Design Patterns as Laws of Quality

Yann-Gaél Guéhéneuc Jean-Yves Guyomarc’h
Khashayar Khosravi Houari Sahraoui

GEODES - Group of Open and Distributed

Systems, Experimental Software Engineering

Department of Informatics and Operations Research
University of Montreal, Quebec, Canada

{guehene, guyomarj,khosravk,sahraouh}@iro.umontreal.ca

Contents

1

Introduction

1.1
1.2
1.3
1.4
1.5

Definition of the Problem
Underlying Assumptions L.
Process of Building a Quality Model
Process of Applying a Quality Model
Discussiono

Background

2.1
2.2

Quality Models
Design Motif Identification

Building a Quality Model

3.1
3.2

Overview L e
Building a Quality Model oL

Applying the Quality Model

4.1

4.2

4.3

Identifying Roles
4.1.1 Building Numerical Signatures
4.1.2 Discussion
Identifying Design Motif,
4.2.1 Explanation-based Constraint Programming
4.2.2 Application to Design Motif Identification
4.2.3 Behaviour of the CSP Solver
4.2.4 Discussiono
Applying the Quality Model

Conclusion and Future Trends

00w wN

co @

10
11
11

14
15
16
19
21
21
23
24
25
26

27

1 Introduction

This chapter is a complete coverage of our current work on software quality
models and on design pattern identification. In this chapter, we explore the
idea of facts in science in relation with software quality models. We show how
design patterns can be used as facts to devise a quality model and we describe
the processes of building and of applying such a quality model.

In science, facts are subject of observations by the scientists, who hypothesise
laws to formalise recurring observations and theories to frame and to explain the
laws. To the authors’ best knowledge in informatics, many facts and observa-
tions have been recorded and published but only few laws and theories [Endres
and Rombach, 2003]. This lack of laws and theories impedes the successful de-
velopment of many software and reduces our trust in software and in software
science.

The lack of laws and theories is particularly visible in software quality. In
particular, there do not yet exist general software quality models that could be
applied to any software. It is indeed difficult to build quality models without
concrete laws on software and software quality. Thus, existing quality models
attempt to link internal attributes of classes and external quality characteristics
with little regard for actual facts on software quality and without taking into
account some dimensions of the evaluated software, such as its architecture.

In the following, we use design patterns [Gamma et al., 1994] as general
laws to build a software quality model. We choose design patterns because
they are now well-known constructs and have been studied extensively. Design
patterns provide “good” solutions to recurring design problems. They define a
problem in the form of an intent and motivations and provide a solution in the
form of a design motif, a prototypical micro-architecture that developers use in
their design to solve the problem. Design patterns are said to promote software
elegancy through flexibility, reusability, and understandability [Gamma et al.,
1994, page xiii].

We assume that the design motifs provided by design patterns show flexibil-
ity, reusability, and understandability. Also, we assume that we can use design
motifs as laws on software quality, as their authors intended, if not explic-
itly: Whenever developers use design motifs, they want to promote flexibility,
reusability, and understandability in their design. Thus, whenever we find a
micro-architecture similar to a design motif in a program architecture, we as-
sume that this micro-architecture promotes (or was an attempt to promote)
flexibility, reusability, and understandability.

We make the following parallels: A micro-architecture from a program ar-
chitecture is a fact. That a micro-architecture displays flexibility, reusability,
and understandability is an observation. A design motif defines some laws on
the quality characteristics of the observed micro-architecture: It formalises re-
curring micro-architectures that display flexibility, reusability, and understand-
ability. We use these laws to assess the quality characteristics of software, i.e.,
we use design motifs to build a software quality model to assess the quality of
micro-architectures, identified in a software architecture.

1.1 Definition of the Problem

We want to build a quality model that considers quality characteristics cover-
ing software elegancy. Software elegancy is highly important during software
maintenance to reduce the effort (time and cost) of maintainers. We need to
choose external quality characteristics related to software elegancy and to find
software metrics to fill the space between characteristics and software artifacts.
We use design motifs as a basis to choose quality characteristics.

Existing quality models attempt to link internal attributes of classes and
external quality characteristics with little regard for the actual architectures of
the programs. Thus, these quality models can hardly distinguish between well-
structured programs and programs with poor architectures. We use motifs to
assess programs quality characteristics using both programs internal attributes
and their architectures as a mean to capture the quality of program architectures
in a quality model.

If we were in art rather than in informatics, we would say that existing
quality models use identical quality models to compare a cubist painting, such
as “Femme Profile” by Pablo Picasso (1939), with a realist picture, as shown in
Figure 1. The two faces possess two eyes, one nose, two ears, and one mouth
but with very different organisations, none being more beautiful, only more
beautiful according to different laws.

Figure 1: A woman’s profile: Cubist (left) and realist versions (right)

1.2 Underlying Assumptions

In building a quality model using design motifs we make the following underlying
assumptions.

Human Factor. Some existing quality models can predict fault-proneness
with reasonable accuracy in certain contexts. Other quality models attempt at
evaluating several quality characteristics but fail at providing reasonable accu-
racy, from lack of data mainly.

We believe that quality models must evaluate high-level quality character-
istics with great accuracy in terms well-known to software engineers to help
maintainers in assessing programs and thus in predicting maintenance effort.

Such quality models can also help developers in building better quality pro-
grams by exposing the relationships between internal attributes and external
quality characteristics clearly.

We take a less “quantitative” approach than quality models counting, for
example, numbers of errors per classes and linking these numbers with internal
attributes. We favour a more “qualitative” approach linking quality character-
istics related to the maintainers’ perception and work directly.

Quality Theory. Unfortunately, software engineering is well-known for its
lack of laws and theories. Software engineers do not have theories to support
their work on development, maintenance, and to explain quality yet.

Thus, it is important to gather as much facts, observation and laws as pos-
sible. Design motifs are an interesting bridge between internal attributes of
programs, external quality characteristics, and software engineers. We use mo-
tifs as laws to link internal attributes (concrete implementation of programs) in
the one hand and subjective quality characteristics (subjective perceptions on
programs) on the other hand.

Program Architecture. Pairwise dependencies among classes and internal
attributes of classes are not enough: The organisations of classes, the program
architectures, are important because they are the first things software engineers
see and deal with.

A large body of work exist on program architecture, in particular on architec-
tural drift or decay [Tran et al., 2000], which aims at analysing, organising, and
tracking the modifications that architectures must undergo to keep them easy
to understand and to modify, and thus to reduce maintenance effort [Kerievsky,
2004].

However, to our best knowledge, no work attempted to develop quality mod-
els using programs internal attributes while considering their architectures ex-
plicitly. We try to build such a quality model using design motifs as laws
on architectural quality. Moreover, software engineers use motifs and patterns,
even unconsciously, when developing and maintaining programs [Gamma et al.,
1994, page xiii.

1.3 Process of Building a Quality Model

The process of building a quality model decomposes in three main tasks:
e Choosing and organising characteristics related to software maintenance.
e Choosing internal attributes that are computable with metrics.

e Linking quality characteristics with internal attributes to produce evalu-
ation rules.

The process of building a quality model decomposes in the following tasks
when using design motifs to consider program architectures:

1. Identifying the quality characteristics shared by a set of design motifs which
make programs more maintainable. This task consists in identifying qual-
ity characteristics and sub-characteristics related to some motifs of inter-
est. Among all possible characteristics, we can focus on characteristics for
program maintenance.

2. Organising the quality characteristics identified from the design motifs.
This task consists in organising quality characteristics and sub-characteristics
hierarchically [Fenton and Pfleeger, 1997] to build a quality model which
can be linked with software artifacts using metrics.

3. Choosing internal attributes relevant to design motifs and their quality
characteristics. This task consists in choosing internal attributes which
can be measured with metrics. The internal attributes must relate to the
quality model from task 2, to link software artifacts with quality charac-
teristics.

4. Identifying programs implementing the design motifs. This task consists in
identifying a set of programs in which developers used the design patterns
of interest. We name this set of base programs BP.

5. Assessing the quality of design motifs using the quality model built in
task 2. This task consists in assessing the quality of design motifs in
the set of base programs BP manually, with the characteristics and sub-
characteristics of the quality model.

6. Computing the metrics identified in task 3 on the design motifs in the
programs identified in task 5. This task consists in computing metric
values for the design motifs of interest identified in BP. If class-based
metrics are used, then we can compute the metric values of the design
motifs as the average or as the variance of the class-based metric values.

7. Linking the metric values computed in task 6 and the evaluation of the
quality sub-characteristics and characteristics performed in task 5. This
task consists in applying a machine learning technique to link internal
attributes of programs measured with metric values computed in task 6
and the evaluation of the quality sub-characteristics and characteristics
from task 5.

8. Validating the obtained quality model on other well-known uses of design
motifs. This task consists in applying the evaluation rules from task 7
on other well-known programs to assess the evaluative power of the qual-
ity model. Using design motifs, we must apply our quality model on
well-known uses of design motifs in programs with known quality charac-
teristics.

The results of the eight previous tasks is a quality model which can evaluate
the quality characteristics of programs while considering the program architec-
tures through the assessment of the quality of design motifs. The quality model

decomposes in several rules for each quality sub-characteristics and characteris-
tics. These rules depends on different metrics to assess quality.

Figure 2 displays a simplified version of our process. First, we identify
programs implementing design motifs. Second, we identify in these programs
the design motifs used. Third, we evaluate the quality sub-characteristics and
characteristics of the design motifs manually. Fourth, we compute metrics for
each identified design motifs (by averaging class-based metrics, for example).
Fifth, we use machine learning techniques to link metric values with the quality
sub-characteristics and characteristics of design motifs.

Metric

@ 7 values

o‘“Q&%
/Q Link with machine

—Find—=> Programs ——Find —> Patterns —Evauate = Sub-characteristics learning technique

o @ 02 ®

%
\ Characteristics

Figure 2: Simplified process of building a quality model considering program
architectures, through design motifs

1.4 Process of Applying a Quality Model

Once we built a quality model using design motifs to consider the quality of pro-
gram architectures in addition to internal attributes of classes or couple thereof,
applying such a quality model requires to consider micro-architectures in a pro-
gram architecture and to apply the quality model on these micro-architectures
to assess their quality.

Again, if we were in art, we could say that existing quality models assess
the quality characteristics of paintings by looking at many tiny parts of the
painting (for example, classes in program architectures) rather than by looking
at larger pieces of the painting (i.e., design motifs in program architectures),
such as sketched in Figure 3.

Thus, applying our quality model requires the four following tasks:

1. Identifying micro-architectures similar to design motifs in the architecture
of the program P under evaluation. There are many techniques existing
to identify design motifs in programs, for examples logic programming
[Wuyts, 1998] or constraint programming [Guéhéneuc et al., 2004]. In
the following, we present our technique using explanation-based constraint
programming (see Section 4 page 14).

Figure 3: Level of details considered in existing software quality model (left)
versus in quality models based on patterns (right)

2. Measuring the internal attributes of each classes of the micro-architectures
with metrics and averaging class-based metric values, if needed. This task
is straightforward, many tools existing to apply metrics on programs.

3. Adapting the rules built from BP to P by computing the ratio between the
metric values from BP and the metric values from P. This task consists
in adapting the rules associated with the quality model built from B7P.
Indeed, the rules are built from metric values with a certain minimum and
maximum values depending on BP, these values differ from the minimum
and maximum values for P. We compute the ratio between mingp and
mazxgp, on the one hand, and minp and mazp, on the other hand. Figure
4 illustrates rule adaptation.

Yet again, if we were in art and we would like to compare the eyes in two
different paintings, we would adapt the scales of the eyes before making
any comparison.

4. Applying our quality model on the identified micro-architectures. This
task consists in applying the rules adapted from the quality model on the
metric values computed for the micro-architectures found in program P.

Metric value
min max
Metric n in base programs 1 b

Metric ninaprogram
min max

Figure 4: Adapting the rules of the quality model, ratio between minimum and
maximum metric values of BP and P

1.5 Discussion

The use of design motifs as laws on software quality brings an extra level of
abstraction to the building of our quality model with respect to existing quality
models. Indeed, we use design motifs for three purposes: First, we survey
quality characteristics of design motifs theoretically to define and to organise
the quality characteristics of our quality model; Second, we validate our quality
model on well-known uses of design motifs; Third, we apply our quality model
on micro-architectures similar to design motifs.

We can use our quality model on any micro-architecture, independently of
the micro-architectures sizes and organisations, and thus potentially on complete
program architectures. This use is similar to the use of existing quality models
which are built using internal attributes and quality characteristics of given
programs but applied on similar yet sometimes very differing programs.

The use of design motifs as a basis to build a quality model results in our
choice to study qualitative quality characteristics over quantitative characteris-
tics, such as fault-proneness. Thus, we want to build a quality model tailored
for maintainers, evaluating “qualitative” characteristics with which maintainers
can predict maintenance effort.

We choose design motifs and design patterns because developers always
use patterns. Indeed, developers always use recurring solutions to solve de-
sign problems. Thus, design patterns are an integral part of any reasonably
well-developed programs [Gamma et al., 1994].

However, the use of design motif is but a step towards quality models that
can evaluate software quality while considering the architectures of programs.
Indeed, a quality model built using design motifs assesses the quality of pro-
grams through larger parts than existing quality models because it uses micro-
architectures instead of classes. Yet, it does not consider the overall architec-
tures of the programs: It is similar in art to assessing the quality of a painting
using parts rather than looking at the whole picture, such as in the right-hand
side of Figure 3 page 7.

2 Background

Our work is at the conjunction of two fields of study: Quality models on the one
hand, design motif identification on the other hand. We present some major
work in both fields of study. We show that none of existing work attempts to
build a quality model based on micro-architectures of the program architectures,
using design motif identification.

2.1 Quality Models

Briand and Wiist [Briand and Wiist, 2002] present a detailed and extensive
survey of quality models. They classify quality models in two categories: Cor-
relational studies and experiments. Correlational studies use univariate and
multivariate analyses, while experiments use, for examples, analysis of variance

between groups (ANOVA). To our best knowledge, none of the presented quality
models attempts to assess the architectural quality of programs directly. They
all use class-based metrics or metrics on class couples.

Wood et al. [Wood et al., 1999] study the structure of object-oriented C++
programs to assess the relation between program architectures and software
maintenance. The authors use three different methods (structured interviews,
survey, and controlled experiments) to conclude that the use of inheritance in
object-oriented programs may inhibit software maintenance.

Harrison et al. [Harrison et al., 2000] investigate the structure of object-
oriented programs to relate modifiability and understandability with levels of
inheritance. Modifiability and understandability cover only partially the quality
characteristics that we are interested in. Levels of inheritance are but one
architectural characteristic of programs related to software maintenance.

Wydaeghe et al. [Wydaeghe et al., 1998] assess the quality characteristics
of the architecture of an OMT editor through the study of 7 design patterns
(Bridge, Chain of Respousibility, Facade, Iterator, MVC, Observer, and Visitor).
They conclude on flexibility, modularity, reusability, and understandability of
the architecture and of the patterns. However, they do not link their assessment
with any evaluative or predictive quality model.

Peter Wendorff [Wendorff, 2001] evaluates the use of design patterns in a
large commercial software product. The author concludes that design patterns
do not improve a program architecture necessarily. Indeed, architecture can be
over-engineered [Kerievsky, 2004] and the cost of removing design patterns is
high. The author does not link is study with any quality model.

2.2 Design Motif Identification

Most approach to the identification of occurrences of design motifs are struc-
tural. They require a structural matching between a design motif and candidate
micro-architectures. Different techniques have been used to perform the struc-
tural matching: Rule inference and unification [Kramer and Prechelt, 1996 ;
Wuyts, 1998], queries [Ciupke, 1999 ; Keller et al., 1999], constraints resolu-
tion [Guéhéneuc and Jussien, 2001 ; Quilici et al., 1997], and fuzzy reasoning
[Jahnke and Ziindorf, 1997].

Unification. Wuyts developed the SOUL environment in which design motifs
are described as Prolog predicates and programs constituents as facts (classes,
methods, fields...) [Wuyts, 1998]. A Prolog inference algorithm unifies pred-
icates and facts to identify classes playing roles in design motifs. The main
limitation of such structural approaches is the inherent combinatorial complex-
ity of identifying subsets of all classes matching design motifs, which corresponds
to a problem of subgraph isomorphism [Eppstein, 1995].

Constraint Resolution. Quilici et al. used constraint programming to iden-
tify design motifs [Quilici et al., 1997]. Their approach consists in translating

the problem of design motif identification in a problem of constraint satisfac-
tion. Design motifs are described as constraint systems, which variables have for
domain the entities (classes and interfaces) of a program. The resolution of the
constraint systems provides micro-architectures composed of entities respecting
the constraints among the roles of a design motif. As with the unification ap-
proach, the combinatorial complexity of the resolution proves to be prohibitive.

Quantitative Evaluation. Antoniol et al. used constraint programming ex-
tended with metrics to reduce the search space of design motif identification
[Antoniol et al., 1998]. They designed a multi-stage filtering process to iden-
tify micro-architectures identical to design motifs. For each class of a program,
they compute some metrics (for example, numbers of inheritance, of associa-
tion, and of aggregation relationships) and they compare the metric values with
expected values for a design motif to reduce search space. Then, they apply
a constraint-based approach to identify micro-architectures. The expected val-
ues of metrics are derived from the theoretical descriptions of design motifs.
The main limitation of their work lies in the assumption that implementation
(micro-architectures) accurately reflects theory (design motifs), which is often
not the case. Moreover, the theoretical characterisation of roles, when possible,
does not reduce the search space significantly.

Fuzzy Reasoning. In an original work, Jahnke et al. introduced fuzzy rea-
soning nets to identify design motifs [Jahnke and Ziindorf, 1997]. Design motifs
are described as fuzzy reasoning nets, expressing rules of identification of micro-
architecture similar but not identical to design motifs. They exemplify their
approach with the identification of poor implementations of the Singleton design
motif in legacy C++ code. They express identification rules with the formalism
of fuzzy reasoning nets and then compute the certainty of a variable being a Sin-
gleton starting from a user’s assumption. The main advantage of their approach
is that fuzzy reasoning nets deal with inconsistent and incomplete knowledge.
However, their approach requires to describe all possible rules of approximation
for a design motif and user’s assumption.

3 Building a Quality Model

We use design design patterns as a basis to build a quality model. Design pat-
terns provide good solutions to architectural design problems, which maintainers
can use in the assessment of the quality characteristics of program architectures
naturally. Indeed, “[a]ll well-structured object-oriented architectures are full of
patterns” [Gamma et al., 1994, page xiii]. Also, design patterns provide a basis
for choosing and for organising external quality characteristics related to the
maintenance effort.

10

3.1 Overview

The following general information offer a synthetic view on our quality model.

Dependent Variables. The dependent variables in our quality model are
quality characteristics. We choose these quality characteristics by studying the
quality characteristics of the 23 design patterns in Gamma et al.’s book [Gamma
et al., 1994]. We study the literature on design patterns and identify 5 qual-
ity characteristics which decompose in 7 quality sub-characteristics which we
consider as external attributes.

Independent Variables. The independent variables in our quality model are
the internal attributes which we measure on programs. These internal attributes
are similar to those in other quality models from the literature: Size, filiation,
cohesion, coupling, and complexity.

Analysis Technique. We use a propositional rule learner algorithm, JRip.
JRiIP is WEKA—an open-source program collecting machine learning algorithms
for data mining tasks [Witten and Frank, 1999]—implementation of the RIPPER
rule learner. It is a fast algorithm for learning “If~Then” rules. Like decision
trees, rule learning algorithms are popular because the knowledge representation
is easy to interpret.

3.2 Building a Quality Model

We perform the eight tasks identified in Subsection 1.3 page 4 to build a quality
model considering program architectures based on design patterns.

1. Identifying the Quality Characteristics. We consider a hierarchical
model, because such model is more understandable [Fenton and Pfleeger, 1997]
and because most of standard models are hierarchical, for examples [ISO, 1991]
and [McCall, 2001].

Design patterns claim to bring reusability, understandability, flexibility, and
modularity [Gamma et al., 1994]. So, we add these quality characteristics to
our quality model. Also, through our past experience, we add robustness and
scalability (which define together software elegancy [for Software Engineering,
2002]) to our quality model.

2. Organising the Quality Characteristics. We organise the quality char-
acteristics and decompose these in sub-characteristics using definitions from
IEEE, ISO/IEC, and several other models, such as McCall’s, Boehm’s, Fire-
smith’s [Online, 2002 ; Smith and Williams, 2001 ; Firesmith, 2003 ; Khosravi
and Guéhéneuc, 2004].

Figure 5 presents our quality model to evaluate software quality related to
software maintenance based on design patterns.

11

Expandability
Flexibility Simplicity
Generality
Reusability Modularity
Scalability
Robustness
Learnability
Usability Understandability
Operability

Figure 5: A quality model based on design patterns quality characteristics

3. Choosing Internal Attributes. We choose size, filiation, coupling, cohe-
sion, and complexity as internal attributes. We use the metrics from Chidamber
and Kemerer’s study [Chidamber and Kemerer, 1993] mainly to measure these
internal attributes, with additions from other metrics by Briand et al. [Briand
et al., 1997a), by Hitz and Montazeri [Hitz and Montazeri, 1995], by Lorenz
and Kidd [Lorenz and Kidd, 1994], and by Tegarden et al. [Tegarden et al.,
1995].

The complete list of metrics used to measure internal attributes is: ACAIC,
ACMIC, AID, CBO, CLD, cohesionAttributes, connectivity, DCAEC, DCMEC,
DIT, ICHClass, LCOM1, LCOM2, LCOM5, NCM, NMA, NMI, NMO, NOA,
NOC, NOD, NOP, SIX, and WMC.

4. Identifying Programs with Patterns. We use the set of programs im-
plementing design patterns from Kuchana’s book [Kuchana, 2004]. Each pro-
gram of this set implements design patterns from Gamma et al.’s book [Gamma
et al., 1994]. This set of programs forms our base programs BP.

5. Assessing the Quality of Patterns. We assess the quality characteristics
of design patterns manually, using our quality model and the set BP. Table 1

12

page 13 summaries our evaluation of the quality characteristics of the twenty-
three design patterns.

Quality Sub-characteristics and Characteristics

Design
Patterns

Abs. Fact.
Builder
Fact. Met.
Prototype
Singleton
Adapter
Bridge
Composite
Decotator
Facade
Flyweight
Proxy
Chain of Res.
Command
Interpreter
Iterator
Mediator
Memento
Observer
State
Strategy
Tem. Met.
Visitor

| Q| | | Q| | | || | || | Q@ @ = | | Q@ @ @ Understandability

o= QI E QQ EH Q) QA T Q) = = Q) =| T =t Q = Expendability
ol Q= Q| @ = = ol =| | Q| o] | @ = | = =| w| Q| ©| @ =] Simplicity
Q= = E QA Q= Q= H Q™| Q|| | H 1 Q Generality
|| | o | | Q| e Q) Q) Q| | Q@ | Q@ | @ Modularity
Q| Q| = =] = Q|| = H| Q| Q| | Q| | Q| H| @ Learnability
= Q| Q| Q| Q] Q= QA QO = = Q= Q= = = Q) 1| @ Operability
QO QA H Q QA QT QA = Q| Q Q| Q| = @ @ @ Scalability
| Q| | Qo) = Q| Q| H| Q| QA QA Q) @ @ Robustness

Table 1: Design patterns quality characteristics in BP (E = Excellent, G =
Good, F = Fair, P = Poor, and B = Bad)

6. Computing Metrics. The metrics we chose in task 3 to measure the
internal attributes of programs are all class-based metrics. Thus, we need first
to compute the metric values and second to adapt the metric values to the
micro-architectures.

We analyse the programs and their micro-architectures using PADL, a meta-
model to represent programs. Then, we apply POM, a framework for metrics
definition and computation based on PADL [Guéhéneuc et al., 2004], on the
program models to compute the metric values.

Then, we adapt the class-based metric values to the micro-architectures.
For a given metric, we use the average of its values on all the classes forming a
micro-architecture. However, average is not a good representative of the metric

13

if (LOCOMS5 <1.1) A (NOA < 33.25)
then (Learnability = Good)
else (Learnability = Fair)

Table 2: Rule for learnability

values for the micro-architecture. Indeed, we should compute and study the
variance of the metric values to get a better understanding of the distribution
of the metric values. Variance indicates how much each of the metric values of
the classes in the micro-architecture deviates from the mean. However, for the
current exploratory study, we keep the average to allow a better analysis of the
resulting rules.

7. Linking Internal Attributes and Quality Characteristics. We use a
machine learning technique to infer rules linking the quality characteristics of
the quality model and the metric values.

We use the JRIP algorithm to find the rules between quality characteristics
and values of the metrics. The rule in Table 2 page 14 is the rule associated with
the learnability quality characteristics, when applying JRIP in the metric values
and the base programs from tasks 3, 4 and 5. It shows that the learnability
quality characteristics is related to the NMI and NOP metrics more than to any
other metric.

We do not introduce here all the rules found for the different quality sub-
characteristics and characteristics in our model for lack of space. The rules are
specific to the current case study but help in illustrating the advantages and
limitations of our approach.

8. Validating the Quality Model. We use the leave-one-out method [Stone,
1974] for cross-validating the rules built for our quality model by JRIP.

4 Applying the Quality Model

We apply the quality model built in the previous Section 3 to the JHOTDRAW
(for clarity, we apply our quality model on a subset of the micro-architectures in
JHOoTDRAW only), JUNIT, and LEXI programs. We apply the learnability rule
of the quality model in particular because this rule represents a good trade-off
between simplicity and expressiveness. The learnability rule has been built in
task 7 in Subsection 3.2 page 11 with minrcons = 0.75, maxpcoms = 1.82,
minyoa = 1.00, and maxnoa = 86.00.

JHOTDRAW is a Java GUI framework for technical and structured graphics.
It has been developed originally by Erich Gamma and Thomas Eggenschwiler as
a “design exercise” but is now a full-fledge framework. Its design relies heavily

14

on some well-known design patterns. JUNIT is a regression testing framework
written by Erich Gamma and Kent Beck. It is used to implements unit tests in
Java. LEXI is a Java-based Word Processor. It has been developed by Matthew
Schmidt and Brill Pappin originally. These programs are open-source and most
are available on SourceForge.

Applying our quality model requires to identify in a program the micro-
architectures similar to some design motifs. We consider micro-architectures
as our “unit” of measurement rather than classes, as presented in Subsection
1.4 page 6. We decompose the task 1 of Identifying micro-architectures similar
to design motifs in the architecture of a program P under evaluation in two
subtasks to improve the performance of the identification:

1. A task of role identification, in which we identify classes that could play
a role in a design motif potentially.

2. A task of design motif identification, in which we identify classes which
structural organisation is similar to that of a design motif. In this subtask,
we only consider classes identified in the previous subtask to reduce the
search space and thus to improve performance, recall, and precision.

4.1 Identifying Roles

We associate numerical signatures with roles in design motifs to characterise
classes that could play one of these roles and exclude classes that obvioulsy
could not. We seek to characterise classes playing roles in design motifs using
their internal attributes. The most consensual attributes for classes in object-
oriented programming languages are:

e Size/complexity, e.g., number of methods, of fields.

e Filiation, e.g., number of parents, number of children, depth of the inher-
itance tree.

e Cohesion, e.g., degree to which methods and attributes of a class belong
together.

e Coupling, e.g., strength of the association created by a link from one class
to another.

Two or more classes may have identical values for a given set of internal
attributes. Indeed, two or more classes may play a same role in different uses
of a design motif and a same class may play two or more roles in one or more
design motifs. Thus, internal attributes cannot be used to distinguish uniquely
a class among classes playing roles in design motifs.

Yet, internal attributes can be used to reduce the search space of micro-
architectures. We can use internal attributes to eliminate true negatives from
the search space efficiently, i.e., classes that obviously do not play a role in a
design motif. Moreover, no thorough empirical studies have so far validated

15

Repository Metric
Creation Extraction

Rule Learning Rule Validation Interpretation

Figure 6: Process of assigning numerical signatures to design motifs roles

the impossibility to identify classes uniquely with their internal attributes, or
attempted to find quantifiable commonalities among classes playing a given role
in a design motif experimentally.

Therefore, we study the use of internal attributes of classes to quantify de-
sign motifs roles: We devise numerical signatures for design motifs roles using
internal attributes of classes. We group these numerical signatures in rules to
identify classes playing a given role. For example, a rule for the role of Singleton
in the Singleton design motif could be

Rule for "Singleton" role:
Filiation: Number of parents low,
number of children low.

because a class playing the role of Singleton is high in the inheritance tree nor-
mally and has no (or a few) subclass usually. A rule for the role of Observer in
the Observer design motif could be

Rule for "Observer" role:
Coupling: Coupling with other classes low.

because the purpose of the Observer design motif is to reduce the coupling be-
tween the classes playing the roles of Observer and the rest of the program.

4.1.1 Building Numerical Signatures

Overview. Figure 6 presents an overview of the process of assigning numerical
signature to design motifs roles. First, we build a repository of classes forming
micro-architectures similar to design motifs in different programs. We identified
the roles played by these classes in design motifs manually. Then, we extract
metrics from the programs in which we found micro-architectures to associate
a set of values for the internal attributes with each class in the repository. We
feed a propositional rule learner algorithm with the sets of metric values. The
rule learner returns a set of rules characterising design motifs roles with the
metric values of the classes playing these roles. We cross-validate the rules
using the leave-one-out method. Finally, we interpret the rules obtained (or the
lack thereof) for roles in design motifs. The following subsections detail each
step of the process.

Repository Creation. We need a repository of classes forming micro-archi-
tectures similar to design motifs to analyse these classes quantitatively. We
investigate several programs manually to identify micro-architectures similar

16

to design motifs and to build a repository of these micro-architectures, the P-
MART (PATTERN-LIKE MICRO-ARCHITECTURE REPOSITORY). We create this
repository using different sources:

e Studies in the literature, such as the original study from James Bieman
et al. [Bieman et al., 2003], which record classes playing roles in design
motifs from several different C++, Java, and Smalltalk programs.

e Our tool suite for the identification of design motifs, PTIDEJ (Pattern
Trace Identification, Detection, and Enhancement in Java) [Albin-Amiot
et al., 2001 ; Guéhéneuc and Albin-Amiot, 2001], which implements JP-
TIDEJSOLVER, an explanation-based constraint solver to identify design
motifs.

e Assignments in a undergraduate course and in a graduate course, during
which students performed analyses of Java programs.

The repository of micro-architectures similar to design motifs surveys:

e For each program, motifs for which we found similar micro-architectures.
e For each motif, similar micro-architectures that we found in the program.

e For each micro-architectures, roles played by their classes in the corre-
sponding design motif.

We validate all the micro-architectures manually before their inclusion in the
repository, however we do not claim that we identified all micro-architectures
similar to design motifs in a given program.

So far, the P-MART contains data from 9 programs, for a total of 4,376
classes and 138 micro-architectures representing 19 different design motifs. We
exclude inner classes because no inner class appears in a micro-architecture so
far. Table 3 page 33 summarises the data in the P-MART. The two first rows
give the names and number of classes (and interfaces) of the surveyed programs.
The following rows indicates, for a given design pattern (per row), the number
of micro-architectures found similar to its design motif in each program (per
column). The table summarises also the number of roles defined by a design
motif and the number of classes playing a role in a design motif for all the
programs (two last columns). The number of classes playing roles in design
motifs shows that only a fraction of all the classes of the programs plays a role
in a design motif. Moreover, some classes are counted more than once because
they play different roles in different design motifs. Design motifs for which we
did not identify similar micro-architectures are: Chain of Responsibility, Interpreter,
and Mediator. We record this data in a XML file, which allows us to traverse
the data to compute metrics and various statistics automatically.

17

Metric Extraction. We parse the programs surveyed in the P-MART and
calculate metrics on their classes automatically. Parsing and calculation are
performed in a three-step process: First, we build a model of a program using
the PADL (Pattern and Abstract-level Description Language) meta-model and
its parsers; Second, we compute metrics using POM (Primitives, Operators,
Metrics), an extensible framework for metric calculation based on PADL; Third,
we store the results of the metric calculation, names and values, in the P-MART,
by adding specific attributes and nodes to the XML tree representation.

We use metrics from the literature to associate values with internal attributes
of classes playing a role in a design motif. Table 4 page 34 presents the met-
rics computed on classes related to the internal attributes that we consider:
Size/complexity, filiation, cohesion, and coupling. For size/complexity, we use
the metrics by Lorenz and Kidd on new, inherited, and overridden methods
and on the total number of methods [Lorenz and Kidd, 1994], and the count
of methods weighted with their numbers of method invocations by Chidamber
and Kemerer [Chidamber and Kemerer, 1993]. We do not use metrics related
to fields because no design motif role is characterised by fields specifically: Only
the Flyweight, Memento, Observer, and Singleton design motifs (5 out of 23) ex-
pose the internal structures of some roles to exemplify typical implementation
choices. Moreover, fields should always be private to their classes with respect
to the principle of encapsulation. For filiation, we use the depth in the inheri-
tance tree and the number of children by Chidamber and Kemerer [Chidamber
and Kemerer, 1993] and the number of hierarchical levels below a class, class-
to-leaf depth, by Tegarden et al. [Tegarden et al., 1995]. For cohesion, we use
the metric ‘C’ measuring the connectivity of a class with the rest of a program
by Hitz and Montazeri [Hitz and Montazeri, 1995] and the fifth metric on lack
of cohesion in methods by Briand et al. [Briand et al., 1997b]. Finally, for
coupling, we use two metrics on class-method import and export coupling by
Briand et al. [Briand et al., 1997a] and the metric on coupling between objects
by Chidamber and Kemerer [Chidamber and Kemerer, 1993].

Rule Learning and Validation. The P-MART contains a wealth of data
to analyse. We use a machine learning algorithm to find commonalities among
classes playing a same role in a design motif. We supply the data to a propo-
sitional rule learner algorithm, JRIP, implemented in WEKA, an open-source
program collecting machine learning algorithms for data mining tasks [Witten
and Frank, 1999].

We do not provide JRIP with all the data in the P-MART, this would lead to
uninteresting results because of the disparities among roles, classes, and metric
values. We provide JRIP with subsets of the data related to each role. A subset
o of the data related to a role contains the metric values for the n classes playing
the role in all the micro-architectures similar to a design motif. We add to this
subset o the metric values of 3 x n classes not playing the role, chosen randomly
in the rest of the data. We make sure the classes chosen randomly have the
expected structure for the role, i.e., whether the role is defined to be played by

18

a class or by an abstract class [Gamma et al., 1994], to increase their likeliness
with the classes playing the role. The rule learner infers rules related to each
role from the subsets 0. We validate the rules using the leave-one-out method
with each set of metric values in the subsets o [Stone, 1974].

Interpretation. The rule learner infers rules that express the experimental
relationships among metric values, on the one hand, and roles in design motifs,
on the other hand. Typically, a rule inferred by the rule learner for a role ROLE
has the form

Rule for "ROLE" role:
- Numerical signature 1, confidence 1,
- Numerical signature 2, confidence 2,

- Numerical signature N, confidence N.

where
Numerical signature 1 = {metrici € Vi1,...,metricm € Vim1}
Numerical signature N = {metrici € Vip,...,metricm € Vimn}

and the values of a metric metric; computed on classes playing the role ROLE
belong to a set V;; C N. The degree of confidence confidence X is the proportion
of classes concerned by a numerical signature in a subset ¢, which we use to
compute error and recall ratios.

We collect all the rules inferred from the rule learner and process the rules
with the following criteria to remove uncharacteristic rules:

e We remove rules with a recall ratio less than 75%.

e We remove rules inferred from small subsets o, i.e., when not enough
classes play a given role.

Then, we interpret the remaining rules in two ways: Qualitatively, we ex-
plain rules with respect to their corresponding roles; Quantitatively, we assess
the quality of classes playing roles in design motifs. Practically, we show that
numerical signatures reduce the search space for micro-architectures similar to
design motifs efficiently.

4.1.2 Discussion

We decompose the data in the P-MART in 56 subsets o and infer as many
rules with the rule learner, which decompose in 78 numerical signatures. The
two first steps in the analysis process are quantitative and aim at eliminating
roles that do not have a sufficient number of examples for mining numerical
signatures and that do not have a high enough recall ratio. In the first step, we
remove 20 over the 56 rules from all the rules inferred by the rule learner. The
removed rules corresponds to:

19

Rule "Target"
- WMC <= 2, 24/25.

Figure 7: Rules inferred for the role of Target in the Adapter design motif

e Design motifs roles with few corresponding micro-architectures and with
a unique (or a few) classes in the micro-architectures. Some examples
are the roles of Decorator in the Decorator design motif and of Prototype in
Prototype.

e Design motifs roles played by “ghost” classes in many cases, i.e., classes
known only from import references, such classes in standard libraries.
Some examples are the classes playing the roles of Command in the Com-
mand design motif and of Builder in Builder.

In the second step, we select 20 rules with a recall ratio greater than 75%,
shown in Table 5 page 34, from the 36 remaining rules. All these rules have
an error rate less than 10% (less than 5% for 16). Most of the rules removed
because of their low recall ratio are associated with roles known to be non-key
roles in design motifs and thus do not have a particular numerical signature
theoretically. For example, any class may play the role of Client in the Composite
design motif. Similarly, any class may play the role of Invoker in the Command
design motif. (Some researchers argue that Client, Invoker. .. are not “real” roles
and should not appear in most design motifs.)

We notice that in many cases we obtain a unique numerical signature for a
given role in a design motif. Classes playing a same role have similar structures
and organisations generally. For example, all the classes playing the role of
Target in the Adapter design motif have a low complexity, represented by low
values of WMC, as shown in Figure 7 (the degree of confidence is less than 1
because this numerical signature misclassifies one class, its error rate is 4%, as
shown in Table 5 page 34). Such a low complexity is actually expected because
of the architecture and of the behaviour suggested by the Adapter design motif.
Likewise, many other numerical signatures confirm claims from and beliefs on
design motifs. For examples, classes playing the role of Observer in the Observer
design motif have a low coupling, i.e., a low CBO. Classes playing the roles of
Singleton in the Singleton design motif have low coupling and belong to the upper
part of the inheritance tree generally.

In few cases, we obtain more that one numerical signature for a role. An
example is the role of Concrete Visitor in the Visitor design motif. On the one
hand, the most frequent numerical signature is characteristic of classes with a
low coupling (low CBO) and a large number of methods (high NM), as expected
from the problem dealt with by the Visitor design pattern. On the other hand, the
second numerical signature states that the number of inherited methods is low
(low NMI) for some classes playing the role of Concrete Visitor. When exploring
the micro-architectures similar to the Visitor design motif in our repository, we
notice that in JREFACTORY some classes play the roles of both Concrete Visitor

20

and Visitor, which then limits the number of inherited methods. This second
numerical signature is particular to the program and thus unveils design choices
specific to the program or to a coding style.

4.2 Identifying Design Motif

After identifying classes which could play roles in design motifs, we perform
a structural search among these classes to identify those which structures and
organisations is similar to the structures and organisations advocated by some
design motifs.

We use explanation-based constraint programming to identify both complete
and approximate forms of design motifs, i.e., groups of classes which structures
and organisations are similar to the motifs, while providing explanations and
allowing user-interactions.

4.2.1 Explanation-based Constraint Programming

Explanation-based constraint programming proved its interest [Jussien and Barichard,
2000] in many applications already. We recall fundamentals on explanation-
based constraint programming and some of its uses.

Contradiction Explanations. We consider a constraint satisfaction prob-
lem (CSP) (V,D,C): V is the set of variables, D is the set of domains for the
variables, and C' is the set of constraints among variables. Decisions made dur-
ing enumeration—variable assignments—are represented by unary constraints
added to or removed from the current constraint system. These unary con-
straints are called decision constraints because they are not defined in the
constraint satisfaction problem but are generated by the solver to represent
decisions taken during the resolution.

A contradiction explanation (also know as mogood [Schiex and Verfaillie,
1994]) is a subset of the current constraint system that, left alone, leads to a
contradiction—mno solution. A contradiction explanation divides in two parts:
A subset of the original set of constraints (C’ C C in Equation 1) and a subset
of the decision constraints introduced during the search.

Ch—=(C'"Avy=a1 A ... Nvg = ag) (1)

A contradiction explanation without decision constraint denotes an over-
constrained problem. In a contradiction explanation containing at least one
decision constraint, we choose a variable v; and rewrite Equation 1 in 2.

CFC' A /\ (vi = a;) = v; # a; (2)
el K\

The left hand side of the implication is an eliminating explanation for the
removal of value a; from the domain of variable v;. The eliminating explanation
is noted:

21

expl(v; # a;)

Classical solvers use domain-reduction techniques to solve constraint sat-
isfaction problems by removing values from the domains of variables. Thus,
recording eliminating explanations is sufficient to compute contradiction ex-
planations. Indeed, a contradiction is identified when the solver empties the
domain of a variable v;. A contradiction explanation can be computed with
the eliminating explanations associated with each removed value, as shown in
Equation 3.

Ck~= /\ expl(v; # a) (3)

acd(vy)

Several eliminating explanations exist for the removal of a given value gener-
ally. Recording all eliminating explanations would lead to an exponential space
complexity. Thus, we must forget (erase) eliminating explanations that are no
longer relevant to the current variable assignments. An eliminating explana-
tions is said to be relevant if all its decision constraints are valid in the current
search state [Bayardo Jr. and Miranker, 1996]. We keep only one explanation
at a time for any value removal and the space complexity remains polynomial.

Computing Contradiction Explanations. Minimal contradiction explana-
tions (with respect to inclusion) are the most interesting. They provide precise
information on dependencies among variables and constraints identified dur-
ing the search. Unfortunately, computing such explanations is time-consuming
[Junker, 2001]. A compromise between size and computability consists in using
the knowledge inside the solver. Indeed, CSP solvers always know why they re-
move values from the domains of variables, although not often explicitly. They
can compute minimal contradiction explanations with this knowledge explicitly.
We must alter the source code of a CSP solver to make such knowledge explicit.
The PALM solver [Jussien and Barichard, 2000] is a reference implementation
of an explanation-based constraint solver.

Using Contradiction Explanations. We can use contradiction explana-
tions for many different purposes [Jussien and Barichard, 2000 ; Jussien et al.,
2000 ; Jussien and Lhomme, 2000]. For example, we can use explanations to de-
bug resolution by explaining contradictions clearly and by explaining differences
between intended and observed behaviour (answering question such as “why is
x not assigned to value 47" explicitly).

Also, we can use contradiction explanations to assess the impact of a con-
straint on domains of variables and to handle, for example, dynamic constraint
removal. Thus, Bessiere’s justification system [Bessiere, 1991] for solving dy-
namic CSP is a partial explanation-based constraint solver actually.

22

Finally, we can use contradiction explanations to improve standard back-
tracking algorithms and to improve the search: To provide intelligent back-
tracking [Guéret et al., 2000], to replace standard backtracking with jump-based
approaches @ la dynamic backtracking [Ginsberg, 1993 ; Jussien et al., 2000],
to develop new local searches on partial instantiations [Jussien and Lhomme,
2000], to guide the search dynamically.

4.2.2 Application to Design Motif Identification
Design motif identification consists:

1. In modelling a set of design motifs as CSP. A variable is associated with
each class defined by a design motif. The variables of our model are
integer-valued. The domain of a variable is a set of existing classes in the
source code. Each class is identified by a unique integer. Relationships
among classes (inheritance, association...) are represented by constraints
among variables.

2. In modelling the maintainers’ source code to keep only the information
needed to apply the constraints: Class names—forming the domain of
the variables and the relationships among classes—verifying or not the
constraints.

3. In resolving the CSP to search both approximate and complete micro-
architectures: When all solutions to the CSP are found, i.e.,, when all
micro-architectures identical to a design motif are identified, the search
is guided by the maintainers to find approximate micro-architectures dy-
namically. Contradiction explanations provided by the constraint solver
help the maintainers in guiding the search.

We build a library of specialised constraints from the relationships among
classes used to describe design motifs [Gamma et al., 1994]. Specialised con-
straints express the inheritance, creation, association... relationships among
classes. Our library offers constraints covering a broad range of design mo-
tifs. However, some design motifs are difficult to express as CSP and require
additional relationships or the decomposition of existing relationships into sub-
relationships. We provide the following constraints:

e Strict inheritance establishes a strict inheritance relationship between two
classes. A strict inheritance relationship links two classes in a parent—
child-like relationship, ¢.e., superclass—subclass. When considering single
inheritance, the strict inheritance relationship is a partial order, denoted
<, on the set of classes E. For any pair of distinct classes A and B in F,
if B inherits from A then: A < B. The constraint associated with the strict
inheritance relationship is a binary constraint between variables A and B.
The operational semantics of the constraint is

VC4 € da,dcp € dp,ca < cp

23

Ve € dg,dcq € da,ca < cp

where dx represents the domains of variable X. From this definition of
strict inheritance, we derive an inheritance relationship, and its associated
constraint, such that the variables may represent a same class: A < B or
A =B.

e Use establishes a use relationship [Guéhéneuc, 2004] between classes. A
class A knows about a class B if methods defined in A invoke methods of
B. This relationship is binary, oriented and intransitive. We denote this
relationship by A > B.

e Association, Aggregation, and Composition enforce that two classes are
associated, aggregated, or composed with one another [Guéhéneuc and
Albin-Amiot, 2004], respectively. For example, a class A is composed with
instances of a class B if the A class defines one or more fields of type B. We
write A D B. This relationship is binary, oriented and intransitive.

4.2.3 Behaviour of the CSP Solver

The library of specialised constraints is not sufficient in itself to allow design mo-
tif identification. Indeed, micro-architectures that fit exactly in the modelling of
a design motif as a CSP are of no use to identify area with poor quality character-
istics. We need to find approzimate micro-architectures, i.e., micro-architectures
that do not verify all constraints from a design motif. Explanation-based con-
straint programming allows to identify approximate and complete forms.

First, a specialised CSP solver computes complete forms. The resolution
ends by a contradiction, there is no more micro-architectures. Explanation-
based constraint programming provides a contradiction explanation for this con-
tradiction: The set of constraints justifying that other combinations of classes
do not verify the constraints describing the searched design motif. We do not
need to relax other constraints than the constraints provided by the contradic-
tion explanation: We would find no other micro-architecture. The explanation
contradiction provides knowledge on which approximate forms are available.
This knowledge about possible approximate forms allows maintainers to lead
the search towards interesting approximate forms, from their viewpoints, by
exhibiting constraints to relax. Removing a constraint suggested by a contra-
diction explanation does not necessarily lead to new micro-architectures but the
removal is applied recursively.

Preferences are assigned to the constraints of a CSP to ease maintainers’
interactions with the specialise CSP solver. They reflect a hierarchy among
constraints a priori, but this is not mandatory in our CSP solver. We derive
a metric from the preferences, with which we measure the quality of micro-
architecture in terms of its distance with the search design motif, i.e.,, the
number of constraints relaxed to obtain this micro-architecture. The metric
allows the automation of the CSP solver to identify all approximate micro-
architectures.

24

The maintainer-driven version of our CSP solver is of great interest when
a priori preferences are hard to determine, which is often the case. Moreover,
maintainers can restrict the search to a subset of interesting approximate forms
interactively. Explanation-based constraint programming gives a complete con-
trol to the maintainers: This is important in an intellectual activity such as
design motif identification.

4.2.4 Discussion

The use of explanation-based constraint programming to identify micro-architec-
tures similar to design motifs provides two interesting properties:

e Identification of both complete and approximate forms of design motifs.

e Explanations about the identified micro-architectures and interactions with
the maintainers.

We describe design motifs as constraint systems: Each role is represented as
a variable and relationships among roles are represented as constraints among
variables. Variables had identical domains: All the classes in a program in which
to identify design motifs. For example, the identification of micro-architectures
similar to the Composite design motif, shown in Figure 8, in JHOTDRAW trans-
lates to the constraint system

Variables:
client
component
composite
leaf

Constraints:
association(client, component)
inheritance (component, composite)
inheritance(component, leaf)
composition(composite, component)

where the four variables client, component, composite, and leaf have identical
domains, which contains all the 155 classes (and interfaces) composing JHOT-
DRrAwW, and the four constraints represent the association, inheritance, and com-
position relationships suggested by the Composite design motif.

However, as other structural approaches, our approach with explanation-
based constraint has limited performance and a bad recall. Indeed, the Com-
posite design motif describe fur roles, which are express as four variables. Thus,
the search of micro-architectures similar to the Composite design motif in the
JHOTDRAW framework, which contain 155 classes, has potentially 155 =
577,200, 625 solutions.

We introduce numerical signatures associated with roles in design motifs to
reduce the search space and improve both performance and recall.

25

Component

1l.n

operation()
% component
Leaf Composite
operation() add(Component)
- remove (Component)
getComponent_(int) for each component ‘

Operation() ----------{---eseeeeeeenan

component.operation ()

Figure 8: Composite design motif

4.3 Applying the Quality Model

We have now identified micro-architectures similar design motifs. We follow
the four tasks from Subsection 1.4 page 6 to apply the quality model on these
micro-architectures.

1. Identifying Micro-Architectures. JHOTDRAW uses 11 different design
patterns in 21 micro-architectures: Adapter, Command, Composite, Decorator,
Factory Method, Observer, Prototype, Singleton, State, Strategy, and Template
Method. JUNIT contains 8 micro-architectures similar to 5 different design
patterns: Composite, Decorator, Iterator, Observers, and Singletons. LEXI
contains 5 micro-architectures similar to the Builder, Observer, and Singleton
design patterns. Table 6 page 35 summarises the micro-architectures.

2. Measuring Internal Attributes. For each micro-architecture identified
in JHOTDRAW or in JUNIT or in LEX1, we use PADL and POM to compute the
class-based metric values and ETIQUETTE to compute the micro-architecture-
based metric values (using average). Table 6 presents the data for each micro-
architecture for the LCOM5 and NOA metrics.

3. Adapting the Rules. We adapt the metric values in the rule in Table
2 by computing the ratio between the minimum and maximin values of the
LCOMS5 and NOA metrics for the base programs on the one hand, and each
micro-architecture on the other hand. Table 6 also displays the adapted rules
for all the micro-architectures.

4. Applying the Rules. We compare the expected metric values in the
adapted rules with the metric values computed for each micro-architecture.

Discussion. Table 6 presents the results for adapting the learnability rule in
Table 2. We computed the average, the minimum, and the maximum values of
the LCOMS5 and NOA metrics for each program, JUNIT and LExX1. We adapted

26

the rule from the minimum and maximum values of the base programs and of
JHoTDRAW, JUNIT, and LEXI. The last column shows the adapted rules and
the results of applying the rules.

The first line of the table shows an example of applying the learnability rule
to a micro-architecture similar to the Command design pattern. The outcome
of the rule states that this particular implementation of the Command design
pattern has a Good learnability.

However, the quality model obtained is unsatisfactory for many reasons.
First, the size of the base programs used to create the quality model renders the
rule uninteresting in many cases. In particular, we do not have sufficient data
yvet but the assess the learnability of JUNIT and of LEXI as Fair.

Second, adapting the rule when there is one metric value only, see for example
the micro-architecture MA5 in JUNIT, does not provide interesting information
because the adapted threshold of the learnability rule is always inferior to the
maximum (and unique) value. Adaptation requires a range or more accurate
rules (based on a minimum and a maximum thresholds) to be efficient.

Third, we do not distinguish in the micro-architecture between code which
plays a role in the design pattern and code which does not. Considering all
the metric values, potentially for “dead” code, has an impact on the results
certainly.

Moreover, learnability is a human-related quality characteristic. Thus, it is
difficult to assess intrinsically because it depends on the individuals performing
the assessment highly. Thus, we need to perform more evaluations to obtain an
accurate rule.

5 Conclusion and Future Trends

In this chapter, we presented a global coverage of our work on software quality
models and on design motif identification. We use design motif as laws on
software quality and we used these laws to observe micro-architectures similar
to design motifs and to assess their quality.

Using design motif as laws, we described the process of building a quality
model using motifs to link metrics and quality characteristics with a learn-
ing algorithm. We also described the process of applying the quality model
on software, using explanation-based contraint programming to identify micro-
architectures similar to design motifs and metrics to improve the performance,
recall, and precision of the identification.

This chapter highlights the need for principles in software engineering. These
principles can be laws or theories formalising, and explaining observations re-
alised on software. Our contribution is the use of design patterns and their
solutions, design motifs, as laws on software quality to build quality models.

In the future, we believe that the software engineering community must
develop its understanding of design patterns and their applications to solve
problems, such as traceability, maintainability. Indeed, patterns are more and
more recognised as important concepts in software engineering, in particular in

27

conjunction with cognition during software development [Floyd, 1992 ; Miller,
1956], and they both require and deserve a more thorough and systematic study.

Also, the software engineering community must strive to identify concepts
on which to build laws and theories. We strongly believe that design motifs can
be considered as laws of quality. However, our belief requires further studies
and analyses.

Acknowledgements

We thank James Bieman, Greg Straw, Huxia Wang, P. Willard, and Roger T.
Alexander [Bieman et al., 2003] for kindly sharing their data. We are grateful
to our students, Saliha Bouden, Janice Ka-Yee Ng, Nawfal Chraibi, Duc-Loc
Huynh, and Taleb Ikbal, who helped in the creation of the repository. “Femme
Profile” by Pablo Picasso is from rogallery.com, we are currently in contact
with its director regarding copyrights.

All the data and programs used to perform the case study are available on
the Internet at www.iro.umontreal.ca/~1labgelo/p-mart/.

References

[ISO, 1991] (1991). Information Technology — Software Product Evaluation —
Quality Characteristics and Guidelines for their Use. ISO/IEC. ISO/IEC
9126:1991(E).

[Albin-Amiot et al., 2001] Albin-Amiot, H., Cointe, P., Guéhéneuc, Y.-G., and
Jussien, N. (2001). Instantiating and detecting design patterns: Putting bits
and pieces together. In Richardson, D., Feather, M., and Goedicke, M., edi-
tors, proceedings of the 16" conference on Automated Software Engineering,
pages 166-173. IEEE Computer Society Press.

[Antoniol et al., 1998] Antoniol, G., Fiutem, R., and Cristoforetti, L. (1998).
Design pattern recovery in object-oriented software. In Tilley, S. and Visag-
gio, G., editors, proceedings of the 6! International Workshop on Program
Comprehension, pages 153-160. IEEE Computer Society Press.

[Bayardo Jr. and Miranker, 1996] Bayardo Jr., R. J. and Miranker, D. P.
(1996). A complexity analysis of space-bounded learning algorithms for the
constraint satisfaction problem. In Weld, D. and Clancey, B., editors, proceed-

ings of the 13" national conference on artificial intelligence, pages 298-304.
AAAI Press / The MIT Press.

[Bessiere, 1991] Bessiere, C. (1991). Arc consistency in dynamic constraint sat-
isfaction problems. In Proceedings AAAI’91.

[Bieman et al., 2003] Bieman, J., Straw, G., Wang, H., Willard, P., and Alexan-
der, R. T. (2003). Design patterns and change proneness: An examination of

28

five evolving systems. In Berry, M. and Harrison, W., editors, proceedings of
the 9" international Software Metrics Symposium, pages 40-49. IEEE Com-
puter Society Press.

[Briand et al., 1997a] Briand, L., Devanbu, P., and Melo, W. (1997a). An in-
vestigation into coupling measures for C++. In Adrion, W. R., editor, pro-
ceedings of the 19t" International Conference on Software Engineering, pages
412-421. ACM Press.

[Briand et al., 1997b] Briand, L. C., Daly, J. W., and Wiist, J. K. (1997b). A
unified framework for cohesion measurement. In Pfleeger, S. L. and Ott,
L., editors, proceedings of the 4" international Software Metrics Symposium,
pages 43-53. IEEE Computer Society Press.

[Briand and Wiist, 2002] Briand, L. C. and Wiist, J. (2002). Empirical studies
of quality models in object-oriented systems. in Advances in Computers, 59.

[Chidamber and Kemerer, 1993] Chidamber, S. R. and Kemerer, C. F. (1993).
A metrics suite for object-oriented design. Technical Report E53-315, MIT
Sloan School of Management.

[Ciupke, 1999] Ciupke, O. (1999). Automatic detection of design problems in
object-oriented reengineering. In Firesmith, D., editor, proceeding of 30"
conference on Technology of Object-Oriented Languages and Systems, pages
18-32. IEEE Computer Society Press.

[Endres and Rombach, 2003] Endres, A. and Rombach, D. (2003). A Handbook
of Software and Systems Engineering. Addison-Wesley, 1%t edition.

[Eppstein, 1995] Eppstein, D. (1995). Subgraph isomorphism in planar graphs
and related problems. In Clarkson, K., editor, proceedings of the 6! annual
Symposium On Discrete Algorithms, pages 632-640. ACM Press.

[Fenton and Pfleeger, 1997] Fenton, N. E. and Pfleeger, S. L. (1997). Software
Metrics A Rigorous and Practical Approach. PWS Publishing Company, 2"¢
edition.

[Firesmith, 2003] Firesmith, D. G. (2003). Common concepts underlying safety,
security, and survivability engineering. Carnegie Mellon Software Engineering
Institute - Technical note CMU/SEI-2003-TN-033.

[Floyd, 1992] Floyd, C. (1992). Human Questions in Computer Science, chap-
ter 1, pages 15-27. Springer Verlag.

[for Software Engineering, 2002] for ~ Software Engineering, C. (2002).
00 Analysis and Design: Modeling, Integration, Abstraction.
http://sunset.usc.edu/classes/ ¢s577b_2002/EC/03/EC-03.ppt.

[Gamma et al., 1994] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1994). Design Patterns — Elements of Reusable Object-Oriented Software.
Addison-Wesley, 15¢ edition.

29

[Ginsberg, 1993] Ginsberg, M. (1993). Dynamic backtracking. Journal of Arti-
ficial Intelligence Research, 1:25-46.

[Guéhéneuc, 2004] Guéhéneuc, Y.-G. (2004). A reverse engineering tool for
precise class diagrams. In Singer, J. and Lutfiyya, H., editors, proceedings of
the 14" IBM Centers for Advanced Studies Conference. ACM Press.

[Guéhéneuc and Albin-Amiot, 2001] Guéhéneuc, Y.-G. and Albin-Amiot, H.
(2001). Using design patterns and constraints to automate the detection
and correction of inter-class design defects. In Li, Q., Riehle, R., Pour, G.,
and Meyer, B., editors, proceedings of the 39" conference on the Technology
of Object-Oriented Languages and Systems, pages 296-305. IEEE Computer
Society Press.

[Guéhéneuc and Albin-Amiot, 2004] Guéhéneuc, Y.-G. and Albin-Amiot, H.
(2004). Recovering binary class relationships: Putting icing on the UML
cake. In Schmidt, D. C., editor, proceedings of the 19" conference on Object-
Oriented Programming, Systems, Languages, and Applications. ACM Press.

[Guéhéneuc and Jussien, 2001] Guéhéneuc, Y.-G. and Jussien, N. (2001). Using
explanations for design-patterns identification. In Bessiere, C., editor, pro-
ceedings of the 15t ILJCAI workshop on Modeling and Solving Problems with
Constraints, pages 57-64. AAAT Press.

[Guéhéneuc et al., 2004] Guéhéneuc, Y.-G., Sahraoui, H., and Zaidi, F. (2004).
Fingerprinting design patterns. In Stroulia, E. and de Lucia, A., editors,
proceedings of the 11" Working Conference on Reverse Engineering, pages
172-181. IEEE Computer Society Press.

[Guéret et al., 2000] Guéret, C., Jussien, N., and Prins, C. (2000). Using intel-
ligent backtracking to improve branch and bound methods: An application to
open-shop problems. FEuropean Journal of Operational Research, 127(2):344—
354.

[Harrison et al., 2000] Harrison, R., Counsell, S. J., and Nithi, R. V. (2000).
Experimental assessment of the effect of inheritance on the maintainability
of object-oriented systems. journal of Systems and Software, 52(2-3).

[Hitz and Montazeri, 1995] Hitz, M. and Montazeri, B. (1995). Measuring cou-
pling and cohesion in object-oriented systems. In proceedings of the 37 Inter-
mational Symposium on Applied Corporate Computing, pages 25-27. Texas
A & M University.

[Jahnke and Ziindorf, 1997] Jahnke, J. H. and Ziindorf, A. (1997). Rewriting
poor design patterns by good design patterns. In Demeyer, S. and Gall,
H. C., editors, proceedings the 1°* ESEC/FSE workshop on Object-Oriented

Reengineering. Distributed Systems Group, Technical University of Vienna.
TUV-1841-97-10.

30

[Junker, 2001] Junker, U. (2001). QUICKXPLAIN: Conflict detection for arbi-
trary constraint propagation algorithms. Technical report, Tlog SA.

[Jussien and Barichard, 2000] Jussien, N. and Barichard, V. (2000). The PaLM
system: Explanation-based constraint programming. In Beldiceanu, N., Har-
vey, W., Henz, M., Laburthe, F., Monfroy, E., Miiller, T., Perron, L., and
Schulte, C., editors, Proceedings of TRICS: Techniques foR Implementing
Constraint Programming Systems, pages 118-133. School of Computing, Na-
tional University of Singapore, Singapore. TRA9/00.

[Jussien et al., 2000] Jussien, N., Debruyne, R., and Boizumault, P. (2000).
Maintaining arc-consistency within dynamic backtracking. In Dechter, R.,
editor, proceedings of the 6" conference on principles and practice of Con-
straint Programming, pages 249-261. Springer-Verlag.

[Jussien and Lhomme, 2000] Jussien, N. and Lhomme, O. (2000). Local search
with constraint propagation and conflict-based heuristics. Proceedings of
AAAIL pages 169-174.

[Keller et al., 1999] Keller, R. K., Schauer, R., Robitaille, S., and Pagé, P.
(1999). Pattern-based reverse-engineering of design components. In Garlan,
D. and Kramer, J., editors, proceedings of the 215 International Conference
on Software Engineering, pages 226-235. ACM Press.

[Kerievsky, 2004] Kerievsky, J. (2004). Refactoring to Patterns. Addison Wesley
Professional, 1°¢ edition.

[Khosravi and Guéhéneuc, 2004] Khosravi, K. and Guéhéneuc, Y.-G. (2004).
A quality model for design patterns. Technical Report 1249, Université de
Montréal.

[Krimer and Prechelt, 1996] Krimer, C. and Prechelt, L. (1996). Design recov-
ery by automated search for structural design patterns in object-oriented soft-
ware. In Wills, L. M. and Baxter, 1., editors, proceedings of the 3" Working
Conference on Reverse Engineering, pages 208-215. IEEE Computer Society
Press.

[Kuchana, 2004] Kuchana, P. (2004). Software Architecture Design Patterns in
Java. Auerbach Publications, 1! edition.

[Lorenz and Kidd, 1994] Lorenz, M. and Kidd, J. (1994). Object-Oriented Soft-
ware Metrics: A Practical Approach. Prentice-Hall, 1¢ edition.

[McCall, 2001] McCall, J. A. (2001). Quality factors. Encyclopedia of Software
Engineering, 1-2:958-T.

[Miller, 1956] Miller, G. A. (1956). The magical number seven, plus or minus
two: Some limits on our capacity for processing information. The Psycholog-
ical Review, 63(2):81-97.

31

[Online, 2002] Online, C. (2002). Scalability from the edge. Computer Business
review Online, CBR Online.

[Quilici et al., 1997] Quilici, A., Yang, Q., and Woods, S. (1997). Applying
plan recognition algorithms to program understanding. journal of Automated
Software Engineering, 5(3):347-372.

[Schiex and Verfaillie, 1994] Schiex, T. and Verfaillie, G. (1994). Nogood
recording for static and dynamic constraint satisfaction problems. Interna-
tional Journal of Artificial Intelligence Tools, 3(2):187-207.

[Smith and Williams, 2001] Smith, C. U. and Williams, L. G. (2001). Intro-
duction to Software Performance Engineering, chapter 1. Addison Wesley.
http://www.awprofessional.com/articles/article.asp?p=24009.

[Stone, 1974] Stone, M. (1974). Cross-validatory choice and assessment of sta-
tistical predictions. Journal of the Royal Statistical Society, 36:111-147. Series
B: Statistical Methodology.

[Tegarden et al., 1995] Tegarden, D. P., Sheetz, S. D., and Monarchi, D. E.
(1995). A software complexity model of object-oriented systems. Decision
Support Systems, 13(3-4):241-262.

[Tran et al., 2000] Tran, J. B., Godfrey, M. W., Lee, E. H., and Holt, R. C.
(2000). Architectural repair of open source software. In proceedings of the
8" International Workshop on Program Comprehension, pages 48-57. IEEE
Computer Society Press.

[Wendorff, 2001] Wendorff, P. (2001). Assessment of design patterns during
software reengineering: Lessons learned from a large commercial project. In
Sousa, P. and Ebert, J., editors, proceedings of 5" Conference on Software
Maintenance and Reengineering, pages 77-84. IEEE Computer Society Press.

[Witten and Frank, 1999] Witten, I. H. and Frank, E. (1999). Data Mining:
Practical Machine Learning Tools and Techniques with Java Implementations.
Morgan Kaufmann, 15 edition.

[Wood et al., 1999] Wood, M., Daly, J., Miller, J., and Roper, M. (1999). Multi-
method research: An empirical investigation of object-oriented technology.
journal of Systems and Software, 48(1).

[Wuyts, 1998] Wuyts, R. (1998). Declarative reasoning about the structure of
object-oriented systems. In Gil, J., editor, proceedings of the 26" conference
on the Technology of Object-Oriented Languages and Systems, pages 112-124.
IEEE Computer Society Press.

[Wydaeghe et al., 1998] Wydaeghe, B., Verschaeve, K., Michiels, B., Damme,
B. V., Arckens, E., and Jonckers, V. (1998). Building an omt-editor using
design patterns: An experience report. In proceedings of the 26" Technology
of Object-Oriented Languages and Systems conference, pages 20-32. IEEE
Computer Society Press. citeseer.ist.psu.edu/wydaeghe98building.html.

32

[4555]) 0L 8€T 1301,
evl g € I 4 JOSIA
c01 4 (018 T € 4 4 poyia|y a1e|dws |
Ly € L 4 T |4 A3a38435
[49 € ¥ 4 4 91e1g
el i eT 1 1 [4 14 4 4 uo13|3uIg
€ € T T Axoid
[4S S 14 z ad/f101014
Gel ¥ IT T 4 T 4 € 4 19AI195q0
1 € 4 4 OJUBWIDIA|
1874 g 8 T T g T Jojessy|
ITT ¥ 8 € T T € poyis|\ Aioioeq
1T < T T speoe
79 |4 [4 T T 101€4023(]
L1 4 L 4 4 T T T s1sodwo))
g8 g g T 4 T T puewwo)
jd4 4 9 T 4 T 4 49pling
G¢ 4 4 4 a8pug
[4*14 4 1€ 1 4 8 4 LT 1 Jodepy
444 7661 4! 1 48 1 K103084 10BIISqY
o[ox R CEEE) §0.1N900}1DIB-0IOIUL JO IdQUIN N sjrjowt uSIso(
e Surkerd ewwres|
SOSSe[d sefo1 jo 9.8'% | GST | ¥e | L¥¥ | 8GS'T | TAT | LIT | 6L | 69G | GGI | S9SSe[O Jo 1aquinn
o roquun Toquun] = = o o o
¥ qumN qunN M m M A W = 5 m wu =
=3 2 % o = = = & g =
ja & = & < 5 Z]
g & = < & b < 9 =
£ 4 % =) ol o I Il =
= . ~ < = ~ = =
) i = Q < <
=4 : < =
=] = < N ;
= 5 = . =
" © =
o
N

Table 3: Overview of the data set: Programs, design motifs, micro-architectures,

and roles

33

Acronyms

Descriptions

and references

NM Number of methods [Lorenz and Kidd, 1994]
NMA Number of new methods [Lorenz and Kidd, 1994]
Size/complexity NMI Number of inherited methods [Lorenz and Kidd, 1994]
NMO Number of overridden methods [Lorenz and Kidd, 1994]
WMC Weighted methods count [Chidamber and Kemerer, 1993]
CLD Class-to-leaf depth [Tegarden et al., 1995]
Filiation DIT Depth in inheritance tree [Chidamber and Kemerer, 1993]
NOC Number of children [Chidamber and Kemerer, 1993]
Cohesion C Connectivity ‘C’ [Hitz and Montazeri, 1995]
LCOM5 Lack of cohesion in methods 5 [Briand et al., 1997b]
ACMIC Ancestors class-method import [Briand et al., 1997a]
Coupling CBO Coupling between object [Chidamber and Kemerer, 1993]
DCMEC Descendants class-method export [Briand et al., 1997a]

Table 4: External attributes for classes and corresponding metrics

Design motifs Roles Error (%) | Recall (%)
Iterator Client 0.00 100.00
Observer Subject 0.00 100.00
Observer Observer 2.38 100.00
Template Method Concrete Class 0.00 97.06
Prototype Concrete Prototype 0.00 96.30
Decorator Concrete Component 4.17 89.58
Visitor Concrete Visitor 0.00 88.89
Strategy Context 3.70 88.89
Visitor Concrete Element 2.04 88.78
Singleton Singleton 8.33 87.50
Factory Method Concrete Creator 4.30 87.10
Factory Method Concrete Product 3.45 86.21
Adapter Target 4.00 84.00
Composite Leaf 6.47 82.09
Decorator Concrete Decorator 0.00 80.00
Iterator Iterator 0.00 80.00
Command Receiver 6.67 80.00
State Concrete State 6.67 80.00
Strategy Concrete Strategy 2.38 78.57
Command Concrete Command 3.23 77.42

Table 5: Roles with inferred rules with recall ratio greater than 75%

34

wavd = (000> VON) VvV (000> SWOOT) 00'C 00 00T 66°0 | 660 | 660 uopBuls | ZTVIA
unf <= (000>VON) VvV (000> SWODT) 00T 00'T 00T 10T | T0T | TO'T uoje[duls | TTVIA
unf = (80°¢c>VON) VvV (300> SmwooT) 0076 | 00°GE | L919 || L6°0 | ¥6°0 | S6°0 IeA1sqO | OTVIN
wn <= (¢99SVON) v (200> smwo0T) || 008t 00'T 096 L6°0 | ¥6°0 | G6'0 || @a1sqO | 6VIN
unf = 0£7 > VON) vV (g00>swo0T) || ooer 00T gLl 46°0 | €60 | 960 Iop[ng SYIN
IXAT
wun <= (000>VON) VvV (000>SWODT) 00T 00'T 00'T 00°0 | 000 | 00°0 uoRpBuUIS | ZLVIN
unf <= (000>VON) Vv (000> SWODT) 00T 00'T 00T 000 | 000 | 000 uoje[duls | TLVIN
wuv = (000> VON) VvV (000> SWOOT) 00'TT | 00'TT | 00°TT €8°0 | €8°0 | €8°0 1A108qQ | OLVIN
wog <= (000>VON) Vv (000> SN0OOT) 00T 00'T 00'T €8°0 | €8°0 | €8°0 || at8SqO | 69VIN
wuv = (EVLSVON) Vo (8€0>SWODT) || 00061 | 00T | €Il || €0°T | 99°0 | 0670 10A1080 | 89VIN
unf = (8¢8I >VON) VvV (L10>SwooT) 00°8¥ 00'T L9°0¢ || 660 | €8°0 | 260 103e193] LOVIN
wuv = (8967 > VON) vV (L90>SwWOOT) || 0009LT | 00°6% | TPGET || 060 | G20 | €9°0 || Ioyeiooeq | 99VIN
o <= (g9 SVON) V. (220> SW00T) || 00's¥T | 007 01°0L || 9670 | gz'0 | 90 || eysodwopy | goVIN
LINNO [
unf <= (g881c > VON) VvV (180> SWO0DT) || 006L | 0018 | 88°€5S || 0T | 080 | S6°0 A3eyenns | 16VIN
wuv = (000> VON) VvV (000> SWODT) 00T 00'T 00T 490 | L9°0 | L9°0 || wojeSwis | ¢8VIN
poon <= (0€T9SVON) vV (9T'T>swo0T) || 00%91 | 00T ce6z || €91 | 090 | L0°T || puewwiop | FAVIN
MYVHLOH [Ul S2IN)09}IYDIR-0IDTUI 8Y) JO JosqNng

MUJ MN:W > S TI ™~ © @ 3

S o Q Q Q = = >

& > > e |1 g | “ 3 2

Z 7 2

Table 6: Data and rules when applying the quality model to a subset of JHOT-

Draw, JUNIT, and LEXI

35

