
Evaluating the Use of Design Patterns during
Program Comprehension – Experimental Setting

Yann-Gaël Guéhéneuc and Stefan Monnier
Department of Informatics
and Operations Research

University of Montreal, Quebec, Canada
{guehene,monnier}@iro.umontreal.ca

Giuliano Antoniol
Computer Engineering Department

Polytechnic Montreal, Quebec, Canada
antioniol@ieee.org

Abstract

In theory, there is no difference between the-
ory and practice. But, in practice, there is.

Jan L. A. van de Snepscheut

1 Introduction

Design patterns [2] have been adopted quickly by
the software engineering community and, since their in-
troduction, several studies have been proposed to ease
their choice [5], their use [1], and their recovery [10].

A design pattern is a literary form providing solution
to recurring design problems. It decomposes in several
sections: Intent, Motivation, Applicability, Structure,
Participants, Collaborations, Consequence, Implemen-
tation, Known Uses, and Related Patterns. The so-
lution advocated by a design pattern, mainly in the
Structure, Participants, and Collaborations sections, is
a design motif—a prototypical micro-architecture that
describes the solution while abstracting context and
implementation constraints.

Many studies (including studies by the authors)
claim that identifying micro-architectures similar to de-
sign motifs in program architecture benefits software
engineers by easing program comprehension. The ra-
tionale of the studies on design motif identification is:

• Design decisions are scattered in a program archi-
tecture and are often not documented.

• Design decisions help software engineers in under-
standing the design of a program.

• Micro-architectures similar to design motifs are
clues on the design decisions.

Although the previous claim is logical and reason-
able, some studies show that the use of design patterns
does not ease program comprehension and, thus, ques-
tion the benefits of design motif identification. In par-
ticular, the Wendorff’s qualitative study [9] raises the
issue of overuse and misuse of design patterns.

We believe that, indeed, design motif identification
benefits software engineers by easing program compre-
hension but seek proofs of this claim. Thus, we sug-
gest experimental settings with which to prove or to
disprove the claim that design motif identification help
software engineers’ comprehension.

In Section 2, we elaborate on the research question
related to the claim. In Section 3, we propose exper-
iments to test our research question as well as experi-
mental settings. Finally, in Section 4, we conclude on
the research question and the experiments.

2 Research Question

2.1 General Question

Question. Our research question concerns the evalu-
ation of the help that design motif identification really
provides to software engineers during program compre-
hension.

Rationale of the Question. The cost of mainte-
nance is evaluated to at least 50% of the overall cost of
software development. Among those 50%, another 50%
(for the least) is dedicated to program comprehension.
Hence, any help in comprehending programs could re-
duce the cost of software development dramatically.

Many studies claim that design patterns, in general,
ease program comprehension and that the documen-
tation of used design motifs (possibly through semi-

1



automated identification), in particular, allows soft-
ware engineers to grasp design decision quickly.

However, to the best of our knowledge, no system-
atic studies have been published yet to prove or to dis-
prove the claim that design motif identification help in
comprehending programs.

2.2 Hypotheses

Acquisition of the Information. Software engi-
neers, like people in general, use their sight as the main
mode for acquiring information. Indeed, software engi-
neers spend long hours looking at computer-displayed
models of programs in various forms and dimensions.

A well-known way of displaying program models is
using the UML notation: 2D diagrammatic models of
different aspects of a program (structure, behaviour,
packaging. . . ). Figure 1(a) shows a UML-like model of
a sample program.

The use of sight suggests that many factor must be
considered to understand how software engineers com-
prehend a program using a model such as shown on
Figure 1(a). In particular, proximity, attention, object
recognition and categorisation impact the quality and
pertinence of the acquired information.

In the case of design motif identification, the use of
visual models also raises the issue of the ease to identify
visually design motifs with no a priori clues.

Use of the Information. Once design motifs have
been identified (either visually or by other means), soft-
ware engineers can use this information to comprehend
a program better. They may use this information ei-
ther to focus their attention towards the classes, meth-
ods belonging to an identified design motif (see Figure
1(b)), or to exclude from their attention those classes
and methods to focus on other part of a program ar-
chitecture (see Figure 1(c)).

2.3 Experimental Questions

How do software engineers look for design mo-
tifs? This question concern the way software engi-
neers navigate through a program architecture when
no design motif have been identified, documented, and
displayed. Do the software engineers look for design
motifs? Do they follow some specific path?

Do software engineers focus their attention on
identified design motifs? This question focus on
the use of identified and displayed design motifs over a
classic model of a program architecture. Do software

engineers focuses on the constituent of the design mo-
tifs or—on the opposite—focus on constituents of the
program architecture away from the identified design
motifs?

When do software engineers need to compre-
hend a program? What do they need to com-
prehend? Although not directly related to design
patterns, these questions are clearly related to the two
previous questions. It is most relevant to understand
the software engineers’ comprehension activities to con-
textualise the two previous question. Indeed, the con-
text is important to set up relevant experiments. Un-
fortunately, to the best of our knowledge, no thorough
studies of the software engineers’ comprehension activ-
ities exist. An interesting study has been proposed by
Murphy et al. [6] to analyse development activities.
We hope this study will bear fruits that will help us in
setting up our experiments.

3 Experiments

The use of new technology can help in setting up ex-
periments to answer our experimental questions. We
devise experiments to assess the identification of de-
sign motifs, on the one hand, and the use of identified
design motifs, on the other hand, during the software
engineers’ program comprehension activity.

3.1 General Setting

Progress in non-intrusive monitoring of human be-
haviour makes it possible to follow the external behav-
iours of a software engineer involved in program com-
prehension activities without disturbing too much the
performed activities.

In particular, the use of video-based eye track-
ing systems allows following with enough precision a
software engineer’s eye movements while looking at a
model of a program. A video-based eye tracking system
records a subject’s eye movements without much inter-
ferences with the subject’s activity through the use of
a special headband and an dedicated API.

In our experiments, we plan to adopt SR Research
eye-tracking systems. SR Research is an international
manufacturer of high quality eye-tracking systems with
their EyeLink II systems. A EyeLink II system decom-
poses in a display computer, displaying the data to
comprehend by the software engineer, a host computer
storing the data related to a subject’s eye movements,
and a headband supporting cameras to track the eye
movements.

2



D

B

C

A

E

G

F

H

dm

dm

dm

(a) Sample UML-like diagram.

D

C

A

B

E

G

F

H

dm

dm

dm

(b) Focus on the Composite design motif.

D

B

C

A

E

G

F

H

dm

(c) Focus away from of the Composite de-
sign motif.

Figure 1. Sample UML-like diagram, with visual attention focused on or away from a micro-architecture
similar to the Composite design motif.

(a) Headband and its different parts. (b) Use of the headband.

Figure 2. The SR Research EyeLink II eye-tracking system.

Figure 2(a) depicts the headband and its different
parts, while Figure 2(b) shows a subject wearing such
a headband. The headband mainly consists of a set
of cameras recording the position of the head and the
movements of the eyes with respect to the displayed
image. Synchronisation with the image displayed on
screen (being looked at by the subject) is perform
through a dedicated API, which controls and synchro-
nises the camera and generates the data. The gen-
erated data is stored on a dedicated host computer,
hosting the eye-tracking system, and connected with
the display computed by a high-speed ethernet connec-
tion. Figure 3 summarises the data acquisition process.

We plan to use such a system to study the eye move-
ments of the software engineers on the constituents of
class diagram-like models of programs and the dwell
time on individual constituents such as class, relation-
ships, identified design motifs. We shall adapt the
Ptidej tool suite to synchronise the display of class

diagrams-like models with EyeLink II systems. Ptidej
[3] is a set of tools to evaluate and to enhance the qual-
ity of object-oriented programs, promoting patterns, at
the language-, design-, and architectural-levels. With
Ptidej, it is possible to create and to display mod-
els of AOL, C++, and Java programs using a unified
meta-model, to infer inter-class relationships [4], and
to identify structural design motifs.

3.2 Experimental Setting

We want to understand how software engineers use
design motifs during program comprehension activities.
Thus, the subjects of our experiments are software en-
gineers while the objects are models of programs high-
lighting or not design motifs.

Consequently, in the perspective of generalising the
results of our experiments, we must choose our sub-
jects carefully. We must choose subjects and form two

3



Figure 3. Use of a EyeLink II system.

groups: Subjects with no knowledge of design patterns
and subjects with a deep knowledge of design patterns.
We must perform our experiments with sufficient num-
bers of subjects in both group to avoid experimental
biases. We plan to use students at the Department
of Informatics and Operations Research as subjects.
First or second year bachelor students would belong to
the group with no knowledge of design patterns, while
Master or Ph.D. students would belong to the group
with good knowledge of design patterns.

The objects of our experiments must be programs
in which developers use design patterns. However, we
can limit ourselves to a small set of programs provid-
ing that we limit the reinforcement learning process
[8]. We plan to use the JHotDraw and JUnit pro-
grams because those are well-know programs with lim-
ited numbers of classes and an average complexity, in
which developers used design patterns.

The program comprehension activities we shall ask
software engineers to perform must involve both part of
the program architectures related to design motifs and
not related to design motifs. A typical task involving
a design motif would be to add a class to the design
motif (i.e., a functionality to the program). A typical
task not involving a design motif would be to modify
a class to change the program behaviour.

3.3 Identification of Design Motifs

Hypothesis. We make the hypothesis that expert
software engineers look for micro-architectures similar
to design motifs during program comprehension while
novice software engineers do not.

Expected Results. The expected results of the ex-
periments is that expert software engineers spend time,

at the beginning of the program comprehension activ-
ity, in searching for design motifs, while novice software
engineers just follow in rand orders the relationships
among classes to perform their tasks.

3.4 Use of Identified Motifs

Hypothesis. Our hypotheses is that the knowledge
of the design motifs used in the design of a program
decrease the time for program comprehension. This
knowledge allows software engineers to focus on con-
stituents in the micro-architectures highlighted as de-
sign motifs or away from these constituents.

Expected Results. Depending on the task at hand
and the knowledge (or lack thereof) of the existing
design motifs, we expect to measure the difference of
time spend by expert and novice software engineers on
the constituents of micro-architectures similar to de-
sign motifs. We expect that expert software engineers
will use their knowledge and the knowledge of the used
design motifs.

Discussion. Our hypothesis is similar to the idea
of “intentionally ignored information”, such as experi-
mented by Rock and Gutman [7].

4 Conclusion and Future Work

We presented experimental settings using eye-
tracking systems to understand how software engineers
(novice and expert) use knowledge of the design pat-
terns used in the design of programs.

We believe these experimental settings will help in
understanding the use of design patterns and answer
questions related to their wide adoption and their far-
reaching use in practice.

We now plan to refine these experimental settings
and to perform the actual experiments as part of the
development of the LaiGLE laboratory (Laboratory for
Experimental Software Engineering).

References

[1] Jan Bosch. Design patterns as language con-
structs. Journal of Object-Oriented Programming,
11(2):18–32, February 1998.

[2] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. Design Patterns – Elements
of Reusable Object-Oriented Software. Addison-
Wesley, 1st edition, 1994.

4



[3] Yann-Gaël Guéhéneuc. Ptidej: Promoting pat-
terns with patterns. In proceedings of the 1st

ECOOP workshop on Building a System using
Patterns. Springer-Verlag, July 2005. Submitted
for publication.

[4] Yann-Gaël Guéhéneuc and Hervé Albin-Amiot.
Recovering binary class relationships: Putting ic-
ing on the UML cake. In Doug C. Schmidt, edi-
tor, proceedings of the 19th conference on Object-
Oriented Programming, Systems, Languages, and
Applications. ACM Press, October 2004.

[5] Olivier Motelet. An intelligent tutoring system to
help OO system designers using design patterns.
Master’s thesis, Vrije Universitët, 1999.

[6] Gail C. Murphy, Mik Kersten, Martin P. Robil-
lard, and Davor Čubranís. The emergent struc-
ture of development tasks. In Andrew P. Black,
editor, proceedings of the 19th European Confer-
ence on Object-Oriented Programming, pages 33–
48. Springer-Verlag, July 2005.

[7] Irvin Rock and Daniel Gutman. The effect of inat-
tention on form perception. journal of Experi-
mental Psychology: Human Perception and Per-
formance, 7:275–285, 1981.

[8] Richard S. Sutton and Andrew G. Barto. Rein-
forcement Learning: An Introduction. MIT Press,
1st edition, March 1998.

[9] Peter Wendorff. Assessment of design patterns
during software reengineering: Lessons learned
from a large commercial project. In Pedro Sousa
and Jürgen Ebert, editors, proceedings of 5th Con-
ference on Software Maintenance and Reengineer-
ing, pages 77–84. IEEE Computer Society Press,
March 2001.

[10] Roel Wuyts. Declarative reasoning about the
structure of object-oriented systems. In Joseph
Gil, editor, proceedings of the 26th conference on
the Technology of Object-Oriented Languages and
Systems, pages 112–124. IEEE Computer Society
Press, August 1998.

5


