
Integrating Behavior Protocols in Enterprise Java Beans

Andrés Faŕıas, Yann-Gäel Gúeh́eneuc∗,
and Mario S̈udholt†

École des Mines de Nantes
4, rue Alfred Kastler – 44307, Nantes, France
{afarias|guehene|sudholt }@emn.fr

September 3, 2002

Abstract

Behavioral protocols have been proposed to enhance component-based systems by including
sequencing constraints on component interactions in component interfaces. However, no exist-
ing component-based models provide support for behavioral protocols. In this paper, we discuss
the integration of behavioral protocol in Sun’s Enterprise JavaBeans (EJB) component model in
three steps. First, we introduce the notion of coherence between behavioral protocols and com-
ponent source code. Second, we discuss of the relations of behavioral protocols to the different
interface-related concepts in EJB components (remote interface, deployment descriptor...). Third,
we describe possibilities of automatic enforcement of behavioral protocols by means of automated
extraction of protocols from components and verification of the notion of coherence against ex-
pected behavioral protocols.

1 Introduction

Component-based programming facilitates the construction of large-scale applications through the
composition of simple building blocks in complex applications. A fundamental notion of component-
based programming is explicit interfaces. Interfaces impose strong restrictions on components: they
make explicit all the means to use components, such as interaction and transfer of control interactions
between components. In Sun’s Enterprise JavaBeans (EJB) [2], for example, component (beans) in-
teractions and how interactions are constrained are defined in form of several entities, among others a
bean’s remote interface and deployment descriptors. These entities essentially make explicit the types
of the services, i.e., the methods, provided by a bean. More elaborate behavioral specifications are
expressed using separate methodologies, such as the UML [10]. An important behavioral specifica-
tion of components is sequencing constraints that components must obey when calling services of one
another. Figure below presents the component-based client-server architecture of a chat server appli-
cation for broadcasting messages among several clients. TheChatServer component offers services
for clients to log in and to log out, to broadcast messages to all logged clients and to search for a
posted message. The componentChatServer relays the services of its two collaboratorsLogin and

∗This work is partly funded by Object Technology International, Inc. – 2670 Queensview Drive – Ottawa, Ontario,
K2B 8K1 – Canada

†This work is partly funded by the EU project “EasyComp” (www.easycomp.org), no. IST-1999-014191

1

This paper has been accepted at the OOPSLA 2002 workshop on Behavioral Semantics.

MessageBoard through its interface, e.g.login() , or uses them to implement its own services, e.g.
posting() .

Message Exchange

ChatServer

Login

Message

search(Message)

login()

logout()
login()

logout()

posting(Message)

search(Message)
Board

Im
plem

entation Client

newMessage(Message)

The availability of the services of the chat server component depends on its runtime state (e.g., the
identities of logged in clients) as well as on the state of its clients. Messages, for example, can only
be posted by clients who have previously logged in.

However, such sequencing constraints are not explicit in the interfaces of the components. Fol-
lowing work on object-oriented languages, the introduction of explicit protocols into component inter-
faces has been proposed [3, 8, 12, 13], essentially in the context of simple component models, which
are rather small and simple, compared to commercial-strength industrial ones, like the EJB component
model. In this paper, we investigate the feasibility and impact of the introduction of explicit proto-
cols in interfaces of beans, where “interface” is understood as all EJB entities governing interactions
of individual beans (i.e., including home and remote interfaces, deployment descriptors, and policy
specifications, and at the different phase of the been life-cycle). We present three contributions. Most
importantly, we discuss how sequencing constraints can be represented using beans interface entities,
thus showing how protocols can be integrated in EJB interfaces. Furthermore, we develop a solution
to the problem of coherence of interface-level protocols and the sequences of method calls executed at
runtime by extraction of implementation-level protocols. We also sketch a prototype supporting such
a notion for coherence.

The paper is structured as follows: after a brief introduction to on the notion of explicit protocols
in components in Section 2, we introduce the notion of protocol coherence, in Section 3. In Section
4, we discuss the integration of explicit protocols in EJBs. Related work is discussed in Section 5.
Conclusions and future work are given in Section 6.

2 Component model with explicit protocols

login logout

Methods

Implementation

MethodDeclarations

Clients IDs

InterfaceIn this section, we present how protocols can be integrated into
component models by revisiting such a model [3]. We consider
components as software units providing an interface consisting of
a set of method declarations, one protocol, and a set of lists of
identities of collaborating components; lists that are used by the
protocol to control the reception and sending of methods calls. In-
formally, the semantics of interfaces is the following: the method
declarations define the services a component offers, the protocol
defines sequences of possible interactions (receiving and sending
ones) by means of transitions of a finite-state system, and the col-
laborator lists provide information to restrict protocol interactions based on component identities.

2

The figure on the right illustrates this structure for the chat server component introduced earlier. The
provided services include methodlogin() , the protocol includes a sequencing constraint between
login() andlogout() , and a collaborator list records logged-in clients.

Stable Sending

clients*: +newMessage(Message)

clients+: -login()
clients-: -logout()

clients!: -post(Message)

Figure 1:ChatServer protocol

In the component model introduced in [3], a com-
ponent protocol, formalized in terms of a finite-state
machine, describes sequencing constraints that spec-
ify the order in which services can be requested as
well as constraints on the identity of the collabo-
rators that interact with it. A transition is labeled
with a method call, a direction specifying whether
the method call comes from or goes to a collabora-
tor, and an identity-constraint term restricting the identity of the caller or receiver. Figure 1 shows a
protocol definition of a basic behavioral specification for the chat server component. The initial state
Stablehas three transitions representing services provided by the server (denoted by the direction ‘- ’)
to add a client (login()), to remove a client (logout()), and to post a message (post()). The
transitions labeled with identity-constraints record added and removed clients and thus ensure that
messages are posted by clients that are currently logged in to all clients that have been added (and
not removed). Once a client has successfully posted a message the protocol transits to theSending
state from which the server broadcasts a message to every client that are logged in using anew-

Message(Message) . A transition label states the direction of interactions (a message sent: ‘+’ or
a message received: ‘- ’) and identity-constraint terms, which are lists of component identities that
restricts the execution of a service only to collaborators whose identities are in the list denoted by the
identity-constraint term. There are four kinds of identity-constraints terms foraddingan identity of
the component, which performs the request corresponding to the current identity-constraint term (l+),
for removingan identity (l−), for constraining(l!) to identities in the list, and forsendingthe message
to every identity in the constraint term (l∗).

We consider component composition as the basic relation that enables a component to use the ser-
vices provided by another one. In the context of components with explicit protocols, component com-
position naturally involves composition of protocols. In [3] we propose several protocol-composition
operators to support component composition that preserve a correctness property of substitutability
by construction: the protocol resulting of a protocol operation can safely substitute its operands (see
[3] for details).

3 Notion of coherence

We now direct the discussion towards the problem of coherence between a protocol and a component
source code that rises when we expect that a component behaves as described by the protocol. Coher-
ence between a component implementation and a protocol specification is important in that it allows
static verification of the sequencing constraints specified in the protocol.

In the previous section, we showed how we associate a protocol with a component. We also
showed that a component protocol specifies completely the behavior of its component. However,
component protocol only represents the desired behavior of the component at the specification level.
So far, nothing prevents the component implementation to behave, in facts, differently from its ex-
pected behavior, as defined by the component protocol.

We now present a model of implementation-level protocol and a notion of coherence between
a protocol and a source code, which link a component protocol with a component implementation.

3

Then, we introduce four different operators on coherence verifications between a component protocol
and a component implementation. Finally, we briefly describe a prototype tool, CwEP, that partially
implements the model of equivalence and the coherence verifications.

3.1 Model of Implementation-level Protocol and Notion of Coherence

Figure 2: Correspondence between (a subset of) an implementa-
tion level protocol and the related method declarations and invo-
cations.

Using the model of protocols
presented in Section 2, we call spec-
ification level protocol a protocol
specifying the desired behavior a
component, prior to the component
implementation (such as the one pre-
sented in Figure 1). We call im-
plementation level protocol a pro-
tocol extracted from a component
source code and describing theac-
tualbehavior of the component. We
extract an implementation level pro-
tocol by assimilating method dec-
larations with transitions, and by
matching states with the locations
before and after method invocations. Figure 2 shows the correspondence between source code, method
declarations and method invocations, and an implementation level protocol: a method invocation ex-
pression corresponds to a unique state of a protocol; a method declaration corresponds to several
transitions in different protocols.

We now introduce a notion of coherence between protocols at the specification-level and at the
implementation-level: two protocols are coherent if and only if they define the same sequences of
method invocations with the same collaborator identities, even if their structures differ. With this
notion of coherence we can compare two protocols and verify their coherence.

3.2 On the Notion of Coherence

From the notion of coherence, it is possible to verify the coherence between a specification-level
protocol and an implementation-level protocol, both dynamically and statically.

Dynamic verification of the coherence During the execution of a component-based application, the
server, on which the components run, could check dynamically the coherence between the behavior of
a component, given by its implementation-level protocol, and a given specification-level protocol, thus
guaranteeing that the component does not violate its expected behavior, i.e., the expected sequences
of method invocations. The dynamic verification of a component with a protocol allows to prevent a
component from by-passing, for example, security checks, before it actually tries to do so.

Static verification of the coherence The static verification of the coherence allows to verify whether
the implementation of a given component follows a desired specification-level protocol, through the
implementation-level protocol of the component. The static verification of the coherence of a compo-
nent with a protocol is especially important with COTS, because software engineers in charge of the

4

integration must be certain that the COTS integrate with the rest of the application, i.e., that the COTS
have the expected behavior and thus comply with the specifications-level protocols of the application.

From the notion of coherence, it is also possible to modify the source code of a component ac-
cording to its associated protocol, either dynamically or statically.

Dynamic Modification of a Component Implementation. We could also dynamically adapt col-
laborating components to work together by generating automatically an adaptor required for a compo-
nent to satisfy the protocols of its other collaborators. However, the automatic generation of adaptors
would require precise theorems and proofs on our model of protocols and would have limitations,
as [13].

Static Modification of a Component Implementation We also consider to modify the source code
of a component in two steps, to add tests that check the identities defined by the design-level protocol,
and to ensure that the method respect the required sequence of method invocations.

First, we assume that the component source code is already compatible with the sequence of
methods invocations specified by the protocol; that is, the component source code is coherentw.r.t.
the sequences of method invocations but (possibly)not w.r.t. the identities of the collaborators. From
a transition labeledx : +m() starting from a statesi and leading to a statesf , we can univocally
determine the statement in the component source code that invokes methodm() . Thus, we can insert
a test for checking thatx is effectively the receiver of the method invocation, just before the method
invocation, at the point corresponding to statesi. This check is required because the real value of a
variable, which represents the receiver, can be dynamically reassigned. For example, in the following
code:

(new Point(1, 1)).moveTo(2, 3);

It is not possible to determine dynamically whether the receiver expression is the object corre-
sponding to the one specified in the protocol. We introduce the check for verifying the identity of the
receiver as follows:

if ((new Point(1, 1)).equals(collaborator)) {
collaborator.moveTo(2, 3);

}
else {

throw new UnknownReceiverException();
}

Second, we could modify a source code to make it compliant with a given design-level protocol
w.r.t. the sequence of method invocations. The following example describe such a source code mod-
ification, based on the protocol shown on the right figure below and based on the following source
code:

s1
y: +m()

s2
y: +n()

s3{
y.m();
z.a();

}

We assume that states1 is associated to the point before the evaluation of they.m(); statement,
we can easily check that an extra method invocation is being performed instead of the second tran-
sition supposed to be executed at the states2. A straightforward solution consists in modifying the

5

source code to remove the extraz.a(); statement and to add the requiredy.n(); statement. With
a deeper analysis, we could anticipate the fact that statementz.a(); corresponds to a transition
forward in the given protocol and then must be kept.

3.3 Prototype-tool

We are currently developing a framework, the Component with Explicit Protocol1 detector, generator,
and validator (CwEP), that can extract implementation-level protocols from component source code
and check their equivalence with given design-level protocols. Also, given a design-level protocol,
our framework will generate the corresponding source code, and modify existing source code so that
the it complies with the protocol.

f2 f3f1
client+: +login() client-: +logout()

client: +post(Message)

client: ...

Figure 3: Extrated protocol of the Chat server
component.

CwEP is based on the compiler provided with
the Eclipse framework [6]. Using the parser, we
analyze source files and we build their correspond-
ing abstract syntax tree (AST). We visit the differ-
ent nodes of the AST and build the correspond-
ing implementation-level protocol. Appendix A
presents the source code implementing theChat-

Server component. When analyzing this source
code with CwEP, we obtain the implementation-
level protocols of theChatServer methods, de-
picted in Figure 3. The protocol of theChatServer

implementation corresponds to a protocol that follows iteratively any of its method protocols. We
could modify the AST to insert method invocations and adds identity checks.

4 Explicit protocol in the EJB component model

Enterprise JavaBeans [2] is an industrial-strength component model, which supports the development,
deployment, and management of transactional business systems, using distributed components imple-
mented in Java. In the previous sections, we introduced the notions of component protocols and of
coherence between protocols in a general component model. We now study the integration of these
notions in the EJB component model.

First, we present the EJB component model. Second, we discuss the integration of protocols in
the EJB component model at the specification level. In particular, we study how to include the notion
of coherence in the EJB component model. Third, we discuss some implementation issues met when
enhancing the EJB component model.

4.1 EJB component model

The definition of a bean is strongly bound to the Java environment. The structure of a bean, as shown
in Figure 4, can be seen as being a set of classes, interfaces, and configuration files. A bean has
two main interfaces. A remote interface describes the component functionality and a home interface
specifies the methods controlling the life-cycle of the instances of the component. The structure of
a bean also contains a deployment descriptor, an XML file containing non functional properties and
definitions of the component environment.

1The framework is available athttp://www.emn.fr/farias .

6

Interface
Remote

descriptor
deployment

level

Login

Container

policy

level

java securityChatServer

level
Implementation

Home
Interface

Interfaces

Board
Message

Figure 4: EJB component model.

Non-functional properties allow configuration of
three EJB services: transactions, persistence, and se-
curity. Modification of such descriptor file can change
dramatically the behavior of a component without mod-
ifying the classes that define them.

The life-cycle of a bean has four main phases: de-
velopment, where components are created; assembly,
where components are composed to create more com-
plex components; deployment, where components are
configured to run in a particular environment; and ex-
ecution, where components are running.

An EJB application is a composition of beans join together via environment variables. The appli-
cation is instantiated by a client that must create component instances to work with. Therefore, every
other components instance are created indirectly when the instances are executed. The granularity of
a component specification (via deployment descriptor) is only a bean.

4.2 On Component protocols and EJB component model specifications

The integration of protocol specifications can be performed during the different phases of a bean
life-cycle and in the three different levels of the EJB component model: code source, interface, and
descriptor files. This integration impact differently the whole life-cycle process, depending on when
and where the specifications are integrated.

At the development phase, protocols can clearly specify constraints on components services,
which are dependent with one another. At this phase of the life-cycle, protocols can be specified
either at the source code level or at the interface level. As discussed in Section 3, protocols can be
specified separately and then, by means of source code transformations, components are modified to
follow the protocol specifications. Integrating protocols at the level of interfaces implies to change
the traditional structure of the bean interface. Either way, the main advantage of specifying protocols
at the development phase is that the specification remains separated from the implementation.

The distinction between remote and home interfaces can be used to separate the protocol in cor-
responding parts. A protocol specifying only services requests by collaborators (as the protocols of
Nierstrasz [5]) can be integrated with the remote interface, while a protocol specifying the requests
that the associated component makes to its collaborators can be specified in the home interface. For
example, in the chat server application the remote interface can expose theChatServer services and
specifications about theChatServer services availability, while the home interface can specify the
methods modifying the life-cycle of the component instances as well as interactions (the services it
requests) with its collaborators (Login andMessageBoard for example).

At the assembyphase, we think difficult to specify protocols for components being assembled.
However, we can specify the way in which the respective protocols of the components will be com-
posed. Protocol composition can thus be specified by means of protocol operators such as the union
and concatenation. In the context of the chat server, we can imagine concatenating theLogin com-
ponent protocol with theChatServer component protocol.

At the deploymentphase, beans are now in binary form, so they cannot be modified. This means
that protocols can only be specified at the container level where components are configured for de-
ployment, by means of the deployment descriptor. The deployment descriptor plays a fundamental
role in extending the container behavior, thus we can introduce protocol specifications in the container.

7

Finally, at theexecutionphase, protocol specifications related to running instances of components
can take place in the execution environment (dynamic verification).

4.3 Implementation issues when integrating component protocols

Integrating protocol specifications at different levels of the EJB component model and in different
life-cycle phases of the beans raises implementation issues, as well as commercial drawbacks.

Integration of protocol specifications at the phase ofdevelopmentby transforming the code source
of components does not need to modify the semantics of Java or of the EJB server implementation,
because the protocol specifications are separated from the components implementation. Protocol can
still be specified at theassemblytime by wrapping components and adding the corresponding glue
code for integrating protocol specifications. Introducing protocol specifications at thedeployment
phase means modifying the container implementation or redefining the semantics of the home and
remote interfaces. Either approach has for consequence that components are no longer compliant
with the EJB specifications. At theexecutionphase, protocol specifications can only be integrated by
modifying directly the EJB server and the deployment tools, which, once again, makes this approach
not compliant with the EJB specifications.

The result of this discussion is that the later component protocols are integrated in the components
life-cycle, the less compliant with the standard EJB specifications the integration is. On the one hand,
integration at the source code-level is compliant with EJB specifications but does not let deployers
to modify protocol specifications as when adding them at the deployment or execution phase. Inte-
grating protocols at the deployment and execution phases let deployers add protocol specifications to
COST components while the tradeoff is loosing compliance. Compatibility plays against the degree
of integration.

5 Related Work

Components and protocols.Plazil et al. from the SOFA project at Charles University in Prague pro-
pose an enhanced architectural description language for component behavior with explicit protocols
[8]. They have consider enhancing the EJB component model but no concrete work has been per-
formed [4]. Yellin and Strom [13] also integrate protocol into components. Their work is genuine in
that it considers automatic generation of adapter code among component protocols to satisfy compat-
ibility property. However, they do not consider applying their research to real component models.

Separated component specifications.There are numerous approaches supporting specifications of
component-related properties separated from the underlying component model. The UML [10], for
example, has been applied to specify components. Similarly, Message Sequence Charts [9] is a trace
language used to describe interactions among components based on finite-state systems. Architectural
description languages, such as Wright [1], have also been used for similar purposes. However, none of
these approaches has concretely try to enhance commercial component models and to analyze impact.

6 Conclusions and Future work

We presented a model of components with protocols. Then, we introduced a notion of coherence be-
tween specification-levels component protocols and implementation-level component protocols. We
discussed the importance of structural entities in the EJB component modelw.r.t. protocol integration.
We also discussed the impact of integrating protocols specifications at the different levels of the beans.

8

We proposed a tool that helps in verifying and in integrating behavioral protocol specifications in the
development phase of beans, while integrating protocols in the interface of beans still implies a strong
loss of compatibility with the EJB component model specifications.

Future work. Next step is to experiment our theory by means of concrete modifications in open
source EJB servers, such us JOnAS [7]. Also, work remains to enhance the EJB component model
in such a way that the different roles distinguished by the EJB component model (developers and
deployers) can extend specifications using our model of protocols.

References

[1] Robert J. Allen,A formal approach to software architecture, Ph.D. thesis, School of Computer Science,
Carnegie Mellon University, Pittsburgh, May 1997.

[2] L.G. DeMichiel, L.Ü. Yalçinalp, and S. Krishnan,Enterprise javabeansTM specification, SUN Microsys-
tems, August 2001, Version 2.0, Final Release.

[3] Andrés Farias and Mario S̈udholt,On components with explicit protocols satisfying a notion of correctness
by construction, DOA 2002, Distributed Objects and Applications, Lecture Notes in Computer Science,
Springer-Verlag, October 2002, To appear.

[4] Vlad́ımir Menel, Jírı́ Adámek, Adam Buble, Petr Hnetynka, and Stanislav Visnovsky,Enhancing ejb
component model, Tech. Report 2001/7, Dep. of SW Engineering, Charles University, Prague, December
2001.

[5] Oscar Nierstrasz,Regular types for active objects, Object-Oriented Software Composition (Oscar Nier-
strasz and Dennis Tsichritzis, eds.), Prentice-Hall, 1995, pp. 99–121.

[6] Object Technology International, Inc.,Eclipse platform – A universal tool platform, July 2001.

[7] ObjectWeb, Open source middleware,JOnAS: Java (tm) open application server, 2002.

[8] Frantisek Plasil and Stanislav Visnovsky,Behavior protocols for software components, IEEE Transactions
on Software Engineering, IEEE, January 2002.

[9] Ekkart Rudolph, Peter Graubmann, and Jens Grabowski,Tutorial on Message Sequence Charts, Computer
Networks and ISDN Systems28 (1996), no. 12, 1629–1641.

[10] James Rumbaugh, Ivar Jacobson, and Grady Booch,The unified modeling language reference manual, 1
ed., Addison-Wesley, Reading, Massachusetts, USA, 1999.

[11] Jan van den Bos and Chris Laffra,PROCOL: A parallel object language with protocols, OOPSLA’89,
Conference Proceedings. Object-Oriented Programming, Systems, Languages and Applications (New Or-
leans, Louisiana, USA) (N. Meyrowitz, ed.), ACM SIGPLAN Notices, vol. 24(10), October 1989, pp. 95–
102.

[12] Bart Wydaeghe,PACOSUITE, component composition based on composition patterns and usage scenar-
ios, Ph.D. thesis, Vrije Universiteit Brussels, 2001.

[13] Daniel M. Yellin and Robert E. Strom,Protocol specifications and component adaptors, ACM Transac-
tions on Programming Languages and Systems19 (1997), no. 2, 292–333.

9

A ChatServer Source Code

package fr.emn.chat.server;

import java.beans.*;
import java.util.*;

public class ChatServerextends Thread{
private Security aSecurityLibrary;
private Vector clients;
private Vector moderators;
private Message currentNewMessage; 10

public Server() {
this.aSecurityLibrary= new Security();
this.clients = new Vector();
this.moderators= new Vector();
this.currentNewMessage= null ;

}
private void setCurrentNewMessage(

Message aMessage)
throws PropertyVetoException{ 20

PropertyChangeEvent newMessage=
new PropertyChangeEvent(

this,
"currentNewMessage" ,
this.currentNewMessage,
aMessage);

this.currentNewMessage= aMessage;
this.firePropertyChange(newMessage);

} 30
private Message getCurrentNewMessage() {

return this .currentNewMessage;
}
public void addVetoableChangeListener(

VetoableChangeListener aModerator) {
this.moderators.add(aModerator);

}
public void addPropertyChangeListener(

PropertyChangeListener aClient) {
this.clients.add(aClient); 40

}
public void removeVetoableChangeListener(

VetoableChangeListener aClient) {
this.clients.remove(aClient);

}
public void run() {

System.out.println("Server running. . .");
while (true) {
}

} 50
public void post(Message aMessage)

throws PropertyVetoException{

System.out.println(

"New Message received from: "
+ aMessage.getFrom()
+ " at "
+ aMessage.getDate().toString());

System.out.println(aMessage.getValue());
60

Iterator mIterator= moderators.iterator();

while (mIterator.hasNext()) {
Moderator m= (Moderator) mIterator.next();
m.vetoableChange(

new PropertyChangeEvent(
this,
"currentNewMessage" ,
this.currentNewMessage,
aMessage)); 70

}

this.setCurrentNewMessage(aMessage);
}
public void login(User aUser, String password) {

this.aSecurityLibrary.login(aUser, password);
}
public void logout(User aUser) {

this.aSecurityLibrary.logout(aUser);
} 80
private void firePropertyChange(

PropertyChangeEvent newMessage) {
Iterator clientIterator= this.clients.iterator();

while (clientIterator.hasNext()) {
Client c = (Client) clientIterator.next();
c.propertyChange(newMessage);

}
}

} 90

10

