
A Bayesian Approach for the Detection of Code and Design Smells

Foutse Khomh1,2, Stéphane Vaucher2,
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Abstract

The presence of code and design smells can have
a severe impact on the quality of a program. Con-
sequently, their detection and correction have drawn
the attention of both researchers and practitioners who
have proposed various approaches to detect code and
design smells in programs. However, none of these
approaches handle the inherent uncertainty of the de-
tection process. We propose a Bayesian approach to
manage this uncertainty. First, we present a system-
atic process to convert existing state-of-the-art detec-
tion rules into a probabilistic model. We illustrate this
process by generating a model to detect occurrences of
the Blob antipattern. Second, we present results of the
validation of the model: we built this model on two
open-source programs, GanttProject v1.10.2 and Xerces
v2.7.0, and measured its accuracy. Third, we compare
our model with another approach to show that it returns
the same candidate classes while ordering them to min-
imise the quality analysts’ effort. Finally, we show that
when past detection results are available, our model can
be calibrated using machine learning techniques to offer
an improved, context-specific detection.

1 Context and Problem

Software quality is important because of the com-
plexity and pervasiveness of software systems. More-
over, the current trend in outsourcing development and
maintenance requires means to measure quality with
great details. Object-oriented quality is adversely im-
pacted by code and design smells [4]; their early detec-
tion and correction would benefit the development and
maintenance processes.

Code and design smells are “bad” solutions to re-

curring implementation and design problems that im-
pede the maintenance and evolution of programs. Code
smells [11] are usually symptoms of larger design
smells, e.g., antipatterns [4]. When studying smells
we do not exclude that, in a particular context, a smell
could be the best way to actually implement or design
a (part of a) program. For example, automatically-
generated parsers are often Spaghetti Code, i.e., very
large classes with very long methods. Only quality an-
alysts can evaluate their impact in their context.

The definitions of smells are often loosely specified
because quality assessment is a human-centric process
that requires contextual data. Consequently, there is
always a degree of uncertainty on whether a class in a
program is a smell or not. Therefore, detection results
should be reported with a probability corresponding to
the degree of uncertainty of the detection process. This
uncertainty accounts for the loose definitions and the
similarity of the class with the smell.

There exist many approaches to specify and detect
smells. Most of these approaches are manual [28] or
based on rules [2, 17, 18, 19]. Although these ap-
proaches improved the state of the art and of the prac-
tice in smell detection, to the best of our knowledge,
none is able to handle the inherent uncertainty of the
detection. They provide quality analysts with an un-
sorted set of “bad” candidates classes with no indica-
tion of which one(s) should be inspected first for con-
firmation and correction.

We present an approach to support uncertainty in
smell detection. We based this approach on Bayesian
belief networks (BBNs) to specify smells and to detect
them in programs. We describe the steps required to
build a BBN for the detection of a smell. The output
of a BBN is a probability that a class is part of a design
smell. A BBN is able to handle uncertainty by evalu-
ating the probability that an input, e.g., a large class,
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causes an observed output, e.g., the Blob antipattern.
Consequently, a BBN allows quality analysts to priori-
tise the inspection of “bad” candidate classes. Further-
more, the Bayesian theory that underlies BBNs can be
used to calibrate a BBN using past detection results
by learning the relations between different inputs and
their combined effects on the output. We can thus im-
prove the performance of a BBN for a given context,
e.g., organisation or type of program.

We illustrate our approach on the Blob antipattern.
Moha et al. [18] presented precise rules to detect this
antipattern. We transformed these rules into a BBN
systematically and evaluated its performance on two
open-source programs. We found that the BBN pro-
vides better results than the original rules. We also
show that it can be calibrated using historical data
both from a similar and from a different context.

Section 2 presents previous work. Section 3 gives
a short background on BBNs. Section 4 describes the
different steps of our approach to build a BBN for the
detection of a smell from existing rules. Section 5 re-
ports experiments on the use of the resulting BBN on
GanttProject v1.10.2 and Xerces v2.7.0. It also dis-
cusses the approach and its results. Section 7 concludes
with future work.

2 Related Work

Webster [31] wrote the first book on “antipatterns”
in object-oriented development; his contribution cov-
ers conceptual, political, coding, and quality-assurance
problems. Riel [23] defined 61 heuristics characterising
good object-oriented programming to assess software
quality manually and improve design and implemen-
tation. Beck [11] defined 22 code smells, suggesting
where developers should apply refactorings. Mäntylä
[16] and Wake [30] proposed classifications of code
smells. Brown et al. [4] described 40 antipatterns,
including the well-known Blob. These books provide
in-depth views on heuristics, code smells, and antipat-
terns aimed at a wide academic and industrial audi-
ence. We build upon this work to propose an approach
to detect smells while taking into account their loose
definitions and the inherent uncertainty of the results.

Several approaches to specify and detect smells have
been proposed in the literature. Manual approaches
were defined, for example, by Travassos et al. [28], who
introduced manual inspections and reading techniques
to identify code smells. Marinescu [17] presented a
metric-based approach to detect smells with detection
strategies, which capture deviations from good design
principles and consist of combining metrics with set
operators and comparing their values against absolute

and relative thresholds.
Similarly to Marinescu, Munro [19] proposed metric-

based heuristics to detect code smells; the detection
heuristics are derived from template similar to the one
used for design patterns. He also performed an empiri-
cal study to justify the choice of metrics and thresholds
for detecting code smells.

Alikacem and Sahraoui [1] proposed a language to
detect violations of quality principles and smells in
programs. It allows the specification of rules using
metrics, inheritance and association relations among
classes. They use fuzzy logic to express the thresholds
of rules conditions but do not handle the uncertainty
of the detection results.

Moha et al. [18] proposed a domain-specific lan-
guage to specify smells based on a literature review
of existing work. They also proposed algorithms and
a platform to automatically convert specifications into
detection algorithms and apply these algorithms on any
program. They showed that they obtain good preci-
sion and perfect recall while allowing quality analysts
to easily adapt the specifications to their context.

Some visualisation techniques [7, 24] were used to
find a compromise between fully-automatic detection
techniques, which are efficient but lose track of the con-
text, and manual inspections, which are slow and sub-
jective [14]. Other approaches perform fully-automatic
detection and use visualisation techniques to present
the detection results [15, 29].

All these previous approaches are based on rules that
make rigid Boolean decisions as to whether a class be-
longs to a smell or not. These rules do not provide a
probability, i.e., a degree of uncertainty, that a class is
or is not part of a smell.

3 Bayesian Beliefs Networks

BBNs have been successfully used to model un-
certainty in fields as diverse as risk management [6],
medicine [27], and computer science [9]. This success
makes them an interesting choice for smell detection.
We propose to use BBNs to specify and detect smells.

3.1 Definition

A BBN is a directed, acyclic graph that represents
a probability distribution [20]. In this graph, each ran-
dom variable Xi is denoted by a node. A directed
edge between two nodes indicates a probabilistic de-
pendency from the variable denoted by the parent node
to that of the child. Therefore, the structure of the
network denotes the assumption that each node Xi in
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the network is only conditionally dependent on its par-
ents. Each node Xi in the network is associated with a
conditional-probability table that specifies the proba-
bility distribution of all of its possible values, for every
possible combination of values of its parent nodes.

A quality analyst needs two pieces of information
to build a BBN: the structure of the network, in the
form of nodes and arcs (causal relations), and the
conditional-probability tables describing the decision
processes between each node. By structuring the net-
work, the quality analyst ensures that the decision
process is valid. This structuring can be done using
heuristics found in the literature [21]. The conditional
probabilities can be learned using historical data or
entered directly by the analysts when data is missing.
The structure ensures the qualitative validity of the
approach while appropriate conditional tables (learned
or entered manually) ensure that the model is well-
calibrated and is quantitatively valid.

3.2 Comparison with other Techniques

There are many techniques capable of modelling un-
certainty. The two most popular groups of techniques
are machine learning models and statistical models.
Both groups rely on the availability of historical data to
correctly predict a phenomenon with certainty. How-
ever, these types of models must be trained on large
amounts of tagged data to be effective (each datum
describing the inputs and correct outputs). In the
context of smell detection, organisations rarely keep
track of past detected smells and there are no public
database containing instances of smells. Consequently,
these techniques are not easily and directly applicable
to smell detection. Furthermore, they use black-box
processes not suitable for quality analysts who want to
encode their knowledge in the process.

BBNs can work with missing data and allow qual-
ity analysts to specify explicitly the decision process.
When data is unavailable or must be adapted to a dif-
ferent context, an analyst can encode her judgement
into the model. In the context of smell detection,
this structuring is important because there are usu-
ally only a few instances of smells in a program; hence,
a database of smell instances would be generally too
small for other types of models while the literature con-
tains many analysts’ judgements on smells, which can
be used to structure BBNs.

3.3 Application to Smell Detection

In the context of smell detection, the BBN nodes
correspond either to an input (e.g., a metric value),

to a decision step if there are incoming arcs (e.g., is
a class part of a smell given the values of its parent
nodes?), or to an output node, which is a decision node
without children. The structure of the BBN encodes
the analysts’ judgement (and that of her peers from
the literature) on the detection process.

Smell detection can be viewed as a classification
problem where there are two possible outputs for a
given class: C = {smell, not a smell}, given an ob-
servation (a1, ..., ad), a vector of inputs describing the
class for example. A Bayesian classifier is a BBN ap-
plied to a classification problem. For each classifica-
tion, there is a probability that the detection result is
correct, which corresponds to its degree of uncertainty.
It classifies a d-dimensional observation ai by deter-
mining its most probable class c computed as:

c = arg maxck
p(ck|a1, . . . , ad),

where ck ranges over the set of classes in C and the
observations ai is written as a vector of dimension d:
concrete metric values, in our context. By using the
rule of Bayes, the probability p(ck|a1, . . . , ad) called a
posteriori probability, is rewritten as:

p(a1, . . . , ad|ck)∑q
h=1 p(a1, . . . , ad|ch)p(ch)

p(ck).

When assuming that, given a class ck, all observa-
tions are conditionally independent, the BBN struc-
ture is drastically simplified. The BBN is then called a
naive Bayes classifier and the following common form
of a posteriori probability is obtained:

p(ck|a1, . . . , ad) =

∏d
j=1 p(aj |ck)

∑q
h=1

∏d
j=1 p(aj |ch)p(ch)

p(ck).

(1)
The p(ck) marginal probability [10] is the probability

that a member of a class ck is observed. The p(aj |ck)
prior-conditional probability is the probability that the
jth observation assumes a particular value mj given
the class ck. These two prior probabilities determine
the structure of the naive Bayes classifier. They are
learned, i.e., estimated, on a training set when building
the classifier.

A naive Bayes classifier is thus a simple structure
[8] that has (1) the classification node as the out-
put node, to which is associated a distribution of
marginal probabilities, and (2) the input nodes as
leaves, each of them associated with q distributions of
prior-conditional probabilities.

A naive Bayes classifier treats discrete and continu-
ous observation in different ways [13]. For each discrete
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observation, p(aj |ck) is a single real that represents the
probability that the jth observation assumes a partic-
ular value mj when the class is ck.

4 Approach

We now describe the conversion of previous detec-
tion rules by Moha et al. into the structures of BBNs.
The conversion process is important because it shows
that previous rules can be systematically converted into
BBNs to benefit from previous expertise and to assign
a probability to the results. We exemplify this process
on the detection of the Blob antipattern.

Moha et al. [26] proposed the method DECOR. At
the heart of DECOR is a domain-specific language de-
scribing code and design smells. They used this lan-
guage to describe well-known smells. They also pre-
sented algorithms to parse rules and automatically gen-
erate detection algorithms [18]. They were able to
identify all existing occurrences of four well-known an-
tipatterns, Blob, Functional Decomposition, Spaghetti
Code, and Swiss Army Knife, with 100% recall at the
expense of precision, between 41% and 88% of preci-
sion, average 60%.

We chose to extend their work and transform their
rules into BBNs because of their high recall. Thus, we
want to achieve high precision and compare the ob-
tained results by their precisions and the probabilities
of each detected candidate class.

4.1 The Blob and its Rule Card

Listing 1 shows the specification of the Blob antipat-
tern. The Blob is also called God class [23]. It is de-
fined as a class that centralises functionality and has
too many responsibilities. Brown et al. [4] characterise
its structure as a large controller class that depends on
data stored in several surrounding data classes.

DECOR implements the detection of the Blob by
detecting classes that are controllers (ControllerClass
rule), large (LargeClass rule), or weakly cohesive (Low-
Cohesion rule), and associated to one or many data
classes. Following Riel’s heuristics, a controller class
can be identified by its name or its method names,
which must contain terms indicative of procedural pro-
gramming: Process, Control, . . . A weakly cohesive
class is characterised using the LCOM5 metric [5]. Fi-
nally, a class is considered large if its number of de-
clared methods and fields (measured using the NMD
and NAD metrics) is very high wrt. the average size of
classes in the program. Data classes are classes with
more than 90% of accessor methods.

Figure 1. BoxPlot

The rule card defines three types of input properties:
metric values, structural properties, and lexical proper-
ties. These properties are used to identify sets of candi-
date classes and, for complex smells, can be combined
using set operators (intersections and unions) and us-
ing binary class relations. Structural and lexical prop-
erties evaluate to true or false to identify candidate
classes. Metric values are discretised into five differ-
ent levels: “very low”, “low”, “medium”, “high” and
“very high”. Classes which metrics values belonging to
a specified level are kept as candidate. Metric values
are analysed using a box-plot to perform the discreti-
sation. A box-plot, also know as a box-and-whisker
plot, is used to single out statistical particularities of
a distribution and allows for a simple identification of
abnormally high or low values. Figure 1 illustrates the
box-plot and the thresholds that it defines: LQ and UQ
correspond respectively to the lower and upper quar-
tiles that define thresholds for outliers. The detection
rules also offer some flexibility in the discretisation: the
value of 20 in the LowCohesion rule indicates that val-
ues that are up to 20% below the upper outlier are
equally acceptable.

4.2 Structuring BBNs from Rule Cards

We first structure the network to build a BBN us-
ing the rule card. This structuring is done in two
steps. First, we transform the input properties (met-
rics, structural, and lexical) in the rule card into input
nodes with probability distributions, and, second, we
transform the set operators in the rule card into deci-
sion nodes with conditional probability tables.

4.2.1 Input Properties

For structural and lexical rules, probabilities are either
0 or 1 corresponding to the property being evaluated
to true or false on a class. For metric values, the prob-
abilities are calculated as follows: we use three groups
(low, medium, high) and estimate the probability that
an analyst would consider the metric value as belonging
to each group. Limiting the number of groups to three
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1 RULE_CARD : Blob {
2 RULE : Blob { ASSOC : a s s o c i a t ed FROM : mainClass ONE TO : DataClass MANY } ;
3 RULE : MainClass { UNION LargeClassLowCohesion Con t r o l l e rC l a s s } ;
4 RULE : LargeClassLowCohesion { UNION LargeClass LowCohesion } ;
5 RULE : LargeClass { ( METRIC : NMD + NAD, VERY_HIGH , 0) } ;
6 RULE : LowCohesion { ( METRIC : LCOM5, VERY_HIGH , 20) } ;
7 RULE : Con t r o l l e rC l a s s { UNION

8 ( SEMANTIC : METHODNAME , {Process , Control , Ctrl , Command, Cmd,
9 Proc , UI , Manage , Drive })

10 ( SEMANTIC : CLASSNAME , {Process , Control , Ctrl , Command, Cmd,
11 Proc , UI , Manage , Drive , System , Subsystem }) } ;
12 RULE : DataClass { ( STRUCT : METHOD_ACCESSOR , 90) } ;
13 } ;

Listing 1. Specification of the Blob Antipattern

simplifies the interpretation of the detection results.
What DECOR considers very low and very high val-
ues is interpreted as unambiguously low and high, i.e.,
with a probability of 1. The probability of any other
value is derived by calculating the relative distance be-
tween the value and its surrounding thresholds. The
value is interpolated linearly as presented in Figure 2.

Figure 2. Metric Probabilistic Interpretation

Figure 3. Bayesian Network for the Blob

For structural properties, which for example deter-
mine if a class is associated to data classes, their proba-
bilities are the number of such relations, e.g., the num-
ber of data classes with which a class is associated.
The rationale of these probabilities is that the more a
class is associated to data classes, the more likely it is
a Blob. The number of associations to data classes is
evaluated using the 90% accessor ratio and is basically
treated like a metric, called NoDC. To find the prob-
ability distribution of NoDC, its value is interpolated
between 0 and N where N is the upper outlier value

observed for NoDC in the program.

4.2.2 Set Operators

There are two operations available to combine informa-
tion from the different rules: intersections and unions.
For the rule card describing a Blob, a MainClass is
identified as a union of classes with three different prop-
erties (high size, low cohesion, and specific name), and
a Blob is the intersection of the set of MainClasses and
classes associated to data classes. Set operations can
be directly encoded into the BBN as decision nodes.
The probability tables for these nodes will be learned
from a corpus of validated data.

4.2.3 Output Node

Figure 3 presents the structure of the resulting BBN
when applying the steps on the Blob rule card. For
the sake of simplicity, the rule LargeClassLowCohesion
was merged into the MainClass node because the union
operator is associative. Such a merging could be per-
formed systematically with any intersection operators.

DECOR outputs a binary categorisation of a class
(Blob or not Blob). The output of the BBN is the
probability of its output node, p(Blob = true). The
probability p can be used to sort classes in order of
importance. This ranking could be used to guide man-
ual inspection by allowing analysts to balance precision
and recall as they see fit.

4.3 Learning BBNs Probability Tables

When there is previously classified and validated
data available, a quality analyst could use Bayes’ theo-
rem to calibrate the model. The resulting BBN should
be consequently superior to rule-based models, such
as DECOR, because the conditional-probability table
would then describe real smell occurrences.
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If we consider the case of a MainClass, the DECOR
rules state that any class that exhibits any one of three
different symptoms (inputs) is a MainClass. If, how-
ever in a particular context, one of the inputs is noisy,
e.g., no clear cause-to-effect relation between the in-
put and the next decision node, the detection process
would produce incorrect results. By using historical
data to learn the probability tables, the effect of the
noisy input would be minimised, because in the past
its value did not characterise known occurrences.

5 Experiments

The purpose of these experiments is to be a proof of
concept demonstrating the applicability of a Bayesian
approach for smell detection. Following the Goal-
Question-Metric (GQM) approach [3], the goal of our
study is to improve the quality of programs by improv-
ing the detection of smells. Our purpose is to provide
an approach to support uncertainty in smells detection.
The quality focus is to provide a sorted set of smell oc-
currences that prioritise the most probable candidate
classes. The perspective is that of quality analysts, who
perform evaluation activities and are interested in lo-
cating parts of a program that need improvements with
the least possible efforts. The context of our study is
both development and maintenance.

We present the results of some experiments aimed
at answering the following research questions:

RQ1: To what extent a model built with a BBN based
on an existing rule-based model is able detect
smells in a program?

RQ2: Is a model built with a BBN better than a state-
of-the-art approach, DECOR?

We used two programs on which Blobs were man-
ually detected to form a corpus of known Blobs.
Throughout the experiments, we divided the corpus
in two groups: one is used to calibrate the BBN and
the other is used to assess its results.

To answer RQ1, we studied the accuracy of our BBN
in two scenarios. First, we assumed that there is his-
torical data (i.e., correctly identified Blobs) available
for a given program. This data was used to calibrate
the BBN, which was then applied on the same program.
Second, we studied the accuracy of our BBN using het-
erogeneous data: we calibrated the BBN using known
Blobs from one program and applied it on the other
program. To answer RQ2, we showed that our BBN
outperformed DECOR while being more flexible.

We used two open-source Java projects to perform
our experiments: GanttProject v1.10.2 and Xerces

Systems ] classes KLOC ] Blobs
GanttProjectv1.10.2 188 31 4
Xerces v2.7.0 589 240 15
Total 777 271 19

Table 1. Program Statistics

v2.7.0. Table 1 summarises facts on these programs.
GanttProject1 is a tool for creating project sched-
ules by means of Gantt charts and resource-load
charts. GanttProject enables breaking down projects
into tasks and establishing dependencies between these
tasks. Xerces2 is a family of software packages for pars-
ing and manipulating XML. It implements a number
of standard API for XML parsing, including DOM,
SAX, and SAX2. Other implementations are avail-
able for C++, and Perl. We chose these programs be-
cause they are medium sized open-source projects, yet
small enough to manually locate smells. All metrics
and properties required to detect smells are extracted
using the POM framework [12].

5.1 Building the Oracle

Prior to the construction of the BBN, we built a
corpus of manually validated instances of the Blob an-
tipatterns on the two programs to serve as oracle in the
experiments. To the best of our knowledge, this cor-
pus is one of the few existing and we make it available
on-line3 to help other researchers interested in smell
detection.

To build the corpus, we asked two undergraduate
students and two graduate students to detect occur-
rences of the Blob in the two programs. The pair of
undergraduate students performed the task together
to follow previous results [22] hinting that, on main-
tenance activities, the performance of a pair of under-
graduate students is about the same as that of one
graduate student. Prior to their manual detection of
Blobs, the students were presented with several an-
tipatterns and the Blob in particular. Then, each stu-
dent/pair analysed every class of the two programs sys-
tematically to answer the boolean question: “Is this
class a Blob?” We independently combined their votes
such that iff at least two of the three students/pair
considered a class a Blob, then we tagged it as a true
occurrence. The number of detected Blobs is reported
in Table 1. In both programs, only 2-3% of the classes
participate in the Blob antipattern. The skewed data
can have a negative effect on predictive models, we will
discuss that in Section 6.3.

1http://ganttproject.biz/index.php
2http://xerces.apache.org/
3http://www.ptidej.net/downloads/experiments/qsic09/
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5.2 Calibrating the BBN

In our study, we used the Bayes’ theorem to cal-
ibrate the BBN. Using the known instances of Blobs,
we learned the conditional probabilities using the Weka
machine learning framework [32]. The framework finds,
for every combination of inputs, the probabilities of a
given output. To calibrate a BBN, Weka needs nomi-
nal inputs (where probabilities of inputs are 100%). We
considered any input with a probability of 1 as “high”
whereas any other value is “low” to obtain the nominal
training dataset.

5.3 Scenario 1: Using Local Data to Calibrate a
Model

In this first scenario, we studied how knowledge of
previously detected Blobs in Xerces could predict the
presence of Blobs in the same program. We divided the
classes of Xerces v2.7.0 in three subsets with 5 instances
of Blobs in each subset. Then, we trained the BBN on
two of the subsets and applied it on the third subset in
a 3-fold cross-validation. We did not use GanttProject
because it contains too few instance of Blob.

Model Number of Classes Number of Blobs
BBN1 6 5
BBN2 7 5
BBN3 9 5

Table 2. Result of the 3-fold validation.

Table 2 shows the number of candidate classes that
must be inspected before detecting the five known
Blob. The order of inspection depends on the prob-
ability that a candidate class is a smell. It shows that
if a quality analyst focuses her attention on the most
probable smells first, she would waste 8% to 44% of her
time (average 32%) to detect the five Blob classes.

5.4 Scenario 2: Using External Data to Calibrate
the Model

In this second scenario, we assumed that a quality
analyst has access to historical data from another pro-
gram. She would therefore calibrate our BBN using
this data and apply the BBN her other program. We
show the accuracy of our BBN in this scenario by per-
forming an inter-program validation.

We trained our BBN on GanttProject v1.10.2 and
applied it on Xerces v2.7.0 and vice-versa. Figures 5
and 4 show the results: a quality analyst would focus
on the n first classes returned by the BBN. The figures
plot the precision (% true positives among candidates)

and recall (% true positives candidates among all can-
didates) for every possible value of n, where the max-
imum value of n corresponds to the number of known
Blob instances.

When analysing Xerces, Figure 4 shows that the
quality analyst can quickly find the majority of Blobs:
over 50% of the 15 instances of Blob are within the 13
first candidate classes. Furthermore, precision hovers
around 60%. A recall of 100% is reached after inspect-
ing 34 classes.

When analysing GanttProject, all the instances of
Blobs were located among the first eight candidate
classes. However, the two first candidate classes are
false positives. An analysis of GanttProject shows that
the use of specific terms in the names of its classes and
methods, such as Process, Control . . . , has no particu-
lar link to the nature of the corresponding classes and
methods.

Therefore, using this knowledge, a quality analyst
would adapt the BBN to these contextual particular-
ities. To simulate and validate this adaptation, we
trained our BBN on Xerces again, without the Con-
trollerClass input node. Figure 5(b) shows the results
of applying this new BBN to GanttProject. The two
first candidate classes were then true positives and a
recall of 100% was reached after inspecting seven can-
didate classes. When applying this same adaptation to
Xerces, as shown in Figure 4(b), general precision was
also improved.

These are promising results because they suggest
that even in the absence of historical data on a specific
program, a quality analyst can use a BBN calibrated
on different programs and obtain acceptable precision
and recall. These results also show that a BBN could
be built using data external to a company and be then
adapted and applied in this company successfully.

5.5 Comparison with DECOR

] classes Bayesian Model
NF A PF A NT B PT B

5 2 40% 3 20%
9 2 22% 6 40%
13 5 38% 8 53%
17 6 55% 11 72%
21 8 38% 13 87%
25 12 48% 13 87%
29 17 59% 13 87%
33 20 61% 14 93%
37 23 62% 15 100%
41 27 65% 15 100%

DECOR

45 30 67% 15 100%

Table 3. Comparison of the efficiency of BBN
vs. DECOR on Xerces
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(a) Model calibrated with Gantt dataset (b) Model calibrated with Gantt dataset, no Controller-
Names

Figure 4. Xerces: Precision and Recall

(a) Model calibrated with Xerces dataset (b) Model calibrated with Xerces dataset, no Controller-
Names

Figure 5. Gantt: Precision and Recall

] classes Bayesian Model
NF A PF A NT B PT B

4 1 25% 3 75%
7 3 43% 4 100%

DECOR

16 12 75% 4 100%

Table 4. Comparison of the efficiency of BBN
vs. DECOR on Gantt

The result of rule-based detection techniques is a
set of candidate classes suggested to quality analysts
for correction or improvement. A quality analyst would
have to either validate the whole detection set or choose
to inspect a subset without any indication of which
classes to review first because there is no order in the
results. BBNs provide a probability that a candidate
class is smell which could be used to prioritise class
inspections.

We use a measure applied in previous work [25] to
compare the effectiveness of our BBN wrt. DECOR.
In the following, NFA and PFA are respectively the
average number and proportion of incorrectly classified
occurrences of Blob that a quality analyst must inspect
for a given number of candidate classes. An effective

detection should yield a low PFA. NTB is the number
of occurrences of Blob correctly detected and PTB is
the proportion of detected Blob over the total number
of known Blobs.

Tables 3 and 4 present the results of the comparison
of our BBN and DECOR. They show that all Blobs can
be found much quicker using BBN than with DECOR.
First, BBN return less candidate classes: 37 vs. 45
in Xerces. Second, in both programs, there are very
few false positives among the classes returned by our
BBN, i.e., a majority of occurrences of Blob are de-
tected quickly. The lowest false positive rate, 22%, oc-
curs with the nine candidate classes detected in Xerces
where there are seven Blobs correctly detected with
only two false positives. These low false positive rates
are to be compared to the fixed ones obtained with
DECOR, GanttProject: 75% and Xerces: 67%.

We also plotted the Relative Operating Curves
(ROC) comparing the true and false positives rates of
our BBN with those of DECOR on both GanttProject
and Xerces. We cannot show these plots for lack of
space but they show that our BBN performs always
better than DECOR.

We conclude that the BBN, although built on the
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rules provided by DECOR, has a better precision and
recall and provides a means for quality analysts to
quickly inspect the most serious smells.

6 Discussion

We now discuss the experiments and the use of BBN
by quality analysts based on the results of the study.

6.1 Using BBNs in Industrial Settings

We showed that our BBN is able to efficiently pri-
oritise candidate classes that should be inspected by a
quality analyst. The BBN, built using detection rules
and calibrated using external data, can successfully de-
tect smells. The programs were of different nature
(a parser library vs. a full-fledge GUI) and developed
by different development teams, yet the model outper-
formed DECOR. Therefore, quality analysts in indus-
trial settings could build a repository of smells on a set
of programs and use the data to build BBN and detect
smells in other programs. The customisation that we
performed was minimal as to serve as a proof of con-
cept, but in an industrial setting, customisation can be
much more significant.

6.2 Estimating the Number of Smells

Knowing the number of smells in a program is
important to stop investigating spurious candidate
classes. A well-calibrated BBN should be able to esti-
mate the number of Blobs in a program. This number
can be estimated using the expectation of the returned
probabilities. Since all Blobs are considered of equiva-
lent weight, this expectation is the sum of the proba-
bilities divided by the number of candidate classes.

However, using the expectation to estimate the num-
ber of Blobs is inaccurate because there are many
classes with low probabilities of being a Blob. Table 5
illustrates this phenomenon for both previous scenar-
ios. For scenario 1, when adding up the probabilities
of every candidate classes, the total expected Blobs is
highly overestimated (from 47% to 125%). For scenario
2, the results are highly volatile due to the small num-
ber of Blobs in the programs (5 and 4, respectively).

We will investigate in future work the use of heuris-
tics to improve the estimation of number of smells. For
example, we could count the distance between every
two true positive and stop inspecting candidate classes
as soon as this distance is greater than the average dis-
tance of all previous two candidates.

Xerces (int.) Xerces (ext.) Gantt (ext.)

10 (200%) 22 (147%) 9 (225%)

Table 5. Expected Number of Blobs

6.3 Improving Smell Detection

There are different ways a BBN could be adapted
to further improved its results. The first way is by
selecting a different interpolation technique for metric
values. In our experiments, we found that a signif-
icant number of classes have equivalent probabilities
of being Blobs. This is because p(high) = 1 as soon
as a metric value is over the corresponding upper out-
lier value. In future work, we will investigate the use
of higher thresholds and perform a more complex in-
terpolation to ensure that any outlier value is flagged
with a high probability. Another way would be to re-
consider the method used to calibrate the BBN. Weka
required nominal data, and consequently, the BBN was
less accurate than if it could take as input continuous
values. Although the training data was unbalanced, we
obtained relatively good results. These results could be
better with more true Blobs added to the training set.

6.4 Application to Other Antipatterns

Our approach is general and can be applied to detect
other antipatterns providing that (1) the characteris-
tics of classes with these antipatterns can be measured
using metrics and (2) corpora of known occurrences
of the antipatterns are available. Any structural an-
tipattern potentially satisfies the first condition. The
second condition is more difficult to satisfy because, to
the best of our knowledge, our corpus of Blobs is the
first of such freely available corpus.

7 Conclusion

In this paper, we showed that it is possible to use
BBNs to detect code and design smells in programs.
We exemplified our approach on the detection of the
Blob antipattern. BBNs have two main benefits be-
cause they can work with missing data and can be
tuned with analysts’ knowledge. Indeed, an analyst
can encode her judgement into a BBN when data is
unavailable or when the BBN must be adapted to a
different context.

BBNs provide a theoretically-sound approach to op-
erationalise an abstract definition of a smell as an ac-
tual detection algorithm. The definition of the smells is
provided by an analyst, thus ensuring that it is qualita-
tively sound. Calibration is done automatically using
Bayes’ theorem.
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Candidate classes, i.e., potential smells, are associ-
ated with probabilities, which indicate the degree of
uncertainty that a class is indeed a smell. They can be
used to focus manual inspection by ranking classes by
their probabilities.

To validate our approach, we built the BBN of the
Blob antipattern based on a previous rule-based spec-
ification. Blob is a complex antipattern that requires
the evaluation of different sets of classes. The rules
were systematically translated into a BBN and the re-
sulting BBN was calibrated and evaluated on two test
programs, showing its high precision and recall and
its capability to assign high probabilities to candidate
classes that are indeed smells. Finally, we also showed
that the result of the BBN are superior to these of
DECOR in terms of precision and recall.

In future work, we plan on automatically parsing
the rule cards of DECOR to support all their code and
design smells. We will also improve the computation
of the probability distributions of the input nodes by
using continuous distributions and improving the inter-
polation. We also plan to study other machine learning
techniques, such as support vector machine.
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