
OR I G I N A L A RT I C L E
Jou rna l Se c t i on

From Legacy to Microservices: a Type-based
Approach for Microservice Identification using ML
and Semantic Analysis

Imen Trabelsi1 | Manel Abdellatif2 | Abdalgader
Abubaker3, 4 | Naouel Moha1 | Sébastien Mosser5 |
Samira Ebrahimi-Kahou1, 3, 7 | Yann-Gaël Guéhéneuc6

1Department of Software Engineering and
Information Technology, École de
technologie supérieure, Montreal, QC, H3C
1K3, Canada
2Department of Computer Engineering and
Software Engineering, Polytechnique
Montreal, Montreal, QC, H3T 1J4, Canada
3Mila - Quebec Artificial Intelligence
Institute, Montreal, QC, H2S 3H1, Canada
4Department of Pure Mathematics,
University of Khartoum, Khartoum, 11115,
Sudan.
5McMaster University, Hamilton, ON,
L8S 4K1, Canada
6Department of Computer Science and
Software Engineering, Concordia University,
Montreal, QC, H3G 1M8, Canada
7CIFAR AI Chair
Correspondence
Imen Trabelsi, Department of Software
Engineering and Information Technology,
École de Technologie Supérieure
Email: imen.trabelsi.1@ens.etsmtl.ca

The microservices architecture (MSA) style has been gaining inter-
est in recent years because of its high scalability, ability to be de-
ployed in the cloud, and suitability for DevOps practices. While
new applications can adoptMSA from their inception, many legacy
monolithic systems must be migrated to an MSA to benefit from
the advantages of this architectural style. To support the migration
process, we propose MicroMiner, a microservice identification ap-
proach that is based on static-relationship analyses between code
elements as well as semantic analyses of the source code. Our ap-
proach relies on Machine Learning (ML) techniques and uses ser-
vice types to guide the identification of microservices from legacy
monolithic systems. We evaluate the efficiency of our approach
on four systems and compare our results to ground-truths and to
those of two state-of-the-art approaches. We perform a qualita-
tive evaluation of the resulted microservices by analysing the busi-
ness capabilities of the identified microservices. Also a quantita-
tive analysis using the state of the art metrics on independence of
functionality and modularity of services was conducted. Our re-
sults show the effectiveness of our approach to automate one of
the most time-consuming steps in the migration of legacy systems
to microservices. The proposed approach identifies architecturally
significant microservices with 68.15% precision and 77% recall.

*Equally contributing authors.

1

2 Trabelsi et al.
1 | INTRODUCTION

The microservice architecture (MSA) has become a prevailing architectural style in the industry. Several major organi-
zations, such as Netflix, Amazon, and eBay, have already adopted this architectural style in their enterprise systems
by refactoring their monolithic systems.

MSA-based systems contain groups of self-contained microservices, each running as a separate process designed
for a specific function. These microservices communicate with each other through lightweight mechanisms, such as
Representational State Transfer Application Programming Interfaces (REST APIs), and are managed by a single team
[1]. MSA is popular mainly due to the dynamic and distributed nature of microservices, which offers greater agility
and operational efficiency, and reduces the complexity of handling applications scalability and deployment cycles with
respect to monolithic systems [2].

Such characteristics makemicroservices particularly convenient for migrating and refactoringmonolithic software
systems by integrating and composing reusable, distributed, and relatively independent microservices.

There are three strategies for an organization to migrate monolithic software systems to microservices. The
organization can follow a top-down, forward-engineering strategy by (1) performing an analysis of high-level domain
artifacts of the monolith (e.g., business processes, use cases, activity diagrams), (2) decomposing these high-level
domain artifacts, (3) modelling the neededmicroservices that will take part of the targetedmicroservice-based system,
and (3) implementing the defined microservices.

An organization may also adopt a bottom-up strategy and re-engineer its monolithic software systems into mi-
croservices by (1) extracting and analyzing the dependencies of the monolith, (2) extracting the reusable components
(or functionalities) from the existing monoliths that could qualify as microservices, (3) packaging the identified com-
ponents as microservices to enable their reuse and to remove their dependencies to the legacy infrastructures, and
(4) rewriting some existing applications to use the newly-created microservices.

Finally, an organization can adopt a hybrid strategy by (1) identifying reusable components of its monolithic soft-
ware systems, (2) mapping these components to available microservices, (3) replacing these components with calls
to the appropriate microservices, and (4) implementing the missing parts of the microservices according to defined
specifications.

The identification of microservices is a central activity to the three aforementionedmigration strategies. Microser-
vice identification is the most challenging step of the overall migration process, especially because the identified mi-
croservices must meet a range of expectations regarding their capabilities, the fitness of purpose, quality of service,
the efficiency of use, etc. [3, 4, 5].

Several approaches have been proposed in the literature to identify microservices in monolithic software systems
[6, 7, 8, 9, 10]. However, these approaches have limitations. Most proposed approaches rely on coupling and cohesion
metrics to cluster related components in the monoliths and create corresponding microservices. However, coupling
and cohesion are insufficient as other aspects of the components are essential to building “proper” microservices. For
example, one of the main principles of microservices is the single responsibility principle: a microservice must fit in
and stay within a bounded context, within a boundary of the domain model [11], which is a concern orthogonal to
cohesion and coupling. Also, many approaches require types of inputs that may not be available for most monolithic
software systems, e.g., business process models, use cases, and activity diagrams. All these limitations lower the
accuracy of these approaches in terms of precision and recall.

To overcome these limitations, we propose an approach called MicroMiner, a type-based microservice identifica-
tion approach that relies on ML and semantic analyses to decompose monolithic software systems into microservices.
The resulting microservices respect two main principles: the single responsibility principle and the loose coupling prin-

Trabelsi et al. 3
ciple. The main point in which our study is different from the existing literature is that MicroMiner is guided by the
identification of specific types of services (i.e. type-based), which are predicted using aML classification model. These
services are then clustered according to the application domain to form the final microservices. The clustering is based
on the analysis of the static and semantic relationships between the monolith’s components to form architecturally-
relevant microservices (i.e. each microservice belongs to a bounded context and is responsible for a single business
functionality).

We validate our approach on four monolithic software systems, build independent ground-truths, and show that
MicroMiner identifies architecturally-relevant microservices with a precision of 68.15% and a recall of 77%. We also
compared its results to those of two state-of-the-art microservice identification approaches [12][13], our approach
outperformed the other two approaches.

The rest of this paper is as follows. Section 2 summarises previous works and their limitation. It introduces the
taxonomies used in our approach. Section 3 present our approach in details. Section 4 shows the validation of our
approach while Section 5 discusses the threats to the validity of our approach and the recommendations. Section 6
concludes with future work.

2 | BACKGROUND AND RELATED WORK

We now first explain the principles on which we build our approach and then summarise the related work and present
their limitations.

2.1 | Software Decomposition Patterns

2.1.1 | Layered Architecture Pattern

The Layered Architecture Pattern is one of the earliest architecture models, also referred to as the n-tier architecture
model. It is a standard architecture for most OOP architects and developers. Layers are abstract parts of a software
system. Each layer plays a specific role within the system and represents a different level and type of abstraction.
Layers are built on top of one another.

Various multi-layer architectures exist. For example, the classical three-layer architecture [14] consists of the
presentation layer, the business layer, and the data layer, as well as the four-layer architecture [15] consisting of
the presentation layer, the business layer, the persistence layer, and the database layer. In this article, we assume a
four-layer architecture [16], which includes utility classes, as shown by Figure 1. This architecture divides into:

• Presentation layer: This layer presents the content to the end-user through a graphical interface. It contains
software elements and technologies to interact with the user. Presentation models such as MVVM or MVC can
be part of this layer.

• Utility layer: This layer provides some cross-cutting functionalities required by other layers. Logging and authen-
tication are examples of the functionalities that can be found in this layer.

• Business layer: It is the layer in which the business logic of the application is executed. It is responsible for
controlling the functionality of an application by performing detailed business processing.

• Persistence layer: This is the lowest layer of this architecture and is primarily concerned with the storage and
retrieval of application data.

4 Trabelsi et al.
In the following, we only consider the persistence, business, and utility layers because we focus on services and

the presentation uses services but does not provide services to others in itself.

Persistent Layer

Database

Business Layer

Utility Layer

Presentation Layer

Entity
services

Application
services

Utility
services

Split according to
functionality/domain

Context
boundries

F IGURE 1 Software Decomposition

2.1.2 | Service Oriented Architecture

Layered architectures cannot cope with the complexities of modern large-scale Web applications or enterprise sys-
tems because it does not sufficiently partition the system, thus limiting the scalability, flexibility and distributability
of the system. Thus, a finer decomposition emerges. Service-Oriented Architecture (SOA) is an architectural style by
which systems are composed of reusable and platform-independent services. Therefore, each layer would be divided
into services. According to the taxonomy provided by Abdellatif et al. [17], we consider four domain-specific services
categories:

• Enterprise services: They provide generic business functionalities reused across different applications.
• Application services: These services provide functionalities specific to one application. Services that implement

a business function, activity or task. They are designed to support one or more specific process activities. These
services serve as entity services. They exist to support reuse within one application or to enable business process
services. Such services tend to have less reuse potential than Entity services.

• Entity services: or data services, they provide access to and management of the persistent data of legacy soft-
ware systems. These services provide information of the business process stored in the databases and handle
the business entities. Many of its capabilities are related to the traditional CRUD (create, read, update, delete)
methods. It is considered a highly reusable service because it can be agnostic to many business processes.

• Business services: They correspond to business processes or use cases. These services generally compose/use
the Enterprise, Application, and Entity services.

For domain neutral services, we are interested on the Utility services, that provide some cross-cutting function-
alities required by domain-specific services. These services contain small, closely packed services. They are strictly
related to the technological platform supporting the application and business services. Logging and authentication

Trabelsi et al. 5
services are examples of Utility services.

As shown in Figure 1, the Persistent layer is broken down into Entity services, the Business layer into Application
services, and the Utility layer into Utility services.

In the following, we consider only the identification of three types of services: Utility, Entity, and Application
services because we cannot distinguish between Application services and Enterprise services using only source code.
Indeed, these two types of services differ only in terms of the scope of reuse: within a single system or across multiple
systems.

2.1.3 | Microservices Architecture

Two of the main principles for microservice architecture are the single responsibility, and loose coupling principles
[18]. The microservice architectural styles impose explicit requirements for the number of business responsibili-
ties/capabilities of the services, which is not the case with SOA [19]. A microservice should have one and only one
responsibility. Therefore, we rely on a domain-related service decomposition [20] or vertical decomposition (as shown
in Figure 1 to generate isolated functional microservices [21].

2.2 | Related Work

The identification of services from existing software systems has been the topic of many research works. Several
approaches have been proposed to identify services from monolithic software systems, but only a few of them have
considered service types.

For example, Abdellatif et al. [22] proposed a type-based service identification approach that extracts Utility,
Entity, and Application services from legacy software systems. Through static analyses of the source code, they
extract several types of inter-classes relationships to build the call graphs of the systems and generate clusters that are
considered as potential services. They filter and classify each cluster using code metrics and a hierarchical detection
rules-based system to identify services and their types. We extend the work of Abdellatif et al. [22] and use the typed
services as a basis to identify the microservices inside monolithic systems. Different from the approach of Abdellatif
et al., we rely on a ML classifier and a clustering algorithm to identify the typed services that will be then aggregated
to form the final microservices.

Huergo et al. [23] also introduced an approach to identify services based on their types. Based on UML class dia-
grams of object-oriented systems, they started by manually identifying data that played a central role in the operation
of an organisation and considered them as master data. Each piece of master data is defined as a candidate entity
service. Then, still using UML class diagrams, they derived state-machine diagrams related to the identified master
data. They analysed the transitions on the state-machine diagrams to identify Task and Process services. Our work is
different from this approach as (1) we identify different types of services, (2) we identify both services and microser-
vices in monolithic systems, and (2) we rely on both static and semantic analysis of the monolithic components to
build the final microservices.

Since Microservice architecture and SOA show considerable differences in terms of service granularity, gover-
nance, and communication protocol [19], the Legacy-to-SOA migration approaches are not suitable for legacy-to-
microservice migration unless various adaptations are performed on them.

Several approaches related to microservices identification have been proposed in the literature. Fritzsc et al. [6]
conducted a study on ten different approaches for refactoring a monolithic application into microservices that use
four distinct decomposition strategies. The first strategy is static code analysis, which analyses the code to find the

6 Trabelsi et al.
dependencies between different system units (classes, functions, variables) and eventually derive a decomposition of
the system units to identify microservices [24, 25]. The second strategy is based on meta-data: it depends on UML
diagrams [8], use cases [7, 8], interfaces [26], or version-control data [27]. The purpose is to capture the relationship
between users and system functionalities, to show interactions between systems and functional dependencies, etc.
The third strategy includes workload-data aided approaches [28, 10]. These approaches measure application opera-
tional data, such as communications and performance, at the module or function level, and use this data to determine
appropriate decomposition and granularity of microservices. The last strategy is the dynamic composition in which
the goal is to provide a runtime environment for microservices, so that the set of microservices changes continuously
each time to obtain the best-fit composition.

A recent work proposed by Brito et al. [13] outlines the use of topic modelling to assist in the migration of
monolithic systems to microservices. They started by extracting lexical/textual terms and structural dependencies
from the source code. Afterwards, they adopt the Latent Dirichlet Allocation (LDA) classifier to identify the topics
and their distributions for each component of the monolithic system. Finally, they combine the topic distribution and
structural information to cluster the monolithic system components that form microservices.

We observed that microservices identification approaches that use semantic analysis either rely on basic tech-
niques such as Tf-IDF (term frequency-inverse document frequency) [27] or use local identification techniques such as
topic modelling [13]. Different from existing approaches, we rely on a pre-trained Word2Vec model based on Google
News to study the semantic relationships between the components inside monolithic systems. Although typed ser-
vices provide significant information about the nature and capabilities of the identified services, none of these works
leveraged the benefits of type-aware services identification as a basis for identifying microservices. Consequently,
we propose in this paper a type-based microservice identification approach that relies on static and semantic analysis
of the source code of legacy monolithic systems to assist their migration to MSA. As mentioned earlier, we adopted
a more refined semantic analysis method that uses the pre-trained Word2Vec model based on Google News, which
produces more accurate results on the semantic similarity between different components of the monolithic project
and ensures consistency in the context of microservices. Our approach is guided by a taxonomy of service types,
and performs a vertical decomposition over the system’s layers according to the application domains to ensure loose
coupling and single responsibility paradigms in MSAs.

3 | PROPOSED APPROACH

Wewant to decompose monolithic software systems into microservices that are based only on analyses of the source
code of object-oriented monolithic software systems. Figure 2 shows our proposed approach for identifying microser-
vices in object-oriented monolithic software systems. It is divided into three main phases:

• The first phase is Class Typing, which decomposes a system horizontally into three layers by classifying each class
in the system. We propose a method based on ML to predict/assign a label to each class. Labels are Application
for classes belonging to the Business layer, Entity for the persistence layer, and Utility for the Utility layer. The
layers and their classes are input to the next phase of our approach. We details this first phase in Section 3.1.

• The second phase is Typed-Service Identification, which identifies Application, Entity, and Utility services from the
classes in each layer. We rely on a graph clustering technique that takes into account the static relationships
among classes. We describe this phase in Section 3.2.

• The third phase is Services toMicroservicesMapping, with generates themicroservices. It groups the typed services

Trabelsi et al. 7
using soft clustering, which is a type of clustering in which each element can belong to more than one cluster. In
our context, an element is a service while a cluster corresponds to a microservice. We identify then the microser-
vices according to the analyses of (1) the relationships between the services and (2) the application domain. Each
microservice is composed by one or many Application, Entity, and Utility services. The details of this phase are in
Section 3.3.

Legacy
System
Source
code

Data Generation
(Feature matrix +

Call Graph)
Classifier

Static analysis

Static analysis

Static analysis

Entity
classes
graph

Application
classes
graph

Utility
classes
graph

Clustering

Clustering

Clustering

Static and
semantic analysis ClusteringServices

graph Microservices

Phase 1: Class typing Phase 2: Typed services
identification

Phase 3: Mapping services to
microservices

Utility
classes

Application
classes

Entity
classes

Utility
services

Application
services

Entity
services

Feature
matrix + Call

Graph

F IGURE 2 Overview ofMicroMiner.

3.1 | Phase 1: Class Typing

This section describes the first phase of our microservice identification approach, which relies on ML to classify each
class in a system. At the end of this phase, the model will classify each class of a monolithic software system as
Application, Entity, or Utility.

Mathematically, we looked for the probability distribution P(Y |I,D) of missing labels of classes, where Y is a
class label, I is the input of the classifier, and D is the training dataset. We represent our dataset as a direct graph
structure G = (V, X, E) where all the classes of the system form the set of the nodes indexes V, the node feature
matrix X, and the calls among classes form the set of edges E.

3.1.1 | Call Graph Generation

As a data generation pre-processing step on the source code, we construct our graph G = (V, X, E) by generating the
call graph E. We parse the source code of the system and build its model using the OMG Knowledge Discovery Meta-
model (KDM) [29], which was defined to represent (legacy) systems at different levels of abstraction and regardless of
the used languages and technologies. We use MoDISCO [30], an open-source Eclipse plugin that provides an exten-
sible framework, (1) to obtain KDM models from source code in different languages and (2) to visit the KDM models
and generate the call graphs. For each system, MoDisco generates the corresponding KDM file in an XML Metadata
Interchange (XMI) format1, an OMG standard for exchanging metadata information via eXtensible Markup Language
(XML). Figure 3 illustrates an example of a KDM file. It contains a representation of the software code elements
(e.g., packages, classes, methods, attributes, etc.) and their associations (e.g, inheritance, aggregation, association, the
relationship of containment between packages, etc.).
Running example.
In the following, we use a running example to illustrate our work. We use a simplified version of the FXML-POSmono-

1https://www.omg.org/spec/XMI/2.1.1

8 Trabelsi et al.

F IGURE 3 Example of a KDM file

lithic system. FXML-POS is an open-source2 inventory management system in Java. It includes 56 classes. It follows
the model-view-controller architecture and provides several features related to ERP, such as purchase management,
sales management, supplier management, etc. We exclude some classes and consider only the 13 classes related to
sales, purchases, and products to simplify this running example. Figure 4 shows an excerpt of the running example
call graph. This excerpt contains four classes and four relationships. ProdcutModel implements ProductDao. Product-
Controller instantiates ProdcutModel and invokes three of its methods. Finally, ProdcutModel instantiates Product.
3.1.2 | Feature Matrix Generation

We generate the feature matrix X by one of the following methods:
• Metrics and relations: Our first initiative was to use the same class-level metrics and method-level metrics M,

which were used in a rule-based service-type detection approach [31], to obtain the feature matrix X|V|×|M| . The
method-level metrics were used to compute some class-level metrics. For example, we considered the number of
incoming/outcoming calls to/fromeachmethod in the system to compute the fan-in (the number of incoming calls)
and fan-out (the number of outcoming calls) related to each class. The class-level metrics also include theMccabe

2https://github.com/sadatrafsanjani/JavaFX-Point-of-Sales

Trabelsi et al. 9

ProductDao

Product

ProductModelProductController

Create

Create
Methods

invocation

F IGURE 4 Excerpt from the running example call graph

cyclomatic complexity, the number of “try-catch” in each class and the number of database queries. However,
later experimental results, in Table 5, showed that we could not achieve good accuracy for the classification. To
improve the accuracy of the results, we added extra features related to the relationships between the classes,
such as aggregation, inheritance, and implementation. Therefore, we define the matrix X|V|×|V| as:

X(i , j) = X(j , i) = 1, if classes i and j are related by an inheritance, aggregation, or implementation relationship
0, Otherwise

which improved the results. We further increased accuracy by concatenating the two feature matrices and ob-
taining X|V|×|M+V| , whose results we detail in Section 4.5.1.

• CodeBERT: Our second initiative was to feed the source code into the pre-trained model for programming lan-
guages, CodeBERT [32] to generate the node features of the graph. We can think of CodeBERT as a function
that maps source-code classes into a feature embedding within a n-dimensional space, where each class has its
corresponding n-dimensional vector representation that can be easily fed into the ML classifier.
We rely on CodeBERT to generate the representation of the source code because (1) it has been shown to achieve
superior performance in many NLP tasks, (2) it supports several programming languages, such as Go, Java, Python,
Ruby, etc., (3) the pre-trained model of CodeBERT is open source3 and easily integrated into our approach.
CodeBERT generates the node feature matrix X of size |V | × n , where each row i represents the node feature of
the source-code class i with dimension n .

3.1.3 | System Classes Classification

Given the labelled node feature matrix X and the call graph E, we train supervised ML models to classify the source-
code classes as belonging to Application, Entity, or Utility services.

The supported classifiers of our approach are:
• Support Vector Machine (SVM) is a supervised classical ML algorithm for classification or regression tasks [33].

It is a widely used and relatively simple. The classifier separates data points using hyperplanes with the largest
margin. It finds optimal hyperplanes in multidimensional space to separate different classes and classify new data
points (an SVM classifier is also called a discriminant classifier).

3https://github.com/microsoft/CodeBERT

10 Trabelsi et al.
• Graph Convolutional Network (GCN) is one of the most well-known deep Graph Neural Networks (GNNs) [34].

It provides a powerful neural network architecture for learning features from graphs by inspecting neighbouring
nodes. In our approach, we use GCN as a classification model that uses the generated embedding node features
X and the call graph E to learn how to classify the source-code class to Application, Entity, or Utility service.

In addition to SVM, MicroMiner supports different classical ML classifiers such as Decision Tree [35], K-Nearest
Neighbour (KNN) [36], Logistic Regression and Naive Bayes [37]. However, SVM gives the best accuracy among all
these algorithms (see Table 6).

Running Example.

Figure 5 shows the results of the system classes classification. We assigned a colour to each type and coloured the
classes with the appropriate colour according to their type. In the running example, there is a single Utility class, six
Entity classes, and six Application classes.

F IGURE 5 Running Example: Class Typing Results

3.2 | Phase 2: Typed-Service Identification

We now identify the services in the monolithic software system by analysing the static relationships between the
classes of the same layer, i.e., of the same type. Then, we apply the Louvain community detection algorithm [38] on
each class layer to group and create Application, Entity, and Utility services.

3.2.1 | Static Relationship Computation

We analyse the static relationships among the constituents of each class in each layer (methods, fields, etc.). A rela-
tionship may be a generalization, an aggregation, or an association between classes, for example. We assign a weight
to each of them according to their relative importance. The values of the assigned weights are depicted in Table 1.

Trabelsi et al. 11
The total weight between a pair of related constituents is:

Wei ght (Ci ,Cj) =
T∑
t=1

Wt × NR t

where Ci and Cj are the constituents,T is the number of relationships,Wt the weight of a relationship of type t , and
NR t the number of such relationship between Ci and Cj . We thus obtain three graphs representing each layer.
Relationship Generalization Aggregation Implementation Association Instantiation Method invocation
Weight 100 100 100 25 25 5

TABLE 1 Assigned weights of the static relationships

Running example.
After analyzing the relationships among classes in the running example, we compute their weights. Figure 6 shows the
call graph with the assigned weights. For example, class ProductController instantiates class ProductModel and invokes
three of its methods. Thus, using the weights in Table 1, we obtain

Wei ght (CP r oductCont r ol l er ,CP r oductModel) = 25 × 1 + 5 × 3 = 40

F IGURE 6 Running example call graph with static weights

3.2.2 | Type-specific Services Clustering and Identification

In each graph of each layer, we group classes into candidate services. The grouping algorithm considers the weights
w(e) on the edges when searching for the communities. A large weight w (ek) on an edge ek between two nodes A
and B implies that the classes A and B belong to the same candidate service.

We rely on the Louvain community detection algorithm [38] to derive communities from the graphs. It is an

12 Trabelsi et al.
unsupervised algorithm divided into two steps: modularity optimisation and community aggregation. For modularity
optimisation, it initialises the communities randomly. Then, it relocates each node into a different community until
there is no significant increase in modularity. Nodes of each community are collapsed into one node, and the same
process is repeated.

To improve the clustering results achieved by the Louvain community detection algorithm, we aggregate mod-
ules/communities that are only accessible from some other modules in a same cluster. For example, if a class A is
only accessible from classes B and C, with B and C in a same cluster CL, then we put A in the cluster CL and obtain
CL = [A,B ,C].

Running Example.
Table 2 shows the results of the second step of our approach on the running example. After applying the clustering
algorithm and the refinement process, we obtained five typed services.

Service
Utility Service 1 Entity Service 1 Entity Service 2 Application Service 1 Application Service 2

(US1) (ES1) (ES2) (AS1) (AS2)

Classes

HibernateUtil Product Sale ProductController SaleInterface
ProductDao SalesModel ProductInterface SalesController
ProductModel SaleDao productEditController

productAddController
TABLE 2 Running example: Typed-Services

3.3 | Phase 3: Services to Microservices Mapping

We generate microservices based on the typed services obtained in the previous phase by analysing the static and
semantic relationships among identified services. We choose eachApplication service as the core business component
of each microservice and merge related Entity and Utility services to form the final microservices, as follows.

3.3.1 | Static Relationship Computation

We consider the typed services that have been identified in the previous phase as our unit of work, which are no
longer the source-code classes. We are now interested in the relationships between services, which we compute in
two steps.

First, we compute the weight of the direct relationships between two services. We consider all calls between
the services by computing the sum of the weights of the incoming and outcoming calls between the services using
the previously generated call graphs. We create an undirected, edge-weighted graph G = (E,V) , in which each node
v i ∈ V corresponds to a service si ∈ S and each edge e i ∈ E represents the relationships between two services.
Each edge e i has a weight that shows how strong the link between two services is.

Second, we apply Floyd–Warshall algorithm [39] to create the adjacency matrix between all services of the graph
G by finding the shortest path between each node of the graph. Thus, we obtain the static distance between two
services.

Trabelsi et al. 13
Running Example.

Figure 7 shows the weights calculated between the typed services resulting from this step.

F IGURE 7 Running example: Static Weights between services

3.3.2 | Semantic Relationship Computation

Each microservices must have a single responsibility. Consequently, we perform a domain-related service decompo-
sition to generate isolated functional microservices that belong to a specific bounded context [21]. We analyse the
semantic relationships between the identified services to group them according to their domain. Figure 8 shows that
the semantic analysis of the source code is used to extract the semantic coupling between the services in four steps.

Legacy
System

Source code Service
Source code

Preprocess source
code

Terms

Word2vec

Word
embedding

Calculate service
embedding

Service
embedding

Calculate semantic
distances

Services
embeddings

Semantic
distances
between
services

Service Source code treatment

Term treatment

F IGURE 8 Semantic analysis pipeline.
First, we perform a pre-processing step, which involves: (1) tokenizing the source code in which the text is sep-

arated at each blank space, (2) removing any terms related to the programming language (e.g., public, private, etc.
in Java), (3) separating the composed terms using naming conventions like camel case and underscore [40], and (4)
lemmatizing terms into their base forms.

Second, we encode each term in a numerical representation to facilitate their manipulation. We use word em-
bedding, which is one of the most popular representations of words. It transforms terms into a numerical vector and
captures the context of a word in a document, the semantic and syntactic similarity, the relationship with other words,

14 Trabelsi et al.
etc. We use the pre-trained, Google-news-based Word2Vec that contains three million terms 4.

Third, we determine the vector representation of the services, i.e., their embeddings. We use a simple yet ef-
ficient technique to obtain the mean of all term vectors related to a service. Indeed, a study showed that, for the
sentiment text analysis task, using the average of term embeddings to obtain a document embedding yields similar
results compared to more complex techniques [41].

Finally, we compute the cosine distance between the service embeddings to obtain the semantic distances be-
tween each pair of services.

3.3.3 | Microservices Generation

To assure both the contextual consistency and high cohesion of the microservices, we rely on both static and semantic
weights. To find the final weight to qualify how strong the relationship between the services/clusters is, we combine
both weights and perform a unit-based normalization on the static and semantic weights to adjust their values to
[0, 1]. Then, we compute the final weight wi j by balancing the other two weights wSt at i ci j and wSemant i ci j using twoparameters α and β :

wi j = α ×wSt at i ci j + β ×wSemant i ci j

An expert must specify these parameters as they depend on the systems, e.g., in the case of a system in which
components are poorly named, β could be reduced in favour of α to reduce the dependence on the semantic analysis
in favour of the static relationships/analysis.

After calculating the final weights between the typed services, we cluster these services to compose themicroser-
vices. In this step, we consider each application service as the central element of each microservice ci , because they
“own” the functionality. We use the fuzzy C-means clustering (FCM) algorithm [42] because it is one of the most
widely used fuzzy clustering algorithms. The FCM algorithm returns membership scores representing the degrees of
membership of data points xi to each cluster c. This membership score msi j is calculated by:

msi j =
1∑c

k=1

(‖xi −cj ‖
‖xi −ck ‖

) 2
m−1

where m is the fuzziness parameter and k is the number of clusters.
We apply the FCM algorithm with one iteration because we do not want to change the cluster centres. Then, we

must specify a threshold at which we consider whether a service belongs or not to a microservice. Again, an expert
should specify this threshold, especially since it may vary from one system to another.

Our approach respects the loose coupling principle of microservices. If two microservices dependent on a same
service, we duplicate this service into each microservice to prevent any dependency between them. For example, in
the case of a retail management software, the Entity service Product, which manages product data, is used by the
microservices Sales and Product Restocking. We include this Entity service in both microservices.
Running example.
Finally, we obtain two microservices for our running example. MS1={US1,ES1,AS1} andMS2={US1,ES1,ES2,AS2}. The
Utility service US1 is duplicated in both microservices. The Product Entity service ES1 is also duplicated in both the
Sales and Product microservices, due to its strong coupling with the two services.

4https://github.com/mmihaltz/word2vec-GoogleNews-vectors

Trabelsi et al. 15
4 | EMPIRICAL EVALUATION

The overall quality of the generated results of our approach has been first evaluated by the fifth author, who is an
expert in microservice-based systems. He thoroughly analyzed the systems and the generated microservices decom-
position by our approach to making sure that the identified microservices embed cohesive classes and belong to
bounded contexts. Despite the positive feedback of our expert regarding the generated results, we further validate
our approach by (1) comparing our results with two state-of-the-art microservices identification approaches, and (2)
relying on qualitative metrics to further evaluate the quality of the identified microservices.

This section presents the experiments that we conducted on four case studies to validate our approach both
quantitatively against a ground-truth and qualitatively to use evaluation metrics. We provide further details on the
setups and outputs of the three phases of our approach: the Class Typing phase, the Typed-service Identification
phase, and the Microservices Mapping phase.

4.1 | Case Studies

Compiere
Compiere is one of the few large, Java, open-source legacy ERP systems. It was first introduced by Aptean in 20035.
It provides businesses, government agencies, and non-profit organizations with flexible and low-cost ERP features6,
such as business partners management, warehouse management, purchasing and sales order management (quotes,
book orders, etc.). We use Compiere v3.3 because (1) it is the first stable release of the system, (2) it was released
more than 15 years ago, (3) it is not based on microservices.
FXML-POS
This system was presented as our running example in Section 3.1.1 as well as used as a case study to validate our
approach. We use FXML-POS because it offers several features and it is not microservice-oriented.

PetClinic
PetClinic is an open-source7 Java-based veterinary clinic management system that allows veterinarians to manage
information about pets and their owners. It is based on the model-view-controller architecture and has 52 classes.
This system provides several features such as pet management, owner management and, visits management. We
chose to use PetClinic because there is also a new version of the system built using the microservices architecture
that serves as the basis for creating our ground-truth.

JForum 3
JForum is an open-source8 discussion board system implemented in Java. We worked with the last version that in-
cludes nearly 300 classes. It is based on the model-view-controller architecture and provides several features, such
as users management, message system, topic management, etc. We use JForum because (1) it is not microservice-

5http://www.aptean.com
6http://www.compiere.com/products/capabilities/
7https://github.com/spring-projects/spring-petclinic
8https://github.com/rafaelsteil/jforum3

16 Trabelsi et al.
oriented, and (2) it was previously used to validate several state-of-the-art monolith-to-service migration approaches
[43, 44, 45].

4.2 | Ground-truths

To assess the reliability of our approach, we need two kinds of ground-truths for each system. The first type of
ground-truth is related to the services and their types. This type of ground-truth will be used to validate the two first
phases of our approach (class typing and typed-service identification). Also, we need a second type of ground-truth
which is related to the microservices in the monolithic systems. It will be finally used to evaluate the microservice
mapping. We asked two independent PhD students to identify services and microservices in Compiere and FXML-POS
systems. They relied on several artifacts to build the ground-truth architectures manually by (1) analyzing and under-
standing the systems and (2) extracting the reusable parts that could become services/ microservices. To recover their
designs and to visualize class dependencies, they used Understand 9 integrated development environment. Addition-
ally, they generated views of their call graphs that we make available online 10. They also reviewed extensively the
system documentation as well as their source code to have the best possible understanding and accurately identify
both services and microservices that can be integrated into the targeted SOA-based system and in a microservice
architecture. Finally, they annotated the services manually according to their types. Table 3 shows the statistics of
the ground-truth decomposition.
Legacy system # System-Classes # Entity Services # Application Services # Utility Services # Microservices

Compiere 1,042 358 30 85 92
FXML-POS 55 9 10 3 9
PetClinic 52 7 7 4 7
JForum 3 271 31 73 19 61

TABLE 3 Overview of the ground-truths.

4.3 | Evaluation Metrics

To evaluate the quality of the identified microservices, we follow the work of Jin et al. [45] and consider the following
metrics that are related to functionality independence and modularity aspects.

4.3.1 | Independence of Functionality

The functionality independence refers to the external independence, i.e., the independence and consistency of the
functionality that the microservice provides to its external users, as defined by the single responsibility principle (SRP).
These metrics are calculated using the interfaces of a microservice. Typically, an interface is a class that exposes func-
tionality as an endpoint. The methods for each interface are considered as operations.

9https://www.scitools.com/
10http://si-serviceminer.com

Trabelsi et al. 17
IFN (Interface Number) ifnmeasures the number of published interfaces of a microservice. The smaller the ifn, the

more likely the microservice has a single responsibility. The IFN is the average of all ifn.
CHM (Cohesion atMessage level) chmmeasures the cohesion of interfaces published by a microservice at the mes-

sage level. This is achieved by calculating the similarity between two message-level operations based on parameters
and return values. A higher chm represents a higher cohesiveness of the microservice. The CHM is the average all chm.

CHD (Cohesion atDomain level) chdmeasures the cohesion of interfaces published by amicroservice at the domain
level. This metric measured very similarly to chm, but instead of using only the message terms, all domain terms
contained in the operation signature are taken into account. A higher chd represents a higher cohesiveness of the
microservice. The CHD is the average all chd.

4.3.2 | Modularity

Modularity evaluates the cohesion of microservices in their internal interactions and the looseness of interactions
between microservices. To evaluate the modularity of service candidates, we use the following metrics Quality of
structural modularity (SMQ) and Quality of conceptual modularity (CMQ).

SMQ (Structural Modularity Quality) SMQmeasures the quality of modularity from a structural point of view. The
higher the SMQ, the more modular the service is. The SMQ calculation is composed of two terms: The first measures
the structural cohesion of a service (intra-connectivity) using the number of edges within a service, and the second
measures the coupling between services (inter-connectivity) based on the number of edges between services.

CMQ (ConceptualModularityQuality) TheCMQmeasures the quality ofmodularity from a conceptual perspective,
like the SMQ. CMQ is composed of two terms, the only difference is that in the CMQ definition, an edge between two
entities exists if the intersection between the set of textual terms of the entities is not empty. The higher the CMQ,
the better.

4.4 | Experimental Setup

In the following, we present the experimental settings at each phase of theMicroMiner architecture.

4.4.1 | Class Typing

For the datasets, as we mentioned in Section 3.1, we consider the graph representation of the four legacy systems as
our dataset form. For all the classification models, we use 80% of the graph nodes for training (Vt r ai n). The rest 20%
of the nodes are used for testing (Vt est), except for GCN model is splitted into 10%, for validation (Vv al i d) and 10%
for testing. Now, we present the setup of the experiment for our classification models categories:

Deep GNNs. We considered a two-layer graph convolutional network (GCN) for the semi-supervised classifica-
tion of the nodes of a graph. At the training, the GCN classifier takes as input: 1) The adjacency matrix At r ai n of the
training graph Gt r ai n of the legacy system to migrate. The nodes of the call graph vi ∈ V t r ai n correspond to classes
ci ∈ C from the system to analyse. 2) The feature matrix Xt r ai n that embed information about the system-classes.

18 Trabelsi et al.
We experimented with several representations for the feature matrix (e.g., CodeBERT embeddings, Method-level and
class-level metrics, etc.) as described earlier in Section 3.1.2. We validate the GCN classifer using the validation com-
ponents (Vv al i d , Ev al i d , Xv al i d), and we test with the test components (Vt est , Et est , Xt est). Table 5 summarises the
results of GCN experiments with different feature representations on all systems. Since GCN shows the best perfor-
mance with CodeBERT embedding on Compiere and FXML-POS, we state the performance results of GCN on PetClinic
and JForum 3 when using CodeBERT embeddings only.

Classical ML. As we showed in Section 3.1.3, we used several classical ML classification models. To classify the
graph nodes (i.e., system-classes) based on their features. All these classical models rely on the code embeddings that
CodeBERT generates. With SVM, we use the linear kernel function. For KNN classifier, we set k = 5 for the number
of nearest neighbours to be considered in the voting process. We also experienced with Decision Tree and set the
tree’s maximum depth to 2. For Logistic Regression, we used lbfgs as the optimization algorithm. The final algorithm
we applied was Gaussian Naive Bayes. In Table 6, we present the performance measures of all classifiers in our four
use cases. We report the accuracy that gives the overall correctness of the models, i.e., the fraction of total samples
that were correctly classified by the classifier and the F-measure for each class (Utility, Entity, and Application).

4.4.2 | Typed-service Identification

After predicting the type of each class on our different case studies, we constructed three graphs per system: the
Utility graph, the Entity graph, and the Application graph, as explained in Section 3.2.1. Then, we applied the Lou-
vain algorithm for community detection to cluster and identify Utility, Entity, Application services. For the Louvain
algorithm, the only parameter to specify was the resolution that controls the communities sizes. We have set it to its
default value of 1 for all experiments.

4.4.3 | Microservices Mapping

As mentioned in Section 3.3.3, we calculate the final weight to qualify the strength of the relationship between the
services/clusters by combining the static and semantic weights based on two parameters α and β . Table 4 shows
the considered values of these parameters for the different systems. For Compiere, the code components, variables
and method names are poorly named, so we reduced the value of β in favour of α to reduce the dependence of the
semantic analysis on the static relation. For the other three systems, we gave equal weights to semantic and static
relationships as the naming employed in the code was expressive and meaningful.

System Compiere FXML-POS PetClinic Jforum

α 0.8 0.5 0.5 0.5
β 0.2 0.5 0.5 0.5

TABLE 4 Total weight parameters

In order to generate microservices, we cluster the typed services using Fuzzy C-means clustering algorithm. To
calculate the membership score, we need to specify the number of clusters and the fuzziness m parameter. In our
case, the number of clusters is equal to the number of application services. We used m = 2 for all systems because
it is the most used value [46]. Moreover, by adopting this value, we avoided getting large microservices and thus

Trabelsi et al. 19
increased the cohesion of microservices while maintaining a low coupling value.

4.5 | Results and Evaluation

In the following, we present the results of each phase of theMicroMiner architecture.

4.5.1 | Class Typing Results

We present in Table 5 the GCN accuracy with respect to different feature matrix formalisms. The results show that
the most accurate classification result is achieved by using the code embeddings generated through CodeBERT with
an average accuracy of 74%.

Feature matrix Feature matrix
dimension

Compiere
Accuracy

FXML-POS
Accuracy

PetClinic Ac-
curacy

JForum
Accuracy

Method-level and class-
level metrics

|V | × 6 51% 59% N/A N/A

Relations |V | × |V | 65% 62% N/A N/A
Method-level and class-
level metrics+relations

|V | × |V | + 6 58% 62% N/A N/A

CodeBERT embeddings |V | × 768 72% 75% 76% 73%
TABLE 5 GCN experiments results for all systems with respect to different generated feature matrix.

As shown in Table 6, the SVM classifier achieved the highest accuracy across the four systems with 86% for
Compiere, 92% for FXML-POS, 87% for PetClinic and 82% for JForum. However, we observe that the F-measure of
some classes is slightly higher when using other classifiers, albeit with a small difference. Based on these results, we
selected SVM in the classification phase ofMicroMiner to predict the class types of the systembecause it outperformed
GCN and other classifiers and showed overall better results.

4.5.2 | Typed-service Identification Results

We used our ground-truth architecture for each system to quantitatively validate the typed services. We measured
precision, recall, and F-measure for the identification of each service type and reported the results in Table 7. We
obtained architecturally significant typed services with a total precision of 68.3%, a recall of 83.9%, and an F-measure
of 75.2% for Compiere. We also achieved a precision of 86.3%, a recall of 86.3%, and an F-measure of 86.3% for
FXML-POS. For PetClinic, we got a precision of 70%, a recall of 66%, and an F-measure of 68%. For our fourth system
JForum, we obtained a precision of 83.1%, a recall of 60.1%, and an F-measure of 69.7%.

The performance of this phase depends on the results of the previous classification phase because we consider
the classes of each type independently. For example, we had in Compiere a precision of 49.2% for the identification
of Application services. We missed some Application services because, in the previous phase of class typing, we had
a classification accuracy of 68%. We missed some classes of type Applications to cluster into Application services.
Also, in FXML-POS, we could not identify some Utility services for the same reasons.

To obtain better results for identifying typed-service, developers could refine the classification when applied to

20 Trabelsi et al.

Legacy system Quality metrics
Decision
Tree

SVM
KNN
(k=5)

Logistic Re-
gression

Naive
Bayes

Compiere

Accuracy 73% 86% 81% 83% 52%
Class Application F1-score 54% 68% 69% 61% 47%

Class Entity F1-score 85% 93% 91% 92% 64%
Class Utility F1-score 13% 62% 37% 64% 35%

FXML-POS

Accuracy 84% 92% 66% 84% 84%
Class Application F1-score 86% 93% 75% 86% 86%

Class Entity F1-score 87% 97% 58% 90% 87%
Class Utility F1-score 50% 50% 0% 0% 50%

PetClinic

Accuracy 79% 87% 74% 77% 69%
Class Application F1-score 67% 81% 58% 81% 77%

Class Entity F1-score 82% 89% 71% 73% 77%
Class Utility F1-score 50% 50% 0% 0% 0%

JForum

Accuracy 79% 82% 69% 76% 62%
Class Application F1-score 69% 83% 75% 66% 53%

Class Entity F1-score 81% 87% 58% 80% 69%
Class Utility F1-score 10% 30% 18% 22% 18%

TABLE 6 Source-code class classification results with the classical ML models using CodeBERT embedding of
the four legacy systems.

their systems.

4.5.3 | Microservices Mapping Results

In this section, we analyze and validate the generated microservices. We used our ground-truth architectures to
calculate the precision, recall, and F-measure of our approach. We also measure and validate the quality ofMicroMiner
using five quality metrics. In addition, we compare our results with two static-based microservices identification
approaches: ServiceCutter [12], which is a heuristics-based microservice identification approach, and another state-
of-the-art microservice identification tool proposed by Brito et al. [13], which is based on topic modelling techniques.

| Quantitative Evaluation

We applied MicroMiner on Compiere, POS, PetClinic and Jforum to show its practical accuracy in identifying microser-
vices in existing systems. We also applied on these systems the two state-of-the-art microservice identification ap-
proaches, ServiceCutter and the topic modelling-based approach. We measured the precision, recall, and F-measure
for each system and reported the results in Table 8. We found that MicroMiner identified architecturally-relevant
microservices with 68.15% precision, 77% recall, and 72.1% F-measure.

Also, while we identified 92 microservices in the ground-truth microservice-based architecture of Compiere, Mi-
croMiner identified 89 microservices, among which 67 were correctly composed. We also obtained for the same
system a precision of 75.2%, a recall of 72.8%, and an F-measure of 73.9%. For FXML-POS, while we identified nine
microservices in the ground-truth,MicroMiner identified 11 microservices, with nine of them correctly identified. We

Trabelsi et al. 21
Legacy system Service type Precision Recall F-measure

Compiere

Application 49.2% 81.3% 61.4%
Entity 74.3% 90.7% 81.7%
Utility 68.2% 83.9% 75.2%
Total 68.2% 83.9% 75.2%

FXML-POS

Application 83.3% 100% 90.9%
Entity 88.8% 88.8% 88.8%
Utility 100% 33.3% 50%
Total 86.3% 86.3% 86.3%

PetClinic

Application 75% 85% 80%
Entity 83.3% 71.4% 76.9%
Utility 50% 75% 60%
Total 70% 66% 68%

Jforum

Application 89.8% 72.6% 80.2%
Entity 77.2% 54.8% 64.1%
Utility 50% 21% 29.5%
Total 83.1% 60.1% 69.7%

TABLE 7 Overview of Typed-service identification results.

obtained a precision of 72%, a recall of 88%, and an F-measure of 80%.
In general, the correctly-identified microservices are built around accurately classified Application services be-

cause we choose to consider Application services as the central component of each microservice. The correctly
identified microservices in Compiere, for example, are related to bank-statement management, account management,
partners, warehouses, orders, invoice management, etc.

The incorrectly identified microservices were mainly coarse-grained: they contained a large number of classes.
When we analyzed these microservices, we found that the related Application services contained tightly coupled
classes but covered more than one domain/business functionality. Thus, poor identification of Application services
inside a system led to poor identification of the corresponding microservices. For example, one of the identified Appli-
cation services from Compiere aggregated classes related to both projects and payments, which led to the generation
of a large microservice that did not respect the single responsibility principle.

Furthermore, when services were not correctly typed, the quality of the identified microservices suffered. For
example, in Compiere, some classes related to data migration should have been labelled as Utility-related classes. How-
ever,MicroMiner classified these classes as Application-related, which led to the identification of incorrect Application
services and, therefore, to incorrect/poor microservices.

Our approach outperformed the other two approaches. ServiceCutter generated bad clusters. The approach
produced a large number of services of unbalanced size, where we observed few large services and many small ser-
vices containing one or two classes. For the Topic Modeling based approach, the generated services were partially
acceptable, however many classes that are not directly relevant to the service context, e.g. generic classes like "En-
tityUtils" or "BaseEntity" are always incorrectly mapped because they do not have a clear domain connection. The
Topic Modeling based approach is only based on the similarity of topics and does not consider static relation weights.
On the contrary, our approach considers the weights of the different static relations and, thus, does not suffer from
this problem.

22 Trabelsi et al.
Legacy system Approach Precision Recall F-measure

Compiere
ServiceCutter 5% 21.7% 8.1%

Topic modelling based 22.5% 29.3% 25.4%
MicroMiner 75.2% 72.8% 73.9%

FXML-POS
ServiceCutter 7.8% 33.3% 12.6%

Topic modelling based 29.4% 55.5% 38.4%
MicroMiner 72% 88% 80%

PetClinic
ServiceCutter 8.5% 42% 14.2%

Topic modelling based 36.3% 57.1% 44.3%
MicroMiner 71.4% 71.4% 71.4%

Jforum
ServiceCutter 4.7% 11.9% 6.7%

Topic modelling based 44.1% 45.2% 44.6%
MicroMiner 54% 76.1% 63.1%

TABLE 8 Comparison results of microservices identification approaches

Table 9 shows the number of duplicated services. We noticed that this number is not large because we selected
a relatively small fuzziness parameter.

System Compiere FXML-POS PetClinic Jforum

duplicated services 22 5 4 12
TABLE 9 Duplicated services per system

| Qualitative Evaluation

To evaluate the quality of the identified microservices, we conducted a metrics-based and a content-based evaluation.

A- Metric-based Evaluation
Table 10 shows the values of the microservice quality metrics obtained across the four systems.

IFN quantifies the interfaces that exposed by a given microservice, i.e., any class that exposes functionality as an
endpoint. Hence, a smaller IFN represents a higher likelihood of a service having a single responsibility. The median
is almost three in our case. Although our IFN values are relatively low, they are not optimal (I F N = 1) because the
legacy systems are improperly designed. For example, in FXML-POS, we found ProductController, ProductAddController,
and ProductEditController that should have been merged into a single class.

CHM represents message-level cohesiveness. It has a mean around 0.7, which is a positive statement regarding
the independence of microservices.

CHD quantifies the cohesion at the domain level. It has a mean around 0.7, which indicates that the generated
microservices respect the bounded-context principle, thanks to the semantic analysis in our process. For Compiere,
the value is low because the elements of the system are poorly named.

SMQ and CMQ represent the modularity of the microservices. We mainly calculate the differences between co-
hesion and coupling and the values are bound between -1 and 1. MicroMiner exhibit distinctively positive differences

Trabelsi et al. 23
from the cohesion to coupling across all systems and medians values are roughly around 0.07 and 0.05 respectively.
We therefore conclude that the generatedmicroservices have a goodmodularity: they are loosely coupled and strongly
cohesive.

Legacy system Approach IFN CHM CHD SMQ CMQ

Compiere
ServiceCutter 4.1 0.23 0.21 -0.17 -0.21

Topic modelling based 2.1 0.46 0.54 -0.02 0.01
MicroMiner 3.4 0.73 0.53 0.11 0.09

FXML-POS
ServiceCutter 2.9 0.54 0.33 -0.12 0.01

Topic modelling based 2.3 0.47 0.65 -0.03 0.03
MicroMiner 2.5 0.69 0.79 0.09 0.05

PetClinic
ServiceCutter 2.3 0.42 0.53 0.02 -0.03

Topic modelling based 2.1 0.43 0.67 0.03 0.02
MicroMiner 1.9 0.75 0.78 0.05 0.03

Jforum
ServiceCutter 4.7% 11.9% 6.7% 21.7% 8.1%

Topic modelling based 44.1% 45.2% 44.6% 21.7% 8.1%
MicroMiner 2.8 0.67 0.66 0.O4 0.O5

TABLE 10 Overview of the generated microservices quality

B- Content-based Evaluation
For the content-based evaluation, we detail the results of applying MicroMiner on FXML-POS to identify relevant
microservices in the system. We take the example of sales and supplier management in FXML-POS. We qualitatively
study the microservices related to these business functionalities while we detail how MicroMiner helps practitioners
to identify such microservices.

The initial classification step of our approach predicts the layer to which each class in the system belongs (i.e.,
Utility, Entity, or Application). Based on this classification, we apply the Louvain community detection algorithm on
each layer to identify the clusters that correspond to the typed services. Finally, based on the Application services,
we perform a vertical clustering over the layers to merge Utility, Entity, and Application services that belong to the
same domain to form microservices.

First, we divide the system into three layers (Utility, Entity, and Application service layers). In the Utility layer,
we have some cross-cutting functionalities, like printing, logging, and Hibernate-related functionalities. In the Entity
layer, we find the DAO classes that support CRUD actions on the data and the models that represent the data: classes
SaleDAO, SupplierDAO, SaleModel, and SupplierModel. In the Application layer, we find the classes that provide func-
tionalities related to supplier and sales management. Second, we perform a clustering to create the services in each
layer and to get the types of these services. Third, we choose the Sales and Vendors Application services as central
components of two microservices and perform a fuzzy clustering to create the microservices. Finally, we obtain two
microservices: the first is related to sales management, which comprises the Serialisation Utility service, Sales entity
service, and Sales application service. The second microservice is composed of Hibernating Utility service, Vendor
entity service, and Vendor application service.

Thus, we could identify with MicroMiner architecturally-relevant microservices in the different systems. We be-
lieve that our approach can assist practitioners in identifying candidate microservices because it relies only on the
static analysis of the system source code to migrate and automate the microservices identification process with ac-

24 Trabelsi et al.
ceptable precision and recall.

5 | DISCUSSIONS

We will describe in this section the threats to the validity of our approach and the recommendations that we derived
based on our observations.

5.1 | Threats to validity

Internal validity

Our microservice identification approach and its validation depend on several metrics and thresholds that threaten
the internal validity of our results. To mitigate these threats, we used different algorithms and threshold values.

The results of our approach were qualitatively evaluated by the fifth author because of his expertise in developing
microservices. However, we must accept a threat to the validity of this validation because this author participated in
some meetings discussing the work in general and the approach in particular. Therefore, this author is not entirely
independent and could have been biased. Yet, we accept this threat because (1) he is an expert at developing and
studying microservices and (2) finding an expert who is willing to validate our approach on different systems is diffi-
cult. Besides, we provide all results and validation for others to verify the validation or perform it again independently.
Finally, we mitigate this validation bias by (1) comparing our results with two state-of-the-art microservices identifi-
cation approaches and (2) relying on qualitative metrics to further evaluate the quality of the identified microservices.

Construct validity

The quality of the legacy source code may have an impact on the results of the microservices identification. Legacy
monolithic systems may embed some poor design practices that may limit the accuracy of static-based microservice
identification approaches. To mitigate this threat, we rely on the analysis of both static and semantic relationships
between the system’s elements on different levels (in the class level and service level).

We relied on the generation of ground truths to validate quantitatively the microservices identified by our ap-
proach. Two independently PhD students extensively analysed the systems to obtain two sets of ground-truths: the
first set was related to the services and their types, while the second set was for the microservices. The generated
ground-truths by both students were very similar. They reconciled the differences between the generated ground-
truths through discussions and end-up with common ground-truths used to validate our microservices identification
approach. We are aware that there is no single “correct”microservice-based version of the analysed legacy systems. To
reduce the bias, we may ask the projects’ owners or software developers to provide the ground-truths. However, get-
ting in touch with such experts is challenging. Furthermore, producing an accurate ground-truth microservice based
architecture for a monolithic system is an arduous and time-consuming task. We do not expect that the projects’
owners or software developers will accept to take considerable time away from their daily obligations to build the
ground-truths on our behalf. However, we do not exclude such tasks and will try to involve software developers in
our experiments as future work.

Trabelsi et al. 25
External validity
In order for the classification model to classify accurately, there must be a similar distribution of data on which the
model makes predictions as the data on which the model was trained. The classification model in the class typing
phase was trained using only four legacy systems; hence our results could not be generalised. A small portion of the
labelled classes is requested to adapt the already trained model to mitigate this threat. Finally, the generalisation of
our training could be enhanced if we label and analyse a large set of monolithic systems. However, building such a
dataset is challenging as we have to (1) select hundreds of systems pertaining to different domains and relying on
different architectures, (2) analyse and review the source code of these systems, and (3) manually classify each of the
classes inside the selected systems. Considering all these challenges, we aim as future work to train the ML classifier
using a large set of monolithic systems and then use the trained ML model to predict the classes of new monolithic
systems.

5.2 | Discussion and Recommendations

In the first phase of our approach, the use of the ML classifier may not be necessary when the different types of
classes in the system are well packaged into their respective source files. However, our target in this paper is legacy
monolithic systems to be migrated to microservices. These legacy systems generally embed several poor design
problems and packaging issues that may hinder their maintenance. For instance, different types of classes are not
necessarily packaged into their respective source files. This is the case of Compiere, for example, where we found
different classes pertaining to different types in some packages. Also, when the system is too large and complex, it
is not easy to manually check if each class in the system is correctly packaged according to its type. To deal with all
these challenges and to make the approach more generalisable, we rely on our ML classifier to detect the types of the
classes that will be then mapped to their corresponding typed services.

We believe that our approach is useful for both researchers and practitioners involved in migrating legacy sys-
tems to a microservices architecture because (1) we automate one of the most labor-intensive steps in migrating
such systems, which is the identification of microservices, (2) our approach yields architecturally meaningful candi-
date microservices that satisfy two main principles of MSA: loose coupling and single responsibility per microservice,
(3) our approach offers the possibility to balance static and semantic weight according to their importance and the
code naming quality of the legacy system, and (4) our approach can be applied to systems of different programming
languages, thanks to the use of language-independent techniques in the different steps, such as CodeBERT which
supports various languages. Finally, we recommend converting utility services into libraries (jar for java, DLL for .Net
languages, etc.). This could reduce the size of the source code files, minimise class redundancy and allow them to be
accessible to external systems. Furthermore, as we have opted for fuzzy clustering, meaning that certain classes can
occur in several microservices, we recommend performing a code slicing step at the end, to refine the microservices
and get rid of dead codes that are never used/reached in the microservice.

6 | CONCLUSION

We presented MicroMiner, a type-based approach for identifying microservices in monolithic software systems. Mi-
croMiner is guided by a taxonomy of service types, which are predicted using ML classification models. It uses the
source code of the systems, from which it extracts static relationships between components. It also performs a se-
mantic analysis of the source code to obtain the semantic similarities among components to ensure a single bounded

26 Trabelsi et al.
context per microservice.

We evaluated MicroMiner on four real-world legacy monolithic software systems and compared its results with
ground-truths built independently. We showed that, on average, MicroMiner identifies architecturally-relevant and
significant microservices with 68.15% precision, 77% recall, and 72.1% F-measure. Thus, we showed thatMicroMiner
could help practitioners identify candidate microservices in their monolithic software systems.

As future work, we aim to consider more legacy systems to validate the approach. This will also increase the
automation degree of the approach by (1) enhancing the training of the classifier, and (2) avoiding the manual labelling
of some classes of each system to analyse. We aim to investigate as well database decomposition (when available),
to enhance the identification accuracy of the microservices. We also aim to perform a qualitative validation of the
identified microservices with developers to fully assess the reliability of the approach. We aim to study the quality of
the identified microservices and use another clustering method in the approach guided by microservices patterns.

Data availability statement

The data that support the findings of this study are openly available inMicroMiner data driver folder at https://drive.
google.com/drive/folders/1TQaS8etLr-32d0RXwC1Le-IOMVaDBcSS?usp=sharing. We also include our approach
implementation in the same folder.

references
[1] Nadareishvili I, Mitra R, McLarty M, Amundsen M. Microservice architecture: aligning principles, practices, and culture.

" O’Reilly Media, Inc."; 2016.
[2] Newman S. Building Microservices: Designing Fine-Grained Systems. O’Reilly Media, Inc.; 2015. ISBN: 978-

1491950357.
[3] Khadka R, Saeidi A, Jansen S, Hage J. A structured legacy to SOA migration process and its evaluation in practice. In:

MESOCA; 2013. p. 2–11.
[4] Abdellatif M, Hecht G, Mili H, Elboussaidi G, Moha N, Shatnawi A, et al. State of the practice in service identification

for SOA migration in industry. In: ICSOC Springer; 2018. p. 634–650.
[5] Lewis G, Morris E, O’Brien L, Smith D, Wrage L. SMART: The service-oriented migration and reuse technique. DTIC

Document; 2005.
[6] Fritzsch J, Bogner J, Zimmermann A, Wagner S. From monolith to microservices: A classification of refactoring ap-

proaches. In: InternationalWorkshop on Software Engineering Aspects of ContinuousDevelopment andNewParadigms
of Software Production and Deployment Springer; 2018. p. 128–141.

[7] Ahmadvand M, Ibrahim A. Requirements reconciliation for scalable and secure microservice (de) composition. In: 2016
IEEE 24th International Requirements Engineering Conference Workshops (REW) IEEE; 2016. p. 68–73.

[8] Gysel M, Kölbener L, Giersche W, Zimmermann O. Service cutter: A systematic approach to service decomposition. In:
European Conference on Service-Oriented and Cloud Computing Springer; 2016. p. 185–200.

[9] Hassan S, Ali N, Bahsoon R. Microservice ambients: An architectural meta-modelling approach for microservice granu-
larity. In: 2017 IEEE International Conference on Software Architecture (ICSA) IEEE; 2017. p. 1–10.

[10] Klock S, Van Der Werf JME, Guelen JP, Jansen S. Workload-based clustering of coherent feature sets in microservice
architectures. In: 2017 IEEE International Conference on Software Architecture (ICSA) IEEE; 2017. p. 11–20.

Trabelsi et al. 27
[11] Dragoni N, Lanese I, Larsen ST, Mazzara M, Mustafin R, Safina L. Microservices: How to make your application scale. In:

International Andrei Ershov Memorial Conference on Perspectives of System Informatics Springer; 2017. p. 95–104.
[12] Jain H, Zhao H, Chinta NR. A spanning tree based approach to identifying web services. International Journal of Web

Services Research (IJWSR) 2004;1(1):1–20.
[13] Brito M, Cunha J, Saraiva J. Identification of microservices from monolithic applications through topic modelling. In:

Proceedings of the 36th Annual ACM Symposium on Applied Computing; 2021. p. 1409–1418.
[14] Gat E, Bonnasso RP, Murphy R, et al. On three-layer architectures. Artificial intelligence and mobile robots

1998;195:210.
[15] Richards M. Software architecture patterns, vol. 4. O’Reilly Media, Incorporated 1005 Gravenstein Highway North,

Sebastopol, CA . . . ; 2015.
[16] Moravcik O, Petrik D, Skripcak T, Schreiber P. Elements of theModern Application Software Development. International

Journal of Computer Theory and Engineering 2012;4(6):891.
[17] AbdellatifM, Shatnawi A,Mili H,MohaN, El-Boussaidi G, Hecht G, et al. A taxonomy of service identification approaches

for legacy software systems modernization. J Syst Softw 2021;173:110868. https://doi.org/10.1016/j.jss.2020.
110868.

[18] Lewis J, Fowler M. Microservices: a definition of this new architectural term. MartinFowler com 2014;25:14–26.
[19] Rademacher F, Sachweh S, Zündorf A. Differences between model-driven development of service-oriented and mi-

croservice architecture. In: 2017 IEEE International Conference on Software Architecture Workshops (ICSAW) IEEE;
2017. p. 38–45.

[20] Microsoft, Microsoft, editor, Using domain analysis to model microservices. Microsoft; 2019. https://docs.microsoft.
com/en-us/azure/architecture/microservices/model/domain-analysis.

[21] Newman S. Building microservices: designing fine-grained systems. " O’Reilly Media, Inc."; 2015.
[22] Abdellatif M, Tighilt R, Moha N, Mili H, El Boussaidi G, Privat J, et al. A type-sensitive service identification approach for

legacy-to-SOA migration. In: International Conference on Service-Oriented Computing Springer; 2020. p. 476–491.
[23] Huergo RS, Pires PF, Delicato FC. MDCSIM: A method and a tool to identify services. IT Convergence Practice

2014;2(4):1–27.
[24] Escobar D, Cárdenas D, Amarillo R, Castro E, Garcés K, Parra C, et al. Towards the understanding and evolution of

monolithic applications as microservices. In: 2016 XLII Latin American Computing Conference (CLEI) IEEE; 2016. p.
1–11.

[25] Levcovitz A, Terra R, Valente MT. Towards a technique for extracting microservices from monolithic enterprise systems.
arXiv preprint arXiv:160503175 2016;.

[26] Baresi L, Garriga M, De Renzis A. Microservices identification through interface analysis. In: European Conference on
Service-Oriented and Cloud Computing Springer; 2017. p. 19–33.

[27] Mazlami G, Cito J, Leitner P. Extraction of microservices from monolithic software architectures. In: 2017 IEEE Interna-
tional Conference on Web Services (ICWS) IEEE; 2017. p. 524–531.

[28] Mustafa O, Gómez JM, Hamed M, Pargmann H. GranMicro: A black-box based approach for optimizing microservices
based applications. In: From Science to Society Springer; 2018.p. 283–294.

[29] El Boussaidi G, Belle AB, Vaucher S, Mili H. Reconstructing architectural views from legacy systems. In: 2012 19th
Working Conference on Reverse Engineering IEEE; 2012. p. 345–354.

28 Trabelsi et al.
[30] Bruneliere H, Cabot J, Dupé G, Madiot F. Modisco: A model driven reverse engineering framework. IST

2014;56(8):1012–1032.
[31] Abdellatif M, Tighilt R, Moha N, Mili H, El-Boussaidi G, Privat J, et al. A Type-Sensitive Service Identification Approach

for Legacy-to-SOA Migration. In: Kafeza E, Benatallah B, Martinelli F, Hacid H, Bouguettaya A, Motahari H, editors.
Service-Oriented Computing - 18th International Conference, ICSOC 2020, Dubai, United Arab Emirates, December
14-17, 2020, Proceedings, vol. 12571 of Lecture Notes in Computer Science Springer; 2020. p. 476–491. https://doi.
org/10.1007/978-3-030-65310-1_34.

[32] Feng Z, Guo D, Tang D, Duan N, Feng X, Gong M, et al. Codebert: A pre-trained model for programming and natural
languages. arXiv preprint arXiv:200208155 2020;.

[33] Amari Si, Wu S. Improving support vector machine classifiers by modifying kernel functions. Neural Networks
1999;12(6):783–789.

[34] Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. International Conference on
Learning Representations (ICLR) 2016;.

[35] Swain PH, Hauska H. The decision tree classifier: Design and potential. IEEE Transactions on Geoscience Electronics
1977;15(3):142–147.

[36] Peterson LE. K-nearest neighbor. Scholarpedia 2009;4(2):1883.
[37] Rish I, et al. An empirical study of the naive Bayes classifier. In: IJCAI 2001 workshop on empirical methods in artificial

intelligence, vol. 3; 2001. p. 41–46.
[38] Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. Journal of statistical

mechanics: theory and experiment 2008;2008(10):P10008.
[39] Floyd RW. On ambiguity in phrase structure languages. Communications of the ACM 1962;5(10):526.
[40] Enslen E, Hill E, Pollock L, Vijay-Shanker K. Mining source code to automatically split identifiers for software analysis.

In: 2009 6th IEEE International Working Conference on Mining Software Repositories IEEE; 2009. p. 71–80.
[41] Iyyer M, Manjunatha V, Boyd-Graber J, Daumé III H. Deep unordered composition rivals syntactic methods for text

classification. In: Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th
international joint conference on natural language processing (volume 1: Long papers); 2015. p. 1681–1691.

[42] Bezdek JC, Ehrlich R, Full W. FCM: The fuzzy c-means clustering algorithm. Computers & geosciences 1984;10(2-
3):191–203.

[43] Saidani I, Ouni A,MkaouerMW, Saied A. Towards automatedmicroservices extraction usingmuti-objective evolutionary
search. In: International Conference on Service-Oriented Computing Springer; 2019. p. 58–63.

[44] Lapuz N, Clarke P, Abgaz Y. Digital Transformation and the Role of Dynamic Tooling in Extracting Microservices from
Existing Software Systems. In: European Conference on Software Process Improvement Springer; 2021. p. 301–315.

[45] Jin W, Liu T, Cai Y, Kazman R, Mo R, Zheng Q. Service candidate identification from monolithic systems based on
execution traces. IEEE Transactions on Software Engineering 2019;.

[46] Gao XB, PEI Jh, XIE Wx. A study of weighting exponent m in a fuzzy c-means algorithm. Acta electronica sinica
2000;28(4):80–83.

