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Abstract: Avionics systems, along with their internal hardware and software components interfaces, must be well 
defined and specified (e.g., unambiguous, complete, verifiable, consistent, and traceable specification). Such 
a specification is usually written in the form of an Interface Control Document (ICD), and represents the 
cornerstone of the avionics system integration activities. However, there is no commonly accepted language 
to define and use these ICDs and no common definition of what an ICD is or should contain. Indeed, 
avionics companies define their own, proprietary ICDs and processes. In this paper, we first identify the 
pieces of information that an ICD should contain for both federated and IMA open systems. Then, we 
propose a data extraction process that enables better understanding and more efficient extraction of open 
avionics systems interface specifications, and provides a clearer vision on the information needed to build a 
model driven solution for modeling avionics system interfaces, our long-term goal. We validate this process 
by applying it on a set of open avionics sub-system standards and the results have shown its feasibility.

1 INTRODUCTION 

The beginning of the 20th century was marked by 
the advent of the powered flight in 1903 and, ever 
since, the aviation technology has continuously 
progressed in all fields leading to the construction 
of today’s aircrafts (Spitzer, Ferrell, U., and Ferrell, 
T., 2014). 

Up to the 90s, avionics systems followed a 
classical federated architecture in which each 
function uses dedicated Line Replaceable Units 
(LRU), each having its own resources (computing, 
communication and I/O services) (Watkins and 
Walter, 2007), (Moir, Seabridge and Jukes, 2013). 
However, with the evolution of avionics systems 
requirements and technological progress, these 
systems have become more and more complex. This 
increasing complexity, combined with economic 
concerns, have led to a wave of innovations 
unleashed by the design of a new modular 
architecture documented in ARINC-651 (AEEC, 
1997a) “Design Guidance for Integrated Modular 
Avionics” (Louadah, Champagne and Labiche, 
2014). 

The aerospace industry is currently transitioning 
and abandoning the traditional federated 
architectures in favor of Integrated Modular 
Avionics (IMA) (Louadah, Champagne and 
Labiche, 2014). An IMA architecture makes use of 
shared computing resources so that resources 
duplicated in each federated LRU are replaced by a 
set of common IMA resources (Watkins and 
Walter, 2007). 

An interface in a federated architecture is 
described as a physical interface to a box and the 
description of this interface refers to the 
documentation of interwiring and data flow 
between boxes. In contrast, in an IMA architecture, 
the interfaces are not described by physical 
interfaces only but also by logical system 
boundaries where data is exchanged between virtual 
systems within the common shared resources 
(Watkins and Walter, 2008). Hence, describing 
interfaces in an IMA architecture requires more 
details, including all component interfaces of the 
hosted applications (such as processing  
requirements) and their common shared resources 
(such as performance capabilities) (Watkins and 
Walter, 2008), (RTCA, 2005). 



 

Whether federated or IMA architecture is used, 
the proper integration of various components 
requires detailed specification and description of 
their interfaces. Such specifications are usually 
described in an Interface Control Document (ICD).  
Avionics systems integration based on their ICDs is 
challenging due to the absence of a commonly 
accepted language to define and use them.  

Our research project, depicted in Figure 1, aims 
to develop reliable and cost-effective mechanisms 
to produce and manage ICDs. The ultimate goal of 
this project is to provide innovative tools to system 
engineers, allowing them to efficiently integrate 
equipment from different suppliers described by 
their ICDs, when building avionics systems. To do 
so, our main idea consists in leveraging the 
strengths of model-driven engineering to the 
development, use and verification of ICDs, in order 
to ensure unambiguous description and 
representation of interfaces and ICDs, and enable 
automatic verification and analysis of 
interfaces (Louadah, Champagne and Labiche, 
2014).  

As a first step towards this goal, we must 
accurately capture the information required to 
properly define ICDs. In this paper, we concentrate 
exclusively on this first step (process (1) of Figure 
1) by proposing a data extraction process, built 
upon open avionics standards in both federated and 
IMA systems, to assist the interface specification 
process of avionics systems. In fact, there exist two 
types of avionics systems architectures, open and 

closed, depending on whether they are based on 
proprietary interfaces or open standards (Watkins 
and Walter, 2007), (Watkins, 2006a, 2006b). This 
paper deals with open systems only, as we do not 
have access to proprietary ones. As there is no 
common definition of what an ICD is or should 
contain, we exploit open avionics standards of both 
federated and IMA systems, which contain both 
ICD-related and non-ICD related information.  

The work described in this paper can be useful 
for researchers from both academia and industry 
and its application domain is mainly twofold. On 
the one hand, it enables better understanding and 
more efficient extraction process of open avionics 
systems interface specifications. On the other hand, 
it provides a clearer vision on the information 
needed to build a model-driven solution for 
modeling avionics systems interfaces. 

The remainder of this paper is structured as 
follows. We give an overview on avionics systems 
and their related interfaces in Section 2. We present 
and discuss the example used in this paper in 
Section 3. We describe the data extraction process 
in Section 4, followed by the results of its validation 
through a use case in Section 5. Finally, we 
conclude the paper in Section 6. 

2 BACKGROUND 

We now provide a snapshot of the avionics system 
evolution, followed by a presentation of the main 
differences between federated and IMA avionics 
systems as well as the interfaces that each of them 
presents. 

2.1 Avionics Systems 

During the 80s and early 90s, avionics systems 
followed federated architectures where each 
function used dedicated Line Replaceable Units 
(LRU), each having its own resources (computing, 
communication and I/O services) (Spitzer, Ferrell, 
U., Ferrell, T., 2014). Federated architecture 
defined avionics systems as a set of distributed, 
interrelated and independent functions (Watkins and 
Walter, 2007). The LRU, along with its embedded 
application software, was generally designed and 
provided by one supplier (Moir, Seabridge and 
Jukes, 2013).  

In the military context, the federated 
architecture was adopted by using the bidirectional 
MIL-STD-1553B data bus. Instead, the civil 
community chose to use ARINC-429 (AEEC, 
2012), which represents the most used data bus in Figure 1 Research project steps 



 

the civil context since its introduction in the 1980s 
(Moir, Seabridge and Jukes, 2013).  

Along with the increasing complexity of 
avionics systems and economic concerns, the 
avionics industry witnessed the inception of a new 
approach, called Integrated Modular Avionics 
architecture (IMA), to reduce cost, weight, and 
volume while taking advantage of technological 
advances. In an IMA architecture, applications can 
be hosted and collocated on the same common 
resources. 

 The ARINC-653 “Avionics Application 
Software Standard Interface” (AEEC, 2010) defines 
standardised interfaces between hosted applications 
and the underlying RTOS (Real Time Operating 
System). In addition, it guarantees a spatial and 
temporal segregation between applications by using 
the partitioning mechanism and thus avoiding error 
propagation between partitions (Spitzer, Ferrell, U., 
Ferrell, T., 2014), (Cook and Hunt, 2007). An IMA 
architecture is usually based on an ARINC-664-P7 
(AEEC, 2009a) communications network, known as 
Aviation Full Duplex (AFDX). Other 
communication mechanisms can also be used, such 
as in the Boeing 777, which uses ARINC-629 as a 
data bus.  

2.2 Avionics systems interfaces 

Nowadays, both IMA and federated architectures 
are used when building avionics systems, 
sometimes together. The proper integration of 
avionics systems’ components requires detailed 
specification and description of their interfaces, 
which are usually described in ICDs. This 
integration of avionics systems, based on their ICDs 
produced by different suppliers with different 
formats and content, is a challenging task due to the 
lack of a commonly accepted language to define 
and use them. To overcome these issues and as a 
first step toward the automation of ICDs related 
activities, we must accurately capture the 
information required to properly define them. 
Determining the appropriate information to capture 
is the ultimate objective of this paper. 

An interface in a federated system is usually 
described as a physical interface to a box (i.e., 
LRU), the inputs/outputs it presents as well as the 
protocol it uses. Instead, an IMA component 
presents logical interfaces that lie between virtual 
systems and the shared common resources (Watkins 
and Walter, 2008). The interfaces between the 
hosted applications and their computing resources, 
which were hidden in federated systems (internal 
interface and supplier proprietary), are now exposed 
interfaces in an IMA system. 

A hosted application interface can be described 
by its inputs/outputs and their attributes (describing 
its interactions with other hosted applications), the 
protocols it uses as well as its resource requirements 
(AEEC, 2010, Section 3.1.2). An IMA platform 
presents physical interfaces, but also interfaces to 
the hosted applications, that are mainly described 
by the platform performance capabilities and limits. 
The platform performance attributes can be found 
and extracted from DO-255 (RTCA, 2000, tables 1-
5). 

3 EXAMPLE DESCRIPTION 

To illustrate and validate our proposed data 
extraction process, we introduce in this section an 
avionics system as a running example. This system 
is depicted in Figure 2 and consists of a flight 
management system and a few other avionics 
systems that must interface with it.  

We have chosen the flight management system 
because it represents the core of every avionics 
system while the other systems are chosen based on 
their high interactions with it. 

The flight management system is typically 
composed of two units: a computer unit (FMC) 
specified in ARINC-702A-4 (AEEC, 2006), and a 
control display unit, which was (but is no longer) 
included in ARINC-702 (AEEC, 1994). 

As depicted in Figure 2, the flight management 
system interfaces with a few other avionics systems 
will be considered in this example. 

The following are the specifications of the 
example avionics systems:  

• Inertial Reference System and the Air Data 
System as one unit, specified in ARINC-738A-1 
(AEEC, 2001) (ADIRU). 

• Multi-purpose Control Display Unit (MCDU) 
specified in ARINC-739A-1 (AEEC, 1998). 

• Flight Control Computer System (FCCS) 
specified in ARINC-701 (AEEC, 1993). 

• Instrument landing System (ILS) receiver 
specified in ARINC-710-10 (AEEC, 1997b).  
The connections between the Flight 

Management Computer (FMC) and other systems 
are shown in Figure 2. 

The FMC along with the grayed out systems in 
this figure are used to illustrate our proposed data 
extraction process while the FMC and the 
remaining systems are used in the validation 
process. 

We assume the ILS and MCDU follow a 
federated architecture while the remaining systems 
follow an IMA architecture. This allows us to 



 

present our data extraction process and its 
validation in a context where both architectures are 
used in the same avionics system. 

4 DATA EXTRACTION PROCESS 

In this Section, we present our proposed data 
extraction process, its illustration and validation 
using avionics system examples. 

4.1 Main sources of information 

To collect the system interfaces information, we 
mainly use the ARINC-429 standard, and 
equipment associated ARINC specifications, such 
as the ARINC-7xx series of specifications to handle 
federated systems as well as communications in 
both IMA and federated architecture, and DO-297 
and DO-255 to handle IMA architecture. 

4.1.1 ARINC-429  

ARINC-429 (P1 and P2) represents an important 
source of information about equipment data flows. 
The ARINC-429 basic pieces of information are 32 
bits digital words. A word content is identified by 
three octal characters coded in binary and represents 
the first eight bits of the word (word label).  

The label code assignments are shown in 
Attachment 1-1 to ARINC-429 (P1) (AEEC, 2012) 

where the last three characters designate the 
equipment identifier, and the equipment codes are 
specified in Attachment 1-2 of this specification.  

Depending on the type of encoding used (i.e., 
BCD or BNR), the characteristics of the words, 
such as unit, range, and resolution to be transferred 
by the ARINC-429 bus are specified in Attachment 
2a and Attachment 2b of this specification.  

4.1.2 ARINC-7xx 

In this work, we use the ARINC-7xx series of 
specifications for both federated and IMA 
architectures. In the federated context, the whole 
interface specification of the associated equipment 
can be extracted from its associated ARINC 
specification. However, only connections and data 
inputs/outputs can be specified for IMA 
applications because they do not present physical 
interfaces. The inputs/outputs are ARINC-429 
words even in an IMA architecture.  

4.1.3 DO-297/DO-255 

DO-297 (RTCA, 2005) and DO-255 (RTCA, 2000) 
are used to specify IMA applications needs and 
platform capabilities. 

4.2 Process illustration 

The reader should be aware that this section and the 
next ones illustrate the complex and highly iterative 
nature of the underlying task (e.g., extracting ICD-
relevant information from a set of standards), which 
is reflected in the proposed process. We have 
attempted to be as clear as possible. 

The three gray equipment of Figure 2, specified 
in ARINC-702A, ARINC-738, and ARINC-710, 
are used to illustrate the data extraction process 
depicted in Figure 3 as a flowchart diagram. We 
refer to its processes, numbered in bold face in 
Figure 3, in the text below when illustrating the 
extraction process. 

The processes and their data outputs having 
thick borders are used to refer to software aspects of 
the interfaces.   

 

Table 1 FMC to ADIRU (IR Portion) inputs (AEEC, 2001). 
(OCTAL) Parameter name Signal 

format 
Max Transmit 
interval (msec) 

Range 
(Scale) 

SIG 
Bits/Figures 

PAD 
FIG 

UNITS RESOL 

041 Set Latitude BCD 500 90S-90N 5 0 Deg/Min 0.1 
042 Set Longitude BCD 500 180E-180W 6 0 Deg/Min 0.1 
043 Set Magnetic BCD 500 0-359.9 3 2 Deg 0.1 
150 UTC BNR 1000 23:59:59 17 N/A HR:MIN:SEC 0.1 
260 Date BCD 1000 N/A 6 N/A D:M:YR 1 Day 

 

Figure 2 FMC connections. 
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The FMS and ADIRU are used as IMA 
applications and the ILS as a federated equipment. 
Subsequently, we use the FMS and ADIRU ARINC 
specifications to specify the inputs/outputs data as 
well as their characteristics. 

We start with the ADIRU ARINC-738A-1. The 
first step as depicted in Figure 3 consists in 
consulting the standard interwiring presented in one 
of the ARNIC-738A specification Attachments 
(Attachment 4-1 in our case). As the ADIRU is 
used in an IMA architecture, we thus execute 
process (3) and build the connection schema 
without taking the number of ports and the 
electrical characteristics into account (because IMA 
applications have no physical interface). 

Figure 2 depicts the ADIRU interconnection 
with the other elements of our example. As stated 
earlier, the gray parts will be used to illustrate the 
data extraction process. Later on, both processes (4) 
and (9) should be executed. Let us first start with 
the process (4) which consists in checking the 
specification attachments to verify if the set of 

inputs/outputs are specified. In the Attachment 7-1 
to the ARINC-738A, the inputs/outputs of the 
Inertial Reference (IR) function of the ADIRU are 
specified and those of Air Data Reference (ADR) 
are specified in its Attachment 7-2. To identify the 
sources of the inputs and destinations of the outputs, 
we should check the attachments again or the 
specification text if any. In our case, the FMC input 
data are specified in the text of page 14 of the same 
ADIRU specification.  

 
“The FMC provides Set Latitude (label 041), 

Set Longitude (label 042), Set Heading (label 043), 
Time (label 150) and Date (label 260) initialization 
data to the ADIRU.” 

Their characteristics are specified in Attachment 
7-1 as shown in Table 1. However, the ADIRU 
outputs to the FMC are not specified even in its old 
versions when executing process (5). Hence, 
process (6) consisting in the consultation of the 
corresponding ARINC specification (and its old 
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federated?

Begin
ARINC-DOCs
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1) Build the connection schema with the 
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pins

Build the connection schema 
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Verify the equipment connections
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interface
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Check old versions of this 
specification as well as 
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version if needed) to extract 
the exchanged parameters

Go to the data standard in 
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and limits 
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- Connection schema
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End
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If an output port is defined 

as a general output port, 

the corresponding 

equipment specification 

should be consulted  

Figure 3 Flowchart of our proposed data extraction process. 



 

versions if any) should be executed. After carefully 
checking ARINC-702A, we found that the required 
information is not specified. Hence, we consulted 
its old version ARINC-702-6. We found that the set 
of transmitted parameters along with their 
destinations are specified in Attachment 4. The 
word labels can be found using the FMC code 
“Eqpt Id=002” as well as parameter names in 
Attachment 1-1 to the ARINC-429-P1 by executing 
process (7). Furthermore, their respective 
characteristics can be extracted in ARINC-429 
using the equipment codes along with words labels.  

The labels from the IR part of the ADIRU are: 
BNR-encoded (212, 310, 311, 312, 313, 314, 317, 
320, 321, 322, 323, 324, 325, 362, 363 and 364), 
BCD-encoded (010, 011, 012, 013, 014 and 044), 
and 270 as a discrete output. 

The labels from the ADR part of the ADIRU 
are: BNR-encoded (204, 205, 206, 207, 210, 211, 
213, 220, 251 and 252), and 270, 271, 350 and 351 
as discrete outputs. 

Finally, the set of inputs/outputs can be 
produced by executing process (8). The execution 
of process (9) along with process (10) provides us 
with the set of the platform performance attributes 
(see Figure 4) and the set of application resource 
needs, respectively. 

Let us now apply the process on the FMC 
(ARINC-702A). Starting by process (1) of Figure 3 
and based upon the “standard interwiring” page 100 

of ARINC-702A, we built the FMC interconnection 
diagram by executing process (3). As depicted in 
gray in Figure 2, the FMC interacts with the 
ADIRU (ARINC-739a-1) and ILS (ARINC-710-
10). 

Then, and similarly to the ADIRU and being 
considered in an IMA context, both processes (4) 
and (9) should be executed (see Section 2.2 of this 
paper for processes (9) and (10)). Therefore, by 
checking the ARINC-702 attachments as stated in 
process (4), we found that only FMC outputs are 
specified in Attachment 4. The only outputs we 
have for this example are those sent to the ADIRU.  

 However, the ADIRU is not mentioned in the 
set of FMC outputs destinations. Hence, the general 
data output specified in the text of the specification 
is consulted and we found that the ADIRU receives 
initialisation data from the FMC. In Section 4.2.1of 
the ARINC-702A, we found that these data are 
BCD-encoded set latitude, set longitude, and set 
heading along with date and time. The 
corresponding labels (041, 042 and 043 in BCD-
encoded) along with the BNR-encoded (150 and 
260) labels are found in Attachment 4. Their 
respective characteristics can then be extracted from 
the ARINC-429 specification using labels and FMC 
code.  

As the set of inputs are not specified in that 
version of FMC ARINC specification, we then 
consulted (as stated in process (5)) its old version, 
namely ARINC-702-6, and found this latter stated 

Figure 4 Conceptualization of the platform capabilities and limits 



 

in Attachment 4 as a set of received parameters. As 
the old specification versions are used only for 
guidance, the process (6) is then executed by 
consulting the ILS and ADIRU specifications. As 
stated earlier, the corresponding labels as well as 
the words characteristics can be extracted from 
ARINC-429 using the source equipment code along 
with the parameters names. Equipment codes in our 
case are 010 for the ILS and 038 for the ADIRU. 
The BNR-encoded (010, 011, 012, 013, 014 and, 
044 labels) parameters, BCD-encoded (212, 310, 
311, 312, 313, 314, 317, 320, 321, 322, 323, 324, 
325, 362, 363 and, 364 labels) parameters as well as 
discrete (label 270) parameter are received from the 
ADIRU. And the BCD-encoded (label 33) 
parameter along with BNR-encoded (173 and 174 
labels) parameters are received from the ILS. 
Hence, we can move to the process number (8) to 
produce the set of inputs/outputs data.  

By applying the process depicted in Figure 3, 
we have first consulted the standard interwiring and 
as an utilisation device port was defined, we 
consulted those of ADIRU and FMC to verify if it 
interacts with them. We have found that the FMC 
has an input data port from the ILS but it is not the 
case for the ADIRU. We therefore traced the 
interconnection diagram of the ILS, shown in 
Figure 2, by executing process (2) as the ILS is used 
in a federated context.   

The physical interconnection diagram of the ILS 
is depicted in Figure 5 along with its electrical 
characteristics which can be extracted using notes 
associated to the ILS pins and ports (e.g., the type 
of wire, impedance, etc.).  

 We move to process (4) and according to the  
text of Section 3.4 of the ARINC-710-10, we have 
found two identical ILS receiver output ports: one 
serving the Automatic Flight Control System 
(AFCS) and the second dedicated for other 
utilisation devices (e.g., FMC). The data transmitted 
over these ports are the localizer and glide slope 
deviation information that are respectively 
identified by the labels 173 and 174, as well as the 
ILS channel frequency that contains the 033 label 
code. The data standard is specified in Attachment 3 
but as this specification is old, we must verify its 
compliance with the ARNIC-429 specification and 
extract the information from this latter. We finally 
execute the process number (8) to produce the set of 
inputs/outputs (in our case, we consider only the 
interaction between gray equipment specified in 
Figure 2).  

4.3 Summary 

The data extraction process presented in this paper 
allowed us to capture the information we consider is 
required to be presented in an ICD. 

A summary of relevant avionics system 
interfaces is depicted in Figure 7. The right hand 
side of the figure represents a federated equipment 
interfaces while the left hand side represents the 
IMA system interfaces. As stated earlier, interfaces 
of a federated equipment refers to documentation of 
its interwiring and data flow. Thus, the interfaces of 
a federated equipment can be captured by logical 
interfaces “A” on the figure, and physical interfaces 
“B” on the figure. An interface type “A” captures 
the exchanged data while an interface type “B” 
captures the electrical characteristics of the 
interface (e.g., connectors, pins, voltage, 
impedance, etc.). 

An IMA system is composed of several virtual 
systems representing the different applications 
hosted on shared common resources which provide 
spatial and temporal isolation. An IMA hosted 
application presents two types of interfaces as 
shown in the left hand side of Figure 7. An interface 
type A which captures the data exchanged by the 
application, and an interface type “D” specifying 
the application resource needs.  

The common resources, as shown on the left 
hand side of Figure 7, present an interface type “B” 
describing its electrical characteristics and 
interwiring as well as interface type “C” describing 
its capabilities and limits. 

An interface type “A” captures the set of data 
inputs/outputs of applications, their characteristics 
and formats. Table 1 shows an example of an 
interface type “A” content which captures the FMC 
outputs to the ADIRU, along with their 
characteristics. 

Figure 6 is an example of a federated equipment 

 

Figure 6 ILS electrical characteristics. Figure 5 ILS electrical characteristics. 



 

interfaces type “B”. The DO-255 (RTCA, 2000, 
tables 1-5) tables describe the attributes that should 
be specified to describe an interfaces type “C” of 
the common resources. An interface type “D” 
describing application resources needs and 
requirements can be captured using the attributes 
defined in (RTCA, 2000, tables 1-5) in the form of 
assumes/guarantees assumptions. 

5 VALIDATION 

In this paper, we used the FMC along with the gray 
elements of Figure 2 to design and illustrate our 
proposed data extraction process while the FMC 
and the rest of elements are used in the validation 
process. 

 We used the ILS and MCDU in a federated 
context and the rest of the elements in an IMA 
context. To validate our proposed process, we 
applied it on the FMC ARINC-702A, FCC ARINC-
701and MCDU ARINC-739A.  

We first start by the FMC-ARINC-702A. We 
consulted Attachment 2-2 and execute process (1). 
However, a general output port, having the FCC as 
one of its destinations (see Section 5.2.2 of ARINC-
702A), is defined and so should be considered. As 
the FMC is considered in an IMA context, we 
execute the process (3) to build the interconnection 
diagram between the FMC and other equipment 
(depicted in Figure 2 as non gray equipment and 
connections). Then, we executed the process (4) to 
look for inputs/outputs of the FMC to/from the FCC 
and MCDU. The general (optional and basic) data 
outputs are specified in Attachment 4 of ARINC-
702A of the FMC specification and their 
characteristics can be extracted from ARINC-429 
using their labels as well as the FMC code 
equipment (002). However, the data inputs are not 
specified, thus we move to the process (5) to 
consult its old version ARINC-702-6.  

In Attachment 4 of ARINC-702-6, the inputs 
(selected course, selected heading, selected altitude, 
selected airspeed, selected vertical speed, and 
selected mach) from the FCC (Glare Shield 
Controller) are specified. Using the equipment code 
(0A1) and parameters names, we found the 
following FCC inputs in ARINC-429: BCD-
encoded (020, 022, 023, 024, 025, 026, and 027 
labels) parameters along with BNR-encoded (100, 
101, 102, 103, 104, 105, 106, and 110 labels) 
parameters. Subsequently, we execute the process 
(6) and consult the FCC specification to check the 
set of outputs from the FCC to the FMC. In page 
16, the BNR-encoded (100, 110, 102, 103, 101, 
106, 104, 105, and 112 labels) and BCD-encoded 
(024, 027, 025, 026, 023, 022, 020, 017, and 021 
labels) are specified. 

 The outputs of the FMC to the MCDU, which 
is considered in a federated context, are partially 
specified in Attachment 4 of the FMC specification. 
These outputs are (220, 221, and 222) address 
labels as well as 250 BNR-encoded label. It is 
mentioned that we should consult ARINC-739 for 
other outputs to the MCDU. By executing process 
(6), we consulted ARINC-739A and found, in 
section 3.9.7, the words along with their labels 
specified. The inputs from the MCDU to the FMC 
are not specified even in the old version of the FMC 
specification, so process (6) is executed. Therefore, 
the ARINC-739A is consulted and the outputs to 
the FMC are specified in its section 3.2. Inputs and 
outputs can be extracted from the ARINC-429 by 
executing process (7) and using the MCDU code 
(039) and the word labels (377 of the MCDU 
identification, 270 discrete word, and 350 
maintenance word). We finally execute process (8) 
to produce the set of data inputs/outputs of the 
FMC. 

We apply our proposed process starting by the 
process (1) on a second equipment (FCC ARINC-
701), which is considered in an IMA context. The 
communication diagram is then built by executing 
process (3) (see Figure 2, connection between FMC 
and FCC). Furthermore, we looked for 
inputs/outputs by executing process (4), (see 
Section 2.2 of this paper for process (9) and (10)). 
The outputs to the FMC labels are specified in page 
16 and are BNR-encoded (100, 110, 102, 103, 101, 
106, 104, 105, and 112 labels) and BCD-encoded 

 

Table 2 Summary of interface content examples. 

Interfaces Examples 
A Table 1 
B Figure 5  and  Figure 8 
C DO/255 (RTCA, 2000, tables 1-5) 
D Figure 4 

Figure 7 Avionics systems interfaces. 



 

(024, 027, 025, 026, 023, 022, 020, 017, and 021 
labels). Their characteristics can be extracted from 
ARINC-429 using the FCC controller code 
equipment (0A1) as well as those labels. The inputs 
from the FMC are specified in Attachment 6 of 
ARINC-701 but associated with the mention TBD, 
which means that the FMC inputs are not specified 
yet. As there is no old version of this specification, 
we move from process (5) to (6) directly and thus 
consult the corresponding specification (ARINC-
702A). In its Attachment 4, the general outputs are 
specified and in Section 5.2.2, it is stated that the 
FCC receives the FMC general data outputs. These 
inputs to FCC can be extracted from ARINC-429 
using FMC code equipment along with the outputs 
labels by executing process (7). Finally, we produce 
the set of FCC inputs/outputs through the execution 
of process (8). 

We then applied our data extraction process on 
the MCDU ARINC-739A, which is considered as a 
federated equipment. We consulted the standard 
interwiring in the Attachment 1 and executed 
process (1) to verify its connections. As it presents 
connections to aircraft subsystem without 

specifying them, the corresponding specifications of 
our validation equipment are consulted. Hence, we 
concluded that the FCC has no connection to the 
MCDU. Then, we produced the MCDU 
interconnection diagram considering the same 
number of ports by executing process (2) as shown 
in Figure 8. We then executed process (3) to look 
for the MCDU inputs/outputs. As the MCDU 
communicates with the FMC and as stated in 
Section 3.5 of the MCDU specification, the outputs 
of the MCDU are provided by a single output port 
and should include its identification (337 label), 
discrete (270 label), and maintenance word (350 
label). Inputs to the MCDU from the FMC are 
specified in Section 3.9.7 of the ARINC-739A and 
can be extracted from ARINC-429 using the FMC 
code and the parameters labels. We then executed 
the process (8) to produce the set of inputs/outputs 
to/from the MCDU. The MCDU communication 
protocol is defined in Section 3.7 of ARINC-739A 
and the word formats are specified in its 
Attachment 3. 

The interfaces that an avionics system can 
present are described in Figure 7 and their related 
contents, captured using the proposed data 
extraction process, can be summarised in Table 22. 

6 RELATED WORKS 

The concept of interface has different meanings in 
the literature. Thus, the tools needed for defining 
and managing them are also different, depending on 
the different perceptions of what an interface is.  
In fact, a recent systematic literature review 
(Parslov, and Mortensen, 2015) on interface 
definitions has shown that there are thirteen 
different definitions (perceptions) of an interface in 
the literature. In addition, it has been found that 
around half of these perceptions consider an 
interface as part of the elements, instead of being a 
separate design object. Considering an interface as 
part of elements, which enables compatibly checks 
and independent element tests, is suitable for an 
integration process and bottom-up approach. Thus, 
depending on whether an interface is considered as 
part of elements or not, and depending on its 
definition and content, the existing solutions of 
interface modeling can be useful or not for us in the 
context of this research project. 
Despite the important role of ICDs in the process of 
building avionics systems, only a few recent 
research works have addressed the problems of their 
ambiguous definitions and challenges of their use 
when building avionics systems using their ICDs 
(Louadah, Champagne and Labiche, 2014). 

 

Figure 8 MCDU electrical characteristics. 



 

Among these works, Rahmani and Thomson 
have proposed a systematic methodology for 
modeling interfaces (Rahmani, and Thomson, 
2011). They have reused the principle of interfaces 
categorization and hierarchization to provide a 
unique interface architecture topology for two 
interacting subsystems. Thus, they defined a generic 
model for ICDs based on class diagrams but 
considered an interface as the type of objects and 
media that flow through sub-system ports. 

Another work of the same authors proposed a 
computer aided methodology for defining and 
controlling subsystem interfaces (Rahmani and 
Thomson, 2012), enabling a formal expression of 
interface requirements and mating rules of two 
subsystems (which can be useful for physical 
interfaces compatibility checking). However, the 
interface is considered as a connection between two 
ports, and thus, could exist only by having 
knowledge about the two ends of such a connection 
and restricted to hardware systems interfaces. 
However, in avionic systems, we need to specify 
both hardware and software interfaces.  

Pajares et al. proposed a tool for ICD 
Management for embedded avionic systems 
(Pajares et al., 2010). They defined a set of meta-
models (data definition, data coding and 
communication architecture) for defining and 
managing ICDs in a formal way, capturing only a 
subset of the information that one typically requires 
in an ICD. In a similar way, Tapp defined a 
language to describe system interfaces related to the 
various aspects surrounding their data exchanges 
(Tapp, 2013), though without mechanisms to 
specify constraints on the interfaces. Luca de 
Alfaro et al. on the other hand, focused only on 
constraints, defining sets of assumptions and 
guarantees on an interface’s inputs and outputs 
variables respectively (de-Alfaro, and Henzinger, 
2005). In fact, the authors proposed a stateless 
interface language dubbed assume/guarantee and 
particularly, the notion of interfaces composability, 
formally verifiable, to check the interfaces 
compatibility of two components designed 
separately. 

Other works such as (Specht, 2009 ;  L-Sergent 
and Guennec, 2014) advocate the use of some tools 
but don’t bring significant help to integrators using 
ICDs when building avionic systems. In fact, the 
use of these tools helps to better manage ICDs 
contents, but can’t bring any help to the 
unsystematic and ambiguous description of 
interfaces.  

Sabetzadeh et al., proposed a methodology for 
modeling SW/HW interfaces using SysML 
(Systems Modeling Language), but they considered 
an interface as a separate design object which is 

more suitable for top-down approach (Sabetzadeh et 
al., 2011).   

Other works such as (Specht, 2009 ;  L-Sergent 
and Guennec, 2014) advocate the use of some tools 
but don’t bring significant help to the integrators 
using ICDs when building avionic system. In fact, 
the use of these tools offers better management of 
ICDs contents but can’t bring any help to the 
unsystematic and ambiguous description of 
interfaces.  

Sabetzadeh et al., proposed a methodology for 
modeling SW/HW interfaces using SysML 
(Systems Modeling Language), but they consider an 
interface as a separate design object which is more 
suitable for top-down approach (Sabetzadeh et al., 
2011).  Fosse and Delp proposed a model-based 
approach for modeling interfaces and interactions 
based on SysML (Fosse and Delp, 2013). The 
authors have decoupled the inputs/outputs and their 
related constraints from the interface specification 
to be considered as part of system interaction 
specification. However, for integration concerns, 
the compatibility between the sender/receiver set of 
inputs/outputs should be verified.  

In summary, none of the existing works has 
covered the interface concepts needed in the context 
of avionic systems integration.  As stated earlier, 
the first step toward developing a solution that will 
meet the avionic integration needs, which is the 
main aim of this paper, is the identification of what 
an ICD should contain. 

7 CONCLUSIONS AND 
PERSPECTIVES 

In this paper, we introduced a data extraction 
process aiming to reduce the effort and time needed 
to understand, read and extract avionics system 
interfaces data from open avionics standards.  

We illustrated and validated our data extraction 
process using a flight management system and some 
of other systems interfacing with it namely FCC, 
MCDU, ADIRU, and ILS.  

This paper provides a clear vision on what an 
interface specification should include in both 
federated and IMA avionics systems and thus 
represents a step towards designing a complete 
model-driven solution for modelling avionics 
system interfaces.  

Future work will investigate the usefulness and 
efficiency of this process and subsequently focus on 
proposing an ICD modelling solution based on the 
results of this work. 
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