
QuickUML. Our studies show that approximate string matching based on bit-vector processing provides

Keywords:

Design patterns

Design motifs

Identification of occurrences
Bit-vector

Automata simulation
Experimental validation

efficient algorithms to identify design motifs.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Maintenance of object-oriented systems is a time- and re-
source-consuming activity that amounts to more than 50% of the
total cost of the systems [1,2]. Documentation is often obsolete,
if existing, and design information and decisions are often lost. A
major task of maintainers is design recovery, which consists of
building higher-level abstractions from source code [3], the only
up-to-date source of information about a system, to understand
the design and identify where to perform maintenance activities.

Design recovery benefits from the knowledge of design patterns
[4] used by developers during design and implementation. Indeed,
design patterns provide design motifs that are “good” solutions to
recurring design problems. Design motifs are the solutions advo-
cated by the design patterns, which are implemented in systems
as micro-architectures where different actual entities (classes and
interfaces) and elements (methods, fields, binary class relation-
ships) play the roles defined in the motifs, for example a class
AttributeFigure may play the role of Leaf defined in the Com-
posite design motif [4, p. 163].

The identification of micro-architectures similar to design mo-
tifs helps the design recovery task by highlighting potential uses

* Corresponding author. Present address: Department of Computer Engineering
and Software Engineering at Ecole Polytechnique de Montréal. Tel.: +1 514 343
6782; fax: +1 514 343 5834,

E-mail addresses: Kkaczorol@iro.umontreal.ca (O. Kaczor), guehene@iro.
umontreal.ca (Y.-G. Guéhéneuc), hamelsyl@iro.umontreal.ca (S. Hamel).

0950-5849/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2009.08.006

of design motifs and, by extension, design problems and design
decisions made in a system architecture. The intent of the develop-
ers having implemented the micro-architectures may not have
been to solve the related design problems; yet, the knowledge that
these micro-architectures are similar to some motifs may help
other developers to grasp the complexity and the relationships
among the classes in the micro-architectures and the rest of the
system. However, micro-architectures implementing design motifs
are spread in a system architecture and, therefore, are difficult for
maintainers to identify manually through code inspection. Impor-
tant design decisions are lost.

Most previous approaches of design motifidentification are often
limited because of their time performance. For example, some ap-
proaches used a Prolog-like unification mechanism [5] or constraint
programming [6], which are slow because of the combinatorial
explosion of possible occurrences, i.e. the possible combinations of
entities in a system that form micro-architectures similar to a design
motif. Other approaches based on metrics [7,8] showed a promising
increase in performance but are still too slow to be included in the
maintainers’ day-to-day design recovery tasks. Tsantalis et al. [9] re-
cently proposed an approach based on similarity scoring with land-
marking performance, as discussed in Section 2.

The structural matching between micro-architectures and design
motifs is similar to sequences comparisons in bioinformatics. In-
deed, duplication with modification is an essential process in protein
evolution, and gene mutations are also frequent in biology [10].
Localizing mutated genes in a long anonymous DNA sequence or
modified proteins in a long amino-acid sequence are important

0. Kaczor et al./Information and Software Technology 52 (2010) 152-168 153

problems in bioinformatics, which are similar to the identification of
occurrences of design motifs in large systems. Authors tackle these
problems in bioinformatics with approximate string matching algo-
rithms. Their algorithms are efficient because the length of the DNA
or amino-acid sequences can reach billions of characters. Dynamic
programming [11-13], automata simulation [14,15], and bit-vector
processing [16-19] are three interesting pattern matching ap-
proaches. Yet, they cannot be used directly for design motif identifi-
cation because they are designed for strings, and a design motif is
more like a regular expression than a word.

While regular expression matching cannot be resolved easily
and efficiently with a dynamic programming approach, it can be
done with bit-vector processing and automata simulation algo-
rithms. Bit-vector processing algorithms are particularly promis-
ing, for example they have been used to represent binary
decision diagrams [20].

In our previous work [21], we introduced a process to convert
object-oriented programs into strings and to analyze these strings
to identify occurrences of design motifs. This previous work ad-
dressed two aspects of design motif identification: quality of the
micro-architectures and quality of the identification process. Qual-
ity of the micro-architectures includes identifying complete and
approximate occurrences of design motifs and the precision and
recall of the identification. Quality of the identification process in-
cludes performance (cost of the identification in processing time)
and automation (automated versus manual process).

We build on our previous work to present and compare two ap-
proaches for design motif identification using automata simulation
and bit-vector processing as well as to perform a comparison with
previous approaches. Thus, we contribute a complete survey of the
adaptation of the pattern matching algorithms used in bioinfor-
matics to design motif identification, in which Section 2 summa-
rizes related studies and highlights their drawbacks; Section 3
describes the pre-processing of our algorithms; Section 4 details
our two algorithms; Section 5 presents the approximations that
must be handled when searching for approximate occurrences;
Section 6 details our implementation; Section 7 presents two case
studies to compare the results with previous approaches in terms
of performance, precision, and recall; and Section 8 concludes
and introduces future work. The results of this work could be used
as a basis for future work applying bioinformatics algorithms to
motif identification.

2. Related work

Several approaches of design motif identification have been
introduced in the literature. Most of these approaches use struc-
tural matching between micro-architectures and design motifs,
with different algorithms being used: rule inference [5,22], queries
[23,24], fuzzy reasoning nets [25], and constraint programming
[6,26].

For example, Wuyts [5] described design motifs as Prolog predi-
cates and system entities as facts. He applied a Prolog inference algo-
rithm to unify predicates and facts and thus identify entities playing
roles in design motifs. The main problem of such a structural ap-
proach is the inherent combinatorial complexity of identifying
subsets of entities matching design motifs, which corresponds to a
problem of subgraph isomorphism [27]. Approaches based on con-
straint programming [6] also face a combinatorial complexity,
although explanations [28] reduce this complexity through user-
interactions [26].

Antoniol et al. introduced an approach to reduce the search
space using metrics [7]. They designed a multi-stage filtering pro-
cess to identify micro-architectures identical to design motifs. For
each entity of a system, they computed some metrics, for example,

the numbers of inheritance, association, and aggregation relation-
ships, and they compared these values with expected values for the
corresponding role in a design motif before applying constraint-
based structural matching. They inferred expected metric values
from design motif descriptions manually. The main limitation of
their work was the assumption that the micro-architectures accu-
rately reflect the design motifs, which is rare. Moreover, the theo-
retical quantification of roles, when possible, did not reduce the
search space significantly.

Following [7], the second author and other collaborators im-
proved on the two previous approaches by combining metric
thresholds obtained using machine learning algorithms and expla-
nation-based constraint programming [8]. Roles in design motifs
were quantified empirically using P-MART, a database of micro-
architectures similar to design motifs manually identified in sev-
eral systems. This quantification was used to remove from the
search space entities which cannot participate in a design motif
according to the empirical data. Explanation-based constraint pro-
gramming was applied on the remaining entities to identify micro-
architectures similar to design motifs. This approach showed
promising results but suffers from a lack of data on manually-iden-
tified micro-architectures and, again, from the performance of
explanation-based constraint programming.

Tsantalis et al. [9] recently introduced a novel approach to iden-
tify design motifs in object-oriented systems using similarity scor-
ing. The authors converted the graphs representing (parts of) the
structure of a motif and of a system into a set of matrices where
rows and columns represent roles (or entities) and a value of 1
indicates a particular relation between roles and-or entities. They
defined at least six different matrices to describe, for example, the
association graph, the generalization graph, abstract classes, and
the graph of similar method invocations. They introduced a simi-
larity scoring between matrices to compute the similarity between
a motif and a set of entities while considering the number of matri-
ces in which roles are involved to normalize the score. This ap-
proach is interesting because it allows for fast computations. It
compares to our approaches in which we convert the graph of a
motifs into an automata (automata simulation) or into a string of
tokens (bit-vector processing algorithm). However, in our ap-
proaches, we attempt to ease the description of approximations,
while Tsantalis et al.’s constraint the possible approximations to
few cases.

Moreover, we discovered some errors in the reported results.
For example in JHotDraw v5.1, the approach did not identify the
Observer design motif where classes Figure and FigureChan-
geListener in package CH.ifa.draw.framework play the roles
of Subject and Observer respectively. Still in JHotDraw v5.1,
the approach reports CommandButton and Command in package
CH.ifa.draw.util as Context and State/Strategy, respec-
tively, in a State or Strategy design motif, while the Command-
Button class in fact implements a Command-enabled button,
encapsulating a given and unique Command, as confirmed by the
system documentation.

It is important to identify similar but not identical occurrences
to handle cases where a design motif has been adapted to better fit
its context of use or the developers’ needs. For example in Fig. 1, an
excerpt from JHorDraw v5.1, the CompositeFigure class, which
plays the role of Composite, is not in a composition relationship
with class Figure, which plays the role of Component, and the
class AbstractFigure has been inserted between these two clas-
ses. Most previous approaches, except Tsantalis et al.’s [9] and one
by the second author and collaborators [29], could not identify

1 Tsantalis et al. [9] kindly detail their results at http://java.uom.gr/~nikos/pattern-
detection.html, last accessed on the 20/01/2009.

154 0. Kaczor et al. /Information and Software Technology 52 (2010) 152-168

Figure

AN

AbstractFigure

ag

as

PolyLineFigure AttributeFigure CompositeFigure

Fig. 1. Example of approximate implementation of the Composite in JHorDraw
where as, ag, and in are association, aggregation, and inheritance relationships.

automatically this micro-architecture similar to the Composite
design motif, shown in Fig. 2, although this information would
be useful to maintainers to understand the design decisions behind
the structure.

Therefore, the main limitations of previous work are threefold.
Some previous approaches are slow [5,26] and thus cannot be used
in industrial contexts. Other approaches only identify occurrences
that match exactly their representations of the design motifs
[5,7,9,23,24]. New descriptions can be added but a more interest-
ing approach would be to start from the representation given in
[4] and allow automated approximation to relieve the maintainers
from describing all possible variants of a design motif. Tsantalis et
al.’s approach is very promising but we follow a different research
avenue by studying the use of two algorithms from bioinformatics
that satisfy our needs for approximations and performance: auto-
mata simulation and bit-vector processing.

In addition to the previous limitations, structural approaches
are inherently limited because they cannot take into account or as-
sess the intent of the identified occurrences. Indeed, even if a set of
classes are structurally similar to and have the same relationships
than the classes describing a motif; this similarity could be acci-
dental, i.e. does not necessarily reflect the developers’ intent. The
difference between structure and intent is the main reason for dis-
tinguishing between design patterns and design motifs [29]. To the
best of our knowledge, only Kampffmeyer's work tried to address
the intent of design patterns [30].

Client Component
+operation()
/Tk
Leaf Composite
+operation() +operation()

+add(¢ : Component)
+remove(¢ : Component)
+getComponent(i : int) : Component

(a) UML-like model.

3. Pre-processing

Classical pattern matching algorithms are designed for strings
and are interesting in bioinformatics, where sequences of tokens
(nucleotides, amino-acids, and so on) are the main subject of study.
Thus, before applying algorithms from bioinformatics to the iden-
tification of design motifs, we must convert systems and design
motifs into strings to use classical approaches for our purpose.
We must create the smallest possible strings because the complex-
ity of the algorithms depends on their lengths.

This pre-processing of design motifs and systems into strings
involves three steps. We first convert models of design motifs
and systems into digraphs (Section 3.1). Then, we transform these
digraphs into Eulerian digraphs (Section 3.2) to finally generate un-
ique string representations (Section 3.3).

3.1. Design motif and system models

Fig. 2a shows the design motif of the Composite design pattern
[4, p. 163] with a UML-like graphic representation. A typical ob-
ject-oriented system is represented statically by its source code
describing the entities and elements interacting to provide its
functionality. Fig. 3a shows the model of a simple example system
with the same UML-like representation. Both representations are
very similar and we can model them using a single formalism.

We use a same meta-model to describe entities and elements
either forming a design motif or a system. The meta-model defines
constituents whose instances are entities and elements combined
together to describe models of design motifs and systems. We
consider binary class relationships as elements: creation, special-
ization, implementation, use, association, aggregation, and compo-
sition relationships. We distinguish the association, aggregation,
and composition relationships using rules on their implementa-
tions and part of their behaviour at runtime, as far as it can be
inferred statically, as described in a previous work [31].

We also use ignorance relationships [32]. Indeed, the strings ob-
tained from the design motifs specify what must be found in a sys-
tem, while some motifs also specify what should not be found. For
example, the entity playing the role of Adaptee in the Adapter
design motif must ignore the entity Adapter, i.e. must not have
any relationship with it, as shown in Fig. 4. The number of false
positives is reduced by adding ignorance relationships in our de-
sign motifs strings.

A model of a design motif or a system is actually a graph whose
vertices are entities and whose edges are elements connecting

Client as Component co
+operation()
T
dm in in
Leaf Composite
+operation() +operation()

+add(¢ : Component)
+remove(¢ : Component)
+getComponent(i : int) : Component

(b) Eulerian model.

‘Component in Leaf dm Component in Composite co Leaf‘

(c) String of the Eulerian model (excluding the
Client class which is not important to identify, with
Component as the root vertex).

Fig. 2. Representations of the Composite design motif where as, ag, and in are as defined in Fig. 1 and co and dm are composition and dummy relationships.

0. Kaczor et al./Information and Software Technology 52 (2010) 152-168 155

(a) UML-like model.

(b) Eulerian model.

|AinBinCinEdmCinFcoBdechasCindeHcrEdechdeasGagH

(c) String of the Eulerian model (with A as the root vertex).

Fig. 3. Representations of a simple example system where the Composite design motif is implemented by class B as component, class E as composite, and classes ¢, D, and E
as leaves, and where the new relationship cr corresponds to creation (instantiation) relationships.

Client as Target ig

ig Adaptee

7

ig

Adapter

Fig. 4. Adapter design motif with ignorance relationships (ig).

entities. Thus, edges are directed because binary class relationships
are directed. If more than one identical relationship (e.g. two asso-
ciations) exists between the same two entities, we keep only one
relationship of each type. We choose to keep one relationship be-
cause (1) a same relationship can be matched against any number
of relationships in the design motif and (2) no design motif in-
cludes a class with two relationships of the same type pointing to-
ward a same class. This is a simplifying assumption that leads
certain motifs being not distinguishable. Yet, we never encoun-
tered such motifs so far.

We only consider entities and binary class relationships when
defining our models of design motifs and obtaining the corre-
sponding strings. This choice is motivated by the simplicity of con-
verting our models into strings using the two steps described in the
following subsections. Yet, it limits the type and amount of data
available to perform the identification and, thus, may lead to false
positive occurrences being identified. In particular, we do not use
polymorphism and the presence of particular method invocations
(such as the dual dispatch in the Visitor design pattern). How-
ever, our choice still allows us to identify meaningful occurrences,
as shown in Section 7 and the use of other types of data, such as
method invocations, is left to future work.

3.2. Eulerian digraphs of design motif and system models

With the previous meta-model, a model of a design motif or a
system is a digraph. A digraph is typically not Eulerian, i.e. it does
not contain a Eulerian circuit, a cycle which uses each edge exactly

once. We transform a digraph of a design motif or a system into a
Eulerian graph automatically and consistently by adding dummy
edges between vertices with unequal in- and out-degrees. We
use the transportation simplex [33] to obtain the number of dum-
my edges to be added among vertices and we consider those with
greater in-degree as suppliers and those with greater out-degree as
demanders. We assume uniform unitary shipping costs between
suppliers and demanders. The transportation simplex computes
the optimal solution (minimum cost) and a list of flows among
suppliers and demanders. In our case, a flow represents a dummy
edge between vertices. If the flow is greater than one, then as many
dummy edges must be added between the vertices. Figs. 2b and 3b
show respectively the Eulerian models of the Composite design
motif and the simple example system.

3.3. Design motif and system strings

We compute the minimum Eulerian circuit using a dedicated
algorithm to obtain unique strings of a design motif and a system
model. The algorithm solves the directed Chinese Postman prob-
lem: the shortest tour of a graph which visits each edge at least
once (see for example [34]). For a Eulerian graph, a Eulerian circuit
is the optimal solution to the Chinese Postman problem.

Given a starting root vertex ., the solution of the Chinese
Postman problem is a unique list of edges starting and ending with
Vroo and containing all edges once. We iterate over the list of edges
to build a unique string of design motif and system models with re-
spect to the root vertices. Figs. 2c and 3c show strings of the Com-
posite design motif and the example system with Component
and A as root vertices respectively.

The resolution of the Chinese Postman problem requires choos-
ing a root vertex for the traversal of the digraph. For example, the
string of the Composite design motif from the Component class
is: Component in Leaf dm Component in Composite co Compo-
nent, while from the Composite class it is: Composite co Com-
ponent in Leaf dm Component in Composite. Although
different, these strings are identical when considered as circular
sequences, i.e. the last token in the string is also its first token. In-
deed, when first entering a vertex, our implementation of the Chi-
nese Postman algorithm always chooses the same edge to leave a
vertex, using the edge with the smallest weight and a lexicographic
order among equally-weighted edges.

156 0. Kaczor et al. /Information and Software Technology 52 (2010) 152-168

4. Identification

We summarise our approach of design motif identification intu-
itively as follows: we identify a micro-architecture similar to a de-
sign motif by simultaneously reading a system and a design motif
and then recording the entities in the system that match those in
the design motif in terms of structure and organization. Thus, de-
sign motif identification is an inherently combinatorial problem,
requiring all possible combinations of entities through their ele-
ments to be compared against a motif.

We introduce two algorithms to retrieve occurrences of design
motifs from the strings. The first identification algorithm uses
automata simulation. The second one is an iterative bit-vector pro-
cessing algorithm somewhat similar to bioinformatics approxi-
mate string matching algorithms.

4.1. Automata simulation

Automata simulation is often used to search for occurrences of a
regular expression in a text. The construction of a finite automaton
from a regular expression can be automated [35,36]. There are two
kinds of finite automata, nondeterministic finite automata (NFA)
and deterministic finite automata (DFA), both of which can accept
the same languages. It is always possible to construct a NFA from a
DFA and vice versa [37]. Fig. 5 represents the NFA to identify occur-
rences of the Composite design motifs. A design motif identification
NFA has |[m/2] + 1 states where m represents the number of trip-
lets in the design motif string. A triplet is composed of two classes
connected by a relationship. A conditional transition is added for
each triplet of the design motif string. The conditions are used to

% b

Component in Leaf

ensure that each occurrence of a role is replaced by the same sys-
tem entity. Loop transitions are also added to every state except
the last one to allow “holes” between triplets in the system string.
This is similar to pushdown automata that can use and manipulate
a stack containing data to determine the next transition.

When analyzing the simple example system represented in
Fig. 3 to identify micro-architectures similar to the Composite de-
sign motif, the NFA reads the first triplet A in B and the states O
and 1 activate. When state 1 activates, a part of a possible occur-
rence is created with A as Component and B as Leaf. State 0 is kept
activated by the X transition to allow other occurrences with
different entities for the Component and Leaf roles. For example,
a part of a new occurrence {Component = B,Leaf =D} is
created when reading the next triplet. The automaton finds the
occurrence {Component = B,Leaf = D,Composite = E} after
passing through the states 0, 0, 1, 2, 3, and 4. If a transition contains
arole already processed, it can only be taken if the symbol read for
that role corresponds to the same previous entity. For example, the
transition Component in Composite was followed when reading
the triplet B in E.

In contrast to acceptors automata that test whether an input is
accepted or not, the path taken during the simulation of the NFA is
important. Each path to the final state is an occurrence of the motif.
Fig. 6 presents the pseudo-code to identify a design motif using the
NFA. The execution of the simulation with backtracking is done
with the function match with the system string, the initial state,
and an empty occurrence as parameters.

Because there can be a very large number of paths to manage,
automata simulation is not really efficient. The use of a DFA can
help because only one path can find every occurrence. For that rea-

Leaf dm Component

0 O

Component in Composite

@ Composite co Component

Fig. 5. NFA for the identification of occurrences of the Composite design motif. The X symbol represents transitions that can be followed with any triplets of the input.

by

match(input, currentState, currentOccurrence)

occurrences = {}
IF currentState IS finalState

ADD currentOccurrence IN occurrences

RETURN occurrences
ENDIF
IF (NOT END OF input)

FOR ALL transitions x IN currentState.transitions
IF x.conditionRespected (input.getTriplet, currentOccurrence)

UPDATE currentOccurrence

ADD match(input.removeTriplet, x.destinationState, currentOccurrence)

IN occurrences
ENDIF
ENDFOR
ENDIF
RETURN occurrences

Fig. 6. Simplified pseudo-code to identify a design motif with a NFA.

0. Kaczor et al./Information and Software Technology 52 (2010) 152-168 157

Cl co CVQ

Fig. 7. DFA for the identification of occurrences of the Composite design motif. For
a given state, the » symbol represents the complementary of all output transitions
for this state.

son, we convert our NFA into a DFA. Fig. 7 represents the DFA to
identify occurrences of the Composite design motif. Each transi-
tion is also associated with a condition. For example, transition
C, in C3 between states 1 and 2 can only be taken if C, represents
the entity already associated with the role Component (i.e. C, of
the transition C; co C, between states 0 and 1).

Transitions labelled are only taken if no other transition can be
followed. This corresponds to every other triplet not already spec-
ified by transitions. Transitions with a dm can be considered as e-
transitions in NFA and as transitions without condition in DFA,
i.e. they can be followed without moving forward in the input.

The automaton-based approach assumes that triplets always
appear in the same order in the motif and system strings. The algo-
rithm used to build the strings does indeed increase the likelihood
that triplets appear in the same order, but in the cases where they
do not, an automaton is not able to identify the motif and thus
misses occurrences. This limitation can be solved by adding (1)
an edge between certain pairs of states in the automaton and (2)
the condition that an occurrence exists if and only if all states of
the automaton have been reached.

Adding edges allows the automaton to identify occurrences in
which the triplets are not in the expected order. Fig. 8 shows the
NFA in Fig. 5 modified to handle unexpected orders in the triplets:
the end nodes of any edges is now reachable from any state using
the transition that was present in the original automaton. Thus,

Cg co Ol

C] in 02

Fig. 8. NFA for the identification of occurrences of the Composite design motif in
Fig. 5 modified to handle unexpected order.

from any node, it is possible to reach any other node to handle trip-
lets in any order.

Adding the condition that all states must have been reached
forces the automaton to cover all edges and, therefore, prevents
the automaton to miss occurrences because of the triplets being
in different order than expected.

However, these extra edges and condition further slow down
the performance of the automata simulation. Moreover, automaton
simulation does not handle elegantly ignorance relationships, be-
cause they cannot be expressed as edges among states. Ignorance
relationships must be treated globally, either as conditions over
the transitions or filters over the identified occurrences.

Therefore, we conclude that it is possible to apply pattern
matching algorithms based on automata to the identification of de-
sign motifs. However, automata simulation has drawbacks (perfor-
mance, ignorance) and, because of these drawbacks, we explore
the possibilities of bit-vector processing algorithms.

4.2. Iterative bit-vector processing algorithm

The use of a bit-vector algorithm for design motif identification
is interesting because such an algorithm can find a solution to a
problem in a bounded number of vector operations, which is inde-
pendent of the length of the system string. Allowable operations in
bit-vector algorithms are restricted to inherently-parallel bit-wise
operations available in processors (including shifts), which implies
that a bit-vector algorithm can be implemented efficiently.

We developed a dedicated iterative bit-vector processing algo-
rithm to find exact and approximate occurrences of a design motif
in a system. Let a token be any symbol appearing in a string x rep-
resenting a system model. The characteristic vector of a token 1
associated with the string x = x; - - - X, denoted by [, is

o { 1 if X = l
"7 10 otherwise.
For example, in the string of the system in Fig. 3c, the characteristic
vector of class G is
G = 00000000000000 10001000100010000
—

14
while the vector for the inheritance relationship in is

in = 010100010001 000000000000000000 .
19

Characteristic vectors are sequences of bits on which to apply stan-
dard bit operations: bit-wise logical “and”, “or” operators, left and
right shifts. Due to our construction of the strings, tokens compos-
ing a design motif always appear in the same order modulo a shift,
so we consider our characteristic vectors as being circular. We de-
fine the right shift of a characteristic vector I=1;---I, 1l as
— I=Iyly -+ I_1, the elements have been shifted to the right by
one position, circularly. We similarly define the left shift of [as
—Il=5L-Iyl.

We use characteristic vectors to find the entities playing a role
in a design motif. Our algorithm iteratively reads triplets of tokens
in the design motif string, e.g. tn.ir = {Rolel, Relationship, Role2},
and identifies in the system string—using disjunctions and
shifts—all possible triplets that matches t;, i.e. all possible pairs
of entities between which the Relationship exists. It stores the enti-
ties identified as playing potentially Role1 and Role2 and then reads
on the next triplet. While reading the next triplet and identifying
the entities potentially playing each new role, the algorithm uses
the sets of already identified entities to reduce the number of can-
didate entities, similarly to a unification algorithm. When the algo-
rithm has read the last triplet, a set is associated with each role. If
any one of these sets is empty, no occurrence of the motif has been

158 0. Kaczor et al. /Information and Software Technology 52 (2010) 152-168

before := {}
after := {}
—token

FOR EACH ENTITY X IN THE STRING
conjunctionX := X A token
IF conjunctionX IS NOT NULL
ADD X IN after
«—+«—conjunctionX
FOR EACH ENTITY Y IN THE STRING
conjunctionY :=Y A disjunctionX
IF conjunctionY IS NOT NULL
ADD Y IN before
ENDIF
ENDFOR
ENDIF
ENDFOR

Fig. 9. Pseudo-code for the retrieval of the entities before and after a specific token.

identified, else as many occurrences as the size of the smallest set
have been identified.

For example, to identify exact occurrences of the Composite
design motif in Fig. 2 in the simple example system in Fig. 3, the
algorithm reads the first triplet Component in Leaf and finds po-
tential entities for the Component and Leaf roles in the string of
the simple example system. It retrieves entities before and after
the in token in the system string by applying bit-wise operations
on its characteristic vectors. Fig. 9 shows the pseudo-code for the
retrieval of the entities before and after a specific token.

The algorithm now has initial sets of entities for the two roles.
The next triplet represents a dummy relationship added by the
transportation simplex and is therefore ignored. The algorithm
then processes the next triplet Component in Composite. How-
ever, it does not take potential Component entities in the set of
all entities but in the Component role set, because it has already
read the Component token. Thus, sets of entities represent poten-
tial occurrences and the algorithm tests each occurrence repeat-
edly after each triplet. In the case of the triplet Component in
Composite, the algorithm searches for all possible entities for
the Composite role for each occurrence by verifying if the disjunc-
tion between every entity characteristic vector and the disjunction
between the — in characteristic vector and the —— Component
characteristic vector is not null. For example, with the current
occurrence {Component = B, Leaf = C}, we compute the following
operations on the characteristic vectors

—— B =00001000100010---0
18
— in =00101000100010---0
18
(—— B) A (—in) = 00001000100010---0
18
E = 0000000010 ---01000000
— —

——
8 15 6
(—— B) A (— in) AE = 0000000010 --0.
8 22

and occurrence {Component = B, Leaf = C, Composite = E} is
added to the list of occurrences because (—— B) A (— in) AE is
not null: the entity E is found after the tokens B in in the system
string.

Table 1 shows the occurrences after the first, third, and fourth
triplets have been processed sequentially. The second triplet is
ignored because it corresponds to a dummy relationship. The or-
der in which the triplets are read influences the identification

Table 1
Occurrences when beginning with the in relationship between Component and
Leaf.

Triplets
First Third Fourth
(in) (in) (co)
- - -
c c [0 c (0]
9] Q =] (7} 2
c c wn < w0
o 15} o |l o o
ElwlEls|E|Els|E
3] 3] [}

S|13[S|18]S|S8[3]|S
A | B A |B|B B|C| E
B |C B|C|C B|D|E
B |D B|C|D B|E|E
B |E B|C|E

B|D|C

10

B|D|D

B|D|E

B|E|C

B|E|D

B|E|E

time. It is preferable to treat less frequent relationships first to
reduce the number of potential occurrences early in the process.
This can be done by giving different weights to edges when
resolving the Chinese Postman problem or by doing a post-treat-
ment on a design motif string. For example, the Composite
string could be read circularly beginning with the Composite
token, so that the composition relation co would be treated first.
Table 2 shows that this new ordering decreases the number of
potential occurrences to 3 with respect to the original number
of 10 in Table 1.

Negative relationships are easily handled with the negation
operator. For example, an ignorance relationship between the
two classes C and E exists if:

(= C)A=(— inv— asv— agv — coV---))
NE=0---0
31

5. Approximations

Design motif identification is an approximate unification prob-
lem. Approximation is necessary because, for example, a docu-
mented occurrence of the Composite design motif in JHorDraw
v5.1 has a class inserted between those playing the roles of Compo-
nent and Composite, as shown in Fig. 1 in Section 2. Thus, we in-
clude automatic and manual approximation mechanisms in our
identification algorithms.

Maintainers can perform approximations manually by specify-
ing which relationships should be relaxed. However, describing
all possible approximations is not reliable because one approxima-
tion could be overlooked and because all these approximations are
tedious and difficult to maintain. An automatic mechanism of

0. Kaczor et al./Information and Software Technology 52 (2010) 152-168 159

Table 2
Occurrences when beginning with the co relationship between Composite and
Component.

Triplets

Fourth
(in) (in)

First Second

—~
(]
[e]

~

1 | Composite
w | Component
= m m | Composite
w w w | Component
B 9 Q| Leaf
= m = | Composite
w w w | Component

M O Q| Leaf

approximations must therefore be used to compute and explain
identified micro-architectures to maintainers by stating explicitly
what parts of a design motif are not exactly implemented. The
approximately identified micro-architectures, once manually in-
spected by the maintainers, help in improving the code by applying
corrections based on the design motifs.

In our model, where binary class relationships and classes are
the main constituents, four types of approximations are possible:

« Type 1 approximation allows a relation between two entities to
be different from expected. For example, an aggregation rela-
tionship could be replaced by a stronger relationship (composi-
tion) or a weaker one (association, use).

e Type 2 approximation allows the hierarchy of roles to be
approximated: some entities could be inserted in or removed
from the inheritance tree.

o Type 3 approximation handles cases where the kind of entities
is not respected. Abstract entities could be played by concrete
entities or vice-versa.

e Type 4 approximation manages cases where all roles in a
design motif are not played by an entity in a system. For exam-
ple, it is possible to find micro-architectures implementing the
Composite design motif without a Leaf.

We limit possible approximations to the four types presented
above. Therefore, for example, we do not take into account the
case where a class serves as an intermediary in the association
relationship between two classes. We disregard such an approxi-
mation because we believe that it would lead to too many false
positives.

Other types of approximations are possible. For example, a cli-
ent class could call a concrete method instead of an abstract meth-
od or references on objects could be obtained through a database
instead of using a binary class relationship. However, approxima-
tions based on method types or field access are not possible in
our algorithms because the system and motif models do not in-
clude such data and we leave for future work this extension of
our model.

Fig. 1 includes four approximate occurrences of the Composite
design motif. The occurrences

{Component = Figure,
Composite = CompositeFigure,

Leaf = PolyLineFigure}

and

{Component = Figure,
Composite = CompositeFigure,
Leaf = AttributeFigure}

are approximate occurrences of types 1 and 3. The composition
relationship is replaced by an aggregation and the class Abstract-
Figure is inserted between the entities playing the roles of Compo-
nent and Composite. Two other occurrences exist:

{Component = AbstractFigure,
Composite = PolyLineFigure,
Leaf = AttributeFigure}

and

{Component = AbstractFigure,
Composite = PolyLineFigure,

Leaf = CompositeFigure}

with type 1 approximation where the composition relationship is
replaced by an association. An association from class PolyLine-
Figure to class AbstractFigure exists through the implicit call
from the constructor of PolyLineFigure to the constructor of
AbstractFigure [31]. The corresponding occurrences are there-
fore far approximations because PolyLineFigure does not explic-
itly declares a one-to-many composition with AbstractFigure
and could be ignored by maintainers or automatically discarded
by disallowing the approximation of compositions by associations.

Approximate occurrences are easily obtained with both auto-
mata simulation and bit-vector processing. With automata, type
1 and 2 approximations are obtained by adding transitions. For
example, adding a transition C, ag C, where a transition Cy co C,
already exists allows the composition relationship to be replaced
by an aggregation relationship. Adding transitions without condi-
tion allows type 2 approximations. Type 3 and 4 approximations
are made possible by modifying the transition conditions, for
example, by allowing the children or parents of an entity to play
its role.

With bit-vector processing, type 1 approximation are obtained
by using a disjunction between the characteristic vectors of the re-
laxed relationships and those of the expected relationships. For
example, a disjunction between the characteristic vectors of the
composition and aggregation relationships allows occurrences
with either a composition or an aggregation relationship between
two entities. All relationships may be relaxed or removed
completely.

Type 2 approximate occurrences can be identified by adding the
parents and children of an entity playing a role in a design motif as
possible entities for that role. The children of an entity Parent are
obtained by applying the equation (—— Parent) A (— in) A Child
(illustrated in Section 4) recursively on every Parent. Similarly,
the parents of an entity Child are obtained using the equation
(«+« Child) A («— in) A Parent.

Type 3 approximate occurrences can be identified by filtering
entities for a specific role. For example, concrete classes could be
removed if a specific role must be played by an abstract class.
We need to add extra information to the system and motif strings
describing whether an entity is abstract or not and whether a role
must be played by an abstract or concrete entity. We can enforce
that an abstract role is played by an abstract entity using a disjunc-
tion between the characteristic vectors representing all the ab-
stract entities in a system and the characteristic vector of the
entity that must be abstract.

To identify type 4 approximate occurrences, a role can be over-
looked by removing the related class from the design motif model

160 0. Kaczor et al. /Information and Software Technology 52 (2010) 152-168

and generating the string corresponding to this model. Type 4
approximations are necessary manual because only a maintainers
may decide which role is essential or not for an occurrence of the
motif to be of interest, in her context.

6. Tools

We integrated freely available tools to implement our algo-
rithms to design motif identification. For performance and conve-
nience, we break down our algorithms into two parts: pre-
processing and identification through automata simulation or
bit-vector processing.

6.1. Design motif and system models

We use the PADL meta-model [38] to describe design motifs
and systems. The PADL meta-model defines all the constituents re-
quired to describe the static structure of design motifs and systems
and part of their behaviour, including binary class relationships
[31]. It is associated with several parsers to build models of sys-
tems from AOL, C++, and Java. It also includes a design motif repos-
itory containing several well-known design motifs such as
Abstract Factory, Composite, Facade.

6.2. Eulerian graphs of design motif and system models

We iterate through the PADL models of a design motif and a
system to identify the entities with unequal in-degree and out-de-
gree using adjacency matrices. We then use a Java implementation
of the transportation simplex? to build flows among entities with
unequal degrees. The obtained flows are added as dummy relation-
ships in the design motif and system models, which thus become
Eulerian digraphs.

6.3. Design motif and system strings

After transforming design motif and system models into Euleri-
an digraphs, we build strings using Thimbleby’s implementation of
an algorithm to solve the Chinese Postman problem [39]. This
implementation uses several well-known algorithms for efficiency,
such as Floyd-Warshall's shortest path and cycle cancelling.

6.4. Identification algorithms

We implemented the automata simulation algorithm and the
iterative bit-vector processing algorithms in Java. We use a sparse
vector representation for the bit-vector processing algorithm be-
cause our characteristic vectors can be long with most bits being
0-valued. This representation is backed up by a hash map and only
the 1-valued bits are stored in the map to ensure space-efficiency.
Our implementations are available upon request.

7. Case studies

In previous work, constraint programming showed promising
results with respect to the quality of the identified micro-architec-
tures, while metrics decreased identification time significantly.
Similarity scoring showed the best performance. We present two
case studies that (1) compare the results and times of our bit-vec-
tor processing algorithm with previous work and (2) that study its
precision and recall.

2 This implementation has been developed by Sung Ki-seok, So Young-seob, Choi
Jin-min, Ju Hien-taek, Eom Soong-eun, and Lee Kyu-sung under the direction of Park
Soon-dal.

7.1. General setup

7.1.1. Precision and recall
Precision and recall are measures defined in information retrie-
val and are computed with the following modified formulas:

100.00% if
|[{true occurrences}|

precision = = |{identified occurrences}| =0
else
|{true occurrences}n{identified occurrences}|
|{identified occurrences}|
100.00% if
|{true occurrences}| = |{identified occurrences}| = 0

else
recall = . . .

0% if|{true occurrences}| = 0, |{identified occurrences}| > 0

else

|{true occurrences}n{identified occurrences}|
|{true occurrences}|

The formulas are slightly modified as in previous work [29] for
cases where no true occurrence exists and our algorithm reports
no occurrence because it would not be possible to compute preci-
sion and recall (division by zero). Yet, our algorithm does well not
to produce false positives and therefore its precision and recall
are 100.00%. If there is no true occurrence and our algorithm iden-
tifies false positives, then both its precision and recall are 0%.

7.1.2. Time, memory, and automata simulation

All computations were performed on an AMD Athlon 64 bits at
2 GHz. We retrieved identification times using the Eclipse-based
profiling tool, Eclipse Profiler [40]. We performed all computations
three times and report averages. We do not provide measures of
the memory performance because, in addition to the strings, we
also maintain in memory different models of the design motifs be-
fore constructing the strings and did not want to impede the time
performances by forcing the garbage collector of the Java virtual
machine to run. However, all computations have been performed
using a maximum heap size of 1024 M.

The first part of our algorithm consists in building strings of the
systems to obtain their characteristic vectors, using the transporta-
tion simplex and solving the Chinese postman problem. This com-
putation is only performed once.

We do not include the automata simulation algorithm in the
following case studies because the quality of the identified mi-
cro-architectures and the time required to find them could not
compare favorably with other approaches. Table 3 shows that the
computation times for the identification of the Composite design
motif in two small systems, Juzzie and JHotDraw, are long and, thus,
that automata simulation cannot compare favorably with any
other approaches, in particular Tsantalis et al.’s approach, which
runs under 1 s.

7.1.3. Definition of an occurrence

The definition of one occurrence of a design motif is important
because it dramatically changes the numbers of identified occur-
rences and the computed precision and recall. For example, in
the case of the Composite design motif and the simple example

Table 3
Computation times for the identification of the Composite design motif in two small
systems, in seconds, by our automata simulation algorithm.

Automata Simulation Composite
Juzzle JHotDraw
Time 287 s 2055s

0. Kaczor et al./Information and Software Technology 52 (2010) 152-168 161

system in Figs. 2 and 3, there could be one or three occurrences
depending on the chosen definition:

{Component = B,
Composite =E,
Leaf ={C,D,E}}

or

{Component = B,
Composite =E,
Leaf = C}
A {Component = B,
Composite =E,
Leaf =D}
A {Component =B,
Composite =E,
Leaf = E}.

The design motifs originally introduced in [4] describe abstractions;
most roles could be fulfilled by more than one class in a system.
However, whether an occurrence of the Composite design motif
includes several leaves or only one leaf is an important question be-
cause its answer varies between approaches and impacts precision
and recall. For example, Tsantalis et al. report occurrences of the
Composite design motif without the Leaf role:

{Component = B,
Composite = E}.

The choice of this omitted role is sound but omitting roles cannot be
performed for all motifs systematically. Consequently, we consider
that micro-architectures similar to the Composite design motif
with three leaves counts as three occurrences, as in other previous
work. We use this definition of an occurrence to be able to compare
different approaches because we can adapt our algorithms to count
as previous work but cannot easily adapt previous work to count as
our own.

7.1.4. Choice of the design motifs

We report the number of occurrences and computation times
for five different design motifs on seven systems. The design motifs
are Abstract Factory, Composite, Decorator, Observer,
State/Strategy. We have applied our algorithms on Adapter,
Bridge, Command but cannot report their results in this article
for the sake of clarity, we refer the interested reader to the com-
panion Web site® that presents all the results in one place. We dis-
tinguish the motifs of the Composite and Decorator by
enforcing the presence of a least one subclass of the class playing
the role of Decorator, i.e. at least one concrete decorator. We can-
not distinguish between the State and Strategy design motifs
because they are identical [41,42] and, thus, only a maintainer
can decide if an occurrence of one of these motifs actually imple-
ments either of the corresponding pattern, based on external clues,
such as names, runtime behaviour, context.

We also compare different approaches using the Abstract
Factory and Composite design patterns, because these are
well-known design patterns with different intents and motifs,
shown in Figs. 2 and 10a. The strings used for the identification
are generated directly from the original class diagrams presented
in [4] and modelled with PADL. No changes were performed to im-
prove precision or recall.

3 The companion Web site of this article is available at http://www.ptidej.net/
research/ptidej/epi/.

We choose these two motifs to compare approaches because
they highlight different properties of existing algorithms and be-
cause previous work also used these motifs. The Composite de-
sign motif includes a composition relationship and two
inheritance relationships while the Abstract Factory design
motif uses association, creation, and inheritance relationships.
Since in a given system more association relationships exist than
composition relationship and the Abstract Factory has a less
constraining structure with weaker relationships than the com-
posite, we expect to identify more occurrences for the Abstract
Factory than for the Composite design motif.

7.1.5. Choice of the approximations

Theoretically, any combination of any number of approxima-
tions could lead to the identification of true occurrences of some
design motif. Therefore, all possible combinations of the four
approximations should be considered in our studies. However,
in our previous work, e.g. [21,26], and in the following studies,
we find that two types of approximations are enough to identify
all the occurrences of a design motif. This finding is confirmed by
the study of the approaches and results of other authors, in par-
ticular Tsantalis et al.’s. Moreover, with design motifs where rela-
tionships are important, such as Composite and Abstract
Factory, approximations of types 1 and 2 are sufficient. We will
only use the approximation of type 4 when comparing our algo-
rithm with similarity scoring because it does not report all roles
in its results.

For type 1 approximations, we chose the aggregation relation-
ship as the weakest relationship, i.e. we did not replace aggregation
relationships with weaker ones (association, use). This choice is
sensible because replacing composition relationships by associa-
tion or use relationships would return occurrences that are seman-
tically too distant from the original motif. This choice results in the
first two lines of the Abstract Factory Tables 5 and 10 being
identical because this motif only includes an association relation-
ship which is therefore never approximated.

Type 3 approximations are not considered because they
would not provide more valid occurrences of the design
motifs but artificially increase the numbers of false positive
occurrences.

We do not report in the following approximation of type 4
(deletion) because this approximation provide occurrences that
do not conform to our definition of an occurrence. Indeed, with
the type 4 approximation, our approach returns occurrences
where, for example in the Composite, no class plays the role of
Leaf. Occurrences obtained with this approximation are discussed
later when comparing our approach with Tsantalis et al.’s scoring
algorithm.

7.1.6. Choice of the systems

Table 4 shows the systems used in the following case studies.
These systems range in size from 57 classes to 742 classes, which
represent small to medium systems. They cover a wide range of
domains, from unit testing to games to allow generalization.
They are all open-source and easily accessible for further com-
parisons. Table 4 also presents the average computation times
of the strings, performed once per system, on our test computer.
The string of Gantt Project is longer than the string of Azureus,
even though Azureus has a larger number of entities, because
more relationships exist in Gantt Project and more dummy rela-
tionships are added by the transportation simplex. (The data on
some of these systems has been updated in comparison to our
previous work [21,29] based on recent improvements and studies
by other authors [9], including numbers of occurrences and
performances.)

162 0. Kaczor et al./Information and Software Technology 52 (2010) 152-168

AbstractFactory AbstractProduct
in in
ConcreteFactory as Product

cr

(a) Abstract Factory design motif.

% % ... (66 interfaces in total) %

SerializationProcedure
| —

TerimitiveHash
| ——
=

T

... (8 abstract classes in total) g

... (each abstract classes
has 8 subclasses)

(b) UML-like model of Trove.

Fig. 10. Abstract Factory design motif and subset of Trove's design.

Table 4
Names, sizes, descriptions of the analyzed systems in the second case study. The last column shows the computation times in seconds for building the models.
Systems Sizes Descriptions Strings
Times (s) Lengths (tokens)
Juzzie v0.5 57 A puzzle game 1 4817
JUniT v3.7 209 Unit testing framework 59 19,467
JHotDraw v5.1 261 Framework for technical and structured graphics 69 10,161
Trove v1.1b5 296 High performance collections for Java 25 20,404
QuickUML 2001 338 A UML class-diagram graphic editor 213 68,671
GANTT PrOJECT v1.10.2 503 Tasks management software 752 111,942
Azureus v2.3.0.6 742 Peer-to-peer bit-torrent client 1995 90,847
Table 5
Numbers of identified occurrences of the design motifs by our bit-vector processing algorithm (BV).
BV Juzzle JUnit JHotDraw Trove QuickUML Gantt project Azureus
Abstract Factory
No approximation 0 26 81 3192 6 63 136
Relationships (1) 0 26 81 3192 6 63 136
Insertion (2) 0 55 250 12,507 11 71 249
1 and 2 0 55 250 12,507 11 71 249
Composite
No approximation 0 0 0 0 0 0 0
Relationships (1) 0 6 12 8 2 2 11
Insertion (2) 0 0 0 0 0 0 0
1 and 2 0 39 103 64 16 2 41
Decorator
No approximation 0 0 0 0 0 0 0
Relationships (1) 0 0 12 64 0 0 0
Insertion (2) 0 0 0 0 0 0 0
1 and 2 0 0 114 512 0 0 0
Observer
No approximation 0 1 17 0 10 15 11
Relationships (1) 0 1 17 0 10 15 11
Insertion (2) 0 4 37 13 10 15 11
1 and 2 0 4 37 13 10 15 11
State/Strategy
No approximation 2 20 107 29 40 88 121
Relationships (1) 2 20 107 29 40 88 121
Insertion (2) 2 120 440 505 62 94 166
1 and 2 2 120 440 505 62 94 166

7.2. Study of the bit-vector processing algorithm

7.2.1. Objectives and design

Most previous approaches give good results on small and med-
ium size systems but are not usable on large systems, for example
|5] applied his approach on 170 subclasses of class VisualPart in
Smalltalk and the Composite design motif but reported a slow
execution time, performance decreasing with the complexity of

the queries. The objective of this first case study is to show that
our bit-vector processing algorithm is scalable while keeping the
numbers of occurrences tractable, thus showing the quality of
the identification process.

7.2.2. Identified occurrences
Table 5 reports the numbers of occurrences found in each sys-
tem for each motifs depending on the approximations made. As ex-

0. Kaczor et al./Information and Software Technology 52 (2010) 152-168 163

pected, when more types of approximations are allowed, more
occurrences are identified by our algorithm. However, the numbers
of occurrences remain tractable and, depending on the context and
on her knowledge of a system, a maintainer could only focus on the
types of approximations that are more likely to provide interesting
occurrences. For example, for QuickUML 2001 and the Composite
design motif, the occurrences identified with type 1 and 2 approx-
imations represent the 16 true micro-architectures existing in the
system, as further explained in Section 7.3.

Table 5 shows that design motifs are not implemented “by the
book” but adapted to the particular context in which they are used,
as highlighted by the first line of the table, where no exact occur-
rences are found for any of the studied systems.

Trove is interesting because of its particular design. This system
is designed with two separate hierarchy trees. The first hierarchy
tree includes 56 interfaces that are implemented by the single
interface SerializationProcedure while the second one has
for root the THash interface with 58 subclasses that reference
SerializationProcedure, as shown in Fig. 10b. For the Ab-
stract Factory design motif, this design leads to a large number
of occurrences because interface SerializationProcedure
plays the role of Product while any of its 56 super-interfaces
can play the role of Abstract Product. Interface THash or any
of its direct children plays the role of Abstract Factory while
any of its descendant can play the role of Concrete Factory.
Thus, leading to an large number of occurrences.

The number of occurrences for the Abstract Factory design
motifs show that some approximations do not necessarily provide
more occurrences: the two first lines of the first table in Table 5 are
identical because the motif does not include the use of composition
relationships that could be replaced by aggregation relationships.
The two last lines of the same table are identical for the same rea-
son. Only the type 2 approximation allows identifying additional
occurrences, which means that some implementation of the motif
include intermediate entities in their hierarchies.

7.2.3. Precision and recall

Table 6 shows the number of true occurrences (TO), the number
of identified occurrences by the bit-vector processing algorithm
and the associated precision and recall. The true occurrences used
to compute precision and recall were obtained by analyzing the
systems manually to identify micro-architectures similar to the de-
sign motifs. Thus, true occurrences include exact and approximate
occurrences of the motifs. This manual analysis was performed by
two teams belonging to two different universities in the USA and
Italy [43] and the results were put together in an XML database [8].

Our algorithm favors recall over precision, which is consistent
with our objective of identifying all micro-architectures similar
to some design motifs to recover lost design decisions. The some-
what low precision can be explained because of the number of per-

Table 6

Precision and recall of approximate identified occurrences of the two design motifs.
TO means true occurrences (exact and approximate), BV stands for bit-vector
processing algorithm.

Juzzle JHotDraw QuickUML

TO BV TO BV TO BV
Abstract Factory

0 0 0 250 8 11
Precision 100.00% Precision 0.00% Precision 72.73%
Recall 100.00% Recall 0.00% Recall 100.00%
Composite

0 0 52 103 16 16
Precision 100.00% Precision 50.48% Precision 100.00%
Recall 100.00% Recall 100.00% Recall 100.00%

formed approximations. We compare precision and recall for some
of the systems with previous approaches in the next case study.

7.2.4. Performance

Table 7 presents the identification times in seconds of the algo-
rithm. We consider the worst-case scenario for our algorithm
where the user is interested in the occurrences identified with
approximations of types 1 and 2, which include exact as well as
approximate occurrences. In general, the performance of the bit-
vector processing algorithm are reasonable, in particular for uses
in industrial contexts.

As expected, the number of allowed approximations impacts
performance. Certain types of approximation lead to more compu-
tation. For the Composite design motif, the type 1 approximation
decreases performances, as seen in rows labeled “Relationships
(1)” and “1 and 2”. The reason for this decrease is the composition
relationship between roles Composite and Component and the
large number of aggregation relationships by which it can be
replaced.

As other example, for the Abstract Factory design motif, the
type 2 approximation decreases dramatically the performances for
JHotDraw and Trove because these two systems have particular de-
signs, as explained previously for Trove, leading to a large number
of classes playing the roles of Abstract Factory and Concrete
Product.

The dashed lines in Figs. 12 and 11 show that there is a general
trend for computation times to depend on the string lengths. This
dependence was expected since the bit-vector processing algo-
rithms iterates over the strings to process triplets. For the Compos-
ite design motif, computation times tend to decrease with the
numbers of occurrences while for Abstract Factory they do in-
crease as expected. This trend is due to the composition relation-
ship in Composite, which reduces the numbers of possible
occurrences, as explained in Section 4.2 by Tables 1 and 2.

7.3. Comparison with previous approaches

7.3.1. Objectives and design

This second case study has for objective to compare our ap-
proach with previous work to show the quality of the identified
micro-architectures. We compare our bit-vector algorithm to DeM-
IMA [29], which uses explanation-based constraint programming,
another approach using metric-enhanced explanation-based con-
straint programming [8], and DesicN Pattern DEetEcTiON TooL, a tool
implementing a similarity scoring algorithm [9].

We present results in terms of numbers of occurrences and
computations times, and precision and recall. Results are pre-
sented in two steps, first we compare our approach with ap-
proaches that uses our definition of an occurrence, second with
Tsantalis et al. approach, which uses a different definition. In this
case study, we apply the algorithms on Juzzie v0.5, JHotDraw v5.1,
and QuickumL 2001, presented in Table 4, because all approaches
were run on these systems.

7.3.2. Comparison with constraint-based approaches

Table 8 presents the numbers of occurrences of the Abstract
Factory and Composite design motifs identified by three ap-
proaches and their precision and recall: constraint-programming
(CP), constraint-programming with metrics (CP + M), and our bit-
vector processing algorithm (BV) on the three systems.

The numbers* of approximate occurrences identified by the
constraint-based approaches are high because these approaches

4 The numbers of occurrences are given using the definition presented in Section
7.1.3, which differs from the definition used in our previous work [29].

164 0. Kaczor et al. /Information and Software Technology 52 (2010) 152-168

Table 7
Identification times of the design motifs, in seconds, by our bit-vector processing algorithm (BV).
BV Juzzle (s) JUnit (s) JHotDraw (s) Trove (s) QuickUML (s) Gantt project (s) Azureus (s)
Abstract Factory
No approximation 0 15 6 15 95 277 145
Relationships (1) 0 15 6 16 95 331 147
Insertion (2) 0 15 31 1784 95 316 183
1 and 2 0 15 32 1802 97 398 192
Composite
No approximation 0 3 1 5 22 76 45
Relationships (1) 0 4 1 5 28 105 53
Insertion (2) 0 3 1 5 23 82 46
1and 2 0 4 3 20 28 157 53
Decorator
No approximation 0 1 0 2 22 77 17
Relationships (1) 1 2 0 2 31 103 21
Insertion (2) 0 1 0 2 22 77 17
1and 2 1 2 3 90 31 103 21
Observer
No approximation 6 68 19 89 429 681 418
Relationships (1) 6 68 19 90 430 684 422
Insertion (2) 5 78 148 991 460 723 614
1and 2 6 78 147 992 440 715 512
State/Strategy
No approximation 4 13 12 19 91 277 114
Relationships (1) 3 13 12 19 91 276 114
Insertion (2) 3 46 59 177 126 311 145
1 and 2 3 46 59 184 126 313 145
2,000 Tr
2,000 - Trove
1,800 - ‘
- 1,600 A 1,500 + /.'
€ 1400 | [\ o) /
H / \ H
S 1,200 4 / § 1,000 -+
- 1,000 - | 2 s
E 800 £ 500 1 Gantt Project -~ /
= 600 1 / Gantt Project 2 . <=7 Azureus /
S / o E S /
400 1 e Azureus = Juzzle QU'CEPML_V_J_Unit/.I/ ~~___JHotDraw
200 { Juzzle~!HoOtDraw JUnit QuickuML 0 — = —=
0- - 0 1 55 71 249 250 12
4,817 10,161 19,467 20,404 68,671 90,847 111,942 500 -
String Lengths (in tokens) Numbers of Occurrences
(a) String lengths vs. Time. (b) Number of occurrences vs.
Time.
500 - :ZE 1 Gantt Project
Gantt Project 4"‘\\
400 = 350 - /N
° / N\
) £ 300 - / \
B 300 2 \
] Azureiis g 0 / P\\zgreus
4 200 | sy £ 200 4 / .
5 QuickUML" g 150 - ickUML / pmm T \'
g 100 1 T F 100 - Quie — ™
F Juzzle MHotDraw - unit - / THotl
° M S 50 - ~Jupit Hetl
4817 10,161 19,467 68671 90,847 111,942 0
-100 - 0 11 55 71 249 2t
String Lengths (in tokens) Numbers of Occurrences
(c) String lengths vs. Time without (d) Numbers of occurrences vs.
outlier TROVE. Time without outlier TROVE.

Fig. 11. Study of Abstract Factory computation times.

perform more automatic approximations than the bit-vector constraints are relaxed/removed until there is no more allowed
processing algorithms. Indeed, when no occurrence is found, constraint to relax (or to remove). In the current implementation,

0. Kaczor et al./Information and Software Technology 52 (2010) 152-168 165

200 4
Gantt Project
- 150 /
o /
13
g 100
b __Azureus
E 50 . :[rDVEQUiCk"‘J,ML/“
E j._.zz|eJHotDran_U,mt-_'),,_- e
04—
4,817 {10,161 19,467 20,404 68,671 90,847111,942
-50 -
String Lengths (in tokens)
(a) String lengths vs. Time.

60 - Azureus

50
T 40 A M/
] QuickiML
Z 20 e
i . -Jtinit_~
g 107 juzle JHOfEtaw' _
F 0 ==

104 4817 10161 19,467 20,404 68,671 90,847

-20 -

String Lengths (in tokens)

(c) String lengths vs. Time without
outlier GANTT PROJECT.

180 4
160 1 rGantt Project
= 140 - \
T 120 A
g 100 +
£ 801 \
o 1 L \
£ &0 e ~Azureus
= a0+ U
20 1 "‘:‘Juzzle ‘Q!!E\IPML // T “~Trove
0 [~Junit JHo
0 2 16 EE] 41 64 1
Numbers of Occurrences
(b) Numbers of occurrences vs.
Time.
60 7 Azureus
] A
_ 50 AN
[0 / \
TR N\
@ QuickUML
2 301 /
£ A /
= / Trove
E 201 A N S,
E B AN
10 4 ! “unit h
Juzz)é N JHg\tf
0
0 16 32 41 64 1C
Numbers of Occurrences
(d) Numbers of occurrences vs.
Time without outlier GANTT
PROJECT.

Fig. 12. Study of Composite computation times.

Table 8

Numbers of exact and approximate identified occurrences of the two design motifs as well as precision and recall, a “~” symbol means that we were not able to obtain the results.
TO means true occurrences (exact and approximate), CP constraint programming, CP + M constraint programming with metrics, and BV bit-vector processing algorithm.

Juzzle JHotDraw QuickUML

TO CP CP+M BV TO CP CP+M BV TO CcP CP+M BV
Abstract Factory

0 375 0 0 0 18,461 5235 250 8 5546 1159 11
Precision 0.00% 100.00% 100.00% Precision 0.00% 0.00% 0.00% Precision 0.14% 0.69% 72.73%
Recall 0.00% 100.00% 100.00% Recall 0.00% 0.00% 0.00% Recall 100.00% 100.00% 100.00%
Composite

0 0 0 0 52 196 115 103 16 122 84 16
Precision 100.00% 100.00% 100.00% Precision 26.53% 45.21% 50.48% Precision 13.11% 19.05% 100.00%
Recall 100.00% 0.00% 100.00% Recall 100.00% 100.00% 100.00% Recall 100.00% 100.00% 100.00%

for example, binary class relationships are relaxed from composi-
tion to aggregation to association. Use relationships (or the lack
of relationships) are not allowed.

The number of occurrences identified by the bit-vector process-
ing algorithm is tractable as explained in the previous section.
Moreover, the occurrences can be sorted by their distance from
the design motif.

The CP and CP + M approaches have 100% recall by construction
[8,29] thanks to their extensive approximations. Due to the greater
numbers of occurrences identified by the CP and CP+M ap-
proaches, their precision is lower than that of BV.

An example of a “true” occurrence of the Composite design
motif identified in JHotDraw is given below. This occurrence has

been identified using type 1 and 2 approximation. It is a true occur-
rence as confirmed by the documentation of the system.

{Component = Figure,
Composite = CompositeFigure,

Leaf = ConnectionFigure}

An example of a “false” occurrence of the same motif in the same
system is given below. This occurrence has been identified using a
type 1 approximation. It exists because the class DecoratorFig-
ure aggregates instances of FigureChangeListener (through
its superclass AbstractFigure and methods such as public void
figureInvalidated(FigureChangeEvent))as part of its role of

166 0. Kaczor et al. /Information and Software Technology 52 (2010) 152-168

Table 9

Identification times of the design motifs, in seconds. CP stands for constraint
programming, CP + M for constraint programming with metrics, and BV for bit-vector
processing algorithm.

Juzzle JHotDraw QuickUML

CP CP+M BV CP CP+M BV CP CP+M BV
Abstract Factory

813s 2s 0s 165,754s 37,922s 32s 104,258s 20,320s 97s
Composite

47s 3s 0s 907s 625s 3s 1688s 1164s 28s

Subject in the Observer motif and because both classes Connec-
tionFigure and DecoratorFigure implements the Figure-
ChangeListener interface.

{Component = FigureChangeListener,
Composite = DecoratorFigure,

Leaf = ConnectionFigure}

Table 9 presents the identification times in seconds. The constraint
programming approaches are slower. We explain these results by
the extent of the performed approximations and the use of a generic
solving algorithm. The performance of the bit-vector processing
algorithm is adequate for daily use.

7.3.3. Comparison with scoring algorithm

Tables 10 and 11 report the numbers of occurrences identified
by our algorithm following the definition of an occurrence of Tsan-
talis et al. and the compared precision and recall.

The number of occurrences identified by the scoring algorithm
for Composite is smaller than that of all other approaches because
the scoring algorithm does not report the Leaf role and does not
allow as many approximations as our algorithm. For Abstract

Factory, both definitions of an occurrence return the same results
because there is no reason to omit a particular role in this motif.

The similarity scoring algorithm, unlike our algorithm, cannot
identify all and every motifs. For example, it cannot identify the
Abstract Factory design motif as indicated by the “-” in the ta-
ble. Similarly, our algorithm would have difficulty identifying the
Singleton motif, because its structure involves only one class
and no relationship.

The similarity scoring algorithm is faster than other approaches
with times under 1 s for all systems. The bit-vector approach com-
pares favorably with the scoring algorithm even though it is
slightly slower but it has generally a better precision and recall.
Comparison with other approaches is out of the scope of this article
and left as future work.

8. Conclusion, discussion, and future work

We presented an adaptation of two classical pattern matching
algorithms to the software maintenance problem of design motif
identification: automata simulation and bit-vector processing.
We detailed the conversion of the problem of design motif identi-
fication in a problem of approximate string matching.

We implemented automata simulation and bit-vector process-
ing algorithms and studied their performance. We showed that
automata simulation cannot compare favorably with previous ap-
proaches in term of performance. We also detailed the approxima-
tions required to solve the problem adequately and their
introduction in automata simulation and bit-vector processing
algorithms. We then studied the performance, precision, and recall
of bit-vector processing using several small-to-medium systems
and different type of approximations on two well-known yet dif-
ferent design motifs, Composite and Abstract Factory. We
showed that bit-vector processing has interesting performance
while providing tractable numbers of occurrences.

Table 10
Numbers of identified occurrences of the two design motifs when considering the same definition of an occurrence as Tsantalis et al. BV stands for bit-vector processing
algorithm.
BV Juzzle JUnit JHotDraw Trove QuickUML Gantt project Azureus
Abstract Factory
No approximation 0 26 81 3192 6 63 136
Deletion (4) 0 26 81 3192 6 63 136
Relationships (1) and 4 0 26 81 3192 6 63 136
Insertion (2) and 4 0 55 250 12,507 11 71 194
1and 2 and 4 0 55 250 12,507 11 71 194
Composite
No approximation 0 0 0 0 0 0 0
Deletion (4) 0 0 0 0 0 0 0
Relationships (1) and 4 0 2 2 7 1 1 2
Insertion (2) and 4 0 0 0 0 0 0 0
1,2, and 4 0 3 8 7 2 1 2
Table 11

Precision and recall of approximate identified occurrences of the two design motifs when considering the same definition of an occurrence as Tsantalis et al., a “~” symbol means
that we were not able to obtain the results. TO means true occurrences (exact and approximate), SC scoring algorithm, and BV bit-vector processing algorithm.

Juzzle JHotDraw QuickUML

TO SC BV TO SC BV TO SC BV
Abstract Factory

0 - 0 0 - 250 8 - 11
Precision - 100.00% Precision - 0.00% Precision - 72.73%
Recall - 100.00% Recall - 100.00% Recall - 100.00%
Composite

0 0 0 2 1 8 2 1 2
Precision 100.00% 100.00% Precision 100.00% 25.00% Precision 100.00% 100.00%
Recall 100.00% 100.00% Recall 50.00% 100.00% Recall 50.00% 100.00%

0. Kaczor et al./Information and Software Technology 52 (2010) 152-168 167

We also compared our bit-vector processing algorithm with
previous approaches based on explanation-based constraint pro-
gramming, metrics, and a scoring algorithm, and showed that it
compares favorably in terms of precision and recall to all existing
approaches and, thus, addresses two important aspects of design
motif identification: quality of the occurrences and quality of the
identification process.

Therefore, we can conclude that the two popular pattern match-
ing approaches in bioinformatics, automata simulation and bit-
vector processing, can be used to identify design motifs. Bit-vector
processing algorithms provide interesting performance, precision,
and recall, with respect to previous approaches. Automata simula-
tion seems too slow to be useful in industrial contexts.

However, as with any other structural approaches, automata
simulation and bit-vector processing algorithms suffer from a lim-
ited precision when considering the developers’ intent. Indeed,
even if a micro-architecture is identified as being similar to a motif,
this similarity does not imply that the developers’ introduced it to
solve the related design problems for two reasons: first, it can have
been implemented without the knowledge of the design pattern—a
form a “rediscovery”; or, second, it could be similar to the motif
accidentally, i.e. it structure is similar but its intent is different. A
typical example of the latter reason includes the State and
Strategy design motifs, which are identical and thus lead to sim-
ilar micro-architectures, even though their intents are clearly dif-
ferent. Consequently, despite their advantages (performance,
approximations, description), our approaches are limited by the
kinds of data that they use during the identification process.
Enriching the models with new kinds of data would lead to an in-
crease in precision and, possibly, a greater correlation between the
identifier micro-architecture, their related motifs, and the develop-
ers’ intent. Yet, it is unclear what kinds of data could be used,
which can also be automatically extracted from source code. Only
few work address this problem, Kampffmeyer’s work tried to ad-
dress the intent of design patterns [30].

Previous limitations, along with reduced precision and long
computation times, explain that the industry is not yet using de-
sign motif identification approaches on a daily basis. Moreover,
no study has shown so far concretely and extensively a positive
impact on the developers’ development and maintenance efforts
of these approaches. Our work, as some other previous work, is a
step towards providing the industry with precise and fast iden-
tification approaches. Yet, some more work is necessary to pro-
vide convenient approaches, i.e. unintrusive and integrated to
the developers’ environment, as well as evidence of a positive
impact.

In future work, we will study the use of metric-based analyses
to reduce the search space to further improve performance, preci-
sion, and recall. Also, we will integrate data related to method and
field declarations in the string matching process to have finer-grain
definitions of the design motifs to improve precision and recall. We
will also compare our approach with other approaches in details,
from the choices of the design motif specifications to their perfor-
mance, precision, and recall. Finally, we plan to investigate the im-
pact on developers’ development and maintenance efforts of our
approach and others.

We are currently conducting more experiments on even larger
systems and are assessing the generalisation of our bit-vector pro-
cessing algorithm to other types of design motifs, in particular
antipatterns [44].

Acknowledgements

The authors are grateful to Jean-Yves Potvin for all the fruitful dis-
cussions. This work has been partially funded by FQRNT and NSERC.

References

[1] J. Koskinen, Software maintenance costs, web site (September 2004). <http://
www.cs.jyu.fi/~koskinen/smcosts.htm>.

[2] B.P. Lientz, E.B. Swanson, Problems in application software maintenance,
Communications of the ACM 24 (11) (1981) 763-769. <http://portal.acm.org/
citation.cfm?id=358790.358796>.

[3] TJ. Biggerstaff, B.G. Mitbander, D.E. Webster, The concept assignment problem
in program understanding, in: V.R. Basili, R.A. DeMillo, T. Katayama (Eds.),
Proceedings of the 15th International Conference on Software Engineering,
[EEE Computer Society Press/ACM Press, 1993, pp. 482-498. <http://
portal.acm.org/citation.cfm?id=257679>.

[4] E. Gamma, R. Helm, R. Johnson,]. Vlissides, Design Patterns - Elements of
Reusable Object-Oriented Software, first ed., Addison-Wesley, 1994.

[5] R. Wuyts, Declarative reasoning about the structure of object-oriented systems,
in:]. Gil (Ed.), Proceedings of the 26th Conference on the Technology of Object-
Oriented Languages and Systems, IEEE Computer Society Press, 1998, pp. 112-
124. <http://www.iam.unibe.ch/~wuyts/publications.html>.

[6] A. Quilici, Q. Yang, S. Woods, Applying plan recognition algorithms to
program understanding, Journal of Automated Software Engineering 5 (3)
(1997) 347-372. <http://www-ee.eng.hawaii.edu/~alex/Research/Abstracts/
ause98.html>.

[7] G. Antoniol, R. Fiutem, L. Cristoforetti, Design pattern recovery in object-oriented
software, in: S. Tilley, G. Visaggio (Eds.), Proceedings of the Sixth International
Workshop on Program Comprehension IEEE Computer Society Press, 1998, pp. 153—
160. <http://citeseer.nj.nec.com/antoniol98design. html>.

[8] Y.-G. Guéhéneuc, H. Sahraoui, Farouk Zaidi, Fingerprinting design patterns, in:
E. Stroulia, A. de Lucia (Eds.), Proceedings of the 11th Working Conference
on Reverse Engineering, IEEE Computer Society Press, 2004, pp. 172-181.
<http://www-etud.iro.umontreal.ca/ptidej/Publications/Documents/WCREO4.
doc.pdf>.

[9] G.S. Nikolaos Tsantalis, Alexander Chatzigeorgiou, S.T. Halkidis, Design pattern
detection using similarity scoring, Transactions on Software Engineering 32
(2006) 896-909.

[10] D. Gusfield, Algorithms on Strings, Trees and Sequences, Cambridge University
Press, Cambridge, UK, 1997.

[11] V.I Levenshtein, Binary codes capable of correcting deletions, insertions, and
reversals, Soviet Physics — Doklady 10 (8) (1966) 707-710.

[12] T. Smith, M. Waterman, Identification of common molecular subsequences,
Journal of Molecular Biology 147 (1981) 195-197.

[13] S. Needlman, C. Wunsch, A general method applicable to the search for
similarities in the amino acid sequence of two proteins, Journal of Molecular
Biology 48 (1970) 443-453.

[14] E. Ukkonen, Finding approximate patterns in strings, Journal of Algorithms 6
(1985) 132-137.

[15] J. Holub, Simulation of NFA in approximate string and sequence matching,
in: Proceedings of the Prague Stringology Club Workshop '97, 1997, pp. 39-
46.

[16] A. Bergeron, S. Hamel, Vector algorithms for approximate string matching,
International Journal of Foundation of Computer Science 13 (1) (2002) 53-66.
<www.informatik.uni-trier.de/~ley/db/journals/ijfcs/ijfcs13.html>.

[17] G. Myers, A fast bit-vector algorithm for approximate string matching based
on dynamic programming, Journal of the ACM 46 (3) (1999) 395-415.
<www.portal.acm.org/citation.cfm?id=316550>.

[18] R.A. Baeza-Yates, G.H. Gonnet, A new approach to text searching,
Communications of the ACM 35 (10) (1992) 74-82.

[19] J. Holub, B. Melichar, Implementation of nondeterministic finite automata for
approximate pattern matching, in: J.-M. Champarnaud, D. Maurel, D. Ziadi
(Eds.), Proceedings of the Third International Workshop on Implementing
Automata, Springer-Verlag, 1998, pp. 92-99.

[20] D. Beyer, A. Noack, C. Lewerentz, Simple and efficient relational querying
of software structures, in: E. Stroulia, A. van Deursen (Eds.), Proceedings of
the 10th Working Conference on Reverse Engineering, IEEE Computer Society
Press, 2003, pp. 216-225. <http://citeseer.ist.psu.edu/beyer03simple.html>.

[21] Olivier Kaczor, Y.-G. Guéhéneuc, S. Hamel, Efficient identification of design patterns
with bit-vector algorithm, in: G.A. di Lucca, N. Gold (Eds.), Proceedings of the 10th
Conference on Software Maintenance and Reengineering IEEE Computer Society Press,
2006, pp. 173-182. <http://www-etud.iro.umontreal.ca/~ptidej/Publications/
Documents/ CSMRO6a.doc. pdf>.

[22] C. Krdamer, L. Prechelt, Design recovery by automated search for structural
design patterns in object-oriented software, in: L.M. Wills, I. Baxter (Eds.),
Proceedings of the Third Working Conference on Reverse Engineering, IEEE
Computer Society Press, 1996, pp. 208-215. <http://www.computer.org/
proceedings/wcre/7674/76740208abs.htm>.

[23] O. Ciupke, Automatic detection of design problems in object-oriented
reengineering, in: D. Firesmith (Ed.), Proceeding of 30th Conference on
Technology of Object-Oriented Languages and Systems, IEEE Computer
Society Press, 1999, pp. 18-32. <http://[www.computer.org/proceedings/
tools/0278/02780018abs.htm>.

[24] RK. Keller, R. Schauer, S. Robitaille, P. Pagé, Pattern-based reverse-engineering
of design components, in: D. Garlan, J. Kramer (Eds.), Proceedings of the 21st
International Conference on Software Engineering, ACM Press, 1999, pp. 226-
235. <http://www.iro.umontreal.ca/~schauer/Private/Publications/icse1999/
icse1999.html>.

[25]]J.H. Jahnke, W. Schifer, A. Ziindorf, Generic fuzzy reasoning nets as a basis for
reverse engineering relational database applications, in: M. Jazayeri (Ed.),

168 0. Kaczor et al./Information and Software Technology 52 (2010) 152-168

Proceedings of the Sixth European Software Engineering Conference, ACM
Press, pp. 193-210. <http://www.uni-paderborn.de/cs/varlet/docs. html>.

[26] Y.-G. Guéhéneuc, N. Jussien, Using explanations for design-patterns
identification, in: C. Bessiére (Ed.), Proceedings of the 1st IJCAI Workshop
on Modeling and Solving Problems with Constraints, AAAI Press, 2001, pp.
57-64. <http://www-etud.iro.umontreal.ca/~ptidej/Publications/Documents/
[JCAIO1MSPC.doc.pdf>.

[27] D. Eppstein, Subgraph isomorphism in planar graphs and related problems, in:
K. Clarkson (Ed.), Proceedings of the Sixth Annual Symposium on Discrete
Algorithms, ACM Press, 1995, pp. 632-640. <www.ics.uci.edu/$~$eppstein/
pubs/Epp-TR-94-25.pdf>.

[28] N. Jussien, e-Constraints: Explanation-based constraint programming, in: B.
O’Sullivan, E. Freuder (Eds.), First CP workshop on User-Interaction in
Constraint Satisfaction, 2001. <http://www.emn.fr/jussien/publications/
jussien-WCPO1.pdf>.

[29] Y.-G. Guéhéneuc, G. Antoniol, DeMIMA: A multi-layered framework for design pattern
identification, Transactions on Software Engineering 34 (5) (2008) 667-684. <http://
www-etud.iro.umontreal.ca/~ptidej/Publications/Documents/TSE08.doc. pdf>.

[30] H. Kampffmeyer, S. Zschaler, Finding the pattern you need: The design pattern
intent ontology, in: G. Engels, B. Opdyke, D.C. Schmidt, F. Weil (Eds.),
Proceedings of the 10th International Conference on Model Driven
Engineering Languages and Systems, Springer, 2007, pp. 211-225. <http://
www.springerlink.com/content/303028v312560v26/>.

[31] Y.-G. Guéhéneuc, H. Albin-Amiot, Recovering binary class relationships:
putting icing on the UML cake, in: D.C. Schmidt (Ed.), Proceedings of the
19th Conference on Object-Oriented Programming, Systems, Languages, and
Applications, ACM Press, 2004, pp. 301-314. http://www-etud.iro.
umontreal.ca/ptidej/Publications/Documents/OOPSLA04.doc. pdf.

[32] K. Mens, R. Wuyts, T. D’'Hondt, Declaratively codifying software architectures
using virtualsoftware classifications, in: D. Firesmith (Ed.), Proceedings of the
30th international conference on Technology of Object-Oriented Languages
and Systems, IEEE Computer Society Press, 1999, pp. 33-45. <http://
ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=778997>.

[33] G.B. Dantzig, Linear Programming and Extensions, Princeton University Press,
1963.

[34] H.A. Eiselt, M. Gendreau, G. Laporte, Arc routing problems. Part I: The Chinese
Postman problem, Tech. Rep. CRT-960, Centre de Recherche sur les Transports
(March 1994).

[35] V.M.G. Gluskov, The abstract theory of automata, Russian Mathematical
Surveys 16 (1961) 1-53.

[36] K. Thompson, Regular expression search algorithm, Communications of the
ACM 11 (1968) 419-422.

[37] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley, 1979.

[38] Y.-G. Guéhéneuc, Priogj: Promoting patterns with patterns, in: M.E. Fayad (Ed.),
Proceedings of the First ECOOP workshop on Building a System using
Patterns, Springer-Verlag, 2005. <http://www-etud.iro.umontreal.ca/~ptidej/
Publications/ Documents/ECOOP05BSUP.doc.pdf>.

[39] H.W. Thimbleby, The directed chinese postman problem, Journal of Software —
Practice and Experience 33 (11) (2003) 1081-1096. <http://www.uclic.ucl.ac.
uk/harold/cpp/>.

[40] K. Scheglov, J.-M.P. Shackelford, Eclipse profiler (September 2004). <www.
eclipsecolorer.sourceforge.net/index_profiler.html>.

[41] E. Agerbo, A. Cornils, How to preserve the benefits of design patterns, in: C.
Chambers (Ed.), Proceedings of the 13th Conference on Object-Oriented
Programming, Systems, Languages, and Applications, ACM Press, 1998, pp.
134-143. <http://citeseer.nj.nec.com/31381.html>.

[42] L. Wendehals, Improving design pattern instance recognition by dynamic
analysis, in: J.E. Cook, M.D. Ernst (Eds.), Proceedings of the First ICSE
Workshop on Dynamic Analysis, IEEE Computer Society Press, 2003. <http://
www.cs.nmsu.edu/jcook/woda2003/papers/Wendehals.pdf>.

[43]]. Bieman, G. Straw, H. Wang, P.W. Munger, R.T. Alexander, Design patterns and
change proneness: an examination of five evolving systems, in: M. Berry, W.
Harrison (Eds.), Proceedings of the Ninth International Software Metrics
Symposium, IEEE Computer Society Press, 2003, pp. 40-49. <http://csdl.
computer.org/comp/proceedings/metrics/2003/1987/00/19870040abs. htm>.

[44] WJ. Brown, R.C. Malveau, W.H. Brown, HW. McCormick, W. Hays III, T.J. Mowbray,
Anti Patterns: Refactoring Software, Architectures, and Projects in Crisis, first ed,
John Wiley and Sons, 1998. <http://www.amazon.com/exec/obidos/tg/detail/-/
0471197130/ref=ase_theantipatterngr/103-4749445-6141457>.

