
A Large Scale Empirical Study of the Impact of Spaghetti Code and
Blob Anti-patterns on Program Comprehension⋆
Cristiano Politowskia,∗, Foutse Khomhb, Simone Romanoc, Giuseppe Scanniellod, Fabio Petrilloe,
Yann-Gaël Guéhéneuca and Abdou Maigaf
aConcordia University, Montreal, Quebec, Canada
bPolytechnique Montréal, Montreal, Quebec, Canada
cUniversity of Bari, Bari, Italy
dUniversity of Basilicata, Potenza, Italy
eUniversité du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
fUniversité Félix Houphouet Boigny, Abidjan, Ivory Coast

ART ICLE INFO
Keywords:
Anti-patterns
Blob
Spaghetti Code
Program Comprehension
Java

Abstract
Context: Several studies investigated the impact of anti-patterns (i.e., “poor” solutions to recurring
design problems) during maintenance activities and reported that anti-patterns significantly affect the
developers’ effort required to edit files. However, before developers edit files, they must understand
the source code of the systems. This source code must be easy to understand by developers.
Objective: In this work, we provide a complete assessment of the impact of two instances of two
anti-patterns, Blob or Spaghetti Code, on program comprehension.
Method: We analyze the impact of these two anti-patterns through three empirical studies conducted
at Polytechnique Montréal (Canada) with 24 participants; at Carlton University (Canada) with 30 par-
ticipants; and at University Basilicata (Italy) with 79 participants.
Results: We collect data from 372 tasks obtained thanks to 133 different participants from the three
universities. We use three metrics to assess the developers’ comprehension of the source code: (1)
the duration to complete each task; (2) their percentage of correct answers; and, (3) the NASA task
load index for their effort.
Conclusions: We report that, although single occurrences of Blob or Spaghetti code anti-patterns have
little effect on code comprehension, two occurrences of either Blob or Spaghetti Code significantly
increases the developers’ time spent in their tasks, reduce their percentage of correct answers, and
increase their effort. Hence, we recommend that developers act on both anti-patterns, which should
be refactored out of the source code whenever possible. We also recommend further studies on com-
binations of anti-patterns rather than on single anti-patterns one at a time.

1. Introduction
Program comprehension is central to an effective soft-

ware maintenance and evolution [20]. In his theory of pro-
gram comprehension, Brooks [4] propound that developers
understand software programs in a top-down manner; for-
mulating hypotheses about the domain of the program, map-
ping this knowledge to the source code, and refining it incre-
mentally. Therefore, understanding the factors affecting de-
velopers’s comprehension of the source code is essential to
improve program comprehension and consequently software
maintenance and evolution activities [1].

Anti-patterns, which are “poor” solutions to recurrent
design problems, have been reported to significantly affect
the effort required to explore and edit files [42]. Further-
more, the increase in the number of anti-patterns in a system

⋆Replication files: https://doi.org/10.5281/zenodo.3601564.
∗Corresponding author

c_polito@encs.concordia.ca (C. Politowski);
foutse.khomh@polymtl.ca (F. Khomh); simone.romano@uniba.it (S.
Romano); giuseppe.scanniello@unibas.it (G. Scanniello);
fabio@petrillo.com (F. Petrillo); yann-gael.gueheneuc@encs.concordia.ca
(Y. Guéhéneuc); ma_karim@yahoo.fr (A. Maiga)

ORCID(s): 0000-0002-0206-1056 (C. Politowski); 0000-0002-5704-4173
(F. Khomh); 0000-0003-4880-3622 (S. Romano); 0000-0003-0024-7508 (G.
Scanniello); 0000-0002-8355-1494 (F. Petrillo); 0000-0002-4361-2563 (Y.
Guéhéneuc)

is likely to generate faults [7]. One may therefore question
whether certain anti-patterns and–or combinations thereof
significantly impede code understandability. To understand
whether and how anti-patterns affect code understandably,
Abbes et al. [1] conducted three experiments, with 24 par-
ticipants each, investigating whether the occurrences of the
Blob1 and Spaghetti Code2 anti-patterns impact the under-
standability of source code for comprehension and mainte-
nance tasks. They analyzed the Blob and Spaghetti Code
anti-patterns individually and in combinations. They showed
that the occurrence of one Blob or one Spaghetti Code in
source code does not significantly reduce its understandabil-
ity in comparison to source code without anti-pattern. How-
ever, they reported that the combination of one occurrence of
the Blob anti-pattern with one of the Spaghetti Code signifi-
cantly decreases understandability. They mentioned the fol-
lowing limitations to their study: (1) the experiments were
conducted only with 24 students from the same computer-

1Blob anti-pattern is found in designs where one class monopolizes the
processing, and other classes primarily encapsulate data. The major issue
here is that the majority of the responsibilities are allocated to a single class
[5], violating the single responsibility principle [19].

2Considering the Object Oriented paradigm, the software with
Spaghetti Code anti-pattern may include a small number of objects that
contain methods with very large implementations that invoke a single, mul-
tistage process flow [5].

Politowski et al.: Preprint submitted to Elsevier Page 1 of 17

https://doi.org/10.5281/zenodo.3601564

A Large Scale Empirical Study of the Impact of Spaghetti Code and Blob Anti-patterns on Program Comprehension

science program and (2) they did not test the impact of mul-
tiple occurrences of each anti-pattern individually. Thus, the
results reported in this previous work are insightful but in-
complete.

We extend this previous work [1] with two additional
replications at two different universities. We conducted these
replications with 30 students from Carleton University, Ot-
tawa, Ontario, Canada, and 79 students from the University
of Basilicata, Potenza, Italy, using six different Java software
systems. In total, we collected data from 133 participants
executing 372 tasks in three universities. We complemented
the previous work with questions about the co-occurrences
of the same anti-patterns: two occurrences of the Blob anti-
patterns and two occurrences of the Spaghetti Code. We
asked the participants to perform program comprehension
tasks and wemeasured their performances using (1) the time
that they spent performing their tasks; (2) their percentages
of correct answers; and, (3) the NASA task load index of
their effort.

Thus, we report in the following a complete, exhaustive
study of the impact of the Blob and Spaghetti Code anti-
patterns in isolation and in combinations. We show that
the presence of two occurrences of either Blob or Spaghetti
Code anti-pattern harms source-code understanding, weak-
ening the performance of developers by increasing the time
spent to finish the tasks, lowering the correctness of the an-
swers, and increasing the effort to complete the tasks.

We bring further evidenceswith a larger experiment with-
out setting aside previous results fromAbbes et al. [1], which
we describe in details in Section 2. Also, after presenting the
new data in Section 4, we compare them with previous re-
sults in Section 4.3, in which Experiments #1 (Blob) and #2
(Spaghetti Code) correspond to the previous study. Thus, we
name the new experiments Experiments #3, #4, #5, and #6.

The remainder of this paper is organized as follows: Sec-
tion 2 briefly describes the previous paper byAbbes et al. [1].
Section 3 describes the definition and design of our empir-
ical studies. Section 4 presents the study results from ex-
periments with the Blob and Spaghetti Code anti-patterns
as well the comparison with the previous data from Abbes
et al. [1]. Sections 5 and 6 discuss the results and threats
to their validity. Section 7 relates our study with previous
work. Section 8 concludes the paper with future work.

2. Previous Work by Abbes et al. [1]
Abbes et al. [1] designed and conducted three experi-

ments, with 24 participants each, to collect data on the per-
formance of developers on tasks related to program compre-
hension and assessed the impact of anti-patterns: Blob and
Spaghetti Code. The first and second experiments examined
the impact of an occurrence of Blob and Spaghetti Code anti-
pattern, independently, on system understandability. In the
third experiment, they used a combination of one Blob and
one Spaghetti Code anti-pattern to analyze its impact.
Research Question: Abbes et al. [1] addressed the follow-
ing research questions: what is the impact of an occurrence

of the Blob anti-pattern (respectively of the Spaghetti Code
anti-pattern and of the two anti-patterns mixed) on under-
standability?
Objects of the Study: Each experiment was performed us-
ing three software systems written in Java. Table 1 presents
a short description of the systems. For the sake of clarity, we
are omittingAbbes et al. [1] experiment #3 here because they
combined Blob+Spaghetti Code, which we will not perform
in our experiments (see next Section).

Table 1
Object systems used in Abbes et al. [1].

Exp AP System Ver. NoC SLOC

#1 Blob YAMM 0.9.1 64 11,272
#1 Blob JVerFileSystem - 167 38,480
#1 Blob AURA - 95 10,629
#2 Spaghetti GanttProject 2.0.6 527 68,545
#2 Spaghetti JFreeChart 1.0 989 302,844
#2 Spaghetti Xerces 2.7.0 740 233,331

From each system, they selected randomly a subset of
classes responsible for a specific feature to limit the size of
the displayed source code. They performed manual refac-
torings [9] on each subset of each system to remove all other
occurrences of (other) anti-patterns to reduce possible bias
by other anti-patterns, while keeping the systems compiling
and functional.

Finally, they refactored each subset of each system to ob-
tain a subset of classes in which there was no occurrence of
any anti-pattern. This subset was used as a base line to com-
pare the participants’ performance.
Variables of the Study: The independent variables for the
first, second, and third experiments are an occurrence of Blob,
an occurrence of Spaghetti Code, and a co-occurrence of
Blob and Spaghetti Code, respectively. The dependent vari-
ables of the three experiments are: participants’ performance,
in terms of effort, time spent, and percentage of correct an-
swers. The effort of a participant was measured using the
NASA Task Load Index (TLX) [11]. They also investigated
mitigating variables: participants knowledge level in Java;
participant’s knowledge level of Eclipse; and, participant’s
knowledge level in software engineering. They assessed the
participants’ knowledge levels using a post-mortem ques-
tionnaire that was administered to every participant at the
end of the experiments.
Participants: Each experiment was performed by 24 anony-
mous participants. Some participants were enrolled in the
M.Sc. and Ph.D. programs in computer and software engi-
neering at Polytechnique Montréal or in computer science
at Université de Montréal. Others were professionals work-
ing for software companies in the Montréal area, recruited
through the authors’ industrial contacts.

Politowski et al.: Preprint submitted to Elsevier Page 2 of 17

A Large Scale Empirical Study of the Impact of Spaghetti Code and Blob Anti-patterns on Program Comprehension

Experiment Questions: The questions used to elicit com-
prehension tasks and collect data on the participants’ perfor-
mances were related to: (1) finding a focus point in some
subset of the classes and interfaces of some source code, rel-
evant to a comprehension task; (2) focusing on a particu-
lar class believed to be related to some task and on directly-
related classes; and, (3) understanding a number of classes
and their relations in some subset of the source code.
Experiment Design: The design for each experiment is
presented in Table 2. An Eclipse workspace was provided
to each participant. This workspace contained a compiling
and functional subset of classes, linked to JAR files contain-
ing the rest of the compiled code. It also contained a timer, a
TLX program, a brief tutorial on Eclipse, a brief description
of the system at hand, and the post-mortem questionnaire
used to measure the participant knowledge. The three ex-
periments were conducted in the same laboratory, with the
same computer and software environments. The participants
did not have prior knowledge of the systems on which they
performed the comprehension tasks.

Table 2
Design of Experiments #1 and #2 [1], with Blob and Spaghetti
Code anti-pattern, showing the participants IDs.

Exp AP Participants’ ID

#1 Blob 1 2 6 14 15 17 20 22
#1 Blob 3 7 9 11 12 18 21 24
#1 Blob 4 5 8 10 13 16 19 23
#1 - 4 7 9 11 13 18 19 23
#1 - 1 5 8 10 15 16 20 22
#1 - 2 3 6 12 14 17 21 24

#2 Spaghetti 1 2 6 14 15 17 20 22
#2 Spaghetti 3 7 9 11 12 18 21 24
#2 Spaghetti 4 5 8 10 13 16 19 23
#2 - 4 7 9 11 13 18 19 23
#2 - 1 5 8 10 15 16 20 22
#2 - 2 3 6 12 14 17 21 24

Summary: Results of Abbes et al. [1]
Results of the three experiments showed that the oc-
currence of one Blob or one Spaghetti Code anti-
pattern in the source code of a software system does
not significantly make its comprehension harder for
participants when compared to source code without
anti-pattern. However, the combination of one Blob
and one Spaghetti Code anti-pattern impacts nega-
tively and significantly a systems’ understandability.

3. Experiment Design
The previous section presented the results of two exper-

iments, considered here #1 and #2. This paper aims to ex-
tend that work by adding four more experiments, called #3,
#4, #5, and #6, in two different locations. Each one of these

deal with two occurrences of Blob and two occurrences of
Spaghetti Code in a software system. Our experiment does
not consider combinations of anti-patterns, for example Blob
+ Spaghetti Code, as Abbes et al. [1] did.

Table 3 shows the experiments and its participants. In
each experiment, we assign two systems to each participant:
one containing two occurrences of the Blob or Spaghetti Code
anti-pattern and one without any anti-pattern. We then mea-
sure and compare the participants’ performances for both
systems in term of program comprehension. Thus, we can
determine the impact of the two anti-patterns on understand-
ability, from the point of view of developers, in the context
of Java systems.
3.1. Research Question

Our research question stems from our goal of understand-
ing the impact of two occurrences of Blob and Spaghetti
Code anti-patterns on program comprehension. The research
questions that our study addresses are:

• RQ1: What is the impact of two occurrences of the
Blob anti-pattern on the participants’ average time spent
understanding a software system?

• RQ2: What is the impact of two occurrences of the
Blob anti-pattern on the participants’ average correct
answers to understanding questions?

• RQ3: What is the impact of two occurrences of the
Blob anti-pattern on the participants’ average effort
spent understanding a software systems?

• RQ4: What is the impact of two occurrences of the
Spaghetti Code anti-pattern on the participants’ aver-
age time spent understanding software systems?

• RQ5: What is the impact of two occurrences of the
Spaghetti Code anti-pattern on the participants’ aver-
age correct answers to understanding questions?

• RQ6: What is the impact of two occurrences of the
Spaghetti Code anti-pattern on the participants’ aver-
age effort spent understanding a software systems?

3.2. Hypotheses
From Research Questions 1, 2, and 3, we formulate the

following null hypotheses for the Blob anti-pattern:
• HBlobT ime There is no statistically significant differ-

ence between the participants’ average time spentwhen
executing comprehension tasks on source code con-
taining two occurrences of the Blob anti-pattern com-
pared to participants executing the same tasks on source
code without any occurrences of the Blob anti-pattern.

• HBlobAnswer There is no statistically significant differ-ence between the participants’ correctness of the an-
swers when executing comprehension tasks on source
code containing two occurrences of theBlob anti-pattern
compared to participants executing the same tasks on
source code without any occurrences of the Blob anti-
pattern.

Politowski et al.: Preprint submitted to Elsevier Page 3 of 17

A Large Scale Empirical Study of the Impact of Spaghetti Code and Blob Anti-patterns on Program Comprehension

Table 3
Group of experiments.

Location AP Type #APs Experiment ID Participants Data Origin

Montréal, Canada Blob 1 #1 24 Abbes et al. [1]
Montréal, Canada Spaghetti Code 1 #2 24 Abbes et al. [1]

Ottawa, Canada Blob 2 #3 30 This paper
Ottawa, Canada Spaghetti Code 2 #4 29 This paper

Potenza, Italy Blob 2 #5 41 This paper
Potenza, Italy Spaghetti Code 2 #6 38 This paper

#APs means how many occurrences of the anti-pattern are in the source code.

• HBlobEffort There is no statistically significant dif-
ference between the participants’ effort when execut-
ing comprehension tasks on source code containing
two occurrences of the Blob anti-pattern compared to
participants executing the same tasks on source code
without any occurrences of the Blob anti-pattern.

For the Spaghetti Code anti-pattern and on the basis of
Research Questions 4, 5 and 6, we formulate the following
null hypotheses:

• HSpagℎettiT ime There is no statistically significant dif-ference between the participants’ average time spent
when executing comprehension tasks on source code
containing two occurrences of the Spaghetti Code anti-
pattern compared to participants executing the same
tasks on source code without any occurrences of the
Spaghetti Code anti-pattern.

• HSpagℎettiAnswer There is no statistically significant dif-ference between the participants’ correctness of the
answerswhen executing comprehension tasks on source
code containing two occurrences of the Spaghetti Code
anti-pattern compared to participants executing the same
tasks on source code without any occurrences of the
Spaghetti Code anti-pattern.

• HSpagℎettiEffort There is no statistically significant dif-ference between the participants’ effort when execut-
ing comprehension tasks on source code containing
two occurrences of the Spaghetti Code anti-pattern
compared to participants executing the same tasks on
source code without any occurrences of the Spaghetti
Code anti-pattern.

3.3. Objects
We choose three systems for each experiment, all devel-

oped in Java, and briefly described in Table 4. We performed
each experiment on the three different systems, because one
system could be intrinsically either easier or harder to under-
stand.

For Experiment #3 and #5, we use Azureus3, a Bit Tor-
rent client used to transfer files via the Bit Torrent protocol

3http://www.vuze.com/

(now known as Vuze); iTrust4, a medical application that
provides patients with a means to keep up with their medical
history and records as well as communicate with their doc-
tors; and, SIP5, an audio/video Internet phone and instant
messenger that supports some of the most popular instant
messaging and telephony protocols (now known as Jitsi).

For Experiment #4 and #6, we use ArgoUML6, an UML
diagramming applicationwritten in Java; JHotDraw7, a graphic
framework for drawing 2D graphics; and, Rhino8, an open-
source JavaScript interpreter.

We used the following criteria to select the systems. First,
we selected open-source systems; therefore other researchers
can replicate our experiment. Second, we avoided to select
small systems that do not represent the ones on which devel-
opers work normally. We also chose these systems because
they are typical examples of systems having continuously
evolved over periods of time of different lengths. Hence,
the occurrences of Blob and Spaghetti Code in these sys-
tems are not coincidence but are realistic. We use the anti-
pattern detection technique DETEX, which stems from the
DECOR method [22, 21] to ensure that each system has at
least two occurrences of the Blob and–or the Spaghetti Code
anti-pattern. We randomly assigned a set of three systems to
each experiment.

We manually validated the detected occurrences. From
each system, we selected randomly a subset of classes re-
sponsible for managing a specific feature to limit the size
of the source code given to the participants. For example,
in iTrust, we chose the source code of the classes providing
patients with access to their medical history and records.

The difference between systems would not impact our
results because, regardless of the sizes, a participant con-
centrates her efforts only on a small part of the subset of
the source code in which the anti-pattern class plays a cen-
tral role, i.e., the Blob class and its surrounding classes.
Therefore, we ensure that all participants perform compre-
hension tasks within, almost, the same piece of code. Then,
we refactor each subset of each system to remove all other
occurrences of (other) anti-patterns to reduce possible bias

4http://agile.csc.ncsu.edu/iTrust/
5http://www.jitsi.org/
6http://argouml.tigris.org/
7http://www.jhotdraw.org/
8http://www.mozilla.org/rhino/

Politowski et al.: Preprint submitted to Elsevier Page 4 of 17

http://www.vuze.com/
http://agile.csc.ncsu.edu/iTrust/
http://www.jitsi.org/
http://argouml.tigris.org/
http://www.jhotdraw.org/
http://www.mozilla.org/rhino/

A Large Scale Empirical Study of the Impact of Spaghetti Code and Blob Anti-patterns on Program Comprehension

Table 4
Object Systems.

Experiment Anti-pattern System Version NoC SLOCs Release Commits

#3 and #5 Blob Azureus 2.3.0.6 1,449 191,963 2005 27300
#3 and #5 Blob iTrust 11 565 21,901 2010 256
#3 and #5 Blob SIPComm 1 1,771 486,966 2010 12693

#4 and #6 Spaghetti Code ArgoUml 0.2 1,230 113,017 2006 16144
#4 and #6 Spaghetti Code JHotDraw 5.4b2 484 72,312 2004 765
#4 and #6 Spaghetti Code Rhino 1.6R5 108 48,824 2009 3532

#Commits is the approximated number of commits of each repository, gathered on December 13tℎ, 2018. Some of the repositories
where migrated, for example from SVN to Github and some historical data may have been lost.

by other anti-patterns, while keeping the system compiling
and functioning. We perform manual refactoring following
the guidelines from Fowler et al. [9]. For example, when
dealing with a Blob class, we replace it by multiple smaller
classes and move some methods to existing/new classes.

For experiments #3 and #5, each subset contains two oc-
currences of the Blob anti-pattern. For Experiment #4 and
#6, each subset contains two occurrences of the Spaghetti
Code anti-pattern. We refactor each subset of the systems
to obtain new subsets in which no occurrence of the anti-
patterns exist. We use these subsets as baselines to compare
the participants’ performances and test our null hypotheses.
3.4. Independent and Dependent Variables

The independent variables are those variables that we
can control. The variables should have some effect on the
dependent variables and must be controllable [48]. These
are the independent variables of our experiments:

• Experiment ID is a nominal variable identifying the
experiment. For example, a value for this variable
equal to #3 identifies the third experiment.

• Object is a nominal variable representing the system.
For example, it assumes the values Azureus, iTrust,
and so on.

• Treatment is a nominal variable indicating whether or
not the source code contains an anti-pattern. For ex-
ample, in the experiments #3 and #5, this variable as-
sumes as valuesBlob orNoBlob, i.e., source codewith-
/out the Blob anti-pattern.

The dependent variables measure the participants’ per-
formance, in terms of time spent, percentage of correct an-
swers, and effort.

Wemeasure the time using a timer developed in Java that
the participants must start before performing their compre-
hension tasks to answer the questions and stop when done.
The time variable assumes values between 0 seconds and
“N” seconds, where a value close to zero indicates that the
task was performed quickly by the participant.

We compute the percentage of correct answers for each
question by dividing the number of correct elements found
by a participant by the total number of correct elements they

should have found. For example, for a question on the refer-
ences to a given object, if there are ten references but the par-
ticipant finds only four, the percentage would be forty. Then,
we average these percentages to get an overall percentage for
each participant. This variable assumes values between 0%
and 100% where a value close to 100% indicates a high cor-
rectness in the answers.

We measure the participants effort using the NASA Task
Load Index (TLX) [11]. The TLX assesses the subjective
workload of participants. It is a multi-dimensional measure
that provides an overall workload index based on a weighted
average of ratings on six sub-scales: mental demands, phys-
ical demands, temporal demands, own performance, effort,
and frustration. NASA provides a computer program to col-
lect weights of six sub-scales and ratings on these six sub-
scales. We combine weights and ratings provided by the par-
ticipants into an overall weighted workload index by multi-
plying ratings and weights; the sum of the weighted ratings
divided by fifteen (sum of the weights) represents the effort
[25] with values between 0% and 100% where a value close
to 100% indicates a high effort for a participant.

Finally, Table 5 shows a sample of the stored data with
the dependent and independent variables.
3.4.1. Participants’ Technical Expertise

The participants’ knowledge levels were assessed using
a post-mortem questionnaire that was administered to every
participant at the end of its participation to an experiment.
The questions were in five-point-scale, as described below.
Table 6 shows a subset of the data regarding the skills.

1. How do you rate your skills and knowledge in Soft-
ware Engineering?

2. How do you rate your level in Java?
3. How do you rate your level in Eclipse?

3.5. Participants
For each group of experiments shown in Table 3, we use

a random sampling to select and assign participants. The
population is a convenient sampling of students participating
in classes at two universities.

Politowski et al.: Preprint submitted to Elsevier Page 5 of 17

A Large Scale Empirical Study of the Impact of Spaghetti Code and Blob Anti-patterns on Program Comprehension

Table 5
Example of the data, the variables and its structure.

N Place Exp Global ID Local ID Object Treatment Time Answer Effort

97 Carleton e3 s25 s1 iTrust Blob 305 23 71
98 Carleton e3 s25 s1 Azureus NoBlob 85.7 67 57
99 Carleton e3 s26 s2 iTrust Blob 355 33 58
100 Carleton e3 s26 s2 Azureus NoBlob 143 72 48
101 Carleton e3 s27 s3 SIPComm Blob 273 33 57
102 Carleton e3 s27 s3 Azureus NoBlob 150 83 43
103 Carleton e3 s28 s4 SIPComm Blob 392 11 67
104 Carleton e3 s28 s4 iTrust NoBlob 95 78 52
105 Carleton e3 s29 s5 Azureus Blob 277 22 54
106 Carleton e3 s29 s5 iTrust NoBlob 92 89 49

Table 6
Example of the data regarding the skills of the participants.

Place Exp G.ID L.ID Treat. SE Java Eclipse

Montr. e1 s1 s1 Blob 3 3 3
Montr. e1 s2 s2 Blob 3 3 3
Montr. e1 s3 s3 Blob 3 3 3
Montr. e1 s4 s4 Blob 3 3 3
Montr. e1 s5 s5 Blob 3 3 4
Montr. e1 s6 s6 Blob 3 5 3

Experiments #3 and #4: Each experiment was performed
by 30 (30 for Blob tasks and 29 for Spaghetti Code tasks)
anonymous participants, with some from theM.Sc. and Ph.D.
programs of computer and software engineering at the com-
puter science department of Carleton University.
Experiments #5 and #6: 79 anonymous participants per-
formed the experiments at the University of Basilicata, 41
out of 79 dealt with the Blob anti-pattern in the experiment
#5 and 38 dealt with the Spaghetti Code anti-pattern in the
experiment #6. Participants were enrolled to either the B.Sc.
or the M.Sc. program at University of Basilicata. Seven par-
ticipants were enrolled to the M.Sc. in the first year in com-
puter engineering. The remaining students were enrolled in
the third year in computer science. Different participants
participated in each experiment.
3.6. Questions

We use comprehension questions to elicit comprehen-
sion tasks and collect data on the participants’ performances.
We consider questions in three of the four categories of ques-
tions regularly asked and answered by developers [39]:

1. Finding a focus point in some subset of the classes and
interfaces of some source code, relevant to a compre-
hension task;

2. Focusing on a particular class believed to be related to
some task and on directly-related classes;

3. Understanding a number of classes and their relations
in some subset of the source code;

4. Understanding the relations between different subsets
of the source code. Each category contains several
questions of the same type.

We choose questions only in the first three categories,
because the last category pertains to different subsets of the
source code and, in our experiments, we focus only on one
subset containing the occurrence(s) of the anti-pattern(s).

The six questions are the followings. The text in bold
is a placeholder that we replace by appropriate behaviors,
concepts, UI elements, methods, and types depending on the
systems on which the participants perform their tasks.

• Category 1: Finding focus points:
– Question 1: Where is the code involved in the

implementation of [this behavior]?
– Question 2: Which type represents [this domain

concept] or [this UI element or action]?
• Category 2: Expanding focus points:

– Question 1: Where is [this method] called or
[this type] referenced?

– Question 2: What data can we access from [this
object]?

• Category 3: Understanding a subset:
– Question 1: How are [these types or objects]

related?
– Question 2: What is the behavior that [these types]

provide together and how is it distributed over
[these types]?

For example, with Azureus, we replace “this behavior”
in Question 1, Category 1, by “the health status of the re-
source to be downloaded, by calculating the number of seeds
and peers” and the question reads: “Where is, in this project,
the method involved in the implementation of the health sta-
tus of the resource to be downloaded, by calculating the num-
ber of seeds and peers?”

For Category 2, it could seem that participants could
simply answer the questions using Eclipse but theymust iden-
tify and understand the classes or methods that they believe

Politowski et al.: Preprint submitted to Elsevier Page 6 of 17

A Large Scale Empirical Study of the Impact of Spaghetti Code and Blob Anti-patterns on Program Comprehension

to be related to the task. Moreover, discovering classes and
relationships that capture incoming connections prepare the
participants for the questions of the third category.

Below are some examples of related questions for the
ArgoUML system:

• Where is, in this project, the method involved in the
implementation of parsing a line of text (containing
the notation UML for an operation) to align the Op-
eration to the specification given?

• What data can we access from an object of the type
OperationNotationUml?

• How are the types OperationNotationUml and Nota-
tionUtilityUml related?

3.7. Design
The distribution of the participants was random, as long

as the same participant did not perform a task on the same
system more than once to avoid learning biases. We have
three different systems, each with two possibilities: con-
taining or not containing the occurrences of an anti-pattern.
Hence, six combinations are possible for each experiment.
In each combination, we prepare a set of comprehension
questions, which together form a treatment.

Table 7 shows the design of the experiments #3, #4, #5
and #6 for the Blob and Spaghetti Code anti-patterns, respec-
tively, as well as the participants who performed the tasks
and the respective systems.
3.8. Procedure

We received the agreement from the Ethical ReviewBoards
of Université de Montréal and Carleton University to per-
form and publish this study. The collected data is anony-
mous. The participants could leave any experiment at any
time, for any reason, and without penalty of any kind. No
participant left the study or took more than 45 minutes to
perform the experiment. The participants knew that they
would perform comprehension tasks but did know the goal
of the experiment or the system that they were studying or
whether the system contained or not anti-pattern(s). We in-
formed participants of the goal of the study after collecting
their data, before they left their experiments.

For each experiment, we prepared an Eclipse workspace
packaging the classes on which the participants performed
their comprehension tasks to answer the questions. Thework-
space contained compilable and functional subsets of the
source code, linked to JAR files containing the rest of the
compiled code of the systems. It also included a timer, the
TLX program, brief tutorials on the use of Eclipse and about
the systems, and a post-mortem questionnaire. No partici-
pants knew the systems on which they performed their tasks,
thus we eliminated the mitigating variable relative to the par-
ticipants’ prior knowledge of the systems.

After the experiment, we computed the percentage of
correct answers for each question by dividing the number
of correct elements found by the subject by the total number

of correct elements they should have found. For example,
for a question about the references to a given object, if there
are ten references but the participant find only four, the per-
centage would be forty.
3.9. Analysis Method

For the analyses, we use the R software environment9 for
statistical computing and graphics in two steps:
Preliminary Analysis: We apply descriptive statistics on
the dependent variables. We also make use of boxplots10 to
analyze the data.
Statistical Hypothesis Test: We test the null hypotheses
using linear mixed models (LMM) analysis method. We use
this method because it allows analyzing models with random
effects (as it is the case for participants in our experiments)
and data dependency due to repeated measures (as it is our
case) [45]. Moreover, thanks to LMM analysis method, we
analyze the effect of the independent variables (i.e., experi-
ment, object, and treatment) modelled as fixed effects on the
dependent variables (i.e., time spent, correctness of answers,
and effort). The built models also include a random effect for
the participants in the experiments. As it is customary with
statistical hypotheses tests, we accept a probability of 5% of
committing a Type-I error (i.e. � = 0.05).

Considering a matrix notation, LMM can be represented
as: y = X� + Zu + e. Where � describe the fixed effects,
the variables we want to test, that is, time, answer, and ef-
fort; u describe the random effects, in this our case theGlob-
alID, which correspond to a participant’s ID; X and Z are
the respective column values; Finally, e describe the random
errors.

The requirements to apply the LMM analysis method are:
(1) residuals must follow a normal distribution and (2) the
mean of the residuals must be equal to zero [45]. To check
the normality of residuals, we use Shapiro-Wilk W test [38],
where a p-value less than � = 0.05 indicates data not nor-
mally distributed. Without normality, we use Friedman Test
on the treatment variable. This analysis method does not al-
low analyzing the effect of experiment and object.

4. Results
Table 8 and Table 9 report the descriptive statistics re-

garding the time spent (in seconds) during the tasks, cor-
rectness of the answers (in percentage), and the effort (in
percentage) used to complete the tasks.

The tasks performed on code containing the anti-pattern
Blob are, on average, 33.85% more time consuming when
compared to code without the anti-pattern. The answers for
the tasks containing the anti-pattern Blob is, on average, 22.07%
less accurate when compared to task with code without the
anti-pattern. Finally, the participants, on average, reported

9www.r-project.org
10The box-plots are drawnwith the box height corresponding to the 25th

and 75th percentile, with the 50th percentile (themedian)marked in the box.
The whiskers correspond to the 10th and 90th percentile [48].

Politowski et al.: Preprint submitted to Elsevier Page 7 of 17

www.r-project.org

A Large Scale Empirical Study of the Impact of Spaghetti Code and Blob Anti-patterns on Program Comprehension

Table 7
Design of the experiments #3, #4, #5 and #6, for the Blob and Spaghetti Code anti-patterns, respectively, showing the
participants IDs.

Exp Anti-pattern Object Participants’ ID

#3 Blob iTrust 1 12 44 45 46 11 13 15 17 24
#3 Blob Azureus 42 43 2 6 8 9 14 18 21 22
#3 Blob SIPComm 23 33 3 4 5 7 10 16 19 20

#3 - iTrust 33 42 2 3 5 7 8 18 19 21
#3 - Azureus 1 12 23 44 45 4 10 11 16 20 24
#3 - SIPComm 43 46 6 9 13 14 15 17 22

#5 Blob iTrust 1 12 43 6 7 9 15 21 27 29 36 37
#5 Blob Azureus 44 46 3 4 10 14 17 18 22 26 28 34 38 40
#5 Blob SIPComm 33 42 45 2 8 11 16 19 20 24 30 31 35 39 41

#5 - iTrust 33 44 46 3 10 11 16 18 19 24 31 35 38 40
#5 - Azureus 1 42 45 2 7 8 15 20 27 29 30 36 39 41
#5 - SIPComm 12 43 4 6 9 14 17 21 22 26 28 34 37

#4 Spaghetti C. ArgoUML 1 33 45 2 6 7 10 11 15 19
#4 Spaghetti C. JHotDraw 12 23 46 3 9 13 16 17 18 22
#4 Spaghetti C. Rhino 42 43 44 4 5 8 14 20 21

#4 - ArgoUML 12 23 43 3 5 8 13 14 16 18
#4 - JHotDraw 1 33 42 44 2 4 10 15 19 20 21
#4 - Rhino 45 46 6 7 9 11 17 22

#6 Spaghetti C. ArgoUML 23 46 3 4 10 14 17 18 26 28 32 34 38 40
#6 Spaghetti C. JHotDraw 1 43 6 9 13 15 21 25 27 29 36
#6 Spaghetti C. Rhino 33 42 45 2 5 8 11 16 19 24 31 35 39

#6 - ArgoUML 1 42 45 2 8 13 15 25 27 29 36 39
#6 - JHotDraw 33 46 3 5 10 11 16 18 19 24 31 32 35 38 40
#6 - Rhino 23 43 4 6 9 14 17 21 26 28 34

usingmore effort (around 10%more)when performing tasks
involving code that contained the anti-pattern Blob.

Table 8
Descriptive statistics showing the aggregated results for the
anti-pattern Blob.

D.Var. Treat. Mean Median SD Min Max

Time - 155.1 153.1 60.0 38.2 319.6
Time Blob 234.5 234.9 81.5 87.5 434.1

Answer - 60.3 56.1 18.0 25.0 95.8
Answer Blob 38.3 37.3 18.0 5.5 71.0

Effort - 52.6 52.1 10.8 34.1 75.7
Effort Blob 62.4 63.3 12.0 37.7 89.5

The tasks performed on code containing the anti-pattern
Spaghetti Code are, on average, 39.50% more time consum-
ing when compared to code without the anti-pattern. The
answers for the tasks containing the anti-pattern Spaghetti
Code are, on average, 25.30% less accurate when compared
to taskwith codewithout the anti-pattern. Finally, the partic-
ipants reported, on average, using more effort (around 10%
more) when performing tasks involving code that contained
the anti-pattern Spaghetti Code.

The boxplots in Figure 1 and Figure 2 summarizes these

Table 9
Descriptive statistics showing the aggregated results for the
anti-pattern Spaghetti Code (SC).

D.Var. Treat. Mean Median SD Min Max

Time - 184.5 183.9 56.5 86.6 314.5
Time SC 257.5 253.8 74.6 119.9 457.6

Answer - 52.8 52.5 13.0 29.1 79.1
Answer SC 27.5 26.5 17.1 4.1 66.8

Effort - 55.6 56.5 10.3 35.5 74.7
Effort SC 65.4 64.2 11.9 41.5 89.5

results. Aside from the spread of the values regarding the
variable answer and the outliers in the variable time, in gen-
eral, the performance of the participants are better when the
anti-patterns are not present.

Before applying the LMM analysis method, we assess the
normality of the residuals with the Shapiro Test, indicating
that the data are normally distributed for any dependent vari-
able. As an example, Listing 1 is the R script executed for
the data about the Blob anti-pattern and the variable time.

The variable answer, for the experiments with the Spaghetti
Code anti-pattern (#4 and #6) has a value less than 0.05, in-

Politowski et al.: Preprint submitted to Elsevier Page 8 of 17

A Large Scale Empirical Study of the Impact of Spaghetti Code and Blob Anti-patterns on Program Comprehension

0

100

200

300

400

500

noBlob Blob

Treatment

T
im

e

(a) Blob - Time spent.

0

25

50

75

100

noBlob Blob

Treatment

A
ns

w
er

(b) Blob - Correctness of Answers.

40

60

80

100

noBlob Blob

Treatment

E
ffo

rt

(c) Blob - Overall Effort.
Figure 1: Boxplot of the exploratory analysis with three dependent variables (time, answer, and effort) for the Blob anti-pattern.

100

200

300

400

500

noSpaghetti Spaghetti

Treatment

T
im

e

0

25

50

75

100

noSpaghetti Spaghetti

Treatment

A
ns

w
er

40

60

80

noSpaghetti Spaghetti

Treatment
E

ffo
rt

Figure 2: Boxplot of the exploratory analysis with three dependent variables (time, answer, and effort) for the Spaghetti Code
anti-pattern.

linear mixed model

LMM.Time <<- lmer(Time ~ Treatment +

Experiment + Object + Treatment:Object +

Treatment:Experiment + (1| GlobalID), data=

dataset_blob)

residuals check

r_blob_time <- residuals(LMM.Time)

normality check

shap_blob_time <- shapiro.test(r_blob_time)

perform anova in the LMM

anova.Time <- Anova(LMM.Time)

Listing 1: Example of the R code for the Linear Mixed
Model analysis.

dicating non-normally distributed residuals (while the resid-
uals for the other dependent variables were normally dis-
tributed). Consequently, we cannot apply the LMM analysis
method and use the Friedman Test for the variable answer.

Table 10 reports the results from the LMManalysismethod
(left of the vertical line) as well as those from the testing of
the LMM assumptions. Each row corresponds to a LMM.
For each LMM, we show the p-values for Treatment, Experi-

ment,Object, Treatment:Object (i.e., the interaction between
Treatment and Object) and Treatment:Experiment (i.e., the
interaction between Treatment and Experiment).

For example, the LMM built for the dependent variable
time indicates that Treatment, Experiment, Treatment:Object,
and Treatment:Experiment have significant effects because
their p-value is less than 0.05. In particular, a significant ef-
fect of Treatment means that there is a significant difference
between Blob and NoBlob. Similarly, a significant effect of
Experiment means that there is a significant difference be-
tween the experiments, and so on.

Table 10 show the results of the LMM analysis method
for Blob and Spaghetti Code anti-patterns. The variables
Treatment (anti-pattern Blob), Experiment (Experiments #3
and #5), as well as their interaction (denoted as Treatment:
Experiment in Table 10) affect the time spent, correctness of
answers, and participants’ effort (their p-values are less than
� = 0.05). The variable Object, e.g., the Java system used
in the tasks, impact the correctness of the answers (while it
does not impact the time spent and participants’ effort). This
observation could mean that some systems/tasks were more
difficult to perform. Lastly, the interaction between Treat-
ment andObject (e.g., Treatment:Object in Table 10) affects
the time spent (while the correctness of the answers and par-
ticipants’ effort are not affected).

Politowski et al.: Preprint submitted to Elsevier Page 9 of 17

A Large Scale Empirical Study of the Impact of Spaghetti Code and Blob Anti-patterns on Program Comprehension

Table 10
Output of the execution of the LMM analysis method, Shapiro Test and Mean of Residuals for the Blob and Spaghetti Code
anti-patterns. Significant effects are displayed in bold font.

Anti-Pattern Dep. Var. Treatment Experiment Object Treat.:Obj Treat.:Exp. Shapiro Residual

Blob Time < 0.01 0.03 0.59 0.03 < 0.01 0.52 0
Blob Answer < 0.01 < 0.01 < 0.01 0.22 < 0.01 0.82 0
Blob Effort < 0.01 0.04 0.74 0.96 < 0.01 0.43 0

Spaghetti Time < 0.01 < 0.01 0.79 0.74 < 0.01 0.11 0
Spaghetti Answer < 0.01 - - - - 0.02 0
Spaghetti Effort < 0.01 0.08 < 0.01 0.64 < 0.01 0.49 0

The variable Treatment (anti-pattern Spaghetti Code) af-
fects the time spent, correctness of answers, and participants’
effort. We also observe that the variable Experiment (Exper-
iments #4 and #6) and the interaction between Treatment and
Experiment affects the time spent (while the variable Object
and its interaction with the variable Treatment do not affect
the time spent). Finally, the variableObject has an impact on
the participants’ effort as well as the interaction between the
variable Treatment and Experiment (while Experiment and
the interaction between Treatment and Object do not impact
the participants’ effort).
4.1. Analyzing Results by Experiments

Figure 3 shows the boxplots grouped by experiments us-
ing the Blob anti-pattern. Although the experiments had the
same setup and design, the results present a clear gap in their
values. Experiment #3, with the tasks performed with the
anti-pattern Blob, shows inferior performance from the par-
ticipants in all variables (time, accuracy, and effort) while
this difference is not visible in Experiment #5.

Similarly, Figure 5 shows the boxplots grouped by ex-
periments with the Spaghetti Code anti-pattern and presents
disparities among values. Experiment #4, with the Spaghetti
Code, shows inferior performance from the participants in
all the variables (time, accuracy, and effort) while Experi-
ment #6 shows less clear difference. Also, for the variable
effort, the results are slightly contradictory, with better re-
sults when the anti-pattern is present.
4.2. Analyzing Participants’ Skills

To explain the disparities of the results between the ex-
periments, Figure 4 and Figure 6 show violin plots with the
skill levels of each participant in Software Engineering, Java,
and Eclipse, gathered in the post-mortem questionnaire.

The participants of Experiment #5 and #6 have lower
skills levels in Software Engineering and Eclipse but sim-
ilar levels for Java. Thus, there could be a relationship be-
tween the expertise and the performance of the participants
in tasks with anti-patterns. For example, participants with
better technical skills had better results with source code
without the anti-patterns Blob and Spaghetti Code.

To check if participants in different experiments are sim-
ilar regarding their skills, we used the Mann-Whitney test.
The null hypothesis was that the two samples come from the
same distribution, which we would reject if the p-value is

e3 e5

noBlob Blob noBlob Blob
0

100

200

300

400

500

Treatment

T
im

e

e3 e5

noBlob Blob noBlob Blob
0

25

50

75

100

Treatment

A
ns

w
er

e3 e5

noBlob Blob noBlob Blob

40

60

80

100

Treatment

E
ffo

rt

Figure 3: Boxplot of the exploratory analysis with dependent
variables and the Blob anti-pattern (treatment) grouped by
experiments.

less than 0.05 (5%). We also computed the effect sizes in
both samples based on dominance matrices using Cliff’s �.
Listing 2 is an example of the R script to applied the tests on
Experiments #4 and #6 (Spaghetti Code) Java programming
skills.

Politowski et al.: Preprint submitted to Elsevier Page 10 of 17

A Large Scale Empirical Study of the Impact of Spaghetti Code and Blob Anti-patterns on Program Comprehension

●

●

1

2

3

4

5

e3 e5

(a) Soft. Eng.

●

●

1

2

3

4

5

e3 e5

(b) Java

●

●

1

2

3

4

5

e3 e5

(c) Eclipse
Figure 4: Violin plot showing the distribution of participants’
expertise levels in Software Engineering, Java, and Eclipse, for
Experiments #3 and #5, with Blob anti-pattern.

e4 e6

noSpaghetti Spaghetti noSpaghetti Spaghetti

100

200

300

400

500

Treatment

T
im

e

e4 e6

noSpaghetti Spaghetti noSpaghetti Spaghetti
0

25

50

75

100

Treatment

A
ns

w
er

e4 e6

noSpaghetti Spaghetti noSpaghetti Spaghetti

40

60

80

Treatment

E
ffo

rt

Figure 5: Boxplot of the exploratory analysis with depen-
dent variables and the Spaghetti Code anti-pattern (treatment)
grouped by experiment.

Table 11 shows the results for each skill: p-value (Wil-
coxon test), effect (Cliff’s �), and magnitude11 (qualitative
assessment of the magnitude of effect size). There is signifi-
cant difference in the participants’ skills regarding Software
Engineering and Java, for both anti-patterns.

11Magnitude is assessed using the thresholds: |�| < 0.147 “negligible”,

●

●

1

2

3

4

5

e4 e6

(a) Soft. Eng.

●
●

1

2

3

4

5

e4 e6

(b) Java.

●

●

1

2

3

4

5

e4 e6

(c) Eclipse.
Figure 6: Violin plots showing the distribution of participants’
skills levels in Software Engineering, Java, and Eclipse, for Ex-
periments #4 and #6, with the Spaghetti Code anti-pattern.

Mann -Whitney test

wilcox.test(x = datasetExp4$Java , y =

datasetExp6$Java , paired = FALSE)

Cliff 's Delta test

cliff.delta(datasetExp4$Java , datasetExp6$Java

, conf.level =.95)

Listing 2: Example of the R code for the Mann-Whitney and
Cliff’s Delta test.

Table 11
Results of the Mann-Whitney and Cliff’s � tests. The values
in bold font means that the null hypothesis was rejected and,
therefore, that the samples are different.

A. P. Exp. Skill P-value Effect Magnitude

Blob 3 & 4 SE 0.00 0.70 large
Blob 3 & 4 Java 0.15 0.17 small
Blob 3 & 4 Eclipse 0.00 0.42 medium

Spaghetti 4 & 6 SE 0.00 0.70 large
Spaghetti 4 & 6 Java 0.45 0.10 negligible
Spaghetti 4 & 6 Eclipse 0.00 0.59 large

4.3. Results from Abbes et al. [1]
Previous experiments by Abbes et al. [1], which used

only one instance of the anti-patterns, concluded that there
is no significant impact on the source code understandabil-
ity. Yet, the combination of both anti-patterns, Blob and
Spaghetti Code, did decrease understandability.

Figure 7 shows the boxplots of the results of Experiment
#1 and #2 with Blob and Spaghetti Code anti-patterns. The
difference regarding the mean is clear when compared with
the new experiments shown in Figure 1 and Figure 2.

Nonetheless, the results of our new experiments, with
two anti-patterns instead of only one, did change the out-
come. The combinations of the anti-patterns from [1], Blob
+ Spaghetti Code, and the combinations of more than one
occurrence of the same anti-patterns, Blob+Blob and Spaghetti
Code + Spaghetti Code, harm the understandability of the
source code for all the tested variables.
|�| < 0.33 “small”, |�| < 0.474 “medium”, otherwise “large”.

Politowski et al.: Preprint submitted to Elsevier Page 11 of 17

A Large Scale Empirical Study of the Impact of Spaghetti Code and Blob Anti-patterns on Program Comprehension

100

200

300

400

500

Blob noBlob

Treatment

T
im

e

(a) Time spent.

100

200

300

noSpaghetti Spaghetti

Treatment

T
im

e
(b) Time spent.

25

50

75

100

Blob noBlob

Treatment

A
ns

w
er

(c) Correctness of Answers.

0

25

50

75

100

noSpaghetti Spaghetti

Treatment

A
ns

w
er

(d) Correctness of Answers.

20

40

60

80

Blob noBlob

Treatment

E
ffo

rt

(e) Overall Effort.

20

40

60

80

noSpaghetti Spaghetti

Treatment

E
ffo

rt

(f) Overall Effort.
Figure 7: Boxplot of the analysis with the dependent variables
(time, answer, and effort) for Experiment #1 and #2 [1].

Summary: Results
The results of the descriptive statistics, boxplots,
and LMM analysis method show that either anti-
pattern Blob or Spaghetti Code, when present in a
java source code, decreases the developers’ produc-
tivity by increasing the time spent in the tasks, re-
ducing the accuracy of their answers, and increasing
their needed effort.

5. Discussion
The results from the experiments with the Blob anti-pattern

show that the null hypotheses can be rejected for all depen-
dent variables. Thus, we conclude that the Blob anti-pattern,
when co-occurring twice in source code, impacts the par-
ticipants’ performances by increasing the time spent when
performing their tasks, lowering the correctness of their an-

swers, and increasing their effort.
Similarly, results from the experiments with the Spaghetti

Code anti-pattern indicate that the null hypotheses can be re-
jected for all dependent variables: when co-occurring twice
in source code, it also impacts the participants’ performances
by increasing their time spent on the tasks, lowering the cor-
rectness of their answers, and increasing their efforts.
Time Spent: The time spent in any task is always a concern
and usually is used as a metric of productivity, e.g., to esti-
mate how long it will take to implement a new feature or fix
a bug. Our results show that the time spent could be reduced
by 33% if the source code does not contain the Blob anti-
pattern and by 39% without the Spaghetti Code anti-pattern.
Correctness of Answers: Developers often face source code
that is hard to understand, especially when working with
legacy code or third-party libraries. The poor understand-
ability of the source code may lead to occurrences of bugs,
as developers misunderstand the source code. Our results
bring evidence that, when a source code contains two co-
occurrences of the Blob anti-pattern or Spaghetti Code, the
developers’ accuracy could be reduced by 22% and 25%.
Participants’ effort: The effort used to complete a task is
also a metric commonly used to measure developers’ pro-
ductivity. The more effort a task demands, the harder it is.
Our results show that the anti-patterns Blob and Spaghetti
Code could increase by 10% developers’ efforts.
Differences between Anti-patterns The difference is small
between the anti-patterns used in this study. However, the
Spaghetti Code has a slightly bigger impact on the under-
standability of the source code, resulting in about 6% more
time spent and 3% less correct answers.
Differences among Participants When grouped by ex-
periments, the results showed different outcomes. The dif-
ference in the participants’ performance is clear in Experi-
ments #3 and #4 (Canada) while is quite similar in the Ex-
periments #5 and #6 (Italy). The former even has a con-
tradictory better performance on effort regarding Spaghetti
Code. The participants’ expertise is similar for Java but dif-
ferent for Software Engineering and Eclipse. A first obser-
vation would be that skilled programmers work better with
clean/organized code. However, we argue that we needmore
robust methods to model the participants’ skills and measure
their performance.
Other Consequences The previous extendedwork byAbbes
et al. [1] demonstrated that a single occurrence of any anti-
pattern, Blob or Spaghetti Code, does not affect source-code
understanding. However, when bothweremixed, understand-
ability decreased. These latter results are confirmed by this
present work, using two occurrences of each anti-pattern in
the source code.

These previous observations raise the question whether
the problem is the number of occurrences of anti-patterns,

Politowski et al.: Preprint submitted to Elsevier Page 12 of 17

A Large Scale Empirical Study of the Impact of Spaghetti Code and Blob Anti-patterns on Program Comprehension

not necessarily their types: Is Blob + Blob more impactful
than Blob + Spaghetti Code? Future work is neeed to an-
swer this question even if the presence of the anti-patterns
and their effect on the participants’ performance show the
importance of well-designed source code.

Understanding the impact of Blob and Spaghetti Code
anti-patterns on program comprehension is important from
the points of view of both researchers and practitioners. For
researchers, our results bring further evidence to support the
conjecture in the literature on the negative impact of anti-
patterns on the quality of software systems. For practition-
ers, our results provide concrete evidence that they should
pay attention to software systemswith high numbers of classes
participating in anti-patterns, because these anti-patterns re-
duce understandability and, consequently, increase their sys-
tems’ aging [35]. Our results also support a posteriori the re-
moval of anti-patterns as early as possible from systems and,
therefore, the importance and usefulness of anti-patterns de-
tection techniques and related refactorings.

Summary: Discussion
The data provides preliminary evidence that anti-
patterns do not affect developers with low skill level
but a source code without anti-pattern improves the
developers’ performance. It thus confirms the rec-
ommendation of following good practices and pat-
terns to keep the code “clean” and applying refactor-
ings to maintain it, especially for the Spaghetti Code
anti-pattern.

6. Threats to Validity
Some threats limit the validity of our study. We now

discuss these threats and how we alleviate or accept them
following common guidelines provided in [48].
6.1. Construct Validity

Construct validity threats concern the relation between
theory and observations. In this study, they could be due to
measurement errors. We use times and percentages of cor-
rect answer to measure the participants’ performance. These
measures are objective, even if small variations due to exter-
nal factors, such as fatigue, could impact their values. We
also useNASATLX tomeasure the participants’ effort. TLX
is subjective by nature because participant were asked to rate
their own efforts. Thus, it is possible that some participants
did not answer truthfully.

The participants filled the questionnaire of skills by self-
reporting/accessing their knowledge level, which is subjec-
tive and varied. Future research must address this issue in
more details by using other techniques, for example, using
eye-tracking tools.

Also, it might be possible that some occurrences of the
Blob or Spaghetti Code anti-patterns are more potent in af-
fecting source-code understandability than others. There-
fore, two separate pieces of source code, both containing

some anti-patterns, may have different impact of participants’
performance, which should be further studied.
6.2. Internal Validity

We identify two threats to the internal validity of our
study: learning and instrumentation.

Learning threats should not affect our study for a specific
experiment because each participant performed comprehen-
sion tasks on different systems with different questions for
each system. We also took care to randomize the partici-
pants to avoid bias (e.g., gender bias).

Instrumentation threats were minimized by using objec-
tive measures like times and percentages of correct answers.
We observed some subjectivity in the participants’ effort via
TLXbecause, for example, one participant 100% effort could
correspond to another 50% . However, this subjectivity illus-
trates the concrete participants’ feeling of effort.

We strove to keep the systems/tasks as equivalent as pos-
sible, however, we accept somoe differences given the num-
ber of tasks used and the different systems.
6.3. Conclusion Validity

Conclusion validity threats concern the relation between
the treatment and the outcome. We chose LinearMixedModel
approach to better isolate random effects, the participants
in our case. Also, we added more types of analyses in the
same data, as descriptive statistics, boxplots, violin plots,
and Friedman test. We paid attention not to violate assump-
tions of the performed statistical tests as well not to blindly
trust the LMM outcome.
6.4. External Validity

We performed our extended study on six different real
systems belonging to different domains and with different
sizes. Our design, i.e., providing only on average 75 classes
of each system to each participant, is reasonable because,
in real maintenance projects, developers perform their tasks
on small parts of whole systems and probably would limit
themselves as much as possible to avoid getting “lost” in a
large code base.

We must consider that participants have different pro-
gramming skills and the tasks may not suite them well. We
mitigated this threat by measuring their expertise in Java and
suggest that they are equivalent (see Figure 4 and Figure 6).

7. Related Work
We now discuss works related to anti-patterns. Table 12

shows the summary of the papers in each category.
Anti-patterns are poor solutions to recurrent design prob-

lems. Webster [47]wrote the first book related to anti-patterns
in object-oriented development, which discussed political,
conceptual, implementation, and quality-assurance problems.
Fowler et al. [9] defined 22 code smells and suggested refac-
torings that developers can apply to remove the code smells.
Mantyla [17] andWake [46] proposed classifications for code
smells. Brown et al. [5] described 40 anti-patterns, including
the Blob and Spaghetti Code. Riel [36] defined 61 heuristics

Politowski et al.: Preprint submitted to Elsevier Page 13 of 17

A Large Scale Empirical Study of the Impact of Spaghetti Code and Blob Anti-patterns on Program Comprehension

Table 12
Related works grouped by research topic.

Anti-Pattern on... Papers

Detection [43, 24, 30, 18, 23, 16, 26]
Quality [28, 6, 2]
Fault and–or change [14, 15, 15, 13, 10, 31, 29]
S.L.R. [37, 41]
Maintenance [12, 8, 49, 40]
Refactoring and understand. [3]
Origin in projects [44, 32]
Developers reaction [34]
Mobile energy consumption [33]
Impact in design [27]

characterizing good object-oriented programming to assess
the quality of systems manually and improve their designs
and implementations. These books provide in-depth views
on heuristics, code smells, and anti-patterns for industrial
and academic audiences. In program comprehension, anti-
patterns concern the design level, code smells the implemen-
tation level, and heuristics describe idioms.

Several approaches to specify and detect code smells and
anti-patterns exist in the literature. They range from manual
approaches, based on inspection techniques [43], to metric-
based heuristics [18, 24, 30], using rules and thresholds on
various metrics [23] or Bayesian belief networks [16]. Com-
mercial tools such as Borland Together12 and AI Reviewer13
also offer the automatic detection of some code smells and
anti-patterns.

Many works investigated the impact of anti-patterns on
software quality. Olbrich et al. [28] analyzed anti-patterns
in Lucene and Xerces and found that classes subjected to
the Blob and Shotgun Surgery anti-patterns have a higher
change frequency than other classes. Similarly, Chatzigeor-
giou and Manakos [6] investigated the evolution of classes
with the Long Method, Feature Envy, and State Checking
anti-patterns in two open-source systems and reported that a
significant proportion of these anti-patterns were introduced
during the addition of new methods in the systems. They
also observed that these anti-patterns remain in the systems
for long periods of time and that their removals are often
due to adaptivemaintenance rather than refactorings. Bavota
et al. [2] who analyzed 12,922 refactorings in three open-
source systems also reported that refactorings are rarely aimed
at removing anti-patterns.

Khomh et al. [14] investigated the impact of several code
smells on the change-proneness of classes in Azureus and
Eclipse. They showed that, in general, the likelihood for
classes with code smells to change is higher than classes
without. Khomh et al. [15] investigated the relation between
the presence of anti-patterns and class change- and fault-
proneness. They detected 13 anti-patterns in 54 releases of
ArgoUML, Eclipse, Mylyn, and Rhino, and analyzed the
likelihood that a class with an anti-pattern changes in the fu-

12http://www.borland.com/us/products/together
13http://www.aireviewer.com/

ture, in particular to fix a fault. They concluded that classes
participating in anti-patterns are significantly more likely to
be changed and to be involved in fault-fixing changes than
other classes.

Khomh et al. [15] also investigated the kind of changes
experienced by classes with anti-patterns. They considered
two types of changes: structural and non-structural. Struc-
tural changes are changes that would alter a class interface
while non-structural changes are changes to method bodies.
They concluded that structural changes are more likely to oc-
cur in classes participating in anti-patterns. Jaafar et al. [13]
investigated the change- and fault-proneness of classes shar-
ing a static or co-change dependency with an anti-pattern
class and found that classes that are dependent on an anti-
pattern class are more fault-prone than others.

Hall et al. [10] investigated the relationship between faults
and five anti-patterns (Data Clumps, Switch Statements, Spec-
ulative Generality, Message Chains, and Middle Man) in
three software systems (Eclipse, ArgoUML, andApacheCom-
mons) and showed that some smells do indicate fault-prone
code but the effect that these smells have on faults is small.
They also found that some smells even lead to a small reduc-
tion in fault-proneness.

Santos et al. [37] carried out a systematic literature re-
view on code smells impact in software development. They
reported a strong correlation between smells and software
attributes, like effort in maintenance. They observed a low
human agreement on smell detection. They concluded “that
there are not strong evidences motivating the adoption of the
code smells to evaluate the design quality.”.

Previouswork also investigated the impact of anti-patterns
on software maintenance activities. Ignatios et al. [12], Deli-
giannis et al. [8] proposed the first quantitative study of the
impact of anti-patterns on software development and main-
tenance activities. They performed a controlled experiment
with 20 students and two systems to understand the impact of
Blob classes on the understandability and maintainability of
software systems. They reported that Blob classes affect the
evolution of the system designs and the participants’ use of
inheritance. They did not assess the impact of Blob classes
on the participants’ understanding and their ability to per-
form successfully comprehension tasks on these systems.

Yamashita and Moonen [49] investigated the extent to
which code smells affect software maintainability and ob-
served that code-smell definitions alone do not help develop-
ers evaluate the maintainability of a software system. They
concluded on the need to combine different analysis approaches
to achieve more complete and accurate evaluations of the
overall maintainability of a software system.

Bois et al. [3] showed through a controlled experiment
with 63 graduate students that the decomposition of Blob
classes into a number of collaborating classes using well-
known refactorings improves their understandability. They
asked students to perform simple maintenance tasks on God
classes and their decompositions. They found that the stu-
dents had more difficulties understanding the original Blob
classes than certain decompositions. However, they did not

Politowski et al.: Preprint submitted to Elsevier Page 14 of 17

http://www.borland.com/us/products/together
http://www.aireviewer.com/

A Large Scale Empirical Study of the Impact of Spaghetti Code and Blob Anti-patterns on Program Comprehension

report any objective notion of “optimal comprehensibility”.
Sobrinho et al. [41] performed a literature review of code

smell research conducted between 1990 and 2017. The re-
sults show that Duplicate Code is themost studied anti-pattern
while the other types are not well spread, also, this research
topic has been rising and attracting different researchers over
the time. There are multiple interpretations concerning anti-
patterns concept and the lack of open science (standards and
open data/tools) lead to contradictory results. There is a big
concentration of papers regarding Duplicate Code in some
venues, which can explain the gap between the research groups.

Tufano et al. [44] analyzed 200 open source projects to
investigate “when and why code smells are introduced in
software projects, how long they survive, and how they are
removed”. After analyzing more than 10,000 commits, they
argued that smells are introduced when the artifact is created
and not when it evolves. Moreover, 80% of these smells re-
mains in the source code, while only 9% are removed through
direct refactoring.

Palomba et al. [31] assessed the impact of code smells
on change- and fault-proneness by empirically analyzing 395
releases of 30 Java open source projects. Among the 17,350
instances of 13 different code smell types, they found that
(1) the most diffused smells are related to size, like Long
Method, Spaghetti Code; (2) classes affected by code smells
are more suitable to changes and faults; (3) removing code
smells does affect change-proneness in the class but it is ben-
eficial to the occurrence of changes.

Palomba et al. [32] investigated the nature of code smell
co-occurrences in 395 projects. The results showed that 59%
of the smelly classes are affected by more than one code
smell. Among them, there are six code smell types frequently
co-occurring together, being the Message Chain the most
common. Still, the method-level smells may be the root
cause of the class-level ones. Finally, the co-occurring smells
tend to be removed together.

Palomba et al. [34] conducted a quantitative and qualita-
tive study to check how developers react to smells depend-
ing of the tool used to its detection, that is, textual-base or
structural-base. Among the results, they reported that both
types are considered equally harmful for the project.

Palomba et al. [33] conducted an experiment with 9Android-
specific code smells on 60 Android apps to assess its energy
consumption. The results showed the existence of four spe-
cific energy code smells which, when refactored, increase
the energy efficiency.

Nucci et al. [26] replicate a study using 32machine-learning
techniques to detect four types of code smell by extending
the dataset. Results showed differences in the previous out-
put, which has 95% accuracy, being 90% less accurate.

Olbrich et al. [29] analyzed historical data from 7 to 10
years of the development of three open-source software sys-
tems. They found that after controlling for differences in
class size, Brain and God Classes, are less change- and fault-
prone than other classes.

Sjøberg et al. [40] hired six Java developers which modi-
fied 298 Java files in different tasks in the four systems while

measuring the time spent. They essentially found that code
smells do not have a consistent effect on maintenance effort
if differences in file size are controlled for.

Oizumi et al. [27] analyzed more than 2,200 agglomera-
tions (inter-related code anomalies) found in seven software
systems of different sizes and from different domains. Their
findings suggest that a single code smell seldom indicates
a design problem, but if two or more smells co-occur, they
indicate design problems with high accuracy.

Summary: Related Works
Table 12 shows that the literature on anti-patterns
has its roots in detection and fault/change prone-
ness. Few studies investigated the impact of anti-
patterns on the understandability. In this paper, we
built on previous work and propose experiments as-
sessing the impact of the Blob and Spaghetti Code
on source-code understandability.

8. Conclusion and Future Work
Anti-patterns were conjectured in the literature to nega-

tively impact the quality of systems. Some studies empir-
ically investigated the impact of anti-patterns on program
comprehension. We revisited the studies on the impact of
the Blob and Spaghetti Code on program comprehension by
complementing a previous work by Abbes et al. [1].

We designed and conducted two replications with 133
participants and 372 program-comprehension tasks to as-
sess the impact of combinations of occurrences of the Blob
and Spaghetti Code anti-patterns. We measured developers’
performances using: (1) the time that they spent performing
their tasks; (2) their percentages of correct answers; and, (3)
the NASA task load index for their effort.

We showed, in complement to the results of the previous
work, that either two instances of the Blob anti-pattern or
two instances Spaghetti Code anti-pattern negatively impact
the understandability of source code by increasing the time
spent by participants in performing the tasks, by reducing the
correctness of their answers, and by increasing their efforts.

Consequently, developers should be wary with growing
numbers of Blob and Spaghetti Code anti-patterns in their
systems and, therefore, refactor these occurrences out of the
source code of their systems. Researchers should study com-
binations of anti-patterns (and other practices, like code smells)
rather than single anti-patterns, one at a time.

Future work includes investigating the relation between
the number of occurrences of anti-patterns and understand-
ability. We plan to investigate how to quantify the impact of
occurrences of an anti-pattern on understandability. We also
plan to replicate these studies in other contexts, with other
participants, other anti-patterns, and other systems.

Acknowledgements
The authors thank all the anonymous participants for their

time and efforts. The authors have been partly supported by
Politowski et al.: Preprint submitted to Elsevier Page 15 of 17

A Large Scale Empirical Study of the Impact of Spaghetti Code and Blob Anti-patterns on Program Comprehension

the NSERC Discovery Grant program and Canada Research
Chairs program as well as a FRQ-NT team project grant.

References
[1] Abbes, M., Khomh, F., Gueheneuc, Y.G., Antoniol, G., 2011. An

empirical study of the impact of two antipatterns, blob and spaghetti
code, on program comprehension, in: Mens, T., Kanellopoulos, Y.,
Winter, A. (Eds.), 2011 15th European Conference on SoftwareMain-
tenance and Reengineering, IEEE. pp. 181–190. doi:10.1109/csmr.
2011.24.

[2] Bavota, G., Lucia, A.D., Penta, M.D., Oliveto, R., Palomba, F.,
2015. An experimental investigation on the innate relationship be-
tween quality and refactoring. Journal of Systems and Software 107,
1–14. doi:10.1016/j.jss.2015.05.024.

[3] Bois, B.D., Demeyer, S., Verelst, J., Mens, T., Temmerman, M., 2006.
Does god class decomposition affect comprehensibility?, in: IASTED
Conf. on Software Engineering, pp. 26–49.

[4] Brooks, R., 1983. Towards a theory of the comprehension of com-
puter programs. International Journal of Man-Machine Studies 18,
543 – 554. URL: http://www.sciencedirect.com/science/article/

pii/S0020737383800315, doi:https://doi.org/10.1016/S0020-7373(83)
80031-5.

[5] Brown, W.J., Malveau, R.C., McCormick, H.W., Mowbray, T.J.,
1998. Antipatterns: Refactoring Software, Architectures, and
Projects in Crisis. 1st ed., John Wiley & Sons.

[6] Chatzigeorgiou, A., Manakos, A., 2010. Investigating the evolu-
tion of bad smells in object-oriented code, in: 2010 Seventh In-
ternational Conference on the Quality of Information and Commu-
nications Technology, IEEE, Washington, DC, USA. pp. 106–115.
doi:10.1109/quatic.2010.16.

[7] D'Ambros, M., Bacchelli, A., Lanza, M., 2010. On the impact of
design flaws on software defects, in: 2010 10th International Confer-
ence on Quality Software, IEEE, Washington, DC, USA. pp. 23–31.
doi:10.1109/qsic.2010.58.

[8] Deligiannis, I., Stamelos, I., Angelis, L., Roumeliotis, M., Shepperd,
M., 2004. A controlled experiment investigation of an object-oriented
design heuristic for maintainability. Journal of Systems and Software
72, 129–143. doi:10.1016/S0164-1212(03)00240-1.

[9] Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D., 2012.
Refactoring: Improving the Design of Existing Code. Addison-
Wesley Object Technology Series, Pearson Education.

[10] Hall, T., Zhang, M., Bowes, D., Sun, Y., 2014. Some code smells have
a significant but small effect on faults. ACMTransactions on Software
Engineering and Methodology 23, 1–39. doi:10.1145/2629648.

[11] Hart, S.G., Stavenland, L.E., 1988. Development of NASA-TLX
(Task Load Index): Results of empirical and theoretical research, in:
Hancock, P.A., Meshkati, N. (Eds.), Human Mental Workload. Else-
vier. chapter 7, pp. 139–183. doi:10.1016/s0166-4115(08)62386-9.

[12] Ignatios, D., Martin, S., Manos, R., Ioannis, S., 2004. An empirical
investigation of an object-oriented design heuristic for maintainabil-
ity. Journal of Systems and Software 72.

[13] Jaafar, F., Guéhéneuc, Y.G., Hamel, S., Khomh, F., Zulkernine, M.,
2015. Evaluating the impact of design pattern and anti-pattern depen-
dencies on changes and faults. Empirical Software Engineering 21,
896–931. doi:10.1007/s10664-015-9361-0.

[14] Khomh, F., Penta, M.D., Gueheneuc, Y.G., 2009a. An exploratory
study of the impact of code smells on software change-proneness, in:
2009 16th Working Conference on Reverse Engineering, IEEE. pp.
75–84. doi:10.1109/wcre.2009.28.

[15] Khomh, F., Penta, M.D., Guéhéneuc, Y.G., Antoniol, G., 2012.
An exploratory study of the impact of antipatterns on class change-
and fault-proneness. Empirical Software Engineering 17, 243–275.
doi:10.1007/s10664-011-9171-y.

[16] Khomh, F., Vaucher, S., Guéhéneuc, Y., Sahraoui, H., 2009b. A
bayesian approach for the detection of code and design smells, in:
2009 Ninth International Conference on Quality Software, pp. 305–

314. doi:10.1109/QSIC.2009.47.
[17] Mantyla, M., 2003. Bad Smells in Software - a Taxonomy and an

Empirical Study. Ph.D. thesis. Helsinki University of Technology.
[18] Marinescu, R., 2004. Detection strategies: metrics-based rules for de-

tecting design flaws, in: 20th IEEE International Conference on Soft-
ware Maintenance, 2004. Proceedings., pp. 350–359. doi:10.1109/
ICSM.2004.1357820.

[19] Martin, R., Rabaey, J., Chandrakasan, A., Nikolic, B., 2003. Agile
Software Development: Principles, Patterns, and Practices. Alan Apt
series, Pearson Education. URL: https://books.google.ca/books?id=
0HYhAQAAIAAJ.

[20] Mayrhauser, A.V., Vans, A., 1995. Program comprehension during
software maintenance and evolution. Computer 28, 44–55. doi:10.
1109/2.402076.

[21] Moha, N., Gueheneuc, Y., Duchien, L., Meur, A.L., 2010. Decor: A
method for the specification and detection of code and design smells.
IEEE Transactions on Software Engineering 36, 20–36. doi:10.1109/
TSE.2009.50.

[22] Moha, N., Guéhéneuc, Y.G., 2005. On the automatic detection and
correction of software architectural defects in object-oriented designs,
in: In Proceedings of the 6 th ECOOP Workshop on Object-Oriented
Reengineering. Universities of Glasgow and Strathclyde, pp. 1–7.

[23] Moha, N., Guéhéneuc, Y.G., Duchien, L., Meur, A.F.L., 2009.
DECOR: A method for the specification and detection of code and
design smells. Transactions on Software Engineering (TSE) doi:10.
1109/tse.2009.50. 16 pages.

[24] Munro, M., 2005. Product metrics for automatic identification of “bad
smell" design problems in java source-code, in: 11th IEEE Interna-
tional Software Metrics Symposium (METRICS'05), IEEE. pp. 9–18.
doi:10.1109/metrics.2005.38.

[25] NASA, 1988. NASA TASK LOAD INDEX (TLX) v. 1.0. Moffett
Field, California.

[26] Nucci, D.D., Palomba, F., Tamburri, D.A., Serebrenik, A., Lucia,
A.D., 2018. Detecting code smells using machine learning tech-
niques: Are we there yet?, in: 2018 IEEE 25th International Confer-
ence on Software Analysis, Evolution and Reengineering (SANER),
IEEE. pp. 612–621. doi:10.1109/saner.2018.8330266.

[27] Oizumi, W., Garcia, A., d. S. Sousa, L., Cafeo, B., Zhao, Y., 2016.
Code anomalies flock together: Exploring code anomaly agglomera-
tions for locating design problems, in: 2016 IEEE/ACM 38th Inter-
national Conference on Software Engineering (ICSE), pp. 440–451.
doi:10.1145/2884781.2884868.

[28] Olbrich, S., Cruzes, D.S., Basili, V., Zazworka, N., 2009. The evo-
lution and impact of code smells: A case study of two open source
systems, in: 2009 3rd International Symposium on Empirical Soft-
ware Engineering and Measurement, pp. 390–400. doi:10.1109/ESEM.
2009.5314231.

[29] Olbrich, S.M., Cruzes, D.S., Sjøberg, D.I.K., 2010. Are all code
smells harmful? a study of god classes and brain classes in the evolu-
tion of three open source systems, in: 2010 IEEE International Con-
ference on Software Maintenance, pp. 1–10. doi:10.1109/ICSM.2010.
5609564.

[30] Oliveto, R., Khomh, F., Antoniol, G., Gueheneuc, Y., 2010. Nu-
merical signatures of antipatterns: An approach based on b-splines,
in: 2010 14th European Conference on Software Maintenance and
Reengineering, pp. 248–251. doi:10.1109/CSMR.2010.47.

[31] Palomba, F., Bavota, G., Penta, M.D., Fasano, F., Oliveto, R., Lucia,
A.D., 2017. On the diffuseness and the impact on maintainability of
code smells: a large scale empirical investigation. Empirical Software
Engineering 23, 1188–1221. doi:10.1007/s10664-017-9535-z.

[32] Palomba, F., Bavota, G., Penta, M.D., Fasano, F., Oliveto, R., Lucia,
A.D., 2018a. A large-scale empirical study on the lifecycle of code
smell co-occurrences. Information and Software Technology 99, 1–
10. doi:10.1016/j.infsof.2018.02.004.

[33] Palomba, F., Nucci, D.D., Panichella, A., Zaidman, A., Lucia, A.D.,
2019. On the impact of code smells on the energy consumption of
mobile applications. Information and Software Technology 105, 43–
55. doi:10.1016/j.infsof.2018.08.004.

Politowski et al.: Preprint submitted to Elsevier Page 16 of 17

http://dx.doi.org/10.1109/csmr.2011.24
http://dx.doi.org/10.1109/csmr.2011.24
http://dx.doi.org/10.1016/j.jss.2015.05.024
http://www.sciencedirect.com/science/article/pii/S0020737383800315
http://www.sciencedirect.com/science/article/pii/S0020737383800315
http://dx.doi.org/https://doi.org/10.1016/S0020-7373(83)80031-5
http://dx.doi.org/https://doi.org/10.1016/S0020-7373(83)80031-5
http://dx.doi.org/10.1109/quatic.2010.16
http://dx.doi.org/10.1109/qsic.2010.58
http://dx.doi.org/10.1016/S0164-1212(03)00240-1
http://dx.doi.org/10.1145/2629648
http://dx.doi.org/10.1016/s0166-4115(08)62386-9
http://dx.doi.org/10.1007/s10664-015-9361-0
http://dx.doi.org/10.1109/wcre.2009.28
http://dx.doi.org/10.1007/s10664-011-9171-y
http://dx.doi.org/10.1109/QSIC.2009.47
http://dx.doi.org/10.1109/ICSM.2004.1357820
http://dx.doi.org/10.1109/ICSM.2004.1357820
https://books.google.ca/books?id=0HYhAQAAIAAJ
https://books.google.ca/books?id=0HYhAQAAIAAJ
http://dx.doi.org/10.1109/2.402076
http://dx.doi.org/10.1109/2.402076
http://dx.doi.org/10.1109/TSE.2009.50
http://dx.doi.org/10.1109/TSE.2009.50
http://dx.doi.org/10.1109/tse.2009.50
http://dx.doi.org/10.1109/tse.2009.50
http://dx.doi.org/10.1109/metrics.2005.38
http://dx.doi.org/10.1109/saner.2018.8330266
http://dx.doi.org/10.1145/2884781.2884868
http://dx.doi.org/10.1109/ESEM.2009.5314231
http://dx.doi.org/10.1109/ESEM.2009.5314231
http://dx.doi.org/10.1109/ICSM.2010.5609564
http://dx.doi.org/10.1109/ICSM.2010.5609564
http://dx.doi.org/10.1109/CSMR.2010.47
http://dx.doi.org/10.1007/s10664-017-9535-z
http://dx.doi.org/10.1016/j.infsof.2018.02.004
http://dx.doi.org/10.1016/j.infsof.2018.08.004

A Large Scale Empirical Study of the Impact of Spaghetti Code and Blob Anti-patterns on Program Comprehension

[34] Palomba, F., Panichella, A., Zaidman, A., Oliveto, R., Lucia, A.D.,
2018b. The scent of a smell: An extensive comparison between tex-
tual and structural smells. IEEE Transactions on Software Engineer-
ing 44, 977–1000. doi:10.1109/tse.2017.2752171.

[35] Parnas, D.L., 1994. Software aging, in: Proceedings of the 16th Inter-
national Conference on Software Engineering, IEEE Computer Soci-
ety Press, Los Alamitos, CA, USA. pp. 279–287.

[36] Riel, A.J., 1996. Object-Oriented Design Heuristics. 1st ed., Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[37] Santos, J.A.M., Rocha-Junior, J.B., Prates, L.C.L., do Nascimento,
R.S., Freitas, M.F., de Mendonça, M.G., 2018. A systematic review
on the code smell effect. Journal of Systems and Software 144, 450–
477. doi:10.1016/j.jss.2018.07.035.

[38] Shapiro, S.S., Wilk, M.B., 1965. An analysis of variance test for nor-
mality (complete samples). Biometrika 52, 591–611. doi:10.1093/
biomet/52.3-4.591.

[39] Sillito, J., Murphy, G.C., De Volder, K., 2008. Asking and answering
questions during a programming change task. IEEE Transactions on
Software Engineering 34, 434–451. doi:10.1109/TSE.2008.26.

[40] Sjøberg, D.I.K., Yamashita, A., Anda, B.C.D., Mockus, A., Dybå, T.,
2013. Quantifying the effect of code smells on maintenance effort.
IEEE Transactions on Software Engineering 39, 1144–1156. doi:10.
1109/TSE.2012.89.

[41] Sobrinho, E.V., Lucia, A.D., d. Maia, M., 2018. A systematic litera-
ture review on bad smells — 5 w's: which, when, what, who, where.
IEEE Transactions on Software Engineering , 1–1doi:10.1109/tse.
2018.2880977.

[42] Soh, Z., Yamashita, A., Khomh, F., Gueheneuc, Y.G., 2016. Do code

smells impact the effort of different maintenance programming ac-
tivities?, in: 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), IEEE. pp. 393–
402. doi:10.1109/saner.2016.103.

[43] Travassos, G., Shull, F., Fredericks, M., Basili, V.R., 1999. Detect-
ing defects in object-oriented designs: Using reading techniques to
increase software quality, in: Proceedings of the 14th ACM SIG-
PLAN Conference on Object-oriented Programming, Systems, Lan-
guages, and Applications, ACM, New York, NY, USA. pp. 47–56.
doi:10.1145/320384.320389.

[44] Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Penta, M.D., Lucia,
A.D., Poshyvanyk, D., 2017. When and why your code starts to smell
bad (andwhether the smells go away). IEEETransactions on Software
Engineering 43, 1063–1088. doi:10.1109/tse.2017.2653105.

[45] Vegas, S., Apa, C., Juristo, N., 2016. Crossover designs in software
engineering experiments: Benefits and perils. IEEE Transactions on
Software Engineering 42, 120–135. doi:10.1109/tse.2015.2467378.

[46] Wake, W., 2004. Refactoring Workbook. Addison-wesley Object
Technology Series, Addison-Wesley.

[47] Webster, B.F., 1995. Pitfalls of Object-Oriented Development. 1st
ed., M & T Books.

[48] Wohlin, C., Runeson, P., Hst, M., Ohlsson, M.C., Regnell, B., Wessln,
A., 2012. Experimentation in Software Engineering. Springer Pub-
lishing Company, Incorporated. doi:10.1007/978-3-642-29044-2.

[49] Yamashita, A., Moonen, L., 2012. Do code smells reflect important
maintainability aspects?, in: 2012 28th IEEE International Confer-
ence on Software Maintenance (ICSM), pp. 306–315. doi:10.1109/
ICSM.2012.6405287.

Politowski et al.: Preprint submitted to Elsevier Page 17 of 17

http://dx.doi.org/10.1109/tse.2017.2752171
http://dx.doi.org/10.1016/j.jss.2018.07.035
http://dx.doi.org/10.1093/biomet/52.3-4.591
http://dx.doi.org/10.1093/biomet/52.3-4.591
http://dx.doi.org/10.1109/TSE.2008.26
http://dx.doi.org/10.1109/TSE.2012.89
http://dx.doi.org/10.1109/TSE.2012.89
http://dx.doi.org/10.1109/tse.2018.2880977
http://dx.doi.org/10.1109/tse.2018.2880977
http://dx.doi.org/10.1109/saner.2016.103
http://dx.doi.org/10.1145/320384.320389
http://dx.doi.org/10.1109/tse.2017.2653105
http://dx.doi.org/10.1109/tse.2015.2467378
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1109/ICSM.2012.6405287
http://dx.doi.org/10.1109/ICSM.2012.6405287

