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Abstract—Debugging is a laborious activity in which develop-
ers spend lot of time navigating through code, looking for starting
points, and stepping through statements. Yet, although debuggers
exist for 40 years now, there have been few research studies
to understand this important and laborious activity. Indeed, to
perform such a study, researchers need detailed information
about the different steps of the interactive debugging process. In
this paper, to help research studies on debugging and, thus, help
improving our understanding of how developers debug systems
using debuggers, we present the Swarm Debug Infrastructure
(SDI), with which practitioners and researchers can collect and
share data about developers’ interactive debugging activities.

We assess the effectiveness of the SDI through an experiment
that aims to understand how developers apply interactive de-
bugging on five true faults found in JabRef, toggling breakpoints
and stepping code. Our study involved five freelancers and two
student developers performing 19 bug location sessions. We
collect videos recording and data about 6 hours of effective
debugging activities. The data includes 110 breakpoints and
near 7,000 invocations. We process the collected videos and data
to answer five research questions showing that (1) there is no
correlation between the number of invocations (respectively the
number of breakpoints toggled) during a debugging session and
the time spent on the debugging task; ρ = −0.039 (respectively
0.093). We also observed that (2) developers follow different de-
bugging patterns and (3) there is no relation between numbers of
breakpoints and expertise. However, (4) there is a strong negative
correlation between time of the first breakpoint (ρ = −0.637);
and the time spent on the task, suggesting that when developers
toggle breakpoints carefully, they complete tasks faster than
developers who toggle breakpoints too quickly.

We conclude that the SDI allows collecting and sharing
debugging data that can provide interesting insights about
interactive debugging activities. We discuss some implications
for tool developers and future debuggers.

Index Terms—Software Maintenance, Interactive Debugging,
Debugging Patterns.

I. INTRODUCTION

Debug. To detect, locate, and correct faults in a com-
puter program. Techniques include the use of break-
points, desk checking, dumps, inspection, reversible
execution, single-step operations, and traces.
—IEEE Standard Glossary of SE Terminology—

Debugging is a common activity during software develop-
ment, maintenance, and evolution [1] during which developers
use debugging tools to detect, locate, and correct faults.
Debugging tools can be interactive or automated.

Interactive debugging tools, a.k.a. debuggers, such as sdb
[2], dbx [3], or gdb [4] have been used by developers for

decades. Modern debuggers are often integrated in devel-
opment environments, e.g., DDD [5] or the debuggers of
Eclipse, Netbeans, Intellij IDEA, Visual Studio Integrated De-
velopment Environments (IDEs). With debuggers, developers
navigate through the code, looking for locations to place
breakpoints, and stepping into statements. While stepping, de-
velopers can traverse method invocations, toggle one or more
breakpoints, stop and/or restart executions. This exploration
process allows developers to gain knowledge about programs
and the causes of faults, allowing them to fix the faults.

Automated debugging tools require both successful and
failed runs and do not support programs with interactive inputs
[6]. Consequently, they have not been widely adopted in
practice. Moreover, automated debugging approaches are often
unable to indicate the “true” locations of faults [7]. Other more
interactive approaches, such as slicing and query languages,
help developers but, to date, there have been no evidence that
they significantly ease developers’ debugging activities.

Roßler [7] advocates for the development of a new family
of debugging tools that are context-aware and that rely on true
scenarios (even though Ceccato et al. [8] recently showed that
automatically-generated test-cases are as useful for debugging
as manual test cases). To build context-aware debugging tools,
researchers need an understanding of developers’ debugging
activities and the contextual factors of fault fixing activities.
Thus, researchers need tools to collect and share data about
developers’ interactive debugging activities.

This paper presents SDI and aims to use SDI to collect
debugging activities and study how developers perform such
activities. The Swarm Debug Infrastructure (SDI), an open-
source infrastructure1 integrated into Eclipse allows practi-
tioners and researchers to collect and share fine-grained data
about developers’ interactive debugging activities. The under-
standing of debugging activities could help practitioners and
researchers to develop new families of debugging tools that
are more efficient and/or adapted to the particularity of each
debugging activity. Moreover, assessing whether developers
follow debugging patterns could be the first step toward rec-
ommending locations to toggle breakpoints that must reduce
debugging effort and thus improve developers productivity.

The understanding of how developers perform debugging
activities and/or debugging patterns is an example of use of
debugging activities collected by SDI. In addition to the per-

1https://github.com/SwarmDebugging



spective studied in this paper, the data collected by SDI could
be useful to assess the developers’ interest and knowledge of
the code: When developers toggle breakpoint in a program
element, the element seems relevant to the task at hand. By
collecting debugging activities, we could know the program
elements interested by the developer to resolve the task. Thus,
these debugging activities could help to assess the developers’
knowledge of the code.

Thus, this paper makes the following three contributions:
• We introduce a novel approach for debugging named

swarm debugging and summarise the infrastructure that
support the approach;

• We present an infrastructure, the Swarm Debug Infras-
tructure (SDI), to gather, store, and share data about
interactive debugging activities;

• We conduct an experiment showing the relation between
tasks’ elapse time, developers’ expertise, and debugging
patterns.

The paper is organized as follows. Section II provides
some background about debugging. Section III presents the
swarm debugging approach and Section IV describes the
Swarm Debugging Infrastructure. Section V details our ex-
periment that evaluates the SDI, testing whether it can help
answer research questions pertaining to developers’ debugging
activities. Finally, Section VII concludes the paper and outlines
some avenues for future work.

II. BACKGROUND

This section provides background details about interactive
debugging. It also presents some related studies about (1)
program understanding (finding starting method, locating and
recommending relevant program elements to developers) and
(2) debugging tools to support program understanding

A. Interactive Debugging

Debugging is the process of finding and resolving faults that
prevent correct operations of software programs [9]. Thus, any
process that aims at finding faults can be considered “debug-
ging”. The software engineering community usually focuses
on one kind of particular debugging process, which consists
in using a tool called a debugger: interactive debugging. Yet,
developers have used many other processes and tools to debug
programs. These processes and tools range from control flow
graph, profiling tools, logs [10], to static analyses [11].

In this paper, we focus on interactive debugging, which
consist in using a debugger and which is also known as
program animation, stepping, or following execution. Also,
many developers refer to this process as simply debugging,
because several IDEs provide debuggers to support debugging.
However, while debugging is the process of finding faults,
interactive debugging is one particular debugging process in
which developers use tools to interactively investigate the
execution of a program. We use the expressions interactive
debugging or stepping, but there is not yet a consensus on
what is the best name for this debugging process.

B. Program Understanding

Previous work studied and reported how developers un-
derstand programs and provided tools to support program
understanding. Maalej et al. [12] observed and surveyed
developers to comprehend how they understand program. They
reported that to understand the program, developers need to
acquire runtime information and frequently execute the appli-
cation using a debugger. Ko et al. observed that developers
spend large amounts of times navigating between program
elements. They modeled program understanding as a process
of searching, relating, and collecting relevant information [13].
To prevent redundant navigation between program elements,
Coblenz provided the tool JASPER to collect and display
elements relevant to the current element [14].

Sillito et al. identified the questions that developers ask
when finding and extending starting methods [15]. They de-
scribed how developers answer these questions during software
maintenance activities.

Feature and fault location approaches are used to identify
and recommend program elements that are relevant to a task
at hand [16]. To recommend relevant elements to developers,
these tools used the bug report [17], domain knowledge [18],
version history and bug report similarity [16]. In contrast to
these approaches, Mylyn uses developers’ activities (inter-
action traces collected during maintenance tasks) to reduce
developers information overhead and to show in the develop-
ers’ IDE only program elements that may be relevant to the
task [19]. Mylyn interaction traces have been used to study
work interruption [20], editing patterns [21], [22], and program
exploration patterns [23]. In addition to Mylyn, other tools
collect data during maintenance tasks. Eclipse UDC (Usage
Data Collector) [24] collects data on developers usage of the
Eclipse (i.e., activating views, editors, etc.). The usage data
have been used to study the copy/paste behaviour of developers
[25].

To the best of our knowledge, Mylyn and UDC are the only
Eclipse plugin that monitor and collect data during mainte-
nance tasks. None of the previous work consider collecting
and use debugging data. Thus, the SDI complements previous
approaches by collecting data that allow researchers to study
how developers find starting methods, possibly restoring parts
of the developers’ contexts after interruption by recalling
previous breakpoints, for example.

C. Debugging Tools for Program Understanding

When maintaining and evolving programs, developers must
locate and understand the causes of the faults. Some develop-
ers tend to print pieces of text (e.g., System.out.print()
in Java) to identify faulty program elements. Debugging tools
have been developed to help developers locate and–or under-
stand relevant elements.

Araki et al. described the debugging activity as an interac-
tive process where developers make hypotheses, then verify
them by examining the problems [26]. Developers then refute
or validate their hypotheses until the tasks are resolved.



Katz and Anderson [27] conducted several experiments to
study how developers debug programs. They observed that
the participants’ understanding is affected by their debugging
behaviour. Participants’ ability to fix faults is not affected by
their debugging behaviour but participants faced difficulties
locating faulty program elements.

Romero et al. [28] extended the work by Katz and Ander-
son [27] and identified high-level debugging strategies, e.g.,
stepping and breaking execution paths and inspecting variable
values. They reported that, according to their background
and their level of expertise, developers use differently the
information available in the debugging environment.

Zayour and Hamdar [29] studied the difficulties faced by
developers when debugging in industrial IDEs. They reported
that the nature of the IDE affects the time spend by developers
during debugging activities.

Although the software engineering community provides de-
bugging tools to improve fault localisation and program under-
standing, none of these collect debugging activities data to help
understand debugging activities with the goal of improving
software debugging tools and–or program understanding. The
SDI provides an opportunity to collect and share debugging
data, to study and improve debugging tools.

III. SWARM DEBUGGING

To understand and support interactive debugging, we in-
troduce the approach of swarm debugging, which aims at
addressing three challenges in software engineering: the time
and effort spend by developers during debugging activities,
the difficulties of deciding where to set breakpoints, and the
possibility of leveraging the developers’ collective intelligence
to improve debugging activities.

First, developers spend long periods of times in debugging
sessions to find faults or understand a program [30]. During
these sessions, using traditional debugging tools, they gather
a lot of information and create mental models of the program,
[31], [32]. Unfortunately, several studies have shown that
developers quickly forget details when they explore a different
location in the source code, losing parts of their mental
models [33]. In a recent research, Tiarks and Röhms [33],
who investigated the behaviour of 28 professional developers,
observed that to recall parts of their mental models, some
developers write notes on pieces of papers or use external
editors as short-term memory.

Second, developers must find suitable breakpoints when
working with debuggers [33] to reproduce the data and control
flow of the program. Tiarks and Röhms [33] observed that
professional developers encounter problems to set adequate
breakpoints and that deciding where to toggle breakpoints is
an “extremely difficult” task. They also observed that, often,
developers set a lot of breakpoints in the beginning of their
debugging sessions to then discard irrelevant breakpoints while
they debug the program, which causes a significant overhead
to developers.

Third, no previous work leverages the developers’ collective
intelligence [34] to improve debugging activities even though

software development is, in general, a cooperative effort [35].
Bruch et al. [36] and Storey et al. [37] claim that collective
intelligent is an open-field for new software development tools.
Bruch et al. [36] argue that actual Integrated Development
Environments (IDEs) only integrate tools for and knowledge
of a single developer and leave out other developers. More-
over, developers use IDEs only because they integrate all
tools necessary to browse, manipulate, and build programs. If
developers have questions about a particular piece of code,
they must go outside of their IDEs to find answers, for
example by asking colleagues or searching on-line. After they
found an answer, the newly gained knowledge is usually lost
inside the IDEs. In addition, Storey et al. [37] argue that
new developers expect collaborations: the newer generation
of developers is proficient in social media, for communication
and learning. They are opened, transparent, and expect to share
their knowledge.

Swarm debugging aims at addressing these challenges and
is founded on three studies: (1) the declarative and visual
debugging environment for Eclipse called JIVE [38], (2) a
novel user interface to support feature location named In Situ
Impact Insight (I3) [39], and (3) ElasticSearch for mining and
performing research on software repositories [40]. First, JIVE
is an Eclipse plug-in that is based upon the Java Platform
Debugging Architecture (JPDA) and can analyse Java pro-
gram executions. JIVE requests notification of certain runtime
events, including class preparations, step, variable modifica-
tions, method entries and exits, thread starts and ends. Our
infrastructure also uses JPDA to collect debug data. Second,
I3 [39] introduces a novel user interface on which developers
can retrieve and visualise textual similarity in source code.
The visualisations also provide a starting point for following
relations between textually similar or co-changed methods.
Similar to I3, our infrastructure provides novel visualisations.
Third, it uses ElasticSearch to allow developers searching the
data collected during debugging sessions.

Thus, as debugging is a foraging process [41], [42], swarm
debugging wants to collect data during debugging sessions;
store this data (breakpoints, reachable paths, and so on),
transform this data into knowledge through visualisations and
searching tools, and share this knowledge among developers
to create a collective intelligence about programs, through
debugging. The next section details our infrastructure.

IV. THE SWARM DEBUG INFRASTRUCTURE

The Swarm Debug Infrastructure (SDI) provides tools for
collecting, sharing, and retrieving debugging data collected
during developers’ debugging activities using the Eclipse IDE2

and its integrated debugger. It is organized in three main
modules: (1) the Swarm Debug Services; (2) the Swarm Debug
Tracer; and, (3) Swarm Debug Views.

A. Swarm Debug Services

The Swarm Debug Services (SDS) provide the infrastructure
needed by the Swarm Debug Tracer (SDT) to store and,

2https://www.eclipse.org/



later, share debugging data from and between developers.
Figure 1 shows the architecture of this infrastructure. The SDT
sends RESTful messages that are received by a SDS instance
that stores them in three specialized persistence mechanisms:
an SQL database (PostgreSQL), a full-text search engine
(ElasticSearch), and a graph database (Neo4J).

Fig. 1: The Swarm Debug Services architecture

The three persistence mechanisms use similar sets of con-
cepts to define the semantics of the SDT messages. We choose
and define domain concepts to model software projects and
debugging data. Figure 2 shows the meta-model of these con-
cepts using an entity-relationship representation. The concepts
are inspired by the FAMIX Data model [43]. The concepts
include:

• Developer is a SDT user. She creates and executes
debugging sessions.

• Product is the target software product. A product is a set
of Eclipse projects (1 or more).

• Task is the task to be executed by developers.
• Session represents a Swarm Debugging session. It relates

Fig. 2: The Swarm Debug metadata [44]

developer, project, and debugging events.
• Type represents classes and interfaces in the project. Each

type has a source code and a file. SDS only considers
types that have source code available as belonging to the
project domain.

• Method is a method associated with a type, which can
be invoked during debugging sessions.

• Namespace is a container for types. In Java, namespaces
are declared with the keyword package.

• Invocation is a method invoked from another method (or
from the JVM, in case of the main method).

• Breakpoint represents the data collected when a de-
veloper toggles a breakpoint in the Eclipse IDE. Each
breakpoint is associated with a type and a method if
appropriate.

• Event is an event data that is collected when a developer
performs some actions during a debugging session.

The SDS provides several services for manipulating, query-
ing, and searching collected data: (1) Swarm RESTful API;
(2) SQL query console; (3) full-text search API; (4) dashboard
service; and (5) graph querying console.

1) Swarm RESTful API: The SDS provides a RESTful
API to manipulate debugging data using the Spring Boot
framework3. Create, retrieve, update, and delete operations are
available through HTTP requests and respond with a JSON
structure. For example, upon submitting the HTTP request:

http://swarmdebugging.org/developers/
search/findByName?name=petrillo

the SDS responds with a list of developers whose names are
“petrillo”, in JSON format.

2) SQL Query Console: The SDS provides a console avail-
able at http://db.swarmdebugging.org to receive SQL queries
(SQL) on the debugging data, providing relational aggrega-
tions and functions.

3) Full-text Search Engine: The SDS also provides an
ElasticSearch4, which is a highly scalable open-source full-
text search and analytic engine, to store, search, and analyse
the debugging data. The SDS instantiates an instance of
the ElasticSearch engine and offers a console for executing
complex queries on the debugging data.

4) Dashboard Service: The ElasticSearch allows the use of
the Kibana dashboard. The SDS exposes a Kibana instance on
the debugging data. With the dashboard, researchers can build
charts describing the data. Figure 3 shows a Swarm Dashboard
embedded into Eclipse as a view.

5) Graph querying console: The SDS also persists de-
bugging data in a Neo4J5 graph database. Neo4J provides a
query language named Cypher, which is a declarative, SQL-
inspired language for describing patterns in graphs. It allows
researchers to express what they want to select, insert, update,
or delete from a graph database without describing precisely

3http://projects.spring.io/spring-boot/
4https://www.elastic.co/
5http://neo4j.com/



Fig. 3: Swarm Debug Dashboard

Fig. 4: The Swarm Tracer architecture [44]

how to do it. The SDS exposes the Neo4J Browser and creates
an Eclipse view.

B. Swarm Debug Tracer

Swarm Debug Tracer (SDT) is an Eclipse plug-in that listens
to debugger events during debugging sessions, extending the
Java Platform Debugging Architecture (JDPA). Using the
Eclipse JPDA, events are listened by our DebugTracer that im-
plements two listeners: IDebugEventSetListener and
IBreakpointListener. Figure 4 shows the SDT archi-
tecture.

After an authentication process, developers create a debug
session using a view Swarm Manager and toggle breakpoints,
trigger stepping events as Step Into, Step Over or Step Return.
These events are caught and stack trace items are analyzed by
the Tracer, extracting method invocations.

To use the SDT, a developer must open the view “Swarm
Manager” and establish a connection with the Swarm De-
bugging Services. If the target project is not into the Swarm
Manager, she can associate any project in her Workspace into
Swarm Manager. This association consists of linking a Swarm
Session with a project in the Eclipse workspace. Second, she
must create a Swarm session. Once a session is established,

Fig. 5: Method call graph for Bridge design pattern [44]

she can use any feature of the regular Eclipse debugger, the
SDT collects developers’ interaction events in the background,
with no visible performance decrease.

Typically, the developer will toggle some breakpoints to stop
the execution of the program of interest at locations deemed
relevant to fix the fault at hand. The SDT collects the data as-
sociated to these breakpoints (locations, conditions, and so on).
After toggling breakpoints, the developer runs the program in
debug mode. The program stops at the first reached breakpoint.
Consequently, for each event, such as Step Into or Breakpoint,
the SDT captures the event and related data. It also stores data
about methods called, storing invocations entry for each pair
invoking/invoked method. Following the foraging approach
[42], the SDT only collects invoking/invoked methods that
were visited by the developer during the debugging session,
ignoring other invocations. The debugging activity continues
until the program run finishes. The Swarm session is then
completed.

To avoid performance and memory issues, the SDT collects
and sends the data using a set of specialised DomainServices
that send RESTful messages to a SwarmRestFacade, connect-
ing to the Swarm Debug Services.

C. Swarm Debug Views

On top of the SDS, the SDI implements and proposes
several tools to search and visualise the data collected during
debugging sessions. These tools are integrated in the Eclipse
IDE, simplifying their usage. They include, but are not limited
to:

1) Dynamic method call graphs: which are direct call
graphs [45], as shown by Figure 5, to display the hierarchi-
cal relations between invoked methods. They use circles to
represent methods and oriented arrows to express invocations.
Each session generates a graph and all invocations collected
during the session are shown on these graphs. The starting
points (non-invoked methods) are allocated on top of a tree and
adjacent nodes represent invocations sequences. Researchers
can navigate sequences of invocation methods pressing the F9
(forward) and F10 (backward) keys. They can also directly go
to a method in the Eclipse Editor by double-clicking on nodes
in the graphs.



2) Breakpoint search tool: which researchers and develop-
ers can use to find suitable breakpoints [41] when working
with the debugger. For each breakpoint, the SDS captures the
type and location in the type where the breakpoint was toggled.
Thus, developers can share their breakpoints. The breakpoint
search tool allows fuzzy, match, and wildcard ElasticSearch
queries. Results are displayed in the Search View table for
easy selection. Developers can also open a type directly in the
Eclipse Editor by double-clicking on a selected breakpoint.

3) Starting/Ending method search tool: which allows
searching for methods that (1) only invoke other methods
but that are not explicitly invoked themselves during the
debugging session and (2) that are only invoked by others
but that do not invoke other methods.

Formally, we define Starting/Ending methods as follows.
Given a graph G = (V,E), where V is a set of vertexes
V = {V1, V2, . . . , Vn} and E is a set of edges E =
{(V1, V2), (V 1, V 3), . . .}. Then, each edge is formed by a
pair: < Vi, Vj >, were Vi is the invoking method and Vj
is the invoked method. If α is the subset of all vertexes
invoking methods and β is the subset of all vertexes invoked
by methods, then the Starting and Ending methods are:

StartingPoint = {VSP | VSP ∈ α and VSP /∈ β}

EndingPoint = {VEP | VEP ∈ β and VEP /∈ α}

Locating these methods is important in a debugging session,
because they are the entries and exits points of a program at
runtime.

4) Source code full-text search tool: which expands the
Eclipse IDE “default” search tool, using the full-text search
features provided by ElasticSearch.

In summary, through SDI, we provide a technique and
model to collect, store and share interactive debugging
session data, contextualizing breakpoints and events during
these sessions. We created real-time and interactive visualiza-
tions using web technologies, providing an automatic memory
for developer explorations. Moreover, dividing software explo-
ration by sessions and its call graphs are easy to understand
because only intentional visited areas are shown on these
graphs, one can through the execution of a project and see
only the important areas that are relevant to developers.

Currently, the Swarm Tracer is implemented in Java, using
Eclipse Debug Core services. However, SDI provides a REST-
ful API that can be accessed independently, and new tracers
can be implemented for different IDEs or debuggers.

V. EXPERIMENTAL STUDY WITH SDI

We present the study on the use of SDI to collect and
share debugging activities. This study aims to evaluate how
the data collected by SDI could be useful. Thus, we use the
data collected by SDI to answer five research questions. We
first present the context of the study. Then, we explain the
design and report the results of the study.

Task Time (min.)
318 13
667 31
669 11
993 28

1026 21

TABLE I: Elapse time by task (average)

A. Context

Studies and discussions about interactive debugging are
scarce in the literature pertaining to program comprehension,
so we could elaborate many research questions to better
understand such important software development activity, i.e.,
debugging. To illustrate the use of the SDI, we formulate the
following five research questions:

RQ1: Is there a correlation between the numbers of invocations
and tasks’ elapsed time?

RQ2: Is there a correlation between the numbers of breakpoints
and tasks’ elapsed time?

RQ3: Do developers explore/debug in different ways a task?
RQ4: Is there a correlation between the numbers of breakpoints

and developers’ expertise?
RQ5: Is there a correlation between time of first breakpoint and

task’s elapsed time?
To answer the research questions above, we run the exper-

iment designed in the next section.

B. Study Design

To answer the research questions, we proceeded as follows6:
1) Tasks Definition: We had to choose debugging tasks

to trigger participants’ debugging activities. We chose to
ask participants to find the locations of true faults in an
independent, open-source program. We selected JabRef7 as
target program, which is an open-source bibliography refer-
ence manager developed in Java. We chose JabRef because it
has faults publicly reported in its issue tracker and its domain
was easy to understand by the participants. We picked 5 faults
reported against JabRef v3.2 in its issue tracker and asked
participants to find the locations of the faults described in
issues 318, 667, 669, 993 and 1026.

In order to estimate task’s effort, we calculated averages
of elapse time for each task by participant. Table I shows
the average time (in minutes) for each task. Furthermore, in
average, participants spent 21 minutes to complete the bug
location tasks.

2) Participants: In order to reproduce a realistic industry
scenario, we recruited 5 professional freelancer developers8.
Among them, 2 Java experts and 3 intermediates, 100%
were male, 100% used Eclipse and 100% used debuggers
frequently. As many other experimental studies, we asked 2
volunteer students at Polytechnique Montréal to participate in
our experimental study.

6All artifacts on http://swarmdebugging.org/publications/qrs2016.
7http://www.jabref.org/
8https://www.freelancer.com/



3) Artifacts: We provided participants with instructions
by two documents. The first document was an experiment
tutorial9 which explained how to install and configure all tools
to perform a warm-up task and the experimental study. We also
used the warm-up task to confirm that the participants’ envi-
ronments were correctly configured and that the participants
understood the instructions. The warm-up task was described
using a video to guide the participants. We make available this
video on-line10.

The second document presented the 5 issues with a descrip-
tion and some piece of information to reproduce the faults.
To reduce the participants’ effort to reproduce the faults, we
offered videos demonstrating step-by-step how to reproduce
the faults. We also provided the participants with an electronic
form to report whether they were tired or not at the end of the
experiment.

For this experimental study, we used Eclipse Mars 2 and
Java 8, the SDI and its Swarm Debug Tracer plug-in, and
two Java projects: an small Tetris game for the warm-up task
and JabRef v3.2 for the experimental study. All participants
received the same workspace, provided by our artifact repos-
itory.

4) Data Collection: After installing the environment
(Eclipse and the SDI), each participant executed the warm-
up task. This tasks consisted in starting a debugging session,
toggling a breakpoint, and debugging a Tetris program to
locate a given method. After the warm-up task, each par-
ticipant executed debugging sessions to find the location of
faults described in the five selected issues. We did not set a
time constraint but suggested 20 minutes by fault. We asked
participants to control their fatigue, asking them to go to the
next task if they felt tired while informing us of this situation in
their reports. Finally, each participant filled a report to provide
their answers and other information, whether they completed
the tasks successfully or not.

All services were available on our server11 during this
debugging sessions and the experimental data were collected in
the course of 8 days. We also collect the video capture for the
participants. The experiment tutorial contained the instruction
to install and set the OBS (Open Broadcaster Software),
an open source system for live streaming and recording12.
Participants were asked to provide the video captured during
the experiment. A video was recorded for each task, providing
about 6 hours of effective developer’s activities. We had 19
completed tasks by 5 developers, 110 collected breakpoints
and more then 6000 invocations.

5) Data Analysis: After the participants completed the
debugging sessions (successfully or not), we used the tools
provided by the SDI on the data collected to answer each
research question. To answer RQ1 and RQ2, we used SQL
queries, with which we can extract all the invocations and
breakpoints set during each session and find a relationship

9http://swarmdebugging.org/publications/experiment/tutorial.html
10https://youtu.be/U1sBMpfL2jc
11http://server.swarmdebugging.org
12https://obsproject.com

Fig. 6: Invocations (Dev/Task) by Elapse Time

between breakpoints and tasks. The example of SQL to extract
data to RQ2 is:

select t.id taskId,
s.id sessionId, count(*)
from breakpoint b, task t,
type tp, session s
where b.type_id = tp.id
and tp.session_id = s.id
and s.task_id = t.id
group by s.id, t.id order by s.id

Finally, to answer RQ3, we plotted the call graph of each
debugging session using the SDI. We organized these graphs
by tasks and by numbers of invocations, analyzing each graph
to identify navigation patterns. The SQL to extract data to
RQ3 is:

select s.developer_id, tsk.title,
s.id, count(*) as invocations
from product p, task tsk,
session s, invocation i
where p.id = 1
and p.id = tsk.product_id
and tsk.id = s.task_id
and i.session_id = s.id
group by tsk.title, s.id
order by tsk.title,invocations

C. Results

We now report the results of our analyses.

RQ1: Is there a correlation between the numbers of invoca-
tions and tasks’ elapsed time?

By analyzing the elapse time of each task executed by
developer and invocations , we can plot Figure 6 in which
we can observe that there is not a correlation between
the numbers of invocations and elapse task time. This
conclusion can be strengthened by the Pearson’s correlation
coefficient (ρ = −0.039) lower than 0.1.



RQ2: Is there a correlation between the numbers of break-
points and tasks’ elapsed time?

By analyzing the elapse time of each task executed by
developer and breakpoints, we can plot Figure 7 in which
we can observe that there is not a correlation between the
numbers of toggled breakpoints and elapse task time. This
conclusion can be strengthened by the Pearson’s correlation
coefficient (ρ = 0.093) lower than 0.1.

Fig. 7: Invocations (Dev/Task) by Elapse Time

RQ3: Do developers explore/debug in different ways a task?

We observed two distinct debugging navigation patterns: (1)
a fuzzy debugging pattern and (2) a straight debugging pattern.
In the fuzzy debugging pattern, the call graph presents several
branches, showing that participants used a foraging approach.
Figure 9 shows two typical fuzzy debugging graphs. In the
straight debugging pattern, participants followed a straight or
quasi-straight set of invocations, as shown in Figure 10.

Furthermore, we identified a strong correlation between
expertise and navigation patterns: the more expert the par-
ticipants, the more straightforward their navigation patterns.
Future work will further study this correlation to confirm its
existence and provide explanations and, possibly, recommen-
dations to developers during debugging activities.

RQ4: Is there a correlation between the numbers of break-
points and developers’ expertise?

By relating the numbers of breakpoints toggled during de-
bugging tasks and developers’ expertise, we can conclude that
there is no relation between numbers of breakpoints and
expertise. Although this result may seem counter-intuitive,
because the more expert a participants, the less breakpoints
she could need, we explain this result three ways. First, the
numbers of breakpoints is possibly more related to task com-
plexity. Second, all participants were newcomers to JabRef.
Third, the chosen program and issues are not representative
of all programs and debugging tasks.

RQ5: Is there a correlation between time of first breakpoint
and task’s elapsed time?

Breakpoints are key for interactive debugging, and an im-
portant breakpoint is a first toggle breakpoint during a session.

We analysed 19 interactive debugging sessions in which 73%
(14/19 sessions) started a first debugger execution after lower
than 3 minutes of toggled first breakpoint, and 52% (10/19
sessions) started a first debugger immediately (lower than 10
seconds) after had defined a first breakpoint. In conclusion,
a first breakpoint is an important decision on an interactive
debugging session.

In order to analyse if there is a relation between time of
first breakpoint and task elapsed time, for each session, we
normalized our data dividing each first breakpoint time by task
elapsed time, and we associated these ratio with its respective
elapsed time, plotting Figure 8.

Analysing Figure Figure 8, it is clear that there is a strong
correlation between time of first breakpoint (ρ = −0.637),
and task elapsed time is inversely proportional to the time
of task’s first breakpoint, following a correlation function:

f(x) =
α

xβ
(1)

where α = 125 and β = 0.72.
On the whole, results show that whether developers toggle

breakpoints carefully, they complete tasks faster than
developers who toggle breakpoints quickly.

D. Discussions

As any empirical study, this experimental study is subject
to limitations that threaten the validity of its results. The first
limitation pertains to the number of participants involved in
the study. With 7 participants, we can not claim generalization
of the results. However, we accept this limitation because
the goal of the study was to show the effectiveness of the
data collected by the SDI to obtain insights about developers’
debugging activities. Future studies with larger numbers of
participants and more systems and tasks are needed to confirm
or infirm the results of this study. The SDI and all the
material used in our experimental study are publicly available
at http://swarmdebugging.org/publications/qrs2016.

Other threats to the validity of our results concern their
internal, external, and conclusion validity. We accept these
threats because the aim of the experimental study was to show
the effectiveness of the SDI to collect and share data about
developers’ interactive debugging activities, not to answer with
strong statistical significance the research questions. Future
work is needed to perform in-depth experimental studies with
these research questions and other, possibly drawn from the
questions that developers asked found by Sillito et al. [15].

VI. IMPLICATIONS FOR THE RESEARCH ON SOFTWARE
DEBUGGING

We now discuss some implications of our work for SE
researchers, developers, debuggers’ developers and educators.
SDI is an open and freely available infrastructure that SE
researchers can use to perform new empirical studies about
debugging and–or software static and dynamic analysis.

Developers can use SDI to record their debugging patterns
in order to identify debugging strategies that are more efficient



Fig. 8: Relation between time of first breakpoint and task elapsed time

in the context of their project, allowing them to improve their
debugging skills.

Developers can share their debugging activities, such as
breakpoints and–or invocations to improve collaborative work
and ease software maintenance. While developers usually work
on specific tasks, there are sometimes re-open issues and–or
similar tasks that need to understand or toggle breakpoints on
the same entity. Thus, using breakpoints previously toggled
by a developer could help to assist another developer working
on similar task. For instance, the breakpoint search tools can
be used to retrieve breakpoints from previous debug sessions,
which could help speed up a new debugging session, providing
developers with valid starting points. Therefore, the breakpoint
search tool can decrease the time spent to toggle a new
breakpoint.

Debugger’s developers can use SDI to understand IDE
users’ behaviours and requirements. This knowledge base
is important to create new tools, using novel data-mining
techniques, to integrate different data sources. SDI provides
a transparent framework for developers to share debugging
information, creating a collective intelligence about their soft-
ware projects.

Last but not least, educators could leverage SDI tools to
teach interactive debugging techniques, tracing their students’
debugging sessions, and evaluating their performance. Data
collected by SDI about debugging sessions of professional
developers could also be used to educate students, e.g., by
showing them examples of good and bad debugging patterns.

VII. CONCLUSION

In this paper, we introduce the swarm debugging approach
and the implemented infrastructure to support the swarm

debugging, the Swarm Debug Infrastructure (SDI). SDI is an
open source infrastrucre to collect and share interactive debug-
ging activities. We conducted an experiment with three real
maintenance task performed by seven developers on JabRef
system. We aimed to evaluate how effective the data collected
by SDI could be use to understand interactive debugging.
We found that (1) there is not a correlation between the
numbers of invocations and elapse task time (ρ = −0.039);
(2) there is no correlation between numbers of breakpoints
and elapse task time (ρ = 0.093); (3) developers follow
different debugging patterns (4) there is no relation between
numbers of breakpoints and expertise; (5) whether developers
toggle breakpoints carefully, they complete tasks faster
than developers who toggle breakpoints quickly.

The research community can leverage the SDI to conduct
more studies to improve our understanding of developers’
debugging activities, which could ultimately result into the
development of whole new families of debugging tools that
are more efficient and–or more adapted to the particularity of
each debugging activity.

In future work, we plan to use SDI in real production
environnement and survey developers about the usefulness of
SDI. We would also ask the opinion of other developers of
debugging tools (e.g., Netbeans or gdb) to figure out whether
SDI could be benefit to community of debugging tools and–or
integrated with existing debugging tools.
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Guéhéneuc, “Understanding interactive debugging with swarm debug
infrastructure,” in 24rd IEEE International Conference on Program
Comprehension. Austin: IEEE Comput. Soc, 2016.

[45] D. Grove, G. DeFouw, J. Dean, and C. Chambers, “Call graph construc-
tion in object-oriented languages,” Proceedings of the 12th ACM SIG-
PLAN conference on Object-oriented programming, systems, languages,
and applications - OOPSLA ’97, pp. 108–124.


