
A Data Extraction Process for Avionics Systems’ Interface
Specifications

Hassna Louadah1, Roger Champagne1, Yvan Labiche2, and Yann-Gaël Guéhéneuc3
1École de technologie supérieure (ÉTS), Montreal, Canada

2Carleton University, Ottawa, Canada
3École Polytechnique de Montréal, Montreal, Canada

{hassna.louadah.1, roger.champagne}@etsmtl.net, labiche@sce.carleton.ca, yann-gael.gueheneuc@polymtl.ca

Keywords: Interface, Interface Control Documents, avionics systems, IMA.

Abstract: Avionics systems, along with their internal hardware and software components interfaces, must be well
defined and specified (e.g., unambiguous, complete, verifiable, consistent, and traceable specification). Such
a specification is usually written in the form of an Interface Control Document (ICD), and represents the
cornerstone of the avionics system integration activities. However, there is no commonly accepted language
to define and use these ICDs and no common definition of what an ICD is or should contain. Indeed,
avionics companies define their own, proprietary ICDs and processes. In this paper, we first identify the
pieces of information that an ICD should contain for both federated and IMA open systems. Then, we
propose a data extraction process that enables better understanding and more efficient extraction of open
avionics systems interface specifications, and provides a clearer vision on the information needed to build a
model driven solution for modeling avionics system interfaces, our long-term goal. We validate this process
by applying it on a set of open avionics sub-system standards and the results have shown its feasibility.

1 INTRODUCTION

The beginning of the 20th century was marked by
the advent of the powered flight in 1903 and, ever
since, the aviation technology has continuously
progressed in all fields leading to the construction
of today’s aircrafts (Spitzer, Ferrell, U., and Ferrell,
T., 2014).

Up to the 90s, avionics systems followed a
classical federated architecture in which each
function uses dedicated Line Replaceable Units
(LRU), each having its own resources (computing,
communication and I/O services) (Watkins and
Walter, 2007), (Moir, Seabridge and Jukes, 2013).
However, with the evolution of avionics systems
requirements and technological progress, these
systems have become more and more complex. This
increasing complexity, combined with economic
concerns, have led to a wave of innovations
unleashed by the design of a new modular
architecture documented in ARINC-651 (AEEC,
1997a) “Design Guidance for Integrated Modular
Avionics” (Louadah, Champagne and Labiche,
2014).

The aerospace industry is currently transitioning
and abandoning the traditional federated
architectures in favor of Integrated Modular
Avionics (IMA) (Louadah, Champagne and
Labiche, 2014). An IMA architecture makes use of
shared computing resources so that resources
duplicated in each federated LRU are replaced by a
set of common IMA resources (Watkins and
Walter, 2007).

An interface in a federated architecture is
described as a physical interface to a box and the
description of this interface refers to the
documentation of interwiring and data flow
between boxes. In contrast, in an IMA architecture,
the interfaces are not described by physical
interfaces only but also by logical system
boundaries where data is exchanged between virtual
systems within the common shared resources
(Watkins and Walter, 2008). Hence, describing
interfaces in an IMA architecture requires more
details, including all component interfaces of the
hosted applications (such as processing
requirements) and their common shared resources
(such as performance capabilities) (Watkins and
Walter, 2008), (RTCA, 2005).

Whether federated or IMA architecture is used,
the proper integration of various components
requires detailed specification and description of
their interfaces. Such specifications are usually
described in an Interface Control Document (ICD).
Avionics systems integration based on their ICDs is
challenging due to the absence of a commonly
accepted language to define and use them.

Our research project, depicted in Figure 1, aims
to develop reliable and cost-effective mechanisms
to produce and manage ICDs. The ultimate goal of
this project is to provide innovative tools to system
engineers, allowing them to efficiently integrate
equipment from different suppliers described by
their ICDs, when building avionics systems. To do
so, our main idea consists in leveraging the
strengths of model-driven engineering to the
development, use and verification of ICDs, in order
to ensure unambiguous description and
representation of interfaces and ICDs, and enable
automatic verification and analysis of
interfaces (Louadah, Champagne and Labiche,
2014).

As a first step towards this goal, we must
accurately capture the information required to
properly define ICDs. In this paper, we concentrate
exclusively on this first step (process (1) of Figure
1) by proposing a data extraction process, built
upon open avionics standards in both federated and
IMA systems, to assist the interface specification
process of avionics systems. In fact, there exist two
types of avionics systems architectures, open and

closed, depending on whether they are based on
proprietary interfaces or open standards (Watkins
and Walter, 2007), (Watkins, 2006a, 2006b). This
paper deals with open systems only, as we do not
have access to proprietary ones. As there is no
common definition of what an ICD is or should
contain, we exploit open avionics standards of both
federated and IMA systems, which contain both
ICD-related and non-ICD related information.

The work described in this paper can be useful
for researchers from both academia and industry
and its application domain is mainly twofold. On
the one hand, it enables better understanding and
more efficient extraction process of open avionics
systems interface specifications. On the other hand,
it provides a clearer vision on the information
needed to build a model-driven solution for
modeling avionics systems interfaces.

The remainder of this paper is structured as
follows. We give an overview on avionics systems
and their related interfaces in Section 2. We present
and discuss the example used in this paper in
Section 3. We describe the data extraction process
in Section 4, followed by the results of its validation
through a use case in Section 5. Finally, we
conclude the paper in Section 6.

2 BACKGROUND

We now provide a snapshot of the avionics system
evolution, followed by a presentation of the main
differences between federated and IMA avionics
systems as well as the interfaces that each of them
presents.

2.1 Avionics Systems

During the 80s and early 90s, avionics systems
followed federated architectures where each
function used dedicated Line Replaceable Units
(LRU), each having its own resources (computing,
communication and I/O services) (Spitzer, Ferrell,
U., Ferrell, T., 2014). Federated architecture
defined avionics systems as a set of distributed,
interrelated and independent functions (Watkins and
Walter, 2007). The LRU, along with its embedded
application software, was generally designed and
provided by one supplier (Moir, Seabridge and
Jukes, 2013).

In the military context, the federated
architecture was adopted by using the bidirectional
MIL-STD-1553B data bus. Instead, the civil
community chose to use ARINC-429 (AEEC,
2012), which represents the most used data bus in Figure 1 Research project steps

the civil context since its introduction in the 1980s
(Moir, Seabridge and Jukes, 2013).

Along with the increasing complexity of
avionics systems and economic concerns, the
avionics industry witnessed the inception of a new
approach, called Integrated Modular Avionics
architecture (IMA), to reduce cost, weight, and
volume while taking advantage of technological
advances. In an IMA architecture, applications can
be hosted and collocated on the same common
resources.

 The ARINC-653 “Avionics Application
Software Standard Interface” (AEEC, 2010) defines
standardised interfaces between hosted applications
and the underlying RTOS (Real Time Operating
System). In addition, it guarantees a spatial and
temporal segregation between applications by using
the partitioning mechanism and thus avoiding error
propagation between partitions (Spitzer, Ferrell, U.,
Ferrell, T., 2014), (Cook and Hunt, 2007). An IMA
architecture is usually based on an ARINC-664-P7
(AEEC, 2009a) communications network, known as
Aviation Full Duplex (AFDX). Other
communication mechanisms can also be used, such
as in the Boeing 777, which uses ARINC-629 as a
data bus.

2.2 Avionics systems interfaces

Nowadays, both IMA and federated architectures
are used when building avionics systems,
sometimes together. The proper integration of
avionics systems’ components requires detailed
specification and description of their interfaces,
which are usually described in ICDs. This
integration of avionics systems, based on their ICDs
produced by different suppliers with different
formats and content, is a challenging task due to the
lack of a commonly accepted language to define
and use them. To overcome these issues and as a
first step toward the automation of ICDs related
activities, we must accurately capture the
information required to properly define them.
Determining the appropriate information to capture
is the ultimate objective of this paper.

An interface in a federated system is usually
described as a physical interface to a box (i.e.,
LRU), the inputs/outputs it presents as well as the
protocol it uses. Instead, an IMA component
presents logical interfaces that lie between virtual
systems and the shared common resources (Watkins
and Walter, 2008). The interfaces between the
hosted applications and their computing resources,
which were hidden in federated systems (internal
interface and supplier proprietary), are now exposed
interfaces in an IMA system.

A hosted application interface can be described
by its inputs/outputs and their attributes (describing
its interactions with other hosted applications), the
protocols it uses as well as its resource requirements
(AEEC, 2010, Section 3.1.2). An IMA platform
presents physical interfaces, but also interfaces to
the hosted applications, that are mainly described
by the platform performance capabilities and limits.
The platform performance attributes can be found
and extracted from DO-255 (RTCA, 2000, tables 1-
5).

3 EXAMPLE DESCRIPTION

To illustrate and validate our proposed data
extraction process, we introduce in this section an
avionics system as a running example. This system
is depicted in Figure 2 and consists of a flight
management system and a few other avionics
systems that must interface with it.

We have chosen the flight management system
because it represents the core of every avionics
system while the other systems are chosen based on
their high interactions with it.

The flight management system is typically
composed of two units: a computer unit (FMC)
specified in ARINC-702A-4 (AEEC, 2006), and a
control display unit, which was (but is no longer)
included in ARINC-702 (AEEC, 1994).

As depicted in Figure 2, the flight management
system interfaces with a few other avionics systems
will be considered in this example.

The following are the specifications of the
example avionics systems:

• Inertial Reference System and the Air Data
System as one unit, specified in ARINC-738A-1
(AEEC, 2001) (ADIRU).

• Multi-purpose Control Display Unit (MCDU)
specified in ARINC-739A-1 (AEEC, 1998).

• Flight Control Computer System (FCCS)
specified in ARINC-701 (AEEC, 1993).

• Instrument landing System (ILS) receiver
specified in ARINC-710-10 (AEEC, 1997b).
The connections between the Flight

Management Computer (FMC) and other systems
are shown in Figure 2.

The FMC along with the grayed out systems in
this figure are used to illustrate our proposed data
extraction process while the FMC and the
remaining systems are used in the validation
process.

We assume the ILS and MCDU follow a
federated architecture while the remaining systems
follow an IMA architecture. This allows us to

present our data extraction process and its
validation in a context where both architectures are
used in the same avionics system.

4 DATA EXTRACTION PROCESS

In this Section, we present our proposed data
extraction process, its illustration and validation
using avionics system examples.

4.1 Main sources of information

To collect the system interfaces information, we
mainly use the ARINC-429 standard, and
equipment associated ARINC specifications, such
as the ARINC-7xx series of specifications to handle
federated systems as well as communications in
both IMA and federated architecture, and DO-297
and DO-255 to handle IMA architecture.

4.1.1 ARINC-429

ARINC-429 (P1 and P2) represents an important
source of information about equipment data flows.
The ARINC-429 basic pieces of information are 32
bits digital words. A word content is identified by
three octal characters coded in binary and represents
the first eight bits of the word (word label).

The label code assignments are shown in
Attachment 1-1 to ARINC-429 (P1) (AEEC, 2012)

where the last three characters designate the
equipment identifier, and the equipment codes are
specified in Attachment 1-2 of this specification.

Depending on the type of encoding used (i.e.,
BCD or BNR), the characteristics of the words,
such as unit, range, and resolution to be transferred
by the ARINC-429 bus are specified in Attachment
2a and Attachment 2b of this specification.

4.1.2 ARINC-7xx

In this work, we use the ARINC-7xx series of
specifications for both federated and IMA
architectures. In the federated context, the whole
interface specification of the associated equipment
can be extracted from its associated ARINC
specification. However, only connections and data
inputs/outputs can be specified for IMA
applications because they do not present physical
interfaces. The inputs/outputs are ARINC-429
words even in an IMA architecture.

4.1.3 DO-297/DO-255

DO-297 (RTCA, 2005) and DO-255 (RTCA, 2000)
are used to specify IMA applications needs and
platform capabilities.

4.2 Process illustration

The reader should be aware that this section and the
next ones illustrate the complex and highly iterative
nature of the underlying task (e.g., extracting ICD-
relevant information from a set of standards), which
is reflected in the proposed process. We have
attempted to be as clear as possible.

The three gray equipment of Figure 2, specified
in ARINC-702A, ARINC-738, and ARINC-710,
are used to illustrate the data extraction process
depicted in Figure 3 as a flowchart diagram. We
refer to its processes, numbered in bold face in
Figure 3, in the text below when illustrating the
extraction process.

The processes and their data outputs having
thick borders are used to refer to software aspects of
the interfaces.

Table 1 FMC to ADIRU (IR Portion) inputs (AEEC, 2001).
(OCTAL) Parameter name Signal

format
Max Transmit
interval (msec)

Range
(Scale)

SIG
Bits/Figures

PAD
FIG

UNITS RESOL

041 Set Latitude BCD 500 90S-90N 5 0 Deg/Min 0.1
042 Set Longitude BCD 500 180E-180W 6 0 Deg/Min 0.1
043 Set Magnetic BCD 500 0-359.9 3 2 Deg 0.1
150 UTC BNR 1000 23:59:59 17 N/A HR:MIN:SEC 0.1
260 Date BCD 1000 N/A 6 N/A D:M:YR 1 Day

Figure 2 FMC connections.

ARINC-702
 FMC

ARINC-738
ADIRU

ARINC-710
ILS

ARINC-739A
MCDU

ARINC-701
FCCU

The FMS and ADIRU are used as IMA
applications and the ILS as a federated equipment.
Subsequently, we use the FMS and ADIRU ARINC
specifications to specify the inputs/outputs data as
well as their characteristics.

We start with the ADIRU ARINC-738A-1. The
first step as depicted in Figure 3 consists in
consulting the standard interwiring presented in one
of the ARNIC-738A specification Attachments
(Attachment 4-1 in our case). As the ADIRU is
used in an IMA architecture, we thus execute
process (3) and build the connection schema
without taking the number of ports and the
electrical characteristics into account (because IMA
applications have no physical interface).

Figure 2 depicts the ADIRU interconnection
with the other elements of our example. As stated
earlier, the gray parts will be used to illustrate the
data extraction process. Later on, both processes (4)
and (9) should be executed. Let us first start with
the process (4) which consists in checking the
specification attachments to verify if the set of

inputs/outputs are specified. In the Attachment 7-1
to the ARINC-738A, the inputs/outputs of the
Inertial Reference (IR) function of the ADIRU are
specified and those of Air Data Reference (ADR)
are specified in its Attachment 7-2. To identify the
sources of the inputs and destinations of the outputs,
we should check the attachments again or the
specification text if any. In our case, the FMC input
data are specified in the text of page 14 of the same
ADIRU specification.

“The FMC provides Set Latitude (label 041),

Set Longitude (label 042), Set Heading (label 043),
Time (label 150) and Date (label 260) initialization
data to the ADIRU.”

Their characteristics are specified in Attachment
7-1 as shown in Table 1. However, the ADIRU
outputs to the FMC are not specified even in its old
versions when executing process (5). Hence,
process (6) consisting in the consultation of the
corresponding ARINC specification (and its old

Consult standard interwiring

Is it
federated?

Begin
ARINC-DOCs

DO-255/297

1) Build the connection schema with the
same number of pins as stated in the
standard
2) Extract electrical characteristics and
requirements using notes associated to
pins

Build the connection schema
regardless the number of pins
and electrical characteristics

Verify the equipment connections

Look for Inputs/Outputs data
in the same ARINC for each
interface

Are they
specified?

Check old versions of this
specification as well as
ARIC-429 P1

Produce the set
of inputs/
outputs data

Consult the corresponding
(transmitter/receiver)
Specification (and its old
version if needed) to extract
the exchanged parameters

Go to the data standard in
ARINC-429 and extract
these parameter
characteristics

Use the RTCA/DO-255 to
extract the platform
performance attributes

Use the RTCA/DO-255/297
to extract the hosted
applications attributes

Platform
capabilities
and limits

Set of inputs/
outputs data

- Connection schema

- Electrical characteristics

End

Connection

schema

Application
requirements

YesNo

YesNo

(1)

(2)
(3)

(4)

(9)

(5)
(6)

(7) (8)

(10)

If an output port is defined

as a general output port,

the corresponding

equipment specification

should be consulted

Figure 3 Flowchart of our proposed data extraction process.

versions if any) should be executed. After carefully
checking ARINC-702A, we found that the required
information is not specified. Hence, we consulted
its old version ARINC-702-6. We found that the set
of transmitted parameters along with their
destinations are specified in Attachment 4. The
word labels can be found using the FMC code
“Eqpt Id=002” as well as parameter names in
Attachment 1-1 to the ARINC-429-P1 by executing
process (7). Furthermore, their respective
characteristics can be extracted in ARINC-429
using the equipment codes along with words labels.

The labels from the IR part of the ADIRU are:
BNR-encoded (212, 310, 311, 312, 313, 314, 317,
320, 321, 322, 323, 324, 325, 362, 363 and 364),
BCD-encoded (010, 011, 012, 013, 014 and 044),
and 270 as a discrete output.

The labels from the ADR part of the ADIRU
are: BNR-encoded (204, 205, 206, 207, 210, 211,
213, 220, 251 and 252), and 270, 271, 350 and 351
as discrete outputs.

Finally, the set of inputs/outputs can be
produced by executing process (8). The execution
of process (9) along with process (10) provides us
with the set of the platform performance attributes
(see Figure 4) and the set of application resource
needs, respectively.

Let us now apply the process on the FMC
(ARINC-702A). Starting by process (1) of Figure 3
and based upon the “standard interwiring” page 100

of ARINC-702A, we built the FMC interconnection
diagram by executing process (3). As depicted in
gray in Figure 2, the FMC interacts with the
ADIRU (ARINC-739a-1) and ILS (ARINC-710-
10).

Then, and similarly to the ADIRU and being
considered in an IMA context, both processes (4)
and (9) should be executed (see Section 2.2 of this
paper for processes (9) and (10)). Therefore, by
checking the ARINC-702 attachments as stated in
process (4), we found that only FMC outputs are
specified in Attachment 4. The only outputs we
have for this example are those sent to the ADIRU.

 However, the ADIRU is not mentioned in the
set of FMC outputs destinations. Hence, the general
data output specified in the text of the specification
is consulted and we found that the ADIRU receives
initialisation data from the FMC. In Section 4.2.1of
the ARINC-702A, we found that these data are
BCD-encoded set latitude, set longitude, and set
heading along with date and time. The
corresponding labels (041, 042 and 043 in BCD-
encoded) along with the BNR-encoded (150 and
260) labels are found in Attachment 4. Their
respective characteristics can then be extracted from
the ARINC-429 specification using labels and FMC
code.

As the set of inputs are not specified in that
version of FMC ARINC specification, we then
consulted (as stated in process (5)) its old version,
namely ARINC-702-6, and found this latter stated

Figure 4 Conceptualization of the platform capabilities and limits

in Attachment 4 as a set of received parameters. As
the old specification versions are used only for
guidance, the process (6) is then executed by
consulting the ILS and ADIRU specifications. As
stated earlier, the corresponding labels as well as
the words characteristics can be extracted from
ARINC-429 using the source equipment code along
with the parameters names. Equipment codes in our
case are 010 for the ILS and 038 for the ADIRU.
The BNR-encoded (010, 011, 012, 013, 014 and,
044 labels) parameters, BCD-encoded (212, 310,
311, 312, 313, 314, 317, 320, 321, 322, 323, 324,
325, 362, 363 and, 364 labels) parameters as well as
discrete (label 270) parameter are received from the
ADIRU. And the BCD-encoded (label 33)
parameter along with BNR-encoded (173 and 174
labels) parameters are received from the ILS.
Hence, we can move to the process number (8) to
produce the set of inputs/outputs data.

By applying the process depicted in Figure 3,
we have first consulted the standard interwiring and
as an utilisation device port was defined, we
consulted those of ADIRU and FMC to verify if it
interacts with them. We have found that the FMC
has an input data port from the ILS but it is not the
case for the ADIRU. We therefore traced the
interconnection diagram of the ILS, shown in
Figure 2, by executing process (2) as the ILS is used
in a federated context.

The physical interconnection diagram of the ILS
is depicted in Figure 5 along with its electrical
characteristics which can be extracted using notes
associated to the ILS pins and ports (e.g., the type
of wire, impedance, etc.).

 We move to process (4) and according to the
text of Section 3.4 of the ARINC-710-10, we have
found two identical ILS receiver output ports: one
serving the Automatic Flight Control System
(AFCS) and the second dedicated for other
utilisation devices (e.g., FMC). The data transmitted
over these ports are the localizer and glide slope
deviation information that are respectively
identified by the labels 173 and 174, as well as the
ILS channel frequency that contains the 033 label
code. The data standard is specified in Attachment 3
but as this specification is old, we must verify its
compliance with the ARNIC-429 specification and
extract the information from this latter. We finally
execute the process number (8) to produce the set of
inputs/outputs (in our case, we consider only the
interaction between gray equipment specified in
Figure 2).

4.3 Summary

The data extraction process presented in this paper
allowed us to capture the information we consider is
required to be presented in an ICD.

A summary of relevant avionics system
interfaces is depicted in Figure 7. The right hand
side of the figure represents a federated equipment
interfaces while the left hand side represents the
IMA system interfaces. As stated earlier, interfaces
of a federated equipment refers to documentation of
its interwiring and data flow. Thus, the interfaces of
a federated equipment can be captured by logical
interfaces “A” on the figure, and physical interfaces
“B” on the figure. An interface type “A” captures
the exchanged data while an interface type “B”
captures the electrical characteristics of the
interface (e.g., connectors, pins, voltage,
impedance, etc.).

An IMA system is composed of several virtual
systems representing the different applications
hosted on shared common resources which provide
spatial and temporal isolation. An IMA hosted
application presents two types of interfaces as
shown in the left hand side of Figure 7. An interface
type A which captures the data exchanged by the
application, and an interface type “D” specifying
the application resource needs.

The common resources, as shown on the left
hand side of Figure 7, present an interface type “B”
describing its electrical characteristics and
interwiring as well as interface type “C” describing
its capabilities and limits.

An interface type “A” captures the set of data
inputs/outputs of applications, their characteristics
and formats. Table 1 shows an example of an
interface type “A” content which captures the FMC
outputs to the ADIRU, along with their
characteristics.

Figure 6 is an example of a federated equipment

Figure 6 ILS electrical characteristics. Figure 5 ILS electrical characteristics.

interfaces type “B”. The DO-255 (RTCA, 2000,
tables 1-5) tables describe the attributes that should
be specified to describe an interfaces type “C” of
the common resources. An interface type “D”
describing application resources needs and
requirements can be captured using the attributes
defined in (RTCA, 2000, tables 1-5) in the form of
assumes/guarantees assumptions.

5 VALIDATION

In this paper, we used the FMC along with the gray
elements of Figure 2 to design and illustrate our
proposed data extraction process while the FMC
and the rest of elements are used in the validation
process.

 We used the ILS and MCDU in a federated
context and the rest of the elements in an IMA
context. To validate our proposed process, we
applied it on the FMC ARINC-702A, FCC ARINC-
701and MCDU ARINC-739A.

We first start by the FMC-ARINC-702A. We
consulted Attachment 2-2 and execute process (1).
However, a general output port, having the FCC as
one of its destinations (see Section 5.2.2 of ARINC-
702A), is defined and so should be considered. As
the FMC is considered in an IMA context, we
execute the process (3) to build the interconnection
diagram between the FMC and other equipment
(depicted in Figure 2 as non gray equipment and
connections). Then, we executed the process (4) to
look for inputs/outputs of the FMC to/from the FCC
and MCDU. The general (optional and basic) data
outputs are specified in Attachment 4 of ARINC-
702A of the FMC specification and their
characteristics can be extracted from ARINC-429
using their labels as well as the FMC code
equipment (002). However, the data inputs are not
specified, thus we move to the process (5) to
consult its old version ARINC-702-6.

In Attachment 4 of ARINC-702-6, the inputs
(selected course, selected heading, selected altitude,
selected airspeed, selected vertical speed, and
selected mach) from the FCC (Glare Shield
Controller) are specified. Using the equipment code
(0A1) and parameters names, we found the
following FCC inputs in ARINC-429: BCD-
encoded (020, 022, 023, 024, 025, 026, and 027
labels) parameters along with BNR-encoded (100,
101, 102, 103, 104, 105, 106, and 110 labels)
parameters. Subsequently, we execute the process
(6) and consult the FCC specification to check the
set of outputs from the FCC to the FMC. In page
16, the BNR-encoded (100, 110, 102, 103, 101,
106, 104, 105, and 112 labels) and BCD-encoded
(024, 027, 025, 026, 023, 022, 020, 017, and 021
labels) are specified.

 The outputs of the FMC to the MCDU, which
is considered in a federated context, are partially
specified in Attachment 4 of the FMC specification.
These outputs are (220, 221, and 222) address
labels as well as 250 BNR-encoded label. It is
mentioned that we should consult ARINC-739 for
other outputs to the MCDU. By executing process
(6), we consulted ARINC-739A and found, in
section 3.9.7, the words along with their labels
specified. The inputs from the MCDU to the FMC
are not specified even in the old version of the FMC
specification, so process (6) is executed. Therefore,
the ARINC-739A is consulted and the outputs to
the FMC are specified in its section 3.2. Inputs and
outputs can be extracted from the ARINC-429 by
executing process (7) and using the MCDU code
(039) and the word labels (377 of the MCDU
identification, 270 discrete word, and 350
maintenance word). We finally execute process (8)
to produce the set of data inputs/outputs of the
FMC.

We apply our proposed process starting by the
process (1) on a second equipment (FCC ARINC-
701), which is considered in an IMA context. The
communication diagram is then built by executing
process (3) (see Figure 2, connection between FMC
and FCC). Furthermore, we looked for
inputs/outputs by executing process (4), (see
Section 2.2 of this paper for process (9) and (10)).
The outputs to the FMC labels are specified in page
16 and are BNR-encoded (100, 110, 102, 103, 101,
106, 104, 105, and 112 labels) and BCD-encoded

Table 2 Summary of interface content examples.

Interfaces Examples
A Table 1
B Figure 5 and Figure 8
C DO/255 (RTCA, 2000, tables 1-5)
D Figure 4

Figure 7 Avionics systems interfaces.

(024, 027, 025, 026, 023, 022, 020, 017, and 021
labels). Their characteristics can be extracted from
ARINC-429 using the FCC controller code
equipment (0A1) as well as those labels. The inputs
from the FMC are specified in Attachment 6 of
ARINC-701 but associated with the mention TBD,
which means that the FMC inputs are not specified
yet. As there is no old version of this specification,
we move from process (5) to (6) directly and thus
consult the corresponding specification (ARINC-
702A). In its Attachment 4, the general outputs are
specified and in Section 5.2.2, it is stated that the
FCC receives the FMC general data outputs. These
inputs to FCC can be extracted from ARINC-429
using FMC code equipment along with the outputs
labels by executing process (7). Finally, we produce
the set of FCC inputs/outputs through the execution
of process (8).

We then applied our data extraction process on
the MCDU ARINC-739A, which is considered as a
federated equipment. We consulted the standard
interwiring in the Attachment 1 and executed
process (1) to verify its connections. As it presents
connections to aircraft subsystem without

specifying them, the corresponding specifications of
our validation equipment are consulted. Hence, we
concluded that the FCC has no connection to the
MCDU. Then, we produced the MCDU
interconnection diagram considering the same
number of ports by executing process (2) as shown
in Figure 8. We then executed process (3) to look
for the MCDU inputs/outputs. As the MCDU
communicates with the FMC and as stated in
Section 3.5 of the MCDU specification, the outputs
of the MCDU are provided by a single output port
and should include its identification (337 label),
discrete (270 label), and maintenance word (350
label). Inputs to the MCDU from the FMC are
specified in Section 3.9.7 of the ARINC-739A and
can be extracted from ARINC-429 using the FMC
code and the parameters labels. We then executed
the process (8) to produce the set of inputs/outputs
to/from the MCDU. The MCDU communication
protocol is defined in Section 3.7 of ARINC-739A
and the word formats are specified in its
Attachment 3.

The interfaces that an avionics system can
present are described in Figure 7 and their related
contents, captured using the proposed data
extraction process, can be summarised in Table 22.

6 RELATED WORKS

The concept of interface has different meanings in
the literature. Thus, the tools needed for defining
and managing them are also different, depending on
the different perceptions of what an interface is.
In fact, a recent systematic literature review
(Parslov, and Mortensen, 2015) on interface
definitions has shown that there are thirteen
different definitions (perceptions) of an interface in
the literature. In addition, it has been found that
around half of these perceptions consider an
interface as part of the elements, instead of being a
separate design object. Considering an interface as
part of elements, which enables compatibly checks
and independent element tests, is suitable for an
integration process and bottom-up approach. Thus,
depending on whether an interface is considered as
part of elements or not, and depending on its
definition and content, the existing solutions of
interface modeling can be useful or not for us in the
context of this research project.
Despite the important role of ICDs in the process of
building avionics systems, only a few recent
research works have addressed the problems of their
ambiguous definitions and challenges of their use
when building avionics systems using their ICDs
(Louadah, Champagne and Labiche, 2014).

Figure 8 MCDU electrical characteristics.

Among these works, Rahmani and Thomson
have proposed a systematic methodology for
modeling interfaces (Rahmani, and Thomson,
2011). They have reused the principle of interfaces
categorization and hierarchization to provide a
unique interface architecture topology for two
interacting subsystems. Thus, they defined a generic
model for ICDs based on class diagrams but
considered an interface as the type of objects and
media that flow through sub-system ports.

Another work of the same authors proposed a
computer aided methodology for defining and
controlling subsystem interfaces (Rahmani and
Thomson, 2012), enabling a formal expression of
interface requirements and mating rules of two
subsystems (which can be useful for physical
interfaces compatibility checking). However, the
interface is considered as a connection between two
ports, and thus, could exist only by having
knowledge about the two ends of such a connection
and restricted to hardware systems interfaces.
However, in avionic systems, we need to specify
both hardware and software interfaces.

Pajares et al. proposed a tool for ICD
Management for embedded avionic systems
(Pajares et al., 2010). They defined a set of meta-
models (data definition, data coding and
communication architecture) for defining and
managing ICDs in a formal way, capturing only a
subset of the information that one typically requires
in an ICD. In a similar way, Tapp defined a
language to describe system interfaces related to the
various aspects surrounding their data exchanges
(Tapp, 2013), though without mechanisms to
specify constraints on the interfaces. Luca de
Alfaro et al. on the other hand, focused only on
constraints, defining sets of assumptions and
guarantees on an interface’s inputs and outputs
variables respectively (de-Alfaro, and Henzinger,
2005). In fact, the authors proposed a stateless
interface language dubbed assume/guarantee and
particularly, the notion of interfaces composability,
formally verifiable, to check the interfaces
compatibility of two components designed
separately.

Other works such as (Specht, 2009 ; L-Sergent
and Guennec, 2014) advocate the use of some tools
but don’t bring significant help to integrators using
ICDs when building avionic systems. In fact, the
use of these tools helps to better manage ICDs
contents, but can’t bring any help to the
unsystematic and ambiguous description of
interfaces.

Sabetzadeh et al., proposed a methodology for
modeling SW/HW interfaces using SysML
(Systems Modeling Language), but they considered
an interface as a separate design object which is

more suitable for top-down approach (Sabetzadeh et
al., 2011).

Other works such as (Specht, 2009 ; L-Sergent
and Guennec, 2014) advocate the use of some tools
but don’t bring significant help to the integrators
using ICDs when building avionic system. In fact,
the use of these tools offers better management of
ICDs contents but can’t bring any help to the
unsystematic and ambiguous description of
interfaces.

Sabetzadeh et al., proposed a methodology for
modeling SW/HW interfaces using SysML
(Systems Modeling Language), but they consider an
interface as a separate design object which is more
suitable for top-down approach (Sabetzadeh et al.,
2011). Fosse and Delp proposed a model-based
approach for modeling interfaces and interactions
based on SysML (Fosse and Delp, 2013). The
authors have decoupled the inputs/outputs and their
related constraints from the interface specification
to be considered as part of system interaction
specification. However, for integration concerns,
the compatibility between the sender/receiver set of
inputs/outputs should be verified.

In summary, none of the existing works has
covered the interface concepts needed in the context
of avionic systems integration. As stated earlier,
the first step toward developing a solution that will
meet the avionic integration needs, which is the
main aim of this paper, is the identification of what
an ICD should contain.

7 CONCLUSIONS AND
PERSPECTIVES

In this paper, we introduced a data extraction
process aiming to reduce the effort and time needed
to understand, read and extract avionics system
interfaces data from open avionics standards.

We illustrated and validated our data extraction
process using a flight management system and some
of other systems interfacing with it namely FCC,
MCDU, ADIRU, and ILS.

This paper provides a clear vision on what an
interface specification should include in both
federated and IMA avionics systems and thus
represents a step towards designing a complete
model-driven solution for modelling avionics
system interfaces.

Future work will investigate the usefulness and
efficiency of this process and subsequently focus on
proposing an ICD modelling solution based on the
results of this work.

ACKNOWLEDGEMENTS

This work has been financed by NSERC/CRIAQ
project AVIO-506 in collaboration with our
industrial partners CMC Electronics and Solutions
Isonéo.

REFERENCES

Watkins, C.B., Walter, R., 2007. Transitioning from
federated avionics architectures to integrated modular
avionics. In DASC '07, 26th Digital Avionics Systems
Conference. IEEE/AIAA.

Watkins, C.B., 2006a. Integrated Modular Avionics:
Managing the Allocation of Shared Intersystem
Resources. In DASC '06, 25th Digital Avionics
Systems Conference. IEEE/AIAA.

Cook, A., Hunt, K.J.R., 1997, ARINC 653 — Achieving
software re-use, Microprocessors and Microsystems,
Volume 20, Issue 8, Pages 479-483, ISSN 0141-9331,
http://dx.doi.org/10.1016/S0141-9331(97)01113-7.K.

Watkins, C.B., Walter, R., 2008. Design considerations
for systems hosted on Integrated Modular Avionics
platforms. In DASC '08, 27th Digital Avionics
Systems Conference. IEEE/AIAA.

AEEC., 2009a. ARINC-664-P7: Aircraft data network
part 7 avionics full-duplex switched Ethernet
network. Aeronautical Radio.

AEEC., 1998. ARINC-739A-1: Multi-purpose Control
and Display Unit. Aeronautical Radio.

AEEC., 1994. ARINC-702-6: Flight Management
Computer System. Aeronautical Radio.

AEEC., 1997a. ARINC-651: Design Guidance for
Integrated Modular Avionics. Aeronautical Radio.

Moir, I., Seabridge, A., Jukes, M., 2013. Civil avionics
systems.Wiley, 2nd Edition.

RTCA Inc., 2000. RTCA/DO-297: Requirements
specification for Avionics Computer Resource (ACR),
SC-200.

RTCA Inc., 2005. RTCA/DO-297: Integrated Modular
Avionics (IMA) Development Guidance and
Certification Considerations, SC-200.

AEEC., 1983. ARINC-701-1: Flight Control Computer
System. Aeronautical Radio.

AEEC., 2001. ARINC-738A-1: Air Data and Inertial
Reference System. Aeronautical Radio.

AEEC., 1997b. ARINC-710-10: MARK 2 airborne ILS
receiver. Aeronautical Radio.

AEEC., 2006. ARINC-702-A3: Advanced Flight
Management Computer System. Aeronautical Radio.

AEEC., 2010. ARINC 653: Avionics Application software
standard interface. Aeronautical Radio.

AEEC., 2012. ARINC 429P1-18: Digital Information
Transfer System (DITS) part 1 functional description,
electrical interfaces, label assignments and word
formats. Aeronautical Radio.

Spitzer, C.R., Ferrell, U., Ferrell, T., 2014. Digital
Avionics Handbook, CRC Press, 3rd Edition.

Louadah, H., Champagne, R., Labiche, Y., 2014.
Towards Automating Interface Control Documents
Elaboration and Management. In International
Workshop on Model-Based Architecting and
Construction of Embedded Systems, satellite event to
Models 2014.

Watkins, C.B., 2006b. Modular Verification: Testing a
Subset of Integrated Modular Avionics in Isolation. In
DASC '06, 25th Digital Avionics Systems Conference.
IEEE/AIAA.

Parslov, J.F., Mortensen, N.H., 2015. Interface
definitions in literature: A reality check. Concurrent
Engineering: Research and Applications.

Rahmani, K., Thomson, V., 2011. Managing subsystem
interfaces of complex products. International Journal
of Product Lifecycle Management.

Rahmani, K., Thomson, V., 2012. Ontology based
interface design and control1 methodology for
collaborative product development. CAD Computer
Aided Design.

Pajares, M., ngel, M., Daz, C.M., Pastor, I.L., Hoz, C.F.,
2010. ICD Management (ICDM) tool for embedded
systems on aircrafts. ERTS2.

Tapp, M., 2013. Automating system-level data-
interchange software through a system interface
description language. École polytechnique de
Montréal.

de-Alfaro, L., Henzinger, T.A., 2005. Interface-based
Design. Engineering Theories of Software Intensive
Systems. Springer-Verlag.

Specht, M., 2009. Creating, maintaining, and publishing
an interface control document (ICD). AHS Technical
Specialists Meeting on Systems Engineering.

L.Sergent, T., L.Guennec, A., 2014. Data-Based System
Engineering: ICDs management with SysML. ERTS2.

Sabetzadeh, M., Nejati, S., Briand, L., Evensen-Mills
A.H., 2011. Using SysML for Modeling of Safety-
Critical Software-Hardware Interfaces: Guidelines
and Industry Experience, IEEE/HASE.

Fosse, E., Delp, C., 2013. Systems engineering interfaces:
A model based approach, IEEE Aerospace
Conference Proceedings.

