JTExpert at the Third Unit Testing Tool Competition

Abdelilah Sakti, Gilles Pesant, Yann-Gaél Guéhéneuc
Department of Computer and Software Engineering
Ecole Polytechnique de Montréal
Montréal, Quebéc, Canada
Email: {abdelilah.sakti, gilles.pesant, yann-gael.gueheneuc} @polymtl.ca

Abstract—JTExpert is a software testing tool that automati-
cally generates a whole test suite to satisfy the branch-coverage
criterion on a given Java source code. It takes as inputs a Java
source code and its dependencies and automatically produces
a test-case suite in JUnit format. In this paper, we summarize
our results for the Unit Testing Tool Competition held at the
third SBST Contest, where JTExpert receives 159.16 points
and was ranked sixth of seven participating tools. We discuss
the internal and external reasons that were behind the relatively
poor score and ranking.

Keywords-— test-case generation; classes testing; unit test-
ing; random testing; static analysis.

I. INTRODUCTION

This paper describes and discusses the results obtained
by applying the test-case generation tool JTExpert [4] on
the benchmarks used to compare participating tools in the
unit-testing competition held as apart of the International
Workshop on Search Based Software Testing (SBST) held
in Florence, Italy, from 18 to 19 May 2015. More details on
the competition and the benchmarks can be found in [3]. In
this competition, JTExpert receives 159.16 points and was
ranked sixth.

II. JTEXPERT

JTExpert is a software testing tool that has been developed
to automatically generate a whole test suite that satisfies the
branch coverage criterion on a given Java source code [4].
Table I summarizes the main features of JTExpert. JTExpert
automatically generates a JUnit [2] test suite for the Class
Under Test (CUT). It can be used through a command
line interface. It takes as inputs a Java file (java) and its
dependencies and automatically produces a test-case suite in
JUnit format. JTExpert is available as an executable Jar file.
It is based on four main components: a source code analyzer,
a test case candidates builder, an instances generator, and a
random search strategy.

A. Source Code Analyzer

JTExpert uses the Source Code Analyzer (SCA) to deter-
mine the set of methods that are likely to change the state of
a given data member and the set of methods that may reach
a given branch. The SCA analyzes the source code to collect
constants and path information to reach a given branch.

Table 1
FEATURES OF THE TOOL JTEXPERT

Prerequisites

Static or dynamic Dynamic testing

Software Type Java source code (.java)
Lifecycle phase Unit testing for Java projects
Environment Java

JUnit [2]

unit-testing knowledge

Knowledge required

Experience required

Input and Output of the Tool

Input A Java source code and its dependencies
Output A test-case suite in JUnit 4 format
Operation

Interaction Through the command line

User guidance
Source of information https://sites.google.com/site/saktiabdel/JTExpert
Maturity Still under development

Technology behind the tool | Random testing guided by static analyses

Obtaining the tool and information

License
Cost Free
Support None

Empirical evidence about the Tool

Completeness

Effectiveness see [4]
Efficiency see [4]
Defect types

Scalability see [4]

Comprehensibility
Learnability
Subjective satisfaction
Other

SCA provides JTExpert others components with relevant
information to guide them throughout the process of test-
case generation.

B. Test Case Candidates Builder

JTExpert uses the Test Case Candidates Builder (TDCB)
to explore only relevant sequences of method calls. Using
the collected information by SCA, the test-case generation
problem is represented by a vector composed of relevant

means-of-instantiation of the CUT, methods that are likely
to change the object state by changing a data member,
and methods that may reach the branch target. Thus, JT-
Expert represents a test-case candidate by: (1) a means-of-
instantiation of the class under test (i.e., a constructor, a
method factory, a data field, or an external method from
the CUT); (2) a sequence of method calls whose length
(i.e., number of method calls) is bounded by the number
of declared data members in the CUT, each method in a
sequence being called in the hope to put a given data member
in a relevant state; (3) a method call that is likely to reach
the test target; (4) a means-of-instantiation for each needed
argument.

The TDCB is a key novelty of JTExpert compared to
other tools because it allows JTExpert to avoid exploring
useless sequences and thus to generate tests faster without
compromising the coverage.

C. Instances Generator

JTExpert uses a customized instance generator that is
based on a seeding strategy and a dynamic strategy to
diversify generated instances of classes. The seeding strategy
gets collected constants for each primitive data type or string,
then seeds them while generating data. It defines a seeding
probability of each data type according to the number of
collected constants. Also, it seeds the null value with a
constant probability while generating instances of classes.
The diversification strategy aims to generate different types
of needed instances by using different means-of-instantiation
(e.g., constructors, factory methods, subclasses).

The instance generator allows JTExpert to improve the
exploration of the search space, reaching more branches,
and thus increasing code coverage in less time.

D. Random Search Strategy

JTExpert uses a random search that targets all uncovered
branch at the same time: it does not focus on only one
branch, instead it generates a test-case candidate uniformly
at random for every uncovered branches. This strategy
allows JTExpert to reach a good branch coverage quickly
because it does not waste efforts on unreachable branches
and it benefits from the significant number of branches that
may be covered accidentally.

III. BENCHMARK RESULTS

The detailed results of JTExpert on all benchmarks are
presented in Table II. On average, JTExpert achieved 46.38%
instructions coverage, 41.48% branch coverage, and 29.51%
mutation coverage. Overall, JTExpert produced 14 test cases
for each class and took an average of 94.32 seconds to
generate a suite of test cases for a given class.

A. Class Loading

The results are in line with our expectations except for the
0% score on the seven classes from the library guava [1].
While, such a score is expected for a hard class to instantiate
(which guava is not), what we did not expect is the use
of the guava library as benchmark to compare JTExpert to
other tools. The problem is that JTExpert uses this library.
JTExpert produced 0% coverage on the seven classes from
this library (4,279 statements, 354 branches), not because
these classes are hard to test, but because JTExpert loads the
library guava itself before starting the process of test-case
generation. Therefore, technically, the Java Virtual Machine
prevents JTExpert from reloading an instrumented version
of a class-under-test from guava or any other class that is
already loaded. This is similar to trying to generate a test-
case suite for the class java.lang.String using a Java-
based tool. This is not possible without a special classes
loader and put JTExpert at a disadvantage.

B. Low Branch Coverage

Besides the guava library, JTExpert produced low branch
coverage on some classes, especially those form the Java
Wikipedia Library (JWPL). Some classes from the JWPL
require an instance of the class Wikipedia that needs
an instance of the class DatabaseConfiguration. To
instantiate the class DatabaseConfiguration, JTEx-
pert must generate five strings representing a host name, a
database name, a user name, a password, and a language. All
these information must reflect an existing Wikipedia envi-
ronment. To generate a string, JTExpert uses a random string
generator that seeds extracted constants from the source
code. Because JTExpert could not find any required strings
in the source code and because randomly generating such
strings is almost impossible, JTExpert failed to instantiate
the CUT and generate their test cases. The low coverage
score represents only the exceptions raised in constructors
using null instances for the class Wikipedia.

JTExpert produced 0% on the class AbstractLoader
from the library Checkstyle. This revealed a bug in JT-
Expert. We accidentally deactivated a part of the code
that generates stubs for abstract classes. Consequently, JT-
Expert failed to instantiate this class and generate test
cases. For the same reason, JTExpert achieved low cover-
age on the classes ScopeUtils, AnnotationUtility,
and AutomaticBean (respectively 43%, 21%, and 11%
branch coverage).

Finally, JTExpert produced 0% on the class
ExceptionDiagnosis from the library Twitterd;j
but in our local environment JTExpert covers this class, so
we could not determine the actual reason behind this low
coverage.

After this analysis, we can confirm that JTExpert’
Instance Generator may fail to instantiate classes or
reach branches that require meaningful parameters, e.g.,

Table IT

DETAILED RESULTS OF JTEXPERT ON THE SBST CONTEST BENCHMARKS.

Time % Coverage
Class Name AVG # Test Cases Generation Execution Instruction Branch Mutation
com.google.gdata.data. AttributeHelper 40.50 3.41 0.15 57.97 70.73 40.87
com.google.gdata.data.DateTime 25.17 1.26 0.10 77.06 65.00 68.77
com.google.gdata.data.Kind 11.00 1.14 0.04 43.67 30.68 23.19
com.google.gdata.data.Link 30.83 3.06 0.10 70.85 55.63 12.78
com.google.gdata.data.OtherContent 13.17 2.13 0.05 40.06 35.98 10.83
com.google.gdata.data.OutOfLineContent 18.33 2.07 0.05 60.39 41.07 14.58
com.google.gdata.data.Source 27.67 2.46 0.10 26.79 8.33 6.52
net.sf.javaml.core.AbstractInstance 13.33 1.56 0.04 72.58 60.71 26.56
net.sf.javaml.core.Complex 7.83 0.17 0.03 100.00 0.00 591
net.sf.javaml.core.DefaultDataset 8.83 2.77 0.03 30.77 24.58 13.98
net.sf.javaml.core.Denselnstance 20.67 2.34 0.08 91.39 83.85 54.03
net.sf.javaml.core.Fold 11.17 3.05 0.04 37.41 28.33 17.71
net.sf.javaml.core.Sparselnstance 19.33 1.43 0.07 98.14 84.90 50.00
net.sf.javaml.tools.data. ARFFHandler 2.00 0.51 0.01 38.98 25.00 17.59
twitter4j. ExceptionDiagnosis 1.00 0.37 0.01 0.00 0.00 0.00
twitter4j.GeoQuery 15.67 0.17 0.06 99.96 86.11 49.74
twitter4j.OEmbedRequest 19.17 0.66 0.07 95.74 83.64 46.17
twitter4j.Paging 20.00 0.62 0.07 94.48 94.91 44.89
twitter4j. TwitterBaseImpl 21.67 3.36 0.28 45.70 49.51 28.41
twitter4j. TwitterException 12.50 1.39 0.05 65.11 41.50 36.95
twitterdj. TwitterImpl 114.17 4.09 1.30 11.01 47.16 4.81
com.puppycrawl.tools.checkstyle.api. AbstractLoader 1.00 0.88 0.01 0.00 0.00 0.00
com.puppycrawl.tools.checkstyle.api. AnnotationUtility 8.17 0.99 0.03 50.34 43.33 36.36
com.puppycrawl.tools.checkstyle.api. AutomaticBean 3.33 1.53 0.02 44.40 21.43 11.63
com.puppycrawl.tools.checkstyle.api.FileContents 21.50 1.90 0.10 88.16 75.64 40.33
com.puppycrawl.tools.checkstyle.api.FileText 10.50 1.55 0.05 71.20 69.23 63.83
com.puppycrawl.tools.checkstyle.api.ScopeUtils 7.50 1.01 0.03 25.63 11.00 13.93
com.puppycrawl.tools.checkstyle.api.Utils 16.00 1.21 0.08 79.62 82.05 42.86
com.google.common.base.CharMatcher 1.00 0.54 0.01 0.00 0.00 0.00
com.google.common.base.Joiner 1.00 0.95 0.01 0.00 0.00 0.00
com.google.common.base.Objects 1.00 0.37 0.01 0.00 0.00 0.00
com.google.common.base.Predicates 1.00 0.89 0.01 0.00 0.00 0.00
com.google.common.base.SmallCharMatcher 1.00 0.69 0.01 0.00 0.00 0.00
com.google.common.base.Splitter 1.00 0.38 0.01 0.00 0.00 0.00
com.google.common.base.Suppliers 1.00 0.38 0.01 0.00 0.00 0.00
org.hibernate.search.SearchException 5.00 0.20 0.02 66.67 0.00 0.00
org.hibernate.search. Version 2.33 0.16 0.02 98.33 0.00 0.00
org.hibernate.search.backend.BackendFactory 9.33 0.90 0.05 84.21 81.25 70.00
org.hibernate.search.backend.FlushLuceneWork 4.67 0.38 0.02 99.15 91.67 70.83
org.hibernate.search.backend.OptimizeLuceneWork 4.50 0.38 0.02 100.00 100.00 75.00
org.hibernate.search.util.logging.impl.LoggerFactory 3.00 0.53 0.02 56.25 0.00 50.00
org.hibernate.search.util.logging.impl.LoggerHelper 3.00 0.18 0.02 100.00 0.00 22.22
de.tudarmstadt.ukp.wikipedia.api.CategoryDescendantslterator 1.17 3.25 0.01 0.00 0.00 0.00
de.tudarmstadt.ukp.wikipedia.api.CycleHandler 2.00 2.53 0.01 5.57 0.00 0.00
de.tudarmstadt.ukp.wikipedia.api.Page 2.17 2.76 0.02 0.25 0.67 2.67
de.tudarmstadt.ukp.wikipedia.api.Pagelterator 2.33 2.66 0.01 9.12 0.00 5.21
de.tudarmstadt.ukp.wikipedia.api.PageQuerylterable 1.83 2.84 0.01 8.40 3.88 0.00
de.tudarmstadt.ukp.wikipedia.api.Title 7.33 0.59 0.03 91.98 75.00 90.48
de.tudarmstadt.ukp.wikipedia.api. Wikipedialnfo 2.00 2.87 0.01 1.92 2.00 0.00
org.asynchttpclient. AsyncHttpClient 23.67 3.58 0.16 66.86 45.14 53.85
org.asynchttpclient. AsyncHttpClientConfig 37.17 1.21 0.17 85.87 47.78 56.21
org.asynchttpclient. FluentCaselnsensitiveStringsMap 33.67 3.99 0.12 77.90 74.37 71.04
org.asynchttpclient.FluentStringsMap 30.33 342 0.11 77.41 73.45 69.19
org.asynchttpclient.Realm 38.00 0.77 0.13 89.15 51.69 35.07
org.asynchttpclient.RequestBuilderBase 24.83 3.85 0.16 72.50 53.55 53.99
org.asynchttpclient.Simple AsyncHttpClient 36.33 271 0.38 84.96 57.65 47.39
org.scribe.model. OAuthConfig 7.83 0.10 0.03 91.14 100.00 66.67
org.scribe.model.OAuthRequest 4.83 0.51 0.02 100.00 79.17 80.00
org.scribe.model.ParameterList 10.67 0.43 0.04 100.00 95.37 80.43
org.scribe.model.Request 18.83 0.80 0.07 57.54 45.45 37.98
org.scribe.model.Response 2.00 0.42 0.01 1.77 0.00 0.00
org.scribe.model. Token 10.83 0.14 0.04 95.80 77.08 59.09
org.scribe.model. Verifier 2.00 0.07 0.01 100.00 0.00 41.67
Average per class 13.60 89.04(s) 4.57(s) 54.60% 39.29% 30.51%

Source$SourceHandler requires two Strings contain-
ing a namespace and a localName.

C. Low Mutation Coverage

The mutation coverage is low compared to the code cov-
erage because JTExpert has been developed to generate test
data that has a high level of branch coverage and the version
used for the Contest is the first attempt to generate test
cases with oracles. JTExpert component that automatically
generates the oracle is not yet completely developed. Its
current version is based only on primitive types and methods
returning values: during the test-data generation process if
the method under test returns a primitive value then this
value is used in an assertion statement.

To better understand where we should direct our effort
to enhance JTExpert’ Oracle Generator Component (OGC),
we carefully analyzed the classes where we observed a large
difference between branch coverage and mutation coverage.

In the classes Kind, OtherContent, and
OutOfLineContent from the library Gdata, we
observed a significant difference between branch coverage
(55.63%, 35.98%, 41.07%) and mutation coverage (12.78%,
10.83%, 14.58%). In these classes, we found that almost all
methods return either an object or void that the OGC can
not handle. Therefore the OGC could not generate enough
assertions to kill mutants in such classes. Also, we observed
the same behavior on the classes AbstractInstance,
Complex, and DenseInstance from the Javaml library.

After this analysis, we can confirm that the current version
of the OGC could not generate enough assertions to kill
mutants and get a mutation coverage aligned with the branch
coverage.

IV. DISCUSSIONS

The poor score is not only the result of JTExpert but also
of our ignorance of the Contest rules. To win the compe-
tition, in addition to a good tool, we needed information
about the way a score is computed. Unfortunately, we did
not get any information about the way the score is calculated
until the end of the Contest. Consequently, we wrongly
focused both on the running time and the branch coverage
while the only important criterion is the mutation coverage.
One hundred percent of mutation coverage is equivalent to
four hours execution time, no matter how many mutants
are injected in the CUT [3]. Also we wrongly focused
on large classes but in the contest they have exactly the
same weight, i.e., a class containing one instruction and
one mutant injected has exactly the same weight as a class
containing one million instructions and one million mutants
injected which may favor “lazy* tools: let us suppose that
we have two CUTs cl and ¢2 and two competing tools ¢1
and ¢2; ¢l contains two branches, two statements, and two
mutants injected; c2 contains 200 branches, 200 statements,
200 mutants injected; if ¢1 reached 100% coverage on cl

after 1 hour and 0% on ¢2 then its score is 6 [3]; if ¢2 reached
50% coverage on c2 after 1 minute and 0% on cl then its
score is 3.48 [3]; Therefore, the tool £1 that covered only two
instructions, two branches, and killed 2 mutants after one
hour receives a better score than the tool ¢2 that covered
100 instructions, 100 branches, and killed 100 mutants in
one minute. Therefore, the score does not reflect neither the
standard mutation coverage nor the standard code coverage.
It favors tools that choose a class and kill high percentage of
injected mutants no matter how many mutants or if the class
is challenging or not. This is one reason why manual testing
was ranked first. It seems difficult to draw any conclusion
based on such a score. The way score is computed should be
deeper discussed to make future editions of the competition
more interesting.

V. CONCLUSION

The way the score is computed, the use of the Guava
library as benchmark, and the reasons explained at Sub-
sections III-B and III-B are the main internal and external
factors that negatively affected our score and ranking.

In the software testing area, developing an ideal tool
for test-case generation is a dream that many researchers
share. The SBST Contest 2015 is a stepping stone towards
achieving our dream. Despite low results, the competition
provides a unique opportunity to compare JTExpert to other
tools and to identify its lucks. Also, the competition allowed
determining new research directions to enhance JTExpert in
particular and software testing in general.

REFERENCES
[1] Guava: The guava project contains
several of google’s core libraries.

http://code.google.com/p/guava-libraries/
(2013), [Online; accessed JUN-2013]

[2] JUnit: Junit is a simple framework to write repeatable tests.
http://www. junit.org (2013), [Online; accessed JUN-
2013]

[3] Molina, U.R., Vos, T., Prasetya, I.: Unit testing tool compe-
tition : Round three. In: Software Engineering, Search Based
Software Testing Workshops (ICSEW), 2015 IEEE 37th Inter-
national Conference on (MAY 2015)

[4] Sakti, A., Pesant, G., Guéhéneuc, Y.G.: Instance generator
and problem representation to improve object oriented code
coverage. I[EEE Transactions on Software Engineering pp. 1-1
(To appear, 2015)

