
Analysing Anti-patterns Static Relationships with Design Patterns

Fehmi Jaafar∗, Yann-Gaël Guéhéneuc∗, and Sylvie Hamel∗∗
∗ PTIDEJ Team, DIRO, Université de Montréal, QC, Canada
∗∗ LBIT Team, DIRO, Université de Montréal, QC, Canada

E-Mails: jaafarfe@iro.umontreal.ca, yann-gael.gueheneuc@polymtl.ca, hamelsyl@iro.umontreal.ca

Abstract—Anti-patterns are motifs that are commonly used
by developers but they are ineffective and counterproductive
in program development and–or maintenance. These motifs
evolve and they may have dependencies with non-anti-pattern
classes. We propose to analyse these dependencies (in particular
with design patterns) in order to understand how developers
can maintain programs containing anti-patterns. To the best
of our knowledge, no substantial investigation of anti-pattern
dependencies with design patterns was presented. This paper
presents the results of a study that we performed on three
different Java systems (ArgoUML, JFreeChart, and XercesJ)
to analyse the static relationships between anti-patterns and
design patterns. We detect such static relationships to better
understand software systems and to explain the co-existence of
these motifs. Our finding provides evidence that developers
encapsulate anti-patterns using design patterns to facilitate
maintenance tasks and reduce comprehension effort.

Keywords—Anti-patterns, Design Patterns, Static Relation-
ships, Mining Software Repositories.

I. CONTEXT AND PROBLEM

Software systems continuously evolve in order to incor-
porate changing customers’ requirements, performance im-
provements and–or to fix bugs. Without proper knowledge,
developers may introduce anti-patterns in the system. An
anti-pattern is a literary form that describes a bad solution
to recurring design problems that leads to negative effects on
code quality [1]. Opposite to anti-patterns, design patterns
[2] are “good” solutions to recurring design problems,
conceived to increase reuse, code quality, code readability
and, above all, maintainability and resilience to changes.
Large, long-lifespan systems often have both design patterns
and anti-patterns and, consequently, anti-patterns and design
patterns may have some relationships, i.e., the classes partic-
ipating in some design patterns may be in relation to those
participating in some anti-patterns. The static relationships
among classes are typically use, association, aggregation,
and composition relationships [3].

Research Problem. Most previous work agree that anti-
patterns make the maintenance of systems more difficult
and that design patterns can serve as guide in program
exploration and, thus, ease maintenance. However, there are
no investigation in the literature about the static relationships
among anti-patterns and design patterns. Yet, understanding
these relationships help developers better understand and
maintain software systems by giving them the knowledge

of what is “good” and what is “bad” in their system and,
thus, what and how they could strive to eliminate design
defects.

We formulate the following research question:

• Are there static relationships between anti-patterns and
design patterns?

We found that, for the majority of anti-patterns, we detect
static relationships among design patterns with different pro-
portions in ArgoUML, JFreeChart, and XercesJ. We discuss
this finding to explain the existence and the distribution of
these relationships among anti-patterns.

Organisation. Section VI relates our study with previous
work. Section II presents our method to detect instances of
classes participating in patterns and anti-patterns. Section III
describes our empirical study. Section IV presents the study
results, while Section V discusses them, along with threats
to their validity. Finally, Section VII concludes the study and
outlines future work.

II. APPROACH

This section describes the steps necessary to extract and
to analyse the data required to perform this study. We use
two previous approaches DECOR[4] to detect anti-patterns,
and DeMIMA[5] to detect design patterns.

A. Step 1: Detecting Anti-patterns

We use the Defect DEtection for CORrection Approach
DECOR[4] to specify and detect anti-patterns. DECOR is
based on a thorough domain analysis of anti-patterns defined
in the literature, and provides a domain-specific language to
specify code smells and anti-patterns and methods to detect
their occurrences automatically. It can be applied on any
object-oriented system through the use of the PADL [5]
meta-model and POM framework. PADL is a meta-model
to describe object-oriented systems [5]. POM is a PADL-
based framework that implements more than 60 metrics.
Moha et al. [4] reported that the DECOR current detection
algorithms for anti-patterns ensure 100% recall and have a
precision greater than 31% in the worst case, with an average
precision greater than 60%.

B. Step 2: Detecting Design Patterns

We use the Design Motif Identification Multilayered Ap-
proach (DeMIMA)[5] to specify and detect design patterns.
DeMIMA ensures traceability between motifs and source
code by first identifying idioms related to binary class
relationships to obtain an idiomatic model of the source
code and then by using this model to identify design
motifs and generate a design model of the system. We
also use DeMIMA to detect motifs’s relationships. In fact,
DeMIMA distinguishes use, association, aggregation, and
composition relationships because such relationships exist
in most notations to model systems, for example, in UML.
Gueheneuc and Antoniol [5] reported that the DeMIMA
approach detection for patterns ensures 100% recall and have
a precision greater than 34%. While, for the detection of
relationships among classes, the DeMIMA approach ensures
100% recall and precision.

C. Step 3: Analysing Anti-patterns Dependencies

Table I summarizes anti-patterns considered in this paper.
To perform the empirical study, we choose to analyse the
relationships of the well known anti-patterns and six design
patterns belonging to three categories: creational patterns
(Factory method and Prototype), structural patterns (Com-
posite and Decorator), and behavioral patterns (Command
and Observer). Thus, we choose these motifs because they
are representative of problems with data, complexity, size,
and the features provided by classes. We choose, also, these
motifs because they have been used and analysed in previous
work [4] and [6]. Definitions and specifications are outside
of the scope of this paper and are available in [2] and [6].

We assume that a design pattern P has a static relation-
ships with the anti-pattern A if at least one class belonging
to P has a use, association, aggregation, or composition
relationships with one class belonging to A.

III. STUDY DEFINITION AND DESIGN

The goal of our study is to investigate the static re-
lationships between anti-patterns and design patterns in
the system. The quality focus is explaining anti-patterns’
static relationships with design patterns to better understand
systems’ architectures. The context of our experiment is
three open-source Java programs: ArgoUML, JFreeChart,
and XercesJ.

A. System Under Analysis

We apply our approach on three Java systems: ArgoUML1

(version 0.26), JFreeChart2 (version 1.0.6), and XercesJ3

(version1.0.4). These systems can be classified as large,
medium, and small systems, respectively. We use these
systems because they are open source, have been used in

1http://argouml.tigris.org/
2http://www.jfree.org/
3http://xerces.apache.org/xerces-j/

ArgoUML JFreeChart XercesJ
of classes 3,325 1,615 1,191
of AntiSingleton 3 38 24
of Blob 100 49 12
of CDSP 51 3 6
of ComplexClass 158 52 7
of LongMethod 336 75 7
of LongParameterList 281 76 4
of MessageChains 162 59 8
of RefusedParentBequest 123 5 7
of SpaghettiCode 1 2 6
of SpeculativeGenerality 22 3 29
of SwissArmyKnife 13 26 29

Table I
DESCRIPTIVE STATISTICS OF THE OBJECT SYSTEMS (CDSP:

CLASSDATASHOULDBEPRIVATE)

previous work, are of different domains, and have between
hundreds and thousands of classes. Table I summarizes some
statistics about these systems.

IV. STUDY RESULTS

We now present the results of our empirical study. Table
II summarizes our results.

RQ1: Are there static relationships between anti-
patterns and design patterns?

Yes. Table II shows that, for the majority of anti-patterns, we
detect static relationships with design patterns. On the one
hand,we notify that different anti-patterns can have different
proportions of static relationships with design patterns. This
observation is not surprising because these systems have
been developed in three unrelated contexts, under different
processes. On the second hand, the design pattern that
often has the most relationships with anti patterns is the
Command design pattern. For example, we noted that 50%
of static relationships among SpeculativeGenerality and de-
sign patterns in ArgoUML, are with the Command motifs.
In XercesJ, we observe that 41% of relationships among
ClassDataShouldBePrivate was with the Command design
pattern.

No clear tendency exists for ComplexClass and Refused-
ParentBequest. For example, ComplexClasses have static re-
lationships with six analysed design patterns with equivalent
proportions in ArgoUML, JFreeChart, and XercesJ.

But... In the three systems, if a class participate in a
design pattern, it does not have a relationship with the
SpaghettiCode anti-pattern, as showed in Table II. In fact,
in all three systems, we do not detect any class playing
role in a SpaghettiCode having static dependencies (use, as-
sociation, aggregation, and composition relationships) with
the six design patterns (Command, Composite, Decorator,
FactoryMethod, Prototype, and Observer).

Relevance. Design patterns are especially geared to improve

Anti-patterns Systems # of SR
AntiSingleton ArgoUml 68

JFreeChart 92
XercesJ 83

Blob ArgoUml 161
JFreeChart 72
XercesJ 42

ClassDataShouldBePrivate ArgoUml 83
JFreeChart 31
XercesJ 44

ComplexClass ArgoUml 182
JFreeChart 84
XercesJ 66

LongMethod ArgoUml 212
JFreeChart 290
XercesJ 142

LongParameterList ArgoUml 290
JFreeChart 188
XercesJ 204

MessageChains ArgoUml 192
JFreeChart 94
XercesJ 77

RefusedParentBequest ArgoUml 146
JFreeChart 72
XercesJ 48

SpaghettiCode ArgoUml 0
JFreeChart 0
XercesJ 0

SpeculativeGenerality ArgoUml 20
JFreeChart 34
XercesJ 67

SwissArmyKnife ArgoUml 35
JFreeChart 84
XercesJ 86

Table II
PROPORTION OF THE RELATIONSHIPS OF ANTI-PATTERNS WITH DESIGN

PATTERNS (SR: STATIC RELATIONSHIP AMONG ANTI-PATTERNS AND
DESIGN PATTERNS)

adaptability and maintainability. Each design pattern aims
to make specific changes easier [7]. Thus, the benefit of
using design patterns to correct anti-patterns is realised only
if we detect and we analyse relationships among them.
For example, in XercesJ, the class org.apache.xer-
ces.validators.common.XMLValidator.java is
an excessively complex class interface. The developer at-
tempts to provide for all possible uses of this class. In her
attempt, she adds a large number of interface signatures to
meet all possible needs. The developer may not have a clear
abstraction or purpose for org.apache.xerces.va-
lidators.common.XMLValidator.java, which is
represented by the lack of focus in its interface. Thus,
we claim that this class belongs to a SwissArmyKnife
anti-pattern. This anti-pattern is problematic because the
complicated interface is difficult for other developers to
understand and obscures how the class is intended to be
used, even in simple cases. Other consequences of this
complexity include the difficulties of debugging, documen-

tation, and maintenance. We detect that this class has a use-
relationship with the class org.apache.xerces.vali-
dators.dtd.DTDImporter.java, which belongs to
the Command design pattern. Using Command classes
makes it easier to delegate method calls without know-
ing the owner of the method or the method parameters.
Thus, developer can correct org.apache.xerces.va-
lidators.common.XMLValidator.java, by using
the related Command pattern, to represent and encapsulate
all the information needed to call a method at a later time.
This information includes the method name, the object that
owns the method, and values for the method parameters.
Thus, by using the relationships of an anti-pattern with a
specific design pattern, we explain how developers main-
tained the anti-pattern classes while reducing its influence
on the system. An external information from the changelog
file support this idea (see Section V).

V. DISCUSSION

This section discusses the results reported in Section IV
as well as the threats to their validity.

A. Observations

From Table II, we note that many anti-patterns in Ar-
goUML, JFreechart, and XercesJ have relationships with
design patterns. To the best of our knowledge, we are the
first to report these relationships, thanks to our use of state-
of-the-art detection algorithms, which detects occurrences
of 11 anti-patterns and six design patterns. Moreover, we do
not consider that an anti-pattern is necessarily the result of a
“bad” implementation or design choice; only the concerned
developers can make such a judgement. We do not exclude
that, in a particular context, an anti-pattern can be the best
way to actually implement and–or design a (part of a) class.
For example, automatically-generated parsers are often very
large and complex classes. Only developers can evaluate
their impact according to the context: it can be perfectly
sensible to have these large and complex classes if they come
from a well-defined grammar.

SpaghettiCodes have no static relationships (use, associ-
ation, aggregation, and composition) with design patterns.
This observation is not surprising because a SpaghettiCode
is revealed by classes with no structure, declaring long
methods with no parameters, and using global variables
for processing. A SpaghettiCode does not take the advan-
tage of object-orientation mechanisms: polymorphism and
inheritance. Many object methods have no parameters, and
utilize class or global variables for processing. Thus, a
SpaghettiCode is difficult to reuse and to maintain, and
when it is, it is often through cloning. In many cases,
however, code is never considered for reuse. The findings
of our analysis indicate that no relation is detected between
the different occurrence of SpaghettiCode anti-pattern and
design patterns. However, it could be possible that they have

no relations because they constitute DeadCode. Dead code
means unnecessary, inoperative code that can be removed.
It is a code in the program which can never be executed or
a code that is executed but has no effect on the output of
a program [8]. Dead code analysis can be performed using
live variable analysis, a form of static code analysis and data
flow analysis [9]. However, in large programming projects, it
is sometimes difficult to recognize and eliminate dead code
[10]. Thus, dead code detection can be performed by mining
version-control systems (Concurrent Versions System named
CVS4 and Apache Subversion System named SVN5), to
identify, for example, which classes were never changed
after their introduction in the analyzed systems [11]. We
noted for example, that in ArgoUML, more than 80% of
classes were maintained three times at most. On the other
hand, less than 1% of classes were maintained 50 times
at least. Based on change analysis, it is neither possible to
conclude that SpaghettiCode classes have no relations with
design patterns because they constitute DeadCode nor is the
opposite true. Indeed, from the results of this case study
it is impossible to definitely exclude the possibility that
there is in fact no statistically relevant correlation between
SpaghettiCode and DeadCode. However, it could be true that
the spaghetti code classes have no dependencies because of
the lower number of instances in the analysed systems (9
instances).

We observe, also, that the majority of static relationships
among anti-patterns and design patterns come from the
Command pattern. This design pattern is implemented as a
motif in which an object is used to represent and encapsulate
all the information needed to call a method at a later time.
Thus, developers use this design pattern, possibly uninten-
tionally, when there is a proliferation of similar methods
and the user-interface code becomes difficult to maintain.
This characteristic can explain, predominately, the static
relationships of this design pattern and the anti-patterns:

• ClassDataShouldBePrivate because commands must ac-
cess the data of other objects to function, and develop-
ers may have used public instance variables to allow
this access;

• LongMethod and LongParameterList because com-
mands must access the functionalities provides by other
classes, which typically can perform lots of processing,
in long methods and-or with long parameter lists;

• SpeculativeGenerality because classes in relation to
commands may have been engineered with extension
in mind, but the command does not use it.

On the one hand, the notion of static dependency can be
used to assess the architecture of a software system. In fact,
we can assume that systems with more static relationships
among design patterns and anti-patterns are more stables,

4http://cvs.nongnu.org/
5http://subversion.apache.org/

since these relationships can be explained by a developers
recours to a recognized and used stable solutions (design
patterns) to correct and refactor design defects. For exam-
ple, by mining software version-control systems, we found
that the design pattern Command described in Section IV
and containing the class org.apache.xerces.vali-
dators.dtd.DTDImporter.java was created by the
developer jeffreyr on 2000-04-04 15:38:39, to Factoring Val-
idators code implemented in org.apache.xerces.va-
lidators.common.XMLValidator.java. In future
work, we plan to investigate the use of such static relation-
ships among design motifs to measure the architectural stur-
diness. On the other hand, in this paper we study correlations
among collocated anti-patterns and design patterns because
there might be an interaction effect that could explain the
existence of such motifs. In fact, our results showed that
the presence of some anti-patterns (LongMethod, LongPa-
rameterList, etc.) may increase the chances of the presence
of a specific design pattern (Command design pattern).
While, the presence of spaghetti code do not has any direct
correlation with the presence of design patterns.

B. Threats to Validity

We now discuss in details the threats to the validity of
our results, following the guidelines provided in [12].

Internal validity, in our context, they are mainly due to
errors introduced in measurements. We are aware that the
detection technique used includes some subjective under-
standing of the definitions of the anti-patterns and design
patterns. However, as discussed, we are interested to relate
anti-patterns “as they are defined in DECOR” [4] with design
patterns “as they are defined in DeMIMA” [5]. For this
reason, the precision of the anti-patterns and design patterns
detection is a concern that we agree to accept.

Reliability validity threats concern the possibility of repli-
cating this study. We attempted here to provide all the
necessary details to replicate our study. Moreover, both
ArgoUML, JFreeChart, and XercesJ source code repositories
are available. Finally, the data sets on which we computed
our statistics are available on the Web6.

Threats to external validity concern the possibility to gen-
eralise our observations. First, although we performed our
study on three different, real systems belonging to different
domains and with different sizes and histories, we cannot
assert that our results and observations are generalisable to
any other systems and the facts that all the analysed systems
are in Java and open-source may reduce this generability.
Second, we used particular, yet representative, sets of anti-
patterns and design patterns. Different anti-patterns and
design patterns could have lead to different results, which
are part of our future work.

6http://www.ptidej.net/download/experiments/msr12/

VI. RELATED WORK

Several work studied the detection and the analysis of
anti-patterns and design patterns. For lack of space, we only
cite some relevant work, the interested readers can find more
references in our previous work [4] and [5].

Anti-patterns Definition and Detection. Code smells are
related to the inner workings of classes while anti-pattern
include the relationships among classes and are more sit-
uated on a micro-architectural level. The first book on
“anti-patterns” in object-oriented development was written
in 1995 by Webster [13]. In this book, the author reported
that an anti-pattern describes a frequently used solution to
a problem that generates ineffective or decidedly negative
consequences. Riel [14] defined 61 heuristics characterising
good object-oriented programming to assess a program
quality manually and improve its design and implementation.
These heuristics are similar and–or precursor to code smells.
Brown et al. [1] described 40 anti-patterns, which are often
described in terms of lower-level code smells. These books
provide in-depth views on heuristics, code smells, and anti-
patterns aimed at a wide academic audience. They are the
basis of all the approaches to detect anti-patterns.

The study presented in this paper relies on anti-patterns
detection approach proposed in [4]. However several other
approaches have been proposed in the past. For example,
Van Emden et al. [15] developed the JCosmo tool. This tool
parses source code into an abstract model (similar to the
Famix meta-model). It used primitive and rules to detect the
presence of smells and anti-patterns. The JCosmo tool can
visualize the code layout and anti-patterns locations. The
goal of this tool is to help developers assess code quality
and perform refactorings. The main difference compared
with other detection tools is that JCosmo tries to visualize
problems by visualizing the design. Marinescu et al. de-
veloped a set of detection strategies to detect anti-patterns
based on metrics [16]. They later refined their methodologies
by collecting information from documentation with prob-
lematic structures. They showed how to detect several anti-
patterns, such as God Classes and Data Classes. Settas et
al. explored the ways in which an anti-pattern ontology can
be enhanced using Bayesian network [17]. Their approach
allowed software developers to quantify the existence of an
anti-pattern using Bayesian network, based on probabilistic
knowledge contained in an anti-pattern ontology regarding
relationships of anti-patterns through their causes, symptoms
and consequences.

The Integrated Platform for Software Modeling and Anal-
ysis (iPlasma) described in [18] can be used for anti-patterns
detection. This platform calculates metrics from C++ or
Java source code and applies rules to detect anti-patterns.
The rules combine the metrics and are used to find code
fragments that exceed some thresholds.

We share with all the above authors the idea that anti-

patterns detection is a powerful mechanism to asses code
quality, in particular indicating whether the existence of anti-
patterns and the growth of their relationships makes the
source code more difficult to maintain.

Design Pattern Definition and Detection. The first book
on “design patterns” in object-oriented development was
written in 1996 by Gamma et al. [2]. Since this book, several
workshops and conferences have emerged to propose new
patterns. Many papers have been published studying the
use, impact of patterns. The study presented in this paper
relies on design patterns detection approach proposed in
[5]. However several other approaches have been proposed
in the past. For example, one of the first papers about
detecting design patterns was written by Kramer et al.
[19] in 1996. They introduced an approach detecting design
information directly from C++ header files. This information
is stored in a repository. The design patterns are expressed
as PROLOG rules which are used to query the repository
with the extracted information. Their work focused on
detecting five structural design patterns: Adapter, Bridge,
Composite, Decorator, and Proxy. Recently, an approach
based on similarity scoring has also been proposed [20],
which provides an efficient means to compute the similarity
between the graph of a design motif and the graph of a
system to identify classes potentially design motif. Iacob
[21] presented a method aims at identifying proven solutions
to recurring design problems through design workshops and
systems analysis. Indeed, during a design workshop, a team
of 3-5 designers is asked to design a system and the design
issues they address are collected. Moreover, a set of systems
are analysed in order to identify in what measure the design
issues discussed during the workshops are considered in the
implementation of existing solutions. Candidates for being
documented as design patterns are the most recurring design
issues in both the workshops and the systems analysis.

Anti-patterns’ Static Relationships analysis. There are
few papers analyzing the relationships among anti-patterns
and design patterns. Vokac [22] analyzed the corrective
maintenance of a large commercial program, comparing
the defect rates of classes participating in design motifs
against those that did not. He found that the Observer and
Singleton motifs are correlated with larger classes; classes
playing roles in Factory Method were more compact, less
coupled, and less defect prone than others classes; and, no
clear tendency exists for Template Method. Their approach
showed correlation between some design patterns and smells
like LargeClass but do not report an exhaustive investigation
of possible correlations between these patterns and anti-
patterns. Pietrzak and Walter [23] defined and analysed the
different relationships that exist among smells and provide
tips how they could be exploited to alleviate detection
of anti-patterns. These relations presented concentrate on
direct dependencies between smells. They performed an

experiment to show that the use of the knowledge about
identified smells in Jakarta Tomcat code supports the detec-
tion process. They founded examples of several smell depen-
dencies, including simple, aggregate and transitive support
and rejection relation. The certainty factor for those relations
in that code suggests the existence of correlation among the
dependent smells and applicability of this approach to anti-
patterns detection. Rather than focusing on the relationships
among code smells and anti-patterns, our study focuses on
analysing anti-patterns relationships with design patterns.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we provide empirical evidence of the
relationships between anti-patterns and design patterns. We
showed that some anti-patterns are significantly more likely
to have relationships with design patterns than other. This
study raises a question, within the limits of the threats to its
validity, about the conjecture in the literature that some anti-
patterns have a negative impact on system architecture. We
provide a basis for future research to understand precisely
the causes and the eventual consequences of the relationships
between anti-patterns and design patterns, i.e. if developers
use design patterns to encapsulate anti-patterns. The advan-
tages of knowing these relations are (1) spotting how devel-
opers strive to maintain a system containing anti-patterns by
using design patterns and (2) detecting correlations among
collocated anti-patterns and design patterns to identify the
causes of the co-existence of such motifs.

Future work includes (i) replicating our study on other
systems to assess the generality of our results and (ii)
analysing the evolution of the relationships between anti-
patterns and design patterns by studying different versions
of these systems through times.

Acknowledgements. This work has been partly funded by a
FQRNT Team grant, the Canada Research Chair in Software
Patterns and Patterns of Software, and the Tunisian Ministry
of Higher Education and Scientific Research.

REFERENCES

[1] W. Brown, H. McCormick, T. Mowbray, and R. Malveau,
AntiPatterns: refactoring software, architectures, and projects
in crisis. Wiley, 1998, vol. 20.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns – Elements of Reusable Object-Oriented Software,
1st ed. Addison-Wesley, 1994.

[3] Y.-G. Guéhéneuc and H. Albin-Amiot, “Recovering binary
class relationships: Putting icing on the UML cake,” in
Proceedings of the 19th Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA),
D. C. Schmidt, Ed. ACM Press, October 2004, pp. 301–314.

[4] Naouel Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le
Meur, “DECOR: A method for the specification and detec-
tion of code and design smells,” Transactions on Software
Engineering (TSE), vol. 36, no. 1, January–February 2010,
16 pages.

[5] Y.-G. Guéhéneuc and G. Antoniol, “DeMIMA: A multi-
layered framework for design pattern identification,” Trans-
actions on Software Engineering (TSE), vol. 34, no. 5, pp.
667–684, September 2008.

[6] F. Khomh, M. D. Penta, Y. gal Guhneuc, and G. Antoniol, “An
exploratory study of the impact of antipatterns on software
changeability,” Empirical Software Engineering, 2011.

[7] D. Jain and H. J. Yang, “Oo design patterns, design structure,
and program changes: An industrial case study,” in Pro-
ceedings of the IEEE International Conference on Software
Maintenance (ICSM’01). Washington, DC, USA: IEEE
Computer Society, pp. 580–.

[8] J. Knoop, O. Rüthing, and B. Steffen, “Partial dead code
elimination,” in Proceedings of the ACM SIGPLAN 1994
conference on Programming language design and implemen-
tation. ACM, 1994, pp. 147–158.

[9] Y.-F. Chen, E. R. Gansner, and E. Koutsofios, “A c++ data
model supporting reachability analysis and dead code detec-
tion,” IEEE Trans. Softw. Eng., pp. 682–694, 1998.

[10] F. Damiani and F. Prost, “Detecting and removing dead-
code using rank 2 intersection,” in Selected papers from the
International Workshop on Types for Proofs and Programs.
London, UK, UK: Springer-Verlag, 1998.

[11] R. Peters and A. Zaidman, “Evaluating the lifespan of code
smells using software repository mining,” in Proceedings of
the 2012 16th European Conference on Software Maintenance
and Reengineering. Washington, DC, USA: IEEE Computer
Society.

[12] R. K. Yin, Case Study Research: Design and Methods - Third
Edition. London: SAGE Publications, 2002.

[13] B. F. Webster, Pitfalls of Object Oriented Development,
1st ed. M & T Books, February 1995. [Online]. Available:
www.amazon.com/exec/obidos/ASIN/1558513973

[14] A. J. Riel, Object-Oriented Design Heuristics. Addison-
Wesley, 1996.

[15] E. V. Emden and L. Moonen, “Java quality assurance by
detecting code smells,” in in Proceedings of the 9th Working
Conference on Reverse Engineering. IEEE Computer. Soci-
ety Press, 2002, pp. 97–107.

[16] D. Ratiu et al., “Using history information to improve design
flaws detection,” 2004.

[17] D. Settas, A. Cerone, and S. Fenz, “Enhancing ontology-
based antipattern detection using bayesian networks,” Expert
Systems with Applications, 2012.

[18] M. Lanza and R. Marinescu, Object-Oriented Metrics in
Practice. Springer-Verlag, 2006.

[19] C. Krmer and L. Prechelt, “Design recovery by automated
search for structural design patterns in object-oriented soft-
ware,” in Proceeding of the 3rd working conference on reverse
engineering. IEEE Computer Society Press, 1996, pp. 208–
215.

[20] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and
S. Halkidis, “Design pattern detection using similarity scor-
ing,” Transactions on Software Engineering, vol. 32, no. 11,
November 2006.

[21] C. Iacob, “A design pattern mining method for interaction
design,” in Proceedings of the 3rd ACM SIGCHI symposium
on Engineering interactive computing systems, ser. EICS ’11.
ACM, 2011, pp. 217–222.

[22] M. Vokac, “Defect frequency and design patterns: An empiri-
cal study of industrial code,” IEEE Trans. Softw. Eng., vol. 30,
December 2004.

[23] B. Pietrzak and B. Walter, “Leveraging code smell detection
with inter-smell relations,” Extreme Programming and Agile
Processes in Software Engineering, pp. 75–84, 2006.

