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Abstract

Context. Eye-tracking is a mean to collect evidence regarding some participants’ cognitive processes. Eye-
trackers monitor participants’ visual attention by collecting eye-movement data. These data are useful to
get insights into participants’ cognitive processes during reasoning tasks.
Objective. The Evidence-based Software Engineering (EBSE) paradigm has been proposed in 2004 and,
since then, has been used to provide detailed insights regarding different topics in software engineering
research and practice. Systematic Literature Reviews (SLR) are also useful in the context of EBSE by
bringing together all existing evidence of research and results about a particular topic. This SLR evaluates
the current state of the art of using eye-trackers in software engineering and provides evidence on the uses
and contributions of eye-trackers to empirical studies in software engineering.
Method. We perform a SLR covering eye-tracking studies in software engineering published from 1990 up
to the end of 2014. To search all recognised resources, instead of applying manual search, we perform an
extensive automated search using Engineering Village. We identify 36 relevant publications, including nine
journal papers, two workshop papers, and 25 conference papers.
Results. The software engineering community started using eye-trackers in the 1990’s and they have become
increasingly recognised as useful tools to conduct empirical studies from 2006. We observe that researchers
use eye-trackers to study model comprehension, code comprehension, debugging, collaborative interaction,
and traceability. Moreover, we find that studies use different metrics based on eye-movement data to obtain
quantitative measures. We also report the limitations of current eye-tracking technology, which threaten
the validity of previous studies, along with suggestions to mitigate these limitations.
Conclusion. However, not withstanding these limitations and threats, we conclude that the advent of
new eye-trackers makes the use of these tools easier and less obtrusive and that the software engineering
community could benefit more from this technology.
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1. Introduction

The evidence-based paradigm was first employed
in 1992 in clinical medicine to integrate “the best
research evidence with clinical expertise and pa-
tient values” [16]. Kitchenham et al. [13] were5

the first researchers to adapt the evidence-based
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paradigm in software engineering in 2004 and called
it “Evidence-based Software Engineering” (EBSE).
Since then, EBSE has been used to provide insights
on different topics in software engineering research10

and practice. Performing Systematic Literature Re-
views (SLR) is recognized as the main approach to
realize EBSE with the goal of bringing together all
existing evidence on a topic and providing evidence-
based guidelines to push froward that topic [14].15

In cognitive psychology, researchers have tradi-
tionally used eye-trackers to study information pro-
cessing tasks [40]. Eye-trackers are also increas-
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ingly used in other domains, such as marketing, in-
dustrial design, and computer science (e.g., graphic20

data processing and human–computer interactions)
[39]. In the early nineties, the software engineering
community started to show interest in eye-tracking
technology to study the reading strategies involved
in program comprehension. In 1990, Crosby et25

al. [Crosby and Stelovsky, 1990] performed the first
eye-tracking study in software engineering. They
investigated reading strategies and their impact on
the comprehension of procedural code.

However, eye-trackers have not been used a lot30

in software engineering because of the high price of
accurate devices and the difficulties associated with
using these devices [Bednarik and Tukiainen, 2007].
As an alternative solution, some previous studies
used the Restricted Focus Viewer approach (RFV)35

[42] and its modified, enhanced version to study
debugging strategies [Romero et al., 2002, Romero
et al., 2003, 43]. RFV tracks the movements of a
computer mouse over a stimulus and their coordi-
nates and durations [42, 53]. Yet, since 2006, soft-40

ware engineering researchers started to leverage the
availability of unobtrusive eye-trackers to perform
different studies.

This paper presents a SLR of 36 papers, collect-
ing, evaluating, and interpreting all studies relevant45

to the uses of eye-tracking technology in software
engineering from 1990 up to the end of 2014. We
believe that conducting this SLR is beneficial at this
point in time because it brings together all the stud-
ies that have been done in the past and could help50

researchers to avoid misusing eye-tracking technol-
ogy in software engineering research. Moreover,
this SLR provides an overview of all the different
eye-trackers, metrics, visualization techniques, ac-
tivities, and artifacts used in previous eye-tracking55

studies. It also discusses the limitations associated
with eye-tracking technology. Therefore, it can be a
starting points for researchers who are interested to
perform eye-tracking studies to become acquainted
with this technology and its limitations, to find re-60

lated works, and to decide whether or not to use
this modern technology.

In summary, the contributions of this SLR are
the following:

1. To provide descriptive statistics and overviews65

on the uses of eye-tracking technology in soft-
ware engineering.

2. To present an annotated bibliography and pro-
vide and discuss exhaustive lists of topics and

artifacts studied using eye-trackers.70

3. To summarise all the metrics and tools avail-
able for the analysis of eye-tracking data to
study developers’ cognitive processes.

4. To allow researchers to use a unified and consis-
tent terminology, (e.g., metrics names), when75

conducting and reporting eye-tracking studies.

The annotated bibliography presents information
about the selected studies in a structured way. It
allows researchers to compare studies with one an-
other with respect to the selection of material, the80

participants’ selection, and the study variables. Re-
searchers with particular topics, activities, or arti-
facts in mind, can find out whether their topics, ac-
tivities, or artifacts have been studied and, if they
were, relevant information from the annotated bib-85

liography. The SLR also concludes with the needs
for new metrics and tools to analyse eye-tracking
data as well as advices to overcome or limit threats
to the validity of eye-tracking studies.

The reminder of this paper is organized as fol-90

lows: In Section 2, we provide necessary back-
ground on eye-tracking technology. In Section 3, we
discuss the methodology that we follow in conduct-
ing the SLR and present the summary of evidence in
Section 4. We provide the complete answers to our95

research questions in Section 5. We discuss threats
to the validity of this SLR in Section 6 and conclude
this paper in Section 7.

2. Eye-tracking Technology

We now provide the necessary background on100

eye-tracking technology as well as the assumptions
related to eye-movements that underly the build-
ing and usage of eye-trackers (in Section 2.1). We
also summarise the different types of eye-trackers
(in Section 2.2).105

Eye-trackers are designed to monitor a partici-
pant’s visual attention by collecting eye-movement
data when the participant looks at a stimulus while
working on a task [39, 40]. In human vision, eye-
movements are essential to cognitive processes as110

they carry the visual attention to the specific parts
of some stimuli that are processed by the brain. A
stimulus is an object (e.g., source code and dia-
gram) necessary to perform the task.

Eye-movement data are studied with respect to115

certain areas of the stimuli, which are called Areas
of Interest (AOIs). An AOI can either be relevant
or not to a participant while performing a task. For
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Figure 1: Example of goggle used in intrusive video-based eye-trackers. This image is adapted from [39].

Figure 2: (Left) A participant sits in front of the computer and a video-based eye-tracker captures eye-
movement data. (Right) FaceLAB is an example of video-based eye-trackers. This image is adapted from
FaceLAB manual [54].

example, if we consider a class diagram as stimu-
lus, a relevant AOI could be a specific class that is120

used by the participant to perform the task, while
irrelevant AOI would be any other classes.

Eye-movement data are classified based on the
following significant indicators of ocular behavior:

1. A fixation is the stabilization of the eye on a125

part of the stimulus for a period of time be-
tween 200 to 300 ms. All eye-trackers provide
fixation data, which include a time stamp and
x and y coordinates.

Researchers in psychology claim that most of130

the information acquisition and cognitive pro-
cessing occur during fixations. Moreover, they
showed that only a small set of fixations is re-
quired for participants to acquire and process
a complex visual input [41].135

2. A saccade is the sudden, quick movement
from one fixation to another. Saccadic eye-
movements are extremely rapid, within 40-50
ms. Researchers in psychology claim that the

information encoding and cognitive process-140

ing that occur during a saccade is very lim-
ited [39, 41].

3. A scan-path is a series of fixations or AOIs, in
chronological order. An AOI is visited if there
is at least one fixation in it. Figure 3 shows145

two distinct scan-paths on a same stimulus,
with four areas of interest: A, B, C, and D.
Researchers in psychology showed that scan-
paths are representative of the tasks being per-
formed by participants.150

2.1. Eye-tracking Assumptions

The relation between eye-movements and com-
prehension is based on two assumptions [22]:

• The immediacy assumption states that, as
soon as a participant sees a stimulus, she tries155

to interpret it.

• The eye–mind assumption states that a partic-
ipant fixates her attention on a stimulus until
she understands it.
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(a) ABDCA

(b) DBCAB

Figure 3: Two distinct scan-paths on the same
stimulus with four areas of interest: A, B, C, and D.
This image is adapted from [De Smet et al., 2014]

Previous works presented in this SLR support160

these assumptions and use them to analyse and in-
terpret eye-movement data. They also further as-
sume that participants are actively engage in per-
forming their tasks and are not day-dreaming dur-
ing the studies.165

2.2. Devices

Eye-trackers are divided into two main cate-
gories. While many eye-trackers are available, we
list only those that are used in the selected papers
retained for our SLR:170

1. Intrusive eye-trackers typically contain three
miniature cameras that are mounted on a
padded headband that participants wear during
the studies. Two of these cameras capture eye-
movements using infrared lights reflecting on the175

participants’ pupils while the third one is op-
tional and used for head tracking. The major
limitation of these devices is instability because
a light head movement may result in an inac-
curate eye-movement coordinates. In addition,180

the padded headband, which is a heavy gog-
gle with several wires, as shown in Figure 1,

may worry participants. The Eye-link II from
SR Research [54] is an example of intrusive eye-
trackers.185

2. Non-intrusive eye-trackers divide in two genera-
tions. Those of the older generation typically
used beams of light that are reflected on the
participants’ eyes and captured while returning.
Such eye-trackers have low resolutions and preci-190

sions. Those of the newer generation—the video-
based eye-trackers—typically consist of one com-
puter, two miniature cameras, and one infrared
pad, as shown in Figure 2. The computer de-
tects and tracks the participants’ eye-movements195

by tracking the positions of the participant’s
heads using eye-brows, noses, and lips. It also
uses corneal reflection (infrared) and pupil center
to distinguish head- and eye-movements. Face-
LAB from Seeing Machines [55] and Tobii 1750200

are examples of non-intrusive, video-based eye-
trackers.

3. Methodology

We carry out this SLR following Kitchenham’s
guidelines [17].205

3.1. Research Questions

This SLR answers the following research ques-
tions:

RQ 1. How many articles have been published us-
ing eye-trackers in software engineering re-210

search since 1990?

RQ 2. What research topics have been explored
and examined in eye-tracking studies?

RQ 3. How much have eye-tracking studies con-
tributed to software engineering?215

RQ 4. How have researchers used eye-trackers to
collect and visualise quantitative measure-
ments?

RQ 5. What are the limitations of current eye-
tracking studies?220

RQ 6. What eye-trackers are most frequently used
in eye-tracking studies?

To address RQ1, we identify the numbers of jour-
nal, conference, and–or workshop papers published
starting from 1990 up to the end of 2014 and which225

report one of more empirical studies using an eye-
tracker in the field of software engineering. We
choose 1990 as starting point because the first eye-
tracking study in software engineering was carried
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out in 1990 by Crosby et al. [Crosby and Stelovsky,230

1990]. We confirmed this observation by performing
a complementary search looking for relevant papers
published between 1980 and 1990. This comple-
mentary search returned only the paper by Crosby
et al. Regarding RQ2, we consider the scope of each235

study based on categories for which we found at
least two publications: model comprehension, de-
bugging, code comprehension, collaborative inter-
action, and traceability.

To answer RQ3, we summarise the outcomes of240

the selected studies. With respect to RQ4, we pro-
vide a list of all metrics based on eye-tracking data
as well as their definitions and applicability. To
answer RQ5, we explain the limitations of current
eye-trackers for software engineering studies along245

with the solutions deployed by researchers to miti-
gate these limitations. Finally, we provide a list of
commonly used eye-trackers to answer RQ6.

3.2. Search Process

We use Engineering Village1 to search for papers250

that present one or more eye-tracking studies in
the field of software engineering. Engineering Vil-
lage is an information discovery platform that is
connected to several trusted engineering literature
databases. If we had performed our search using255

individual, independent electronic databases, such
as the ACM2 and IEEE Xplore3 digital libraries
separately, we would have needed different search
queries, potentially threatening the internal valid-
ity of our results. Engineering Village gives us the260

ability to search in all recognised scholarly journals,
conference and workshop proceedings together with
a unique search query.

Because our main goal is to study the usage
of eye-tracking technology in software engineer-265

ing, we assume that the RFV approach and–or
eye-trackers are used to collect participants’ eye-
movements while performing tasks using software
engineering-related stimuli. Thus, we define three
sets of keywords presented as follows, where a “*”270

at the end of each word is a truncation that can be
replaced with zero or more characters:

1. Eye-tracking: “eye track*”, “eye-track*”,
“RFV”, and “Restricted Focus Viewer”. We
use these keywords to find papers that use an275

1http://www.ei.org/engineering-village
2http://dl.acm.org/
3ieeexplore.ieee.org

eye-tracker or the RFV approach. Therefore,
the returned set of papers contains two main
terms related to eye-trackers, i.e., “eye” and
“track” and RFV-related terms.

2. Stimuli: “source code”, “program*”, “UML”,280

“model*”, and “representation*”. We define
this set of keywords to find papers focusing on
the different types of stimuli used in software
engineering studies.

3. Task: “comprehen*”, “understand*”, “de-285

bug*”, “explorat*”, “navigat*”, “read*”,
“scan*”, and “analy*”. We define this set of
keywords to find papers pertaining to the dif-
ferent activities performed by software devel-
opers on a daily basis and that have been stud-290

ied by researchers.

First, we included all keywords in a prelimiary
query. We evaluated and refined the query as fol-
lows. First, we executed the preliminary query.
The search engine was set to search from 1990 to295

2014. We automatically applied duplicate removal.
We used both Inspec4 and Compendex5 databases.
We sorted the results of the preliminary query by
relevance. Second, the two first authors, who are
familiar with the uses of eye-trackers in software300

engineering checked the first ten found papers and
verified the number of relevant papers to evaluate
the quality of the search results. We found five
papers out of ten that are relevant to the goal of
this study. Third, we evaluated the impact of each305

keyword by removing the keywords one by one and
checking the results. If by removing a keyword, at
least one relevant result went missing, we consid-
ered that keyword essential and kept it. If after
keyword removal, there was no missing paper, we310

removed that keyword. Based on the three sets of
keywords and this evaluation process, we obtain the
final search query shown in Figure 4.

3.3. Selection Process

The process that we adopt to select the rele-315

vant papers is presented in Figure 5. On the left,
we present the set of activities that we undertook
while, on the right, we present the numbers of re-
maining papers after each activity.

1. Select related papers: we execute our query320

in Engineering Village. The search engine

4http://www.theiet.org/resources/inspec/
5http://adat.crl.edu/databases/about/compendex
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Figure 4: Search query.

Figure 5: Selection process adapted to choose ap-
propriate related papers. The numbers on the left
are the numbers of papers remaining after each step
has been performed.

searches into the title, the abstract, and the
keywords sections of the papers looking for the
keywords that are defined in our query to find
matching papers.325

2. Apply automatic process of duplicate removal:
we use Engineering Village duplicate removal
feature to automatically find and remove dupli-
cate papers among the set of papers returned
by its engine.330

3. Apply inclusion and exclusion criteria: we per-
form this step to check whether the resulting
papers are relevant or not to our goal. We
present and explain these criteria in details in
the next section.335

4. Analyse selected papers for duplicate removal:
for each selected paper, one author performs its

full analysis. Using title, keywords, abstract,
and body, we check whether the paper is a du-
plicate because, although Engineering Village340

features a duplicate-removal process, there are
still duplicated papers in the results; for exam-
ple, because different publishers use different
formats to display authors’ names.

5. Perform the snowballing process: for each pa-345

per, either the first or second author of this
SLR went through the list of all its references,
checked each reference starting from its title,
the conference proceeding and journal names,
and then checked the full paper if necessary350

to decide whether to include the paper in the
study or not.

3.4. Inclusion and Exclusion Criteria

We adopt the following inclusion/exclusion crite-
ria. We go through the abstract and the body of355

each paper to ensure their relevance according to
these criteria.

Inclusion criteria:

1. Primary studies published in journals or con-
ference and workshop proceedings in the form360

of experiments, surveys, case studies, reports,
and observation papers using eye-tracking
technology to study and investigate software
engineering activities.

2. Primary studies that present the more detailed365

and complete results, if there are more than
one published versions of a specific study.

Exclusion criteria:

1. Papers that do not use an eye-tracker.

2. Papers that are not related to software engi-370

neering. We remove papers related to other
fields (i.e., biomedical optics and imaging) by
checking the body of the selected papers.

3. Papers in “grey” literature, which are not pub-
lished by trusted, well-known publishers, and–375

or which did not go through a well-defined re-
ferring process [19]. (These papers are auto-
matically excluded by Engineering Village.)
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4. Papers that are not published in English.
(These papers were removed by Engineering380

Village through its publication language fea-
ture and using only the “English” language.)

We did not include dissertations in this SLR be-
cause they are not returned by Engineering Village
a it considers them “grey” literature. Moreover, a385

dissertation may contain several eye-tracking stud-
ies and, therefore, we prefer to consider the individ-
ual papers presenting each study.

3.5. Data Collection

The pieces of information extracted from each390

paper are the following:

• Authors and their affiliations.

• Years of publication.

• Names of the eye-trackers.

• Configurations of the devices in the study, e.g.,395

the distance between the participants and the
screens, the sizes and resolutions of the screens.

• Main topics of the publication.

• Main research questions and results.

• All dependent, independent, and mitigating400

variables of the experiment.

• Metrics defined based on eye-tracking data.

• Studied artifacts, e.g., source code, diagrams,
text, etc.

• Studied tasks: e.g., reading, scan-405

ning/exploration, comprehension, etc.

The first and second authors were responsible
for extracting the data from the papers and veri-
fying the extraction. The papers, whose data was
extracted by the first author were verified by the410

second author and vice versa. Although using one
extractor and one checker is not recommended by
medical standards for performing SLR [17], the us-
ability of this procedure in software engineering is
confirmed by Brereton et al. [18]. In case of dis-415

agreement, all the authors held a discussion until
agreement. To preserve the consistency of the data
extraction, we used a data extraction form that we
designed for this study. We provide a copy of this
form in Table 17.420

4. Search Results

Applying our search query returned an original
set of 649 papers. We then perform the following
actions to obtain the final set of relevant papers, as
illustrated in Figure 5:425

1. We use the Engineering Village search engine
and remove duplicates automatically. 550 pa-
pers remain in the set.

2. We apply the inclusion/exclusion criteria and
reduce the number of articles to 48. We use the430

abstract and the body of the papers to remove
several papers that are not related to software
engineering. Several papers pertain to dif-
ferent fields, including cognitive science, nat-
ural language processing, computational sci-435

ence, mathematics, geoinformatics, bioinfor-
matics, robotics, etc. Two proceedings of the
“Eye-tracking Research and Application Con-
ference” (ETRA) of 2008 and 2012 are also re-
moved because we already selected their papers440

related to software engineering.
3. We analyse the remaining set of 48 papers

and remove 17 more papers, leaving 31 papers.
Seven out of the 17 removed paper present
new methods to compute, represent, or pre-445

dict participants’ scan-paths and do not per-
form any software engineering-related study.
There is also one paper whose text we could
not find online. In addition, we remove [43]
because [Romero et al., 2002] is its extended450

journal paper version.
We also remove [21, 58] because they do not
contain any eye-tracking study. We also re-
move six duplicated papers. Out of these six
papers, one removed paper is a replication of455

another eye-tracking study [Yusuf et al., 2007]
using a new questionnaire. Another [32] is not
a study and is only used in a working ses-
sion of a conference. Another [29] is a collec-
tion of four studies including two eye-tracking460

ones. Therefore, we remove this paper and
consider one of the original eye-tracking stud-
ies [Sharif and Maletic, 2010]. Regarding the
second eye-tracking study, we remove the orig-
inal study [31] and use a more complete ver-465

sion published in 2013 [Binkley et al., 2013].
We replace [33, 34] with a journal paper that
presents a more complete study [Bednarik and
Tukiainen, 2007].

4. After snowballing, we find five more papers470

[Crosby et al., 2002, Aschwanden and Crosby,
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Table 1: Journals, conference and workshop proceedings of the selected papers.

Source (Acronym) Total Papers
ACM Computer Supported Cooperative Work (CSCW) 1 [Jeanmart et al., 2009]
Conference of the Center for Advanced Studies on Collabora-
tive Research (CASCON)

1 [Guéhéneuc, 2006]

Computer Supported Collaborative Learning Conference
(CSCL)

1 [Sharma et al., 2013]

Conference on Advanced Information Systems Engineering
(CAiSE)

1 [Petrusel and Mendling, 2012]

Conference on Computing Education Research (Koli Calling) 1 [Busjahn et al., 2011]

Conference on Software Maintenance (ICSM) 2
[Sharif and Maletic, 2010]
[Ali et al., 2012]

Conference on Program Comprehension (ICPC) 5

[Yusuf et al., 2007]
[Sharafi et al., 2012]
[Soh et al., 2012]
[Sharafi et al., 2013]
[Walters et al., 2014]

Empirical Software Engineering Journal (EMSE) 2
[Cepeda and Guéhéneuc, 2010]
[Binkley et al., 2013]

Eye-tracking Research and Application (ETRA) 7

[Bednarik and Tukiainen, 2006]
[Uwano et al., 2006]
[Bednarik and Tukiainen, 2008]
[Hejmady and Narayanan,

2012]
[Sharif et al., 2012]
[Busjahn et al., 2014]
[Turner et al., 2014]

Hawaii International Conference on System Sciences (HICSS) 1 [Aschwanden and Crosby, 2006]
IEEE Computer Journal (IEEE Computer) 1 [Crosby and Stelovsky, 1990]

International Conference on Software Engineering (ICSE) 2
[Fritz et al., 2014]
[Rodeghero et al., 2014]

Journal of Behavior research methods (BRM) 1 [Bednarik and Tukiainen, 2007]
Science of Computer Programming Journal (SCP) 1 [De Smet et al., 2014]
Journal of Human Computer Studies (HUMCOMPUT) 1 [Bednarik, 2012]
International Journal of Human Computer Interaction (IJHCI) 1 [Duru et al., 2013]
International Conference on Multimodel Interaction (ICMI) 1 [Stein, 2004]
Journal of Systems and Software (JSS) 1 [Bednarik, 2012]
Lecture Notes in Computer Science (LNCS) 1 [Cagiltay et al., 2013]
Symposium on Software Engineering and Measurement
(ESEM)

1 [Romero et al., 2002]

Working Conference on Software Visualization (VISSOFT) 1 [Sharif et al., 2013]
Workshop of Psychology of Programming Interest 2 [Crosby et al., 2002]
Group (PPIG) [Romero et al., 2003]
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2006, Guéhéneuc, 2006, Fritz et al., 2014,
Rodeghero et al., 2014].
We have not found paper [Crosby et al., 2002]
by applying our search query because it does475

not include, in its title or abstract, occurrences
of the words in our first set of keywords, re-
lated to eye-tracking. Paper [Aschwanden and
Crosby, 2006] is not listed in Engineering Vil-
lage because it is published in a local confer-480

ence, Hawaii International Conference on Sys-
tem Sciences, yet this conference conforms to
our inclusion/exclusion criteria.

Overall, we find 36 papers related to the use of
eye-tracking technology in software engineering be-485

tween 1990 to 2014. Table 1 shows the names of
journals and conference and workshop proceedings
of the papers along with the total numbers of pa-
pers per venue. It also shows the set of selected
papers from each source. ETRA published seven490

articles, which is the highest number in compar-
ison to other sources, because this conference is
dedicated to eye-tracking technology and its ap-
plications. Consequently, several researchers tar-
get this conference to present their research work.495

ICPC published five articles. This last number
shows that several software-engineering researchers
used the eye-tracking technology to study program
comprehension. Because program comprehension
is a problem-solving task, eye-trackers provide use-500

ful information about the developers’ cognitive pro-
cesses. Finally, ICSE, ICSM, and ESEM, each pub-
lished two articles.

5. Discussion

We can now answer our research questions and505

discuss their answers.

5.1. How many articles have been published using
eye-trackers in software engineering research
since 1990?

Overall, we find 36 relevant papers, summarised510

in Table 15. All of these papers report at least one
study with some eye-tracker. Figure 6 presents the
numbers of papers published per year starting from
1990 to 2014. Only 13.8% of these papers were
published between 1990 and 2006 and the rest were515

published in the last 10 years. This table shows
that, in the software engineering community, eye-
trackers have become increasingly accepted as use-
ful tools to perform empirical studies from 2006.

Figure 6: Number of published papers per year.

5.2. What research topics have been explored and520

examined in eye-tracking studies?

We categorise the selected papers in five groups,
shown in Table 2. Classifying papers is a challeng-
ing task. We could not define categories in advance
because they are dependent on the selected papers.525

Therefore, we first identify a set of categories based
on titles and abstracts. Then, after performing
their analyses, we finalise the categories based on
the tasks performed by participants and assign pa-
pers to different categories so that each retained530

category includes at least two papers.

For each category, we now systematically re-
port each paper in a structured way by presenting
the following information: (1) artifacts; (2) num-
ber and participants’ types (students, faculty mem-535

bers, and–or professionals); (3) eye-tracker; and (4)
dependent variables (DV), independent variables
(IV), and mitigating variables (MV). If one piece
of information is missing in a paper, we put “not
mentioned”. We explain the metrics used for cal-540

culating dependent and independent variables are
in Section 5.4. We use this systematic, structured
way to provide an minimal annotated bibliography
of the selected studies. Using this bibliography, re-
searchers can compare different studies regarding545

different pieces of information.

Selected papers refer to developers participating
in the eye-tracking studies as “subjects” or “par-
ticipants” interchangeably. Yet, the word “partic-
ipant” better fits eye-tracking studies because re-550

searchers do not want to understand developers to
change their behaviours but rather to understand
their uses of some artifacts and tools when per-
forming of tasks to help them in their work.
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Table 2: Classification of the selected papers based on category.

Aspect Total Papers

Model Comprehension 10
[Guéhéneuc, 2006], [Yusuf et al., 2007], [Jeanmart et al., 2009]
[Cepeda and Guéhéneuc, 2010], [Sharif and Maletic, 2010],

[De Smet et al., 2014] [Soh et al., 2012], [Cagiltay et al., 2013]
[Petrusel and Mendling, 2012], [Sharafi et al., 2013]

Code comprehension 12
[Crosby and Stelovsky, 1990], [Crosby et al., 2002], [Aschwanden

and Crosby, 2006], [Bednarik and Tukiainen, 2006]
[Busjahn et al., 2011], [Sharafi et al., 2012], [Binkley et al., 2013]
[Duru et al., 2013], [Busjahn et al., 2014], [Turner et al., 2014],

[Fritz et al., 2014], [Rodeghero et al., 2014]

Debugging 9
[Romero et al., 2002], [Romero et al., 2003], [Uwano et al., 2006]
[Bednarik and Tukiainen, 2007], [Bednarik and Tukiainen, 2008],

[Bednarik, 2012], [Hejmady and Narayanan, 2012]
[Sharif et al., 2012], [Sharif et al., 2013]

Collaborative interactions 3 [Stein, 2004], [Jermann and Nüssli, 2012], [Sharma et al., 2013]
Traceability 2 [Ali et al., 2012], [Walters et al., 2014]

5.2.1. Model Comprehension555

We find ten papers pertaining to model compre-
hension. All of the papers selected for this category
perform comprehension tasks.

[Guéhéneuc, 2006] uses eye-trackers to study the
comprehension of UML class diagrams. It intro-560

duces a visualisation technique to aggregate and
display eye-tracking data (fixations and saccades).
This visualisation technique superimposes aggrega-
tions of the fixations and saccades for all partici-
pants to highlight the most visited AOIs.565

Artifacts UML class diagrams
Participants 12 students
Eye-tracker EyeLink II

Variables
DV Not mentioned
IV Not mentioned
MV Not mentioned

[Yusuf et al., 2007] investigates the impact of
different characteristics of UML class diagrams, in-
cluding layout, color, and stereotypes. It uses UML570

class diagrams of HippoDraw6 as artifacts.

6www.slac.stanford.edu/grp/ek/hippodraw

Artifacts UML class diagrams of the
open source called Hippo-
Draw

Participants 12 students and faculty
members

Eye-tracker Tobii 1750

Variables
DV Accuracy, time, and ef-

fort
IV Layout (orthogonal,

three-cluster, and multi-
cluster)

MV Not mentioned

[Jeanmart et al., 2009] investigates the impact
of the Visitor design pattern on comprehension and575

maintenance. It uses UML class diagrams of JHot-
Draw7, JRefactory8, and PADL9 as artifacts.

Artifacts UML class diagrams of three
open source programs

Participants 24 students
Eye-tracker EyeLink II

Variables
DV Time and effort
IV Design alternative: no

pattern, canonical, and
modified

MV UML and design pattern
knowledge

7http://www.jhotdraw.org/
8http://jrefactory.sourceforge.net/
9http://wiki.ptidej.net/doku.php?id=padl
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[Cepeda and Guéhéneuc, 2010] compares differ-580

ent UML representations of design patterns.

Artifacts UML class diagrams
Participants 24 students
Eye-tracker EyeLink II

Variables
DV Time, accuracy, ratio of

on-target:all-target fixa-
tion time, and ratio of on-
target:all-target fixation

IV Representations of pat-
terns (Schauer [8],
Gamma [9], and
Dong [10]) and tasks
(participation, composi-
tion, and role).

MV JHotdraw and design pat-
tern knowledge

[Sharif and Maletic, 2010] analyses the impacts
of orthogonal and multi-clustered layouts on the585

comprehension of design patterns. It uses UML
class diagrams of JHotDraw, JUnit10, and Qt11 as
artifacts.

Artifacts UML class diagrams of three
open-source programs

Participants 12 students and faculty
members

Eye-tracker Tobii 1750

Variables
DV Accuracy, time, and ef-

fort
IV Reading behaviour
MV

590

[De Smet et al., 2014] investigates the impact of
different design patterns, including Observer, Com-
posite, and Model-View-Controller on comprehen-
sion. It uses UML class diagrams of JUnit, Quick-
UML12, and ArgoUML13 as artifacts.595

10http://junit.org/
11http://qt-project.org/
12http://sourceforge.net/projects/quj/
13http://argouml.tigris.org/

Artifacts UML class diagrams of three
open source programs

Participants 26 students and faculty
members; 18 students

Eye-tracker EyeLink II

Variables
DV Spatial density, transi-

tional matrix, average fix-
ation duration; time and
scan-path distance

IV Presence of patterns (ob-
server and composite);
different variants of MVC
pattern

MV Not mentioned

[Soh et al., 2012] studies the relation between
expertise and professional status for UML class di-
agram comprehension.600

Artifacts UML class diagrams
Participants 21 students and faculty

members
Eye-tracker EyeLink II

Variables
DV Accuracy, time, effort
IV Status (practitioner, stu-

dent) and expertise (ex-
pert, novice)

MV Question precision

[Petrusel and Mendling, 2012] focuses on the un-
derstanding of business-process models (BPMN14

diagrams) and investigates the factors that influ-605

ence their comprehension.

Artifacts BPMN diagrams
Participants 26 professionals
Eye-tracker Not mentioned

Variables
DV Accuracy
IV Number of elements in

the relevant region, and
time

MV Not mentioned

[Cagiltay et al., 2013] studies non-formal inspec-
tions of entity-relationship diagram (ERD). It pro-610

poses two measures of defect detection to measure
how developers comprehend ERD.

14http://www.bpmn.org/
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Artifacts ER diagrams
Participants 4 professionals
Eye-tracker Tobii (model not mentioned)

Variables
DV Defect detection difficulty

level and defect detection
performance.

IV Search pattern
MV Not mentioned

[Sharafi et al., 2013] investigates the efficiency615

of the graphical vs. textual representations of the
TROPOS [51] notation in modelling and presenting
software requirements.

Artifacts TROPOS diagrams
Participants 28 students
Eye-tracker FaceLAB

Variables
DV Accuracy, time, and ef-

fort
IV Representation type

(graphical vs. textual)
MV English language profi-

ciency and type prefer-
ences

620

5.2.2. Code Comprehension

We identify 12 papers pertaining to code compre-
hension. All of the papers in this category perform
comprehension tasks by reading pieces of source
code to answer comprehension questions. As types625

of artifacts, we report the programming languages,
the main functionalities of the pieces of source code,
and the numbers of lines of code (LOC), if available.

[Crosby and Stelovsky, 1990] studies the source
code reading to assess the impact of expertise on630

the developers’ comprehension strategies.

Artifacts Pascal source codes of binary
search algorithm

Participants 18 students and faculty
members

Eye-tracker Not mentioned

Variables
DV Number of fixations and

time
IV Expertise
MV Not mentioned

[Crosby et al., 2002] defines beacons as impor-
tant features in source code that “serve as keys to635

facilitate program comprehension”. It investigates
how experts and novices used these beacons to read
and understand programs.

Artifacts Lines of code from binary
search program written in
Pascal and shown in random
order

Participants 18 students
Eye-tracker ASL

Variables
DV Accuracy and time
IV Expertise and number of

lines
MV Not mentioned

640

[Bednarik and Tukiainen, 2006] provides a visu-
alisation technique of Java source code and studies
how developers use source code and the visualisa-
tion interchangeably.

Artifacts Three Java source codes of
factorial (15 LOC), recur-
sive binary-search (34 LOC),
and naive string matching
(38 LOC)

Participants 14 students
Eye-tracker Tobii 1750

Variables
DV Time and attention

switching
IV Code vs. visualization
MV Not mentioned

645

[Aschwanden and Crosby, 2006] focuses on par-
ticipants’ expertise and reveals that experts and
novices spend different amounts of visual attention
on different parts of the source code.650

Artifacts Java source codes of an algo-
rithm presented in recursive
and non-recursive versions

Participants 15 (not mentioned the type)
Eye-tracker ASL

Variables
DV Accuracy and number of

lines
IV Algorithm type (recursive

vs. non-recursive)
MV Expertise

[Busjahn et al., 2011] performs an experiment
to investigate the differences between source code
reading and natural text reading.655
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Artifacts Java source codes
Participants 15 (not mentioned the type)
Eye-tracker Tobii T120

Variables
DV Time, number of charac-

ters, and number of ele-
ments

IV Source code vs. natu-
ral language text, and dif-
ferent source code parts
including: operator, key-
words, identifiers, and
numbers

MV Not mentioned

[Sharafi et al., 2012] investigates the impact of
identifier styles (camel case vs. underscore) on de-
velopers recalling the names of identifiers. It also660

compares different strategies deployed by male and
female developers.

Artifacts Three Java sources code
of 2D graphical frame (30
LOC), database tester (36
LOC), and nprime number
calculator (44 LOC)

Participants 26 students
Eye-tracker FaceLAB

Variables
DV Accuracy, time, and ef-

fort
IV Gender and identifier

style (camel case vs
underscore)

MV Study level and style pref-
erences

[Binkley et al., 2013] also investigates the im-665

pact of identifier styles on comprehension with two
studies (recall and multiple choice questions).

Artifacts English words and C++
source codes

Participants 169 students
Eye-tracker Tobii 1750

Variables
DV Accuracy, time, and ef-

fort
IV Identifier style (camel

case vs underscore)
MV Length of the phrase,

phrase origin (code vs.
Non-code), time demog-
raphy (Applet-Cloud
only), training, and
Experience

[Duru et al., 2013] studies visualisation tech-670

niques to understand the reason why such tech-
niques are not being used in industry.

Artifacts An e-commerce small-scale
enterprise .NET application

Participants 13 professionals
Eye-tracker Tobii 1750

Variables
DV Accuracy and time
IV Presence of visualisation

provided by NDEPEND
software visualization
tool

MV Not mentioned

[Turner et al., 2014] investigates the impact675

of programming language (C++ vs. Python) on
source code comprehension by comparing experts’
and novices’ scan-paths.

Artifacts Five C++ source code and
five Python source code

Participants 38 Students
Eye-tracker Not mentioned

Variables
DV Accuracy, time, and vi-

sual effort
IV Programming language

(C++ vs. Python)
MV Expertise

680

[Busjahn et al., 2014] studies attention distribu-
tion on code elements to differentiate experts’ and
novices’ code reading strategies.

Artifacts Eleven Java source codes
Participants 15 Professionals
Eye-tracker Tobii T120

Variables
DV Time
IV Code elements (iden-

tifiers, operators, key-
words, and literals)

MV Expertise

[Fritz et al., 2014] uses psycho-physiological mea-685

sures, including eye-gaze data, electroencephalog-
raphy (EEG), electrodermal activity (EDA), and
NASA TLX scores [1] to study task difficulty.
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Artifacts Eight C] source code
Participants 15 Professionals
Eye-tracker Tobii TX300

Variables
DV Time, effort (Eye-gaze

data (Pupil size), EEG
data (and Blink rate),
and EDA data)

IV Task difficulty (easy and
hard)

MV Not mentioned
690

[Rodeghero et al., 2014] conducts an eye-tracking
study and use its findings to build a code summari-
sation tool.

Artifacts 67 Java methods from
six different applications:
NanoXML, Siena, JTopas,
Jajuk, JEdit, and JHotdraw

Participants 10 Professionals
Eye-tracker Tobii TX300

Variables
DV Fixation number and du-

ration, Fixation Time,
and Number of regression

IV Task difficulty (easy and
hard)

MV Not mentioned
695

5.2.3. Debugging

We find 9 studies related to debugging. In all of
the selected papers, participants read source code
and perform debugging tasks.

[Romero et al., 2002] focuses on the use of differ-700

ent representations by participants while perform-
ing debugging tasks and whether these representa-
tions bring higher performance.

Artifacts Java source codes of two pro-
grams

Participants 4 students and 1 profession-
als

Eye-tracker RFV

Variables
DV Accuracy and time
IV The presence of RFV

(RFV-on vs. RFV-off)
MV Not mentioned

705

[Romero et al., 2003] characterises the partici-
pants’ strategies in debugging tasks.

Artifacts Java source codes
Participants 49 students
Eye-tracker RFV

Variables
DV Accuracy, time, and

switching frequency
IV Visualization type

(graphical vs. textual),
visualization perspective
(data structure vs. con-
trol flow), and type of
error

MV Not mentioned

[Uwano et al., 2006] focuses on source code re-710

views by developers to find defects.

Artifacts Five C source codes (12 to 23
LOC)

Participants 5 students
Eye-tracker Eye Mark Tracker (EMR-

NC)

Variables
DV Time
IV Presence of defects
MV Not mentioned

[Bednarik and Tukiainen, 2007] uses both an eye-
tracker and the RFV approach to investigate the715

impact of RFV and of expertise on attention.

Artifacts Java source codes
Participants 18 students and faculty

members
Eye-tracker Tobii 1750 and RFV

Variables
DV Accuracy, time, and

switching frequency
IV Presence of RFV (RFV-

on vs. RFV-off) and level
of experience

MV Not mentioned

[Bednarik and Tukiainen, 2008] reanalyses the
data reported in [Bednarik and Tukiainen, 2007]720

and, by segmenting eye-tracking data into smaller
chunks, reports more accurate differences between
experts and novices.

Artifacts Java source codes
Participants 14 students
Eye-tracker Tobii 1750

Variables
DV Time and switching fre-

quency
IV Expertise
MV Not mentioned

725
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[Sharif et al., 2012] partially replicates [Uwano
et al., 2006] with a larger number of participants
and additional eye-tracking metrics. It analyses
participants’ eye-movements captured while per-
forming defect finding tasks.730

Artifacts C source codes
Participants 15 students and faculty

members
Eye-tracker Tobii 1750

Variables
DV Accuracy, time, and ef-

fort
IV Presence of defects
MV Expertise

[Bednarik, 2012, Hejmady and Narayanan, 2012]
use a multi-representational integrated develop-
ment environment (IDE) to display source code.735

[Hejmady and Narayanan, 2012] analyses how ex-
perts and novices find defects and their uses of dif-
ferent representations.

Artifacts Three Java source codes (in
average 100 LOC)

Participants 18 students and professionals
Eye-tracker Tobii 1750

Variables
DV Time, switching fre-

quency, and type of
switches

IV Expertise and strategies
MV Not mentioned

740

[Hejmady and Narayanan, 2012] studies the ef-
fectiveness and the role of multiple representations
during debugging.

Artifacts One Java source code im-
plementing bubble sort algo-
rithm and seeded with three
bugs

Participants 19 students
Eye-tracker Tobii T60 XL

Variables
DV Experience, familiarity

with jGrasp, and time
IV Strategy
MV Not mentioned

[Sharif et al., 2013] assesses the usability of a745

visualisation tool, called SeeIT, for performing code
overview and bug-fixing tasks.

Artifacts Java source code of an
open source system: Gantt
Project15

Participants 97 students
Eye-tracker Tobii X60

Variables
DV Accuracy, time, and ef-

fort
IV Presence of 3D visualiza-

tion tool (SeeIT 3D, No-
SeeIT 3D)

MV Expertise.

5.2.4. Collaborative Interactions750

We find three studies on collaborative interac-
tions.

[Stein, 2004] records some participants’ focus of
attention and display them to other participants
performing the same debugging task. It evaluates755

the usefulness of eye-movements as a cue for pro-
ductive collaborations.

Artifacts Java source codes
Participants 10 students and professionals
Eye-tracker Not mentioned

Variables
DV Accuracy and time
IV Stimuli with or without

another person’s gaze info
MV Not mentioned

[Jermann and Nüssli, 2012, Sharma et al., 2013]760

focus on pair programming tasks. [Jermann and
Nüssli, 2012] analyses participants’ focus of atten-
tion to observe how pair programmers share se-
quences of AOIs.

Artifacts Java source codes
Participants 82 students
Eye-tracker Tobii 1750

Variables
DV Speech, selection, and

gaze cross-recurrence
IV Selection type (individ-

ual, dual, and shared)
MV Not mentioned

765

[Sharma et al., 2013] studies participants’ inter-
actions with one another and its impacts in a pair
programming task.

15http://www.ganttproject.biz
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Artifacts Java source codes
Participants 82 students
Eye-tracker Tobii 1750

Variables
DV Gaze, speech, and time
IV Not mentioned
MV Not mentioned

770

5.2.5. Traceability

We find two studies on building or understanding
traceability links among artifacts.

[Ali et al., 2012] uses an eye-tracker to under-
stand how participants verify requirement trace-775

ability links. It reports the most used source code
entities, i.e., method names, comments, variables,
and class names.

Artifacts Six Java source codes (19, 18,
19, 18, 24, 28 LOC)

Participants 26 students
Eye-tracker FaceLAB

Variables
DV Accuracy and time
IV Source code entity (class

name, method name,
variables, and comment)

MV Study level
780

[Walters et al., 2014] describes SimpleGraph
Gaze-Link, an algorithm that automatically recov-
ers links between source code entities. It also
presents and studies the usability of iTrace, a tool
that supports link generation/recovery and mainte-785

nance/evolution.

Artifacts A Java application
Participants 8 students and Faculty mem-

bers
Eye-tracker Tobii X60

Variables
DV Not applicable
IV Not applicable
MV Not applicable

5.2.6. Discussions

Table 3 summarises the types of artifacts that
have been studied for performing the eye-tracking790

studies in the selected papers: 16 studies out of
22, which use pieces of source code as stimuli, use
the Java programming language. This observation
shows the wide use of the object-oriented paradigm
and Java. Based on Tiobe Programming Commu-795

nity Index16, Java is one of the first three most

16http://www.tiobe.com/index.php/content/paperinfo/
tpci/index.html (Accessed: 2014-04-07)

frequently-used programming languages in the last
ten years. One of the studies use Pascal because it
was published in 1990. Two other studies use C.
One study compares C++ with Python regarding800

code comprehension.

UML diagrams are the most used modeling ar-
tifacts (70%), which is expected because UML has
become the defacto standard for describing object-
oriented design models. UML is also supported by805

a wide range of software tools.

In total, 1,022 participants took part in the stud-
ies reported in the selected papers, as summarised
in Figure 7. The numbers of participants range
from 5 to 169 per study whereas the mean value is810

56.9. Out of all the selected papers, around 77%
use students and faculty members as participants
while the rest are either practitioners or no qualita-
tive information about the participants is provided
(2 papers out of 36).815

5.3. How much have eye-tracking studies con-
tributed to software engineering?

We look at our categories and discuss the results
of the different studies in each category. Tables
4 and 5 summarise the results for model compre-820

hension while Tables 6 and 7 summarise those for
code comprehension and debugging, respectively.
Finally, we present the summary of the results for
collaborative interactions and traceability in Tables
8 and 9, respectively.825

5.3.1. Model Comprehension

[Guéhéneuc, 2006] reports that developers be-
gin by browsing class diagrams randomly and that,
after finding relevant classes, they mostly focus on
those. In addition, it reports that participants do830

not seem to follow binary-class relationships, e.g.,
inheritance and associations.

After assessing the impact of layout, color,
and stereotypes on UML diagram comprehension,
[Yusuf et al., 2007] reports that experts and novices835

use different strategies while navigating class dia-
grams. Experts use the information provided by
coloring, layout, and stereotypes more efficiently
than novices. Also, they tend to explore the dia-
grams from their centers whereas novices use either840

top-down or left-to-right strategies.

[Soh et al., 2012] discusses the differences be-
tween participants’ status (practitioners or stu-
dents) and expertise (experts or novices) when
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Code Model
Pascal C/C++ Java C] Python UML ER Tropos BPMN English

Text
Other

2 3 16 1 1 7 1 1 1 2 3 applications

Table 3: Types of artifacts used in eye-tracking studies.

Table 4: Summary of the results for model comprehension.

Model Comprehension

Experts vs. novices:

1. Experts use extra information, e.g., color, layout, and stereotypes, more efficiently to browse
UML diagrams [Yusuf et al., 2007].

2. Expertise impacts the speed and accuracy more than experience. Also, practitioners are more
accurate than students [Soh et al., 2012].

Design patterns:

1. The canonical representation of the Visitor design pattern has a negative impact [Jeanmart
et al., 2009].

2. For composition and role tasks, Dong’s representation is more efficient while Gamma’s and
Schauer’s are more efficient for the participation task [Cepeda and Guéhéneuc, 2010].

3. Compared to the canonical form of the MVC and the Model-Delegate, MVC variant is easier
to understand and participants have higher level of accuracy [De Smet et al., 2014].

UML representations:

1. Using similar visual notations enhances diagram comprehension and reduces effort [Yusuf et al.,
2007].

2. Using multi-cluster layout leads to a significant improvement in the accuracy, time, and effort
compared to an orthogonal layout [Sharif and Maletic, 2010].
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Figure 7: Total number of participants for the selected papers.

studying their productivity. It reports that exper-845

tise is the most important factor for the compre-
hension of a UML class diagrams in terms of speed
and accuracy. In addition, its results show that
practitioners are more accurate than students while
students are faster.850

[Jeanmart et al., 2009] reports that the Visitor
design pattern does not reduce the participants’ ef-
fort for comprehension tasks. Moreover, its canoni-
cal representation has negative impact on the com-
prehension of the class diagrams.855

[De Smet et al., 2014] could not find any impact
for the Observer and Composite design patterns al-
though, by analysing participants’ scan-paths, it re-
ports that novices systematically browse class di-
agrams while experts quickly gather relevant in-860

formation. It also compares three different vari-
ants of the Model-View-Controller design pattern
on comprehension: the Canonical form of the MVC
style [7], the Model-Delegate style, and the Model
View Presenter style (MVP) and reports that the865

MVP variant is usually easier to understand than
the two other variants.

By comparing the impact of orthogonal and
multi-clustered layouts on the comprehension of de-
sign patterns, [Sharif and Maletic, 2010] reports a870

significant improvement in the accuracy, time, and
visual effort for the multi-cluster layout.

[Cepeda and Guéhéneuc, 2010] compares and
reports that Dong’s representation [10] is more
efficient for Composition and Role Tasks while875

Gamma’s [9] and Schauer’s [8] are more efficient

for the Participation Task.
[Petrusel and Mendling, 2012] targets the factors

that impact the comprehension of business process
models. It provides a formal notation for corre-880

lating the relevant regions and scan-paths. More-
over, it shows that the participants’ answers given
to questions pertaining to the models are correlated
with the relevant regions.

[Cagiltay et al., 2013] proposes two metrics885

for ERD defect detection: Defect Detection Diffi-
culty Level (DF) and Defect Detection Performance
(PP). It reports that a defect with higher DF value
leads to higher fixation durations. Moreover, par-
ticipants who search the ERD vertically are more890

efficient (higher PP values) than those who perform
horizontal search.

[Sharafi et al., 2013] reports that participants
spend more time and effort while working with a
graphical representation than a textual representa-895

tion of some requirements, although no significant
difference is reported for accuracy and participants
state that they prefer the graphical representation.
Moreover, it reports that the spatial structure of
the graphical representation facilitates the compre-900

hension tasks and leads participants to follow two
different navigation strategies (top-down and bot-
tom up) to perform the comprehension task.

5.3.2. Code Comprehension

[Crosby and Stelovsky, 1990, Crosby et al.,905

2002] study the impact of expertise on source code
reading. [Crosby and Stelovsky, 1990] reports that
novices pay more visual attention to comments than
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Table 5: Summary of the results for model comprehension (continued).

Model Comprehension

Navigation strategies:

1. Vertical scanning is more efficient than horizontal scanning for ERD comprehension tasks
[Cagiltay et al., 2013].

2. Scan-paths and relevant areas are connected with the participants’ strategies and correctness
when understanding BPMN models [Petrusel and Mendling, 2012].

3. The structure of representations leads participants to use different navigation strategies [Sharafi
et al., 2013].

Others:

1. We expect that participants follow relations between classes when understanding class diagrams.
Surprisingly, an eye-tracking study reports that participants do not seem to follow binary-class
relationships [Guéhéneuc, 2006].

2. Two different browsing strategies are observed for experts and novices. Experts browse diagrams
from their centers while novices use either top-down or bottom-up strategies [Yusuf et al., 2007].

3. We expect practitioners to be more efficient and accurate than students, yet students are faster
for comprehension tasks [Yusuf et al., 2007].

4. Design patterns should improve design quality and, thus, could reduce comprehension effort.
Results show that the Visitor design pattern does not reduce effort for comprehension tasks
[Jeanmart et al., 2009].

5. Participants spend more time and effort working with graphical representations compared to
textual ones [Sharafi et al., 2013].

experts. Also, [Crosby et al., 2002] reports that ex-
perts pay more attention to beacons than novices910

while novices do not discriminate between different
areas of the source code.

[Aschwanden and Crosby, 2006] focuses on par-
ticipants’ behaviour during code reading. It sug-
gests that any area of code that exhibits very long915

fixations, above 1,000 milliseconds, is a beacon.

[Bednarik and Tukiainen, 2006] gives partici-
pants access to a graphical representation of source
code as well as to the source code itself to perform
comprehension tasks. It reports that novices do920

not start by reading source code and prefer to look
at the graphical representation first. It reports that
a graphical representation provides more important
information at early stages of comprehension rather
than at the later stages.925

[Busjahn et al., 2011] reports that participants
spend more fixation times and have higher re-
gression rates (backward-directed eye-movements)
when reading source code than natural text. This
result shows that the higher complexity of the930

source code forces participants to change their focus
of attention more frequently.

Moreover, participants spend significantly more
time reading identifiers in source code than key-
words, numbers, and operands.935

[Busjahn et al., 2014] analyses attention distribu-
tion when reading source code. This paper confirms
the results of the previous paper and reports that
identifiers, operators, keywords, and literals receive
the most attention, in that order, while separators940

receive almost none. It also claims that methods
from research on natural-language text reading can
be applied to source code with some modifications.

Regarding the impact of identifier styles on
source code reading, [Sharafi et al., 2012] has not945

found any significant differences between camel case
and underscore. Moreover, it reports no significant
differences between male and female participants
regarding time, accuracy, and effort. However, it
reports that male and female participants follow950

different strategies while answering recall questions.
Female participants spend more time analysing dif-
ferent options while male participants quickly de-
cide on an answer. Yet, both groups have the same
accuracy and the time difference between male and955

female participants is not significant either.
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Table 6: Summary of the results for code comprehension.

Code comprehension

Experts vs. novices:

1. Novices spend more visual attention on comments than experts [Crosby and Stelovsky, 1990].

2. Novices do not start by reading source code and look at the graphical representation first
[Bednarik and Tukiainen, 2006].

3. Novices benefit from the use of camel case style regarding accuracy and effort while experts are
less affected by the identifier style [Binkley et al., 2013].

4. The programming language impacts the amount of efforts spent by novices compared to experts
while working with buggy pieces of source code [Turner et al., 2014].

Source code vs. natural text:

1. Participants have higher fixation times and regression rates when reading source code than
when reading natural text [Busjahn et al., 2011].

2. Source code reading and comprehension are fundamentally different from natural text reading
and comprehension [Binkley et al., 2013].

Identifier styles:

1. Expertise affects the impact of identifier styles on reading and comprehension [Binkley et al.,
2013].

2. No difference exists between camel-case and underscore identifier styles regarding accuracy,
time, and effort for comprehension tasks [Sharafi et al., 2012].

3. No significant difference is observed between male and female participants regarding time, ac-
curacy, and effort when comparing camel-case and underscore identifier styles [Sharafi et al.,
2012].

Navigation strategies:

1. Source code visualisation techniques provide more important information for participants at
early stages of comprehension and less at later ones [Bednarik and Tukiainen, 2006].

2. Visualisation techniques improve participants’ performance and help them to follow more sys-
tematics strategies during program comprehension [Duru et al., 2013].

3. Male and female participants follow different strategies when answering identifier recall questions
[Sharafi et al., 2012].
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[Binkley et al., 2013] presents contradictory re-
sults using four different studies comparing camel
case and underscore identifier styles regarding par-
ticipants’ time and accuracy. Moreover, this pa-960

per compares natural text reading with source code
reading and suggests that these two activities are
different, in agreement with [Busjahn et al., 2011].
It also shows that participants rapidly understand
code independent of style and that the choice of965

the identifier style has less impact on experts than
novices. Novices benefit from the use of camel case.

[Duru et al., 2013] reports that the visualization
technique provided by NDEPEND improves partic-
ipants’ accuracy and task completion-time. Its re-970

sults also indicate that the visualisation helps par-
ticipants find relevant entities and–or code snippets
and follow more systematic strategies.

[Turner et al., 2014] reports that there is no sig-
nificant difference between C++ and Python re-975

garding time and accuracy. However, for buggy
source code, participants spend more visual effort
on Python code. This paper also reports that there
is a significant difference between novices and ex-
perts with respect to accuracy and effort on buggy980

source code.
[Fritz et al., 2014] can predict task difficulty with

64.99% precision and 64.58% recall. Its results also
demonstrate that probabilistic classifiers, such as
Naive Bayes classifiers, can be trained with various985

biometric data to predict task difficulty. To vali-
date the task difficulty predicted by a Naive Bayes
classifier using psycho-physiological measures, the
paper compares its results with NASA TLX scores
and confirms a high correlation.990

[Rodeghero et al., 2014] shows that participants
spend more visual attention on method signatures
than method invocations and more visual attention
on and invocations than control flow.

5.3.3. Debugging995

[Uwano et al., 2006, Sharif et al., 2012] report
that participants who spent sufficient time scan-
ning source code tend to find defects more effi-
ciently. Longer scanning means that participants
carefully read the code and find suspicious candi-1000

date code lines. [Sharif et al., 2012] observes two
different debugging strategies to find bugs: (1) by
finding something odd in a file or (2) by comparing
information provided through different representa-
tions. [Uwano et al., 2006] reports repetitive pat-1005

terns of going back and forth between code and a
graphical representations for novices. The experts

change their strategies and focus on the output at
later stages while novices mostly switch between
the two. [Uwano et al., 2006] finds some patterns1010

of retracing (looking back at the declarations of the
variables). However, [Sharif et al., 2012] did not
notice these patterns.

[Bednarik and Tukiainen, 2008] partially repli-
cates [Bednarik and Tukiainen, 2007] and reports1015

that the amount of effort that participants spend
on defective lines and their defect detection times
are highly correlated with scanning. [Bednarik and
Tukiainen, 2007] compares the data reported by
both a RFV approach and an eye-tracker. The re-1020

sults show that there is a difference between the
reported amount of time for the same task. More-
over, the blurring of the RFV approach interferes
with the experts’ strategies. [Bednarik and Tuki-
ainen, 2008] reanalyses the data of [Bednarik and1025

Tukiainen, 2007] and reports that eye-movement
patterns during debugging change in time. At later
stages of debugging, experts change focus their at-
tention mostly on the output of the programs rather
than on source code.1030

[Romero et al., 2002, Romero et al., 2003, Bed-
narik, 2012, Hejmady and Narayanan, 2012] pro-
vide both source code and graphical representations
of source code to participants. [Bednarik, 2012] re-
ports that participants with higher performance1035

mainly use the graphical representation although
they frequently switch between the two. [Hejmady
and Narayanan, 2012] reports that participants
with lower performance switch more their attention,
even at the end of the debugging session, compared1040

to more successful ones.

[Sharif et al., 2013] reports that SeeIT 3D leads
to higher performance for participants who perform
overview tasks. However, working with SeeIT 3D
takes significantly longer during bug fixing tasks.1045

5.3.4. Collaborative Interaction

The results of [Stein, 2004] support the useful-
ness of eye-movements as cues for productive col-
laboration in problem solving. They show that par-
ticipants in a second group find bugs more quickly1050

after watching the eye-movements of successful par-
ticipants in a first group.

[Jermann and Nüssli, 2012] reports that par-
ticipant pairs who are actively working with each
other share a high level of cross-recurrences of eye-1055

movements. Moreover, [Sharma et al., 2013] ob-
serves that the pairs who spend more time “focused
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Table 7: Summary of the results for debugging.

Debugging

Navigation strategies:

1. Patterns of retracing are observed when participants look back to the declarations of variables
[Uwano et al., 2006].

2. Debugging strategies change in time. Participants mostly focus on output rather than source
code at later stages [Bednarik and Tukiainen, 2008].

3. Repetitive patterns (going back and forth between textual and graphical representations) are
observed for participants with less expertise and lower performance [Bednarik, 2012].

4. No pattern of retracing is observed when participants perform debugging tasks [Sharif et al.,
2012].

5. Two different debugging strategies are deployed by participants to find bugs [Sharif et al., 2012].

Performances:

1. Participants with higher performance in bug finding mainly use graphical representations rather
than source code [Uwano et al., 2006].

2. Scanning time is highly correlated with the amount of visual effort spent on defect lines [Bed-
narik and Tukiainen, 2008].

3. Participants with lower performance switch more their attention between different representa-
tions [Hejmady and Narayanan, 2012].

4. Longer scanning times lead participants to find more bugs [Uwano et al., 2006, Sharif et al.,
2012].

5. Using SeeIT 3D helps participants to have higher performance for overview tasks [Sharif et al.,
2013].

6. Participants who use SeeIT 3D spend more times on bug fixing tasks [Sharif et al., 2013].

Others:

1. RFV and eye-tracker report different amounts of time allocations for the same task [Bednarik
and Tukiainen, 2007].

Table 8: Summary of the results for collaborative interactions.

Collaborative Interactions

1. Eye-movements is a valuable, useful cue for the task of program comprehension [Stein, 2004,
Sharma et al., 2013].

2. Participants find bugs faster after watching the eye-movements of the developers in another
group [Stein, 2004].

3. Pairs of participants who spend more focused time together are more accurate for comprehension
tasks [Jermann and Nüssli, 2012].
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together” have higher levels of program understand-
ing compared to the rest.

5.3.5. Traceability1060

[Ali et al., 2012] reports that participants have
different preferences for different source code enti-
ties and prefer method names and comments. It
also proposes a new weighting scheme enhanced by
adding the results of an eye-tracking study and re-1065

ports that this scheme statistically improves the ac-
curacy of a IR-based technique.

[Walters et al., 2014] reports that the Simple-
Graph Gaze-Link algorithm provides traceability
links automatically with high recall. The use of1070

iTrace to automatically apply the proposed algo-
rithm and generate the traceability links is also
promising.

5.4. How have researchers used eye-trackers to col-
lect and visualise quantitative measurements?1075

Different studies propose and–or use several met-
rics based on eye-movement data provided by eye-
trackers to measure and calculate the amount of
visual effort required to perform the task. These
metrics divide in (1) metrics based on the numbers1080

of fixations, (2) metrics based on the durations of
fixations, (3) metrics based on saccades, and (4)
metrics based on scan-paths.

In addition, various visualisations techniques
have been used to display eye-movements. Vi-1085

sualising eye-movements helps performing qualita-
tive analysis to better understand participants’ be-
haviour. A same metric or visualisation technique
may be used in different studies with a different
name. In the following, we use the most common1090

name to refer to a metric and provide its other
names in parentheses along with references to the
related papers.

5.4.1. Visual Effort and Efficiency Metrics

Tables 10, 11, 12, and 13 summarise all metrics1095

used in the selected papers to measure the amount
of visual effort and efficiency along with equations
and a related papers.

Metrics based on the number of fixations1100

• Fixation Count (FC) is measured by count-
ing the number of fixations on specific AOIs or
the whole stimulus. Higher number of fixations
for the whole stimulus indicates less efficient
search for finding relevant information [46].1105

• Fixation Rate (FR) is defined as the number
of fixations on specific AOIs divided by the to-
tal number of fixations on the Area of Glance
(AOG), which can be the whole stimulus or
a set of AOIs. Goldberg et al. [46] proposed1110

this metric in 1999 and called it the Ratio of
On target:All target Fixations (ROAF). Inter-
preting fixation rate is dependent on the task
being performed [48]. For browsing/encoding
tasks, a higher fixation rate for a specific AOI1115

indicates that the participants show a great in-
terest in that AOI [28]. Yet, it could indicate
that the this area is difficult to encode [28].
For search task, smaller rates indicate lower
efficiency because the participants spend more1120

time and effort to find the relevant areas re-
quired to perform their task [48].

• Fixation Spatial Density was proposed by
Goldberg et al. [46] and used in several studies.
If we divide a stimulus into a grid, the spatial1125

density index is equal to the number of cells
containing at least one fixation, divided by the
total number of cells. Fixations that are con-
centrated in a small area indicate an efficient
search, which is highly focused. [De Smet et al.,1130

2014] explains how to use their tool, Taupe, to
compute this metric along with some examples.

• Convex hull Area represents the smallest
convex set of fixations that contains all the par-
ticipants’ fixations [46]. A smaller value indi-1135

cates that the fixations are closed together and
that the participants spend less effort to find
relevant areas.

Metrics Based on the Duration of Fixations

• Average Fixation Duration (AFD) is cor-1140

related with cognitive processes [39, 46]. This
metric is computed as shown in Equation 5,
Table 11. Longer fixations show that partici-
pants spend more time analysing and interpret-
ing the content of the AOIs while working on1145

their tasks. Therefore, they are spending more
mental effort to solve their tasks. This metric
can be computed for either a whole stimulus or
each AOI separately.

• Ratio of “On targer:All target” Fixation1150

Time (ROAFT) or Proportional Fixation
Time (PFT) is computed as the ratio of the
fixation duration on an AOI to the overall fix-
ation duration on a stimulus. Similar to the
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Table 9: Summary of the results for traceability.

Traceability

1. Participants prefer to use method names and comments compared to class names and variable
names to perform comprehension tasks [Ali et al., 2012].

2. The SimpleGraph Gaze-Link algorithm provides traceability links with high recall, automati-
cally [Walters et al., 2014].

Table 10: Metrics for visual effort calculation based on the number of fixations.

Names Formulas Papers
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F
ix
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n

Fixation
Count
(FC)

FC = Total number of fixations in AOI (1)
[Crosby and Stelovsky,

1990], [Crosby et al.,
2002], [Uwano et al.,
2006], [Yusuf et al.,
2007], [Sharif and
Maletic, 2010], [Sharafi
et al., 2012], [Sharif
et al., 2012], [Sharif
et al., 2013], [Turner
et al., 2014]

Fixation
Rate (FR)

FR =
Total Number of Fixations in AOI

Total Number of Fixations in AOG
(2)

[Cepeda and Guéhéneuc,
2010], [Sharif and
Maletic, 2010], [De Smet
et al., 2014], [Sharafi
et al., 2012], [Sharif
et al., 2012], [Binkley
et al., 2013], [Turner
et al., 2014]

Spatial
Density

SD =

∑n
i=1 ci
n

(3)

n: number of fixations in the specific area (for one cell).
ci: equal to 1 if the area number i visited, otherwise 0

[De Smet et al.,
2014], [Soh et al., 2012]

Convex
hull Area

Area of the smallest convex set of fixations (4)

[Sharafi et al.,
2012], [Soh et al.,
2012], [Sharafi et al.,
2013]
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Table 11: Metrics for visual effort calculation based on the duration of fixations.

Names Formulas Papers
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D
u
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ti

on
o
f

F
ix

at
io

n
s Average

Fixation
Duration
(AFD)

AFD(AOI) =

∑n
i=1(ET (Fi)− ST (Fi))in AOI

n
(5)

ET (Fi) and ST (Fi): the end time and start time for
fixation Fi n: the total number of fixations in a given
AOI

[Crosby and Stelovsky,
1990], [Cepeda and
Guéhéneuc, 2010], [Sharif
and Maletic,
2010], [21], [Soh et al.,
2012], [Binkley et al.,
2013], [Sharafi et al.,
2013]

Ratio of
ON targetAll target
Fixation
Time
(ROAFT)

ROAFT =

∑n
i=1(ET (Fi)− ST (Fi))inAOI∑n

j=1(ET (Fj)− ST (Fj))in AOG
(6)

[Bednarik and
Tukiainen, 2006], [Cepeda
and Guéhéneuc,
2010], [Bednarik,
2012], [Sharif et al.,
2012], [Binkley et al.,
2013]

Fixation
Time (FT)

FT = Total duration of all fixations in AOI (7) [Crosby and Stelovsky,
1990], [Crosby et al.,
2002], [Uwano et al.,
2006], [Bednarik,
2012], [Ali et al.,
2012], [Petrusel and
Mendling,
2012], [Busjahn et al.,
2014], [Rodeghero et al.,
2014]

Average
Duration
of Relevant
Fixations
(ADRF)

ADRF =
Fixations Duration of Relevant AOIs

Total Number of Relevant AOIs
(8)

[Jeanmart et al.,
2009, De Smet et al.,
2014]

Normalised
Rate of
Relevant
Fixations
(NRRF)

NRRF =
ADRF

Fixation Duration of All AOIs
Number of All AOIs

(9)
[Jeanmart et al.,

2009], [De Smet et al.,
2014], [Soh et al., 2012]
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FR metric, Goldberg et al. [46] proposed this1155

metric in 1999 and explained that a smaller
ratio indicates a lower efficiency, because the
participants spend a lot of time searching the
stimulus to find a relevant area. In addition,
according to Just et al. [37], the duration of the1160

fixations on a specific area can have two differ-
ent meanings: (1) it is hard for participants
to extract information or (2) participants are
more engaged by the content of the area.

• Fixation time (FT) is computed by calculat-1165

ing the total time of all fixations for a specific
AOI or the whole stimulus. It is also referred
to as gaze or fixation cluster. It can be used to
compare the amount of attention on different
AOIs or stimuli [48].1170

• Average Duration of Relevant Fixations
(ADRF) is the total duration of the fixations
for relevant AOIs. The same measure has been
proposed for non-relevant AOIs and is called
“Average Duration of Non-Relevant Fixations1175

(ADNRF)”.

• Normalised Rate of Relevant Fixations
(NRRF) is proposed by Jeanmart et al. [Jean-
mart et al., 2009] to compare two or more dia-
grams with each other regarding the impact of1180

the Visitor design pattern.

Metrics based on saccade

• Number of saccades represents the total
number of saccades in a stimulus. A higher
number of saccades indicates more searching1185

[48].

• Saccade duration represents the total dura-
tion of all saccades for one or a set of AOIs.

[Fritz et al., 2014] explain that the number and
the duration of saccades are related to the mental1190

workload and can provide insight into the influence
of the artifacts on the participants’ cognitive pro-
cesses. Previous studies in usability also used sac-
cades amplitude and the number of regressions [48]
to compute a visual effort. Saccade amplitude indi-1195

cates meaningful load cues. The higher the saccade
amplitude, the lower the mental effort [48]. Sac-
cades are usually rightward (progressive). However,
sometimes they may be backward (leftward in text
reading) or regressive, which indicates difficulties in1200

understanding some text [27] or the presence of less
meaningful cues in the stimulus [48].

Metrics based on scan-paths

• Transitional matrix is a tabular represen-
tation that shows the frequency of transitions1205

between defined AOIs [23]. Equation 12 in Ta-
ble 12 presents this metric. In addition to the
search area, this metric also considers the tem-
poral order of the search by detecting move-
ments over time [46]. The density of a transi-1210

tion matrix is computed as the number of non-
zero matrix cells divided by total number of
cells. [De Smet et al., 2014] describes how to
compute and use a transitional matrix. Fig-
ure 8 shows an example of a scan-path on the1215

display grid and its transition matrix with a
spatial density of 12% (10 cells out of 81 are
filled). Frequent transitions, which produce a
dense transition matrix (with most cells filled
with at least one transition), indicate extensive1220

search with inefficient scanning on a stimulus.
A sparse matrix points out more efficient and
directed search [46].

• Attention switching frequency is the num-
ber of switches between two specific AOIs.1225

This metric is used in [Bednarik and Tuki-
ainen, 2006, Bednarik and Tukiainen, 2008].

• Scan-path precision (SPP) was proposed
by [Petrusel and Mendling, 2012] as the per-
centage of relevant AOIs visited from all de-1230

fined AOIs in the stimulus.

• Scan-path recall (SPR) was proposed by
[Petrusel and Mendling, 2012] as the percent-
age of relevant retrieved AOIs from all relevant
AOIs in the stimulus.1235

• Scan-path f-measure (SPF) was proposed
by [Petrusel and Mendling, 2012] as the har-
monic mean of SPP and SPR. It is the percent-
age of relevant retrieved AOIs from all relevant
AOIs in the stimulus.1240

Previous studies in usability research also use the
scan-path duration and scan-path length, which are
proxy of the search efficiency. Longer-lasting scan-
paths indicate that the participants spend more
time on each AOI before going to the next one,1245

which means a less efficient scanning [46]. A longer
scan-path indicates that the participant performed
more attention switching between different AOIs.
It also indicates that the participant explored the
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Table 12: Metrics for visual effort calculation based on saccades.

Names Formulas Papers
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S
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a
d

es Number of
saccades

Total number of saccades (10)
[Fritz et al., 2014]

Saccade
duration

Total duration of saccade (11) [Fritz et al., 2014]

Figure 8: Example of scan-path and corresponding transition matrix [De Smet et al., 2014].

Figure 9: (1) shows the heat-map of a participant working with (a) multi-cluster and (b) orthogonal layouts
[Sharif and Maletic, 2010]. (2) presents areas of source code that attracts higher interests [Busjahn et al.,
2011].
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Table 13: Metrics for visual effort calculation based on scan-paths.

Names Formulas Papers

V
is
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ff
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ffi

ci
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cs
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cs

B
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n
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n
-p

at
h

s Transitional
Matrix

TM =

∑n
i=1

∑n
j=1 ci,j

n.n
(12)

n: number of fixations in the specific area (for one cell).
ci: equal to 1 if the area number i visited, otherwise 0

[De Smet et al., 2014]

Attention
Switching
Frequency

The number of switches between AOIs (13)
[Bednarik and

Tukiainen,
2006], [Bednarik and
Tukiainen, 2008]

Scan-path
Precision

SP ∩RR

SP
(14)

SP: number of AOIs that are visited (fixated). RR: num-
ber of relevant AOIs that are visited.

[Petrusel and Mendling,
2012]

Scan-path
Recall

SP ∩RR

RR
(15)

SP: number of AOIs that are visited (fixated). RR: num-
ber of relevant AOIs that are visited.

[Petrusel and Mendling,
2012]

Scan-path
F-measure

2 ∗ SPP ∗ SPR

SSP + SPR
(16)

SP: number of AOIs that are visited (fixated). RR: num-
ber of relevant AOIs that are visited.

[Petrusel and Mendling,
2012]
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Figure 10: (1) shows a heat-map of (a) a female participant and (b) a male participant [Sharafi et al., 2012].
(2) shows a heat-map that presents the cumulative fixations of a participant on different source code entities,
including class name, method name, variables, and comment [Ali et al., 2012].

stimulus more, which means a less efficient search-1250

ing [45].
In addition, several techniques also exist to de-

scribe, compare, and analyse scan-paths:

• Edit distance is based on the Levenshtein al-
gorithm [36], which calculates the editing cost1255

of transforming one string into another using
three basic operations (insertion, deletion, and
substitution). If we consider a cost of 1 for
each operation, the Levenshtein distance met-
ric is the minimum editing cost. [De Smet et al.,1260

2014] uses the Levenshtein distance and re-
ports that the average distance among novices’
scan-paths is lower than that of experts. How-
ever, the edit distance does not take into ac-
count the duration of different fixations and1265

treats all fixations equally. Fixation dura-
tion plays an important role in analysing eye-
tracking data [35]. Consequently, new tech-
niques have been proposed to consider also the
duration of fixations.1270

• Sequential PAttern Mining (SPAM) was
proposed by Ayres et al. [49] and uses a depth-
first search strategy for mining scan-paths.
[Hejmady and Narayanan, 2012] uses this tech-
nique and takes into account fixation durations1275

by categorising fixations as short (less than 500
milliseconds) and long (higher than 500 mil-
liseconds). The threshold (500 milliseconds)

was chosen based on a review of all the partici-
pants’ eye-movements. Its results confirm that1280

experts look at the program output more fre-
quently than novices. Moreover, participants
who were familiar with the IDE switched their
attention between the source code and the
graphical visualisation more often than those1285

who were less familiar with the IDE.

• ScanMatch was defined by Cristino et al.
[50], who propose the ScanMatch algorithm to
compare scan-paths based on the Needleman-
Wunsch algorithm used in bio-informatics to1290

compare DNA sequences. ScanMatch assigns
a character to represent each AOI and uses the
temporal binning to repeat the letters corre-
sponding to the AOIs in a way that their quan-
tities are proportional to the fixation dura-1295

tions. This technique also computes a match-
ing score to show exactly how much two scan-
paths are similar. [Sharafi et al., 2013] uses
ScanMatch and calculates the similarity of
participants’ scan-paths while working with1300

graphical representations.

5.4.2. Visual Gaze Behaviour

Eye-tracking studies in software engineering have
used so far three types of visualisation techniques:
heat-map, gaze plot, and color-coded attention al-1305

location map.
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• Heat-map is a color spectrum that represents
the intensity (number and duration) of fixa-
tions. The colors red, orange, green, and blue
indicate the number of fixations from highest1310

to lowest. A heat-map is superimposed on top
of a stimulus and highlights areas where par-
ticipants have been looking. Figure 9 shows
heat-maps that are presented and discussed
in [Sharif and Maletic, 2010, Busjahn et al.,1315

2011] while Figure 10 shows heat-maps pre-
sented in [Ali et al., 2012, Sharafi et al., 2012].
[Sharif and Maletic, 2010] investigates the im-
pact of different layouts on the comprehension
of design patterns. It uses two heat-maps to1320

visualise experts’ eye-movements while work-
ing with two layouts (multi-cluster vs. orthog-
onal), separately. The heat-maps show that
experts spent more time on the classes partic-
ipating in the design patterns while working1325

with a multi-cluster layout comparing to the
orthogonal layout. [Busjahn et al., 2011] uses
heat-maps to visualise the areas in the source
code that attracts higher interest (higher fixa-
tion duration). [Ali et al., 2012] creates heat-1330

maps for different participants for code com-
prehension tasks. The heat-maps show that
large numbers of fixations are found on the
method names, comments, variable names, and
class names in decreasing order of importance.1335

[Sharafi et al., 2012] uses heat-maps to show
the differences among the men and women
participating in code comprehension and re-
call tasks. The heat-maps show that men and
women use different strategies for answering1340

the multiple-choice questions. The heat-maps
for women show fixations scattered through all
choices while, for men, the fixations are mainly
focused on one choice.

• Gaze plot provides a static view of the eye-1345

gaze data. It is also useful to visualise scan-
paths. Using a gaze plot, a scan-path is shown
as a directed sequence of fixations, where a
fixation is illustrated using a circle whose ra-
dius represents the durations of the fixation.1350

[Sharif and Maletic, 2010] uses a gaze plot to
compare experts and novices performing de-
sign pattern comprehension tasks. Experts’
gaze plots (as presented in Figure 11) show
that they are looking at attributes and meth-1355

ods to find answers, while novices mainly focus
on class names. [Binkley et al., 2013] compares

camel-case and underscore identifer styles for
code comprehension. The gaze plots (as pre-
sented in Figure 11) show that developers put1360

a larger number and longer fixations for the
camel-case style. [Jermann and Nüssli, 2012]
uses an enhanced version of a gaze plot called
a gaze cross-recurrence plot.

Using this plot, it determines if two partici-1365

pants who are working on the same stimulus
look at the same area at roughly the same time
and in the same sequence.

• Color coded attention allocation map is
based on either the numbers of fixations or the1370

total durations of all fixations for some set of
words. This map allocates a color to each word
separately from a color spectrum that starts
from light green (lowest attention level) going
through dark green and dark red while fin-1375

ishing with light red (highest level of atten-
tion). [Busjahn et al., 2011] uses such a map
based on the number of fixations per word as
depicted in Figure 12 to show different parts
of source code that attracts different levels of1380

attention and consequently time.

5.4.3. Discussions

Because cognitive processes happen during fixa-
tions, the majority of eye-tracking studies use met-
rics that are calculated using either the numbers or1385

durations of fixations. Only five studies use sac-
cade and scan-path metrics. Four and three stud-
ies use heat-maps and gaze-plots, respectively, and
only one study uses color-coded attention allocation
maps. Heat-maps are more popular than color-1390

coded maps because they summarise fixations on
top of the stimuli and make it easy to see the loca-
tions and intensities of the fixations. Moreover, the
color spectrum of heat-map shows how participants
scan the stimuli and what are their most preferred1395

areas in the stimuli.
Although several approaches have been proposed

for the quantitative comparison of scan-paths [56,
57], only 10% of selected studies use these quanti-
tative metrics to measure and compare scan-paths,1400

possibly because scan-paths are inherently complex
and there are major computational challenges in
scan-path modeling and comparison [57].

However, the results of applying available scan-
path comparison techniques as shown in few se-1405

lected studies [De Smet et al., 2014, Hejmady
and Narayanan, 2012, Sharafi et al., 2013] are
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Figure 11: (1) shows the gaze plots of an expert for the Observer pattern for orthogonal and multi-cluster
layouts [Sharif and Maletic, 2010]. (2) shows gaze plots for underscore and two camel-case 3-word code
identifiers [Binkley et al., 2013].

Figure 12: Color-coded attention allocation map based on the number of fixations per word [Busjahn et al.,
2011].
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promising. These selected studies compares par-
ticipants based on their scan-paths. [Hejmady and
Narayanan, 2012] uses an environment that displays1410

source code and the dynamic and the static visuali-
sations of source code together. After comparing
scan-paths using SPAM [49] quantitatively, [Hej-
mady and Narayanan, 2012] reports a prominent
attention switching pattern (short attention switch-1415

ing between code and dynamic visualisation) for all
participants.

[Sharafi et al., 2013] compare participants’ view-
ing strategies while working with Tropos graphi-
cal representation. Based on the similarity scores1420

provided by ScanMatch [50], it categorises scan-
paths into two different groups. By visualising these
groups, it shows that they represent two different
viewing strategies: top-down or bottom-up.

5.5. What are the limitations of current eye-1425

tracking studies?

Researchers wanting to perform eye-tracking
studies must consider limitations in the uses of eye-
trackers in software engineering and the impact of
these limitations on the collected data and possible1430

analyses and interpretations.

5.5.1. Eye-tracking Technology

The eye-tracking technology comes with the fol-
lowing intrinsic limitations.

Precision and accuracy. The accuracy val-1435

ues reported in eye-trackers manuals are measured
in ideal situations in which (1) cameras have been
calibrated just before the measurement and (2) par-
ticipants do not move their heads or have eye-wears.
Sometimes, manufacturers even use a set of artifi-1440

cial eyes to avoid any head movements.
Also, manufacturers eliminate any obstacle that

could interrupt the normal path of (infrared) light,
in particular eye-wears, including hard contact
lenses and eye-glasses.1445

Yet, researchers may face difficulties with partic-
ipants with large pupils or “crazy eyes”, i.e., whose
eyelids partially hide the pupils and make them dif-
ficult to detect [48]. Usually the calibration process
includes displaying known points (typically five to1450

nine points) on a screen and mapping their loca-
tions with the coordinates of the participants’ eye-
movements. Yet, eye-trackers mostly perform cal-
ibration based on participants’ both eyes and use
the average display location to improve accuracy. If1455

AOIs are located towards the edges of the calibrated
area, the calibration error is considerable [25].

To mitigate the impact of the limitations per-
taining to precision and accuracy, researchers could
define AOIs large enough to capture all relevant fix-1460

ations. Some previous studies also use larger font
sizes to present text and models to compensate for
lack of precision. Researchers must also calibrate
the eye-trackers on a regular basis, in addition to
calibrating for every participant just before starting1465

to perform the tasks.
Drift is also a limitation of eye-tracking tech-

nology. Drift is the gradual decrease in time of
the accuracy of the eye-tracking data, when com-
pared to the true coordinates of the eye-movements,1470

which indicates the deterioration of calibration over
time [30]. Changes in the physiology of the eye in
time, e.g., changes in wetness, cause drift. To re-
duce the impact of drift, the light conditions of the
experiment environment must remain stable and1475

there must be equal light intensity between calibra-
tion and experiment stimuli [30]. Also, the tasks
should have reasonable time durations to avoid fa-
tigue. The calibration procedure must be repeated
regularly to maintain the quality of the results.1480

Hawthorne Effect. While performing an eye-
tracking study, a researcher is responsible for pro-
viding guidance to the participants, calibrating the
eye-tracker, and checking its recording to ensure
that the eye-tracker does not stop tracking the1485

eyes. The researcher’s presence may bias the re-
sults due to the Hawthorne effect, also called the
observer’s effect, because participants feel that they
are being watched. The selected papers mitigate
the impact of this effect by sitting researchers away1490

from the participants. The papers also report min-
imal interaction or face-to-face contact between re-
searchers and participants. They state that re-
searchers should not help or steer participants in
any way and that researchers should does not check1495

the participants’ behaviour during the study. They
should only focus on the quality of the recorded
data. Finally, at the beginning of a study, re-
searchers must explain to the participants that
the eye-tracker records eye-movement data anony-1500

mously and that no video is recorded.

5.5.2. Data Analysis

Eye-trackers produce huge amount of data, whose
analyses are complex. Using a set of tools to au-
tomatically filter and analyse the data is neces-1505

sary to save time and prevent human errors caused
by manual analyses. Several tool have been used
by researchers to analyse high volumes of data
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generated by eye-trackers. For example, Taupe
[De Smet et al., 2014] and OGAMA17 are open-1510

source software systems designed for analysing eye-
tracking data. They support many commercial eye-
trackers, including FaceLAB and Tobii eye-trackers.
OGAMA also supports mouse movements collected
from slide-shows.1515

Another tool is the eye-tracking gaze visualiser
[59], which displays eye-movements on top of the
video captured from the screen during the tasks and
which provides many features, including object de-
tection and repetitive pattern exploration.1520

Defining a set of AOIs is usually a required step
before analysing eye-tracking data. Yet, currently,
there are no detailed best-practices for defining
AOIs. Goldberg et al. [25] propose a set of gen-
eral guidelines for defining AOIs and report that1525

the padding around AOIs is dependent on the task
and artifacts. For example, for text, because fixa-
tions are usually located closely to each other, less
padding is required; for a graphical notation, more
padding could be considered so that the AOI cap-1530

tures all relevant fixations.

5.5.3. Task and Material Selection

To carry out eye-tracking study, researchers must
ask participants to perform a set of well-defined
tasks so that the recorded eye-movements are cor-1535

rectly associated with their cognitive processes
[37, 48]. Task definition also identifies the type of
artifacts of interest in the the study. Researchers
must eliminate any visual distractions (e.g., colour-
ful or moving objects) to avoid contaminating eye-1540

movement data [44, 48].
The selected papers use small and easy-to-read

pieces of source code, texts, or models that can
fit on one screen. By fitting a stimulus in a sin-
gle screen, researchers avoid the scrolling and–1545

or traversing between different pages so that eye-
movement data can be accurately and unambigu-
ously match to positions on the screen and, there-
fore, well-defined parts of the stimuli to measure
visual effort. Therefore, due to this single-screen1550

limitation, there is no previous study with realistic,
interactive tasks.

Some researchers tackle the single-screen limita-
tion by proposing new recording techniques that
support scrolling. Lankford [26] presents a tool,1555

called GazeTracker, that records keystrokes and

17http://www.ogama.net/

mouse clicks and movements and saves and dis-
plays the correct location of eye-movements even
if scrolling happens. The authors presents the ap-
plicability of the tool for Web-page viewing analy-1560

sis. iTrace [58, Walters et al., 2014] also supports
horizontal and vertical scrolling while recording the
correct locations of eye-movements. It also is inte-
grated in Eclipse18 IDE.

Yet, for software engineering tasks, in addi-1565

tion to scrolling, developers usually also use fea-
tures in integrated/interactive development envi-
ronments (IDEs) that change the screen content
without scrolling (e.g., click on package controller
content in Eclipse and select another file to read).1570

Even, resizing the window will be problematic and
must be considered. These issue still impose some
limits on choosing realistic materials and tasks for
eye-tracking experiments in software engineering
that we ask the experimenters to bear in mind be-1575

fore considering eye-tracking technology.

5.5.4. Experimental Setting

Settings and the environment in which the partic-
ipants perform their tasks are also important. All of
the previous studies have been performed in quiet1580

laboratories to avoid distractions but also because
it is difficult to reach practitioners for eye-tracking
studies. Practitioners have little spare time, may
have concerns about intellectual property. Also, few
eye-trackers are really portable.1585

Different studies use different settings for the eye-
trackers and do not always explain their choices pre-
cisely in the published papers. Thus, eye-tracking
studies are difficult to replicate. We encourage re-
searchers to present precisely all the details related1590

to their setting to allow replicating and comparison
between studies.

Most previous papers recommended to perform
several pilots studies to identify and fix any prob-
lems before collecting eye-tracking data.1595

5.5.5. Participant Selection

Most of eye-tracking studies have been performed
in research laboratories because researchers do not
have easy access to practitioners to perform their
studies. For those studies in which no compari-1600

son between experts and novices has been provided,
such as [Ali et al., 2012, Sharafi et al., 2012, Sharafi
et al., 2013], researchers mention the choices of the

18https://eclipse.org/
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environment and participants as a limitation. How-
ever, according to Kitchenham et al. [12], “using1605

students as participants is not a major issue as long
as [researchers] are interested in evaluating the use
of a technique by novice or non-expert software en-
gineers. Students are the next generation of soft-
ware professionals so, are relatively close to the pop-1610

ulation of interest.”
Whether experts or novices, there are large dif-

ferences in participants’ eye-movements for iden-
tical tasks. These differences are due to partici-
pants’ individual characteristics. Therefore, as rec-1615

ommended by Goldberg et al. [44], it is prudent
to use a within-participants design for eye-tracking
studies, to reduce the impact of participants’ indi-
vidual characteristics on the results.

5.5.6. Device Vendors1620

Regarding the settings of eye-trackers, device
vendors should ease the choice of the settings of
their devices and help in the effort towards having a
uniform approach to report, import, and share set-
tings. Although the single-screen limitation mostly1625

exists only in the context of software engineering re-
search, this limitation is important because it pre-
cludes many interesting usability studies. For ex-
ample, studies should be carried to understand how
participants would scroll (or not) to find relevant1630

links in the results of a search engine or how they
would read code in an IDE. Therefore, device ven-
dors should also start tackling this limitation and
offer analyses that can relate eye-movements posi-
tions with moving artifacts on screens.1635

5.6. What eye-trackers are most frequently used in
eye-tracking studies?

Table 14 provides a list of the eye-trackers used
in the selected papers. Two papers used the RFV
approach to perform studies [Romero et al., 2002,1640

Romero et al., 2003]. Four studies did not specify
the used eye-trackers [Crosby and Stelovsky, 1990,
Stein, 2004, Petrusel and Mendling, 2012, Turner
et al., 2014].

The most frequently used eye-trackers are Tobii1645

eye-trackers, which are used in about 47% of the
papers (17 out of 36). In addition, the Tobii 1750 is
the most frequently used eye-trackers among Tobii
models. It has been used in 11 studies. There is one
paper [Cagiltay et al., 2013] that did not specify the1650

used model of Tobii eye-tracker.
There is an extreme variability in the costs of eye-

trackers. Costs vary by tens of thousands of dollars.

Thus, when considering the use of eye-trackers, re-
searchers must consider a tradeoff between the cost1655

and the quality of the eye-trackers. In the following,
we provide a list of factors that should be consid-
ered while comparing eye-trackers.

• Accuracy values represent the differences be-
tween the eye-movements positions recorded1660

by an eye-tracker and the actual fixations po-
sitions. Accuracy is measured in degrees of vi-
sual angle and, usually, ranges from 0.5 to 1
degree. If a participant is seated 50cm away
from a stimulus and the eye-tracker has 1 de-1665

gree of accuracy, the eye-movement positions
could be measured anywhere within a radius
of 1 cm of the actual positions [30]. The
reported accuracy values for the eye-trackers
used in the selected paper are 0.5 degree or1670

less. However, the accuracy values reported in
eye-tracker manuals are measured under ideal
conditions: the measurement was done imme-
diately after calibrating the device and for par-
ticipants with not corrective eye-wear.1675

• Sampling rates indicate the numbers of eye-
movement positions that can be recorded per
second. The typical sampling rate of eye-
trackers ranges from 10Hz to 2,000Hz. As
shown in Table 14, the lowest sampling rate for1680

the eye-trackers used in the selected papers is
observed for EMR-NC (30Hz) while the high-
est is reported for Eye-Link II (500Hz). Poole
et al. [48] reported that a sampling rate of 60Hz
is adequate for usability studies but that it is1685

not good enough for reading studies, which re-
quire sampling rates of 500Hz or higher. The
majority of previous studies use eye-trackers
with sampling rates of 60Hz for text and code
reading tasks.1690

• Customer support is important to consider be-
cause eye-trackers are complex devices. Cus-
tomer support vary between device manufac-
turers. It is necessary that the eye-tracker be
accompanied by a user manual that is easy to1695

use. The availability of on-site training, online
support, and demo projects are important and
may be considered as well.

• Time needed for setting up a study usually
includes participants’ setup, stimulus adjust-1700

ment, and calibration. Some eye-trackers re-
quire participants to keep their heads perfectly
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Table 14: List of eye-trackers used in the selected papers with their accuracy values and sampling rates.

Eye-tracker Manufacturer Accuracy
(degree)

Recording
rate (Hz)

Number
of Studies

Papers

Tobii 1750 Tobii Technology 0.5 30 or 60 11 [Bednarik and Tukiainen,
2006, Bednarik and
Tukiainen, 2007, Yusuf
et al., 2007, Bednarik and
Tukiainen, 2008, Sharif and
Maletic, 2010, Bednarik,
2012, Jermann and Nüssli,
2012, Sharif et al.,
2012, Binkley et al.,
2013, Sharma et al.,
2013, Duru et al., 2013]

Tobii X60 Tobii Technology 0.5 60 3 [Hejmady and Narayanan,
2012] , [Sharif et al.,
2013], [58]

Tobii T120 Tobii Technology 0.4 120 2 [Busjahn et al.,
2011, Busjahn et al., 2014]

Tobii TX300 Tobii Technology 0.5 300 (set to
120)

2 [Fritz et al.,
2014, Rodeghero et al., 2014]

FaceLab Seeing Machines 0.5 60 3 [Ali et al., 2012], [Sharafi
et al., 2012], [Sharafi et al.,
2013]

Eye-Link II SR Research19 0.25-0.5 500 pupil
only

5 [Guéhéneuc, 2006, Jeanmart
et al., 2009], [Cepeda and
Guéhéneuc, 2010], [De Smet
et al., 2014],, [Soh et al.,
2012]

ASL Applied Science
Laboratories

0.5 50 or 60 2 [Crosby et al.,
2002], [Aschwanden and
Crosby, 2006]

EMR-NC NAC Image Tech-
nology Inc.20

0.3 30 1 [Uwano et al., 2006]
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still during calibration, which makes this pro-
cess error-prone and time consuming because
of the necessary recalibrations.1705

• Software features of the eye-trackers driver and
analysis software systems are important. Some
eye-trackers come with systems that can per-
form on-the-fly analyses while others provide
different visualisations techniques.1710

Only one paper compared three different eye-
trackers (Tobii 1750 and ASL 504 Pan/Tilt Op-
tics and ASL 501 Head Mounted Optics, both from
Applied Science Laboratories) in terms of accuracy
and ease of use. The authors of that paper mea-1715

sured the accuracy of the eye-trackers by calculat-
ing the mean distances between recorded points of
gaze and requested points of gaze. They asked par-
ticipants to work on a short piece of source code us-
ing an animator. Their results show that the ASL1720

501, which requires mounting the camera on top
of participants’ heads, needs twice as much time to
setup the study and that it is also the least accurate
eye-tracker in the set.

6. Threats to Validity of This Study1725

There is an evident threat to validity of a SLR
such as this one, whether the major articles in the
literature have been found adequately or not. We
have restricted our search to Engineering villages
that finds relevant articles based on our research1730

query.
However, the search engine of Engineering vil-

lage uses the most trusted and well-recognized engi-
neering literature repositories, including ACM and
IEEE. In addition, we try to evaluate the quality of1735

our proposed query and modify it to find all relevant
papers. Because no previous SLR exists with re-
gards to the usage of eye-tracking technique in soft-
ware engineering, we cannot evaluate the quality of
the search string using “quasi-gold standard” [4]1740

string evaluation approach [6]. However, to reduce
the possibility of missing a relevant paper, we per-
formed full analysis and apply snow-balling to de-
tect missing papers.

Still, we may have missed some articles published1745

in national journals and conferences. Thus, our re-
sults must be qualified as considering articles that
are published in the major international journals,
conferences, and workshops in computer science
and software engineering.1750

Moreover, we use the method proposed by [18] for
data extraction in which one researcher extracted
the data and another researcher checked the data
extraction. [5] show that extractor/checker method
would be problematic while dealing with a large1755

number of primary studies or the data is complex.
However, in our case, the number of primary studies
are not very large and our data extraction method is
relatively objective which reduces the data extrac-
tion errors. In addition, the extracted data have1760

been checked by third author to reduce the likeli-
hood of erroneous results.

7. Conclusion

We performed a systematic literature review to
investigate the uses of eye-tracking technology in1765

software engineering. Instead of performing manual
searches in international journals and conferences,
we undertook a broad automated search using En-
gineering village that helps us to visit all recognized
resources from 1990 to 2014. Out of 649 publica-1770

tions found, we identified 35 relevant papers rele-
vant to the uses of eye-tracking technology in soft-
ware engineering.

A major finding of this SLR is that the software
engineering community benefits from the uses of1775

eye-trackers despite their limitations. The results
of eye-tracking studies add to the existing body
of knowledge on how participants perform different
software engineering tasks and how they use differ-
ent models and representations along with source1780

code to understand software systems. Furthermore,
several metrics have been proposed to quantita-
tively assess and measure participants’ visual ef-
forts and display how they scan the stimuli while
performing their tasks.1785

Different topics have been considered and anal-
ysed in different eye-tracking studies and we divided
them in five categories: model comprehension, de-
bugging, code comprehension, collaborative interac-
tions, and traceability. This categorisation shows1790

that the spread of topics is fairly even and impor-
tant software engineering tasks, including compre-
hension, maintenance, and debugging, have been
studied.

We identified a list of limitations of the uses of1795

eye-trackers that lead to threats to the validity of
the selected studies. These limitations come from
the participants that perform the tasks, the tasks
that they performed, the artifacts that they used,
and the environments in which the experiments1800
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were done. We discussed in details how to miti-
gate these limitations and improve the quality of
eye-tracking experiments.

We also provided two general recommendations
for the software engineering community and a list1805

of suggestions for researchers who are newcomers
and want to perform an eye-tracking study. Our
two general recommendations are:

• There is a lack of consistent terminology, met-
rics names, and methods. The community1810

must adopt the standard guidelines and termi-
nology while conducting and reporting an eye-
tracking experiment. Using standard guide-
lines to design experiments for software engi-
neering tasks could reduce the risks of failure1815

and also mitigates threats to validity. As em-
phasised and explained by Sjøberg et al. [11],
using a uniform way of reporting an experi-
ment benefits the software engineering com-
munity, because it provides valuable informa-1820

tion on how to review, replicate, and analyse
the data. There are guidelines for performing
controlled experiments in software engineer-
ing [2, 3]. However, conducting an eye-tracking
experiment requires further, more specific rec-1825

ommendations with regards to the limitations
associated with this technology.

• The majority of the studies prepared their
own artifacts to design and preform experi-
ments, which are not available online. There-1830

fore, it is not possible to re-use them for repli-
cating the studies or performing new experi-
ments. Thus, researchers should make their
data accessible to other researchers who are in-
terested in replicating their experiments while1835

accurately reporting the different criteria and
factors that they considered while designing
and performing the experiments. In addi-
tion, the software engineering community must
promote online software artifacts repositories1840

(e.g., Software-artifact Infrastructure Reposi-
tory (SIR) [20]21). Sharing data online in an
organised repository would allow researchers
to receive feedback and improve their artifacts
and to aggregate their findings and single out1845

missing artifacts [20].

We recommend newcomers who start in the field
(1) to familiarise themselves with eye-tracking ba-

21http://sir.unl.edu/portal/index.php

sics including how eye-trackers work, what are the
eye-gaze data (e.g., fixations and saccades), and1850

how to measure and interpret these data in gen-
eral by reading valuable literature including [37, 39,
40, 46, 48]. (2) To consider the limitations associ-
ated with this technology, as summarised in Section
5.5, while thinking about using eye-trackers and1855

designing the experiments.(3) To begin with less
demanding tasks (e.g., searching and locating spe-
cific elements in a simple graphical representation
or text) to become acquainted with eye-movement
data recording and analysis before working on com-1860

plex tasks with fine-grained artifacts (e.g., source
code). We also encourage researchers not to per-
form one single experiment to study a broad topic
that contains several subtopics (e.g., maintenance),
because it complicates data analysis and interpreta-1865

tion. (4) Finally, to check previous studies using the
annotated bibliography in Section 5.2 when having
a topic in mind and to benefit from previous stud-
ies, especially regarding the metrics used and their
interpretation.1870

We plan to perform this SLR in 2020 to keep
track of the progress and results of new eye-tracking
studies in software engineering.
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du Québec – Nature et Technologies (FQRNT).

9. SLR Articles

[Ali et al., 2012] Ali, N., Sharafi, Z., Guéhéneuc,
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Table 15: List of selected papers.

Papers Goals

[Crosby and Stelovsky,
1990]

To explore the impact of developers’ viewing strategies and experience on
program comprehension

[Crosby et al., 2002] To study how experts and novices use source code beacons for comprehension
[Romero et al., 2002] To track attention switching of developers while performing debugging tasks

with multiple representations
[Romero et al., 2003] To characterise the debugging strategies using multiple representations
[Stein, 2004] To analyze the impact of one developer’s focus of attention on another de-

veloper doing the same task
[Aschwanden and Crosby,

2006]
To study the impact of source code beacons on developers’ viewing strategies
during program comprehension

[Bednarik and Tukiainen,
2006]

To discover the role of different representations (source code vs. code visual-
ization) on program comprehension

[Guéhéneuc, 2006] To study how developers gain information about the program under study
and use this information to perform different tasks

[Uwano et al., 2006] To investigate the individual performance of source code review
[Bednarik and Tukiainen,

2007]
To study the effects of RFV’s display blurring and expertise on visual atten-
tion during debugging

[Yusuf et al., 2007] To investigate the comprehension of UML class diagrams
[Bednarik and Tukiainen,

2008]
To reanalyze the data of [Bednarik and Tukiainen, 2007] to achieve more
detailed information about developers’ behaviour during debugging

[Jeanmart et al., 2009] To analyze the impact of visitor pattern on program comprehension and
maintenance

[Cepeda and Guéhéneuc,
2010]

To analyze the impact of representation on design pattern comprehension

[Sharif and Maletic, 2010] To analyze the impact of various layouts on design pattern comprehension
[Busjahn et al., 2011] To compare the process of source code and natural text reading
[Ali et al., 2012] To identify the most important source code entities
[Bednarik, 2012] To investigate the impact of expertise on defect finding using a multi-

representational IDE
[De Smet et al., 2014] To study the impact of Composite, Observer, and MVC pattern on mainte-

nance tasks
[Hejmady and Narayanan,

2012]
To understand the impact of multiple representations on debugging

[Jermann and Nüssli, 2012] To study the impact of sharing selection among collaborators in a pair-
programming task

[Sharafi et al., 2012] To investigate the impact of gender on developers’ effectiveness for source
code reading and identifier recalling

[Sharif et al., 2012] To study the impact of scan Time in detecting source code defects
[Soh et al., 2012] To analyze the impact of expertise on developers’ speed and accuracy
[Binkley et al., 2013] To analyze the impact of identifier style on program comprehension
[Cagiltay et al., 2013] To propose measures to enhance understanding of ERD diagrams
[Duru et al., 2013] To study the impact of software visualization in program comprehension
[Petrusel and Mendling,

2012]
To understand the impact of multiple representations in debugging

[Sharafi et al., 2013] To study the relations between the type of requirement representations
(graphical vs. textual) and developers efficiency

[Sharif et al., 2013] To analyze the impact of SeeIT 3D on software engineering tasks
[Sharma et al., 2013] To study the interaction of developers in a pair programming task
[58] To recover traceability links from eye-movements data
[Busjahn et al., 2014] To present a method to recover traceability links from eye-gaze data
[Fritz et al., 2014] To use psycho-physiological measures to calculate task difficulty
[Rodeghero et al., 2014] To study the code summarization task using eye-tracking technique
[Turner et al., 2014] To study differences between individuals’ gaze behaviour and reading pat-

terns
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Table 16: Topic domains, artifacts, participants (S = Students, FM = Faculty members, P = Professionals,
and NM = Not mentioned), sources, and the eye-tracker for the selected papers.

Papers Topic domains Artifacts Participants Sources Eye-trackers

[Crosby and Stelovsky,
1990]

Code comprehension Pascal 18 S & FM IEEE Com-
puter

NM

[Crosby et al., 2002] Code comprehension Pascal 18 S PPIG ASL
[Romero et al., 2002] Debugging Java 5 S & P LNCS RFV
[Romero et al., 2003] Debugging Java 49 S PPIG RFV
[Stein, 2004] Collaborative interac-

tions
Java 10 S & P ACM ICMI NM

[Aschwanden and Crosby,
2006]

Code comprehension Java 15 NM HICSS ASL

[Bednarik and Tukiainen,
2006]

Code comprehension Java 14 S ETRA Tobii 1750

[Guéhéneuc, 2006] Model comprehension UML 12 S CASCON EyeLink II
[Uwano et al., 2006] Debugging C 5 S ETRA EMR-NC
[Bednarik and Tukiainen,

2007]
Debugging Java 18 S & FM BRM Tobii 1750

[Yusuf et al., 2007] Model comprehension UML 12 S & FM ICPC Tobii 1750
[Bednarik and Tukiainen,

2008]
Debugging Java 14 S ETRA Tobii 1750

[Jeanmart et al., 2009] Model comprehension UML 24 S ESEM EyeLink II
[Cepeda and Guéhéneuc,

2010]
Model comprehension UML 24 S EMSE EyeLink II

[Sharif and Maletic, 2010] Model comprehension UML 12 S & FM ICSM Tobii 1750
[Busjahn et al., 2011] Code comprehension Java 15 NM Koli Calling Tobii T120
[Ali et al., 2012] Traceability Java 26 S ICSM FaceLAB
[Bednarik, 2012] Debugging Java 18 S & P HUM-

COMPUT
Tobii 1750

[De Smet et al., 2014] Model comprehension UML 42 S & FM SCP EyeLink II &
FaceLAB

[Hejmady and Narayanan,
2012]

Debugging Java 19 S ETRA Tobii X60

[Jermann and Nüssli, 2012] Collaborative interac-
tions

Java 82 S CSCW Tobii 1750

[Sharafi et al., 2012] Code Comprehension Java 26 S ICPC FaceLAB
[Sharif et al., 2012] Debugging C 15 S & FM ETRA Tobii 1750
[Soh et al., 2012] Model comprehension UML 21 S & FM ICPC EyeLink II
[Binkley et al., 2013] Code comprehension English 169 S EMSE Tobii 1750
[Cagiltay et al., 2013] Model comprehension ER dia-

gram
4 P JSS Tobii

[Duru et al., 2013] Code comprehension C] 13 P IJHCI Tobii 1750
[Petrusel and Mendling,

2012]
Model Comprehen-
sion

BPMN 29 P CAiSE NM

[Sharafi et al., 2013] Model comprehension Tropos 28 S ICPC FaceLAB
[Sharif et al., 2013] Usability evaluation Java 97 S VISSOFT Tobii X60
[Sharma et al., 2013] Collaborative interac-

tions
Java 82 S CSCL Tobii 1750

[58] Traceability Java 8 S & FM ETRA Tobii X60
[Busjahn et al., 2014] Code comprehension Java 15 P ETRA Tobii T120
[Fritz et al., 2014] Code comprehension C] 15 P ICSE Tobii TX300
[Rodeghero et al., 2014] Code comprehension Java 10 P ICSE Tobii TX300
[Turner et al., 2014] Code comprehension C++,

Python
38 S ETRA NM

39



Table 17: Data extraction form.
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Third author
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(2013). An empirical study on the efficiency of
graphical vs. textual representations in require-
ments comprehension. In Proceeding of 21st In-
ternational Conference on Program Comprehen-
sion, ICPC ’13, pages 33–42.2030

[Sharafi et al., 2012] Sharafi, Z., Soh, Z.,
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