
JTeXpert at the SBST 2017 Tool Competition

Abdelilah Sakti
United Technologies Research Center

Cork, Co. Cork, Ireland
saktia@utrc.utc.com

Gilles Pesant, Yann-Gaël Guéhéneuc
Department of Computer and Software Engineering

École Polytechnique de Montréal
Montréal, Quebéc, Canada

Email: {gilles.pesant, yann-gael.gueheneuc}@polymtl.ca

Abstract—JTeXpert is a software testing tool that auto-
matically generates a whole test suite to satisfy the branch-
coverage criterion. It takes as inputs a Java source code and
its dependencies and automatically produces a test-case suite in
JUnit format. In this paper, we summarize our results for the
Unit Testing Tool Competition held at the fifth SBST Contest,
where JTeXpert received 849 points and was ranked second.
We also analyze our tool’s performance.

Keywords-Test-case generation; classes testing; unit testing;
random testing; static analysis;

I. INTRODUCTION

This paper describes and discusses the results obtained
by applying the test-case generation tool JTeXpert [1] on
the benchmarks used to compare tools participating in the
unit-testing competition held as part of the International
Workshop on Search Based Software Testing (SBST) held
in Buenos Aires, Argentina, on May 20-28. More details on
the competition and the benchmarks can be found elsewhere
[2].

In this competition, JTeXpert received a total score equal
to 849 points and was ranked second. The total score
sums up the scores of seven experiments evaluating the
participating tools using a given time budget: the 1st uses 10
seconds, the 2nd uses 30 seconds, the 3rd uses 60 seconds,
the 4th uses 120 seconds, the 5th uses 240 seconds, the 6th

uses 300 seconds, and the 7th uses 480 seconds. JTeXpert
received 61.86 in the 1st, 106.72 in the 2nd, 125.52 in the
3rd, 136.47 in the 4th, 141.83 in the 5th, 137.77 in the 6th,
and 138.37 in the 7th.

II. ABOUT JTEXPERT

JTeXpert is a software testing tool that has been developed
to automatically generate a whole test suite that satisfies
the branch coverage criterion on a given Java source code
[1]. Table I summarizes the main features of JTeXpert.
JTeXpert automatically generates a JUnit test suite for the
Class Under Test (CUT). It can be used through a command
line interface. It takes as inputs a Java file (.java) and its
dependencies and automatically produces a test-case suite in
JUnit format. JTeXpert is publicly available as an executable
Jar file. It is based on five main components: a source
code analyzer, a test-case candidates builder, an instances
generator, a random search strategy, and an oracle builder.

Table I
FEATURES OF THE TOOL JTEXPERT

Prerequisites

Static or dynamic Dynamic testing
Software Type Java source code (.java)
Lifecycle phase Unit testing for Java projects
Environment Java
Knowledge required JUnit
Experience required Unit-testing knowledge

Input and Output of the Tool

Input A Java source code and its dependencies

Output A test-case suite in JUnit 4 format

Operation

Interaction Through the command line
Source of information https://sites.google.com/site/saktiabdel/ JTeXpert

Maturity Still under development
Technology behind the tool Random testing guided by static analyses

Obtaining the tool and information

License
Cost Free
Support None

Empirical evidence about the Tool

Effectiveness See [1]
Efficiency See [1]
Scalability See [1]

A. Source Code Analyzer

JTeXpert uses a Source Code Analyzer (SCA) to deter-
mine the set of methods that are likely to change the state of
a data member of the CUT and the set of methods that may
reach a given branch. The SCA analyzes the source code to
collect constants and path information about all the branches
of all methods. SCA provides JTeXpert’s other components
with information to guide them throughout the process of
test-case generation.

B. Test Case Candidates Builder

JTeXpert uses the Test Case Candidates Builder (TDCB)
to explore only relevant sequences of method calls. Using
the collected information by SCA, the test-case generation
problem is represented by a vector composed of means-of-
instantiation of the CUT, methods that are likely to change



the object state by changing a data member, and methods
that may reach the branch target. Thus, JTeXpert represents
a test-case candidate by: (1) a means-of-instantiation of the
class under test (i.e., a constructor, a method factory, a data
field, or method external from the CUT); (2) a sequence of
method calls whose length (i.e., number of method calls)
is bounded by the number of declared data members in the
CUT, each method in a sequence being called in the hope
to put a given data member in a relevant state; (3) a method
call that is likely to reach the test target; (4) a means-of-
instantiation for each argument of the method.

The TDCB is a key novelty of JTeXpert compared to
other tools because it prevents JTeXpert exploring useless
sequences and thus to generate test cases faster without
compromising coverage.

C. Instances Generator

JTeXpert uses a customized instances generator based
on a seeding strategy and a dynamic strategy to diversify
generated instances of classes. The seeding strategy gets
collected constants for each primitive data type or string and
seeds them while generating instances. It defines a seeding
probability of each data type according to the number of
collected constants. Also, it seeds the null value with a
constant probability while generating instances of classes.
The diversification strategy generates different instances
by using different means-of-instantiation (e.g., constructors,
factory methods, subclasses).

The instances generator improves JTeXpert exploration
of the search space, reaching more branches, and thus
increasing code coverage for a given time.

D. Random Search Strategy

JTeXpert uses a random search that targets every un-
covered branches at the same time: it does not focus on
only one branch, instead it generates a test-case candidate
uniformly at random for every uncovered branches. This
strategy allows JTeXpert to reach a good branch coverage
quickly because it does not waste efforts on unreachable
branches and it benefits from the significant number of
branches that may be covered accidentally.

III. BENCHMARK RESULTS

Table III presents the results of JTeXpert aggregated
per benchmark. On average, JTeXpert achieved 33.71%
instructions coverage, 28.22% branch coverage, and 28.93%
mutation coverage. These results are in line with our ex-
pectations except for classes where JTeXpert gets score 0,
i.e., 28 classes out of 69 or 40% of the competition score.
In the following subsections, we highlight where our tool
performed more poorly and provide possible explanations.

A. Compilation Errors

During the contest, JTeXpert produced many uncompil-
able test-case files that significantly affected its performance.
In all the experiments, JTeXpert generated 15 uncompilable
test-case files distributed as follow: 4 files during the last
experiment; 3 files during the second and 5th experiments;
1 file during the 1st, 3rd, and 4th experiments. Each un-
compilable test-case file received a score of 0 and −2 points
as penalty. This problem appeared in different benchmarks,
especially those form the library LA4J: LA4J-1, LA4J-4,
LA4J-5, LA4J-7, RE2J-2, FREEHEP-4, BCEL-6, and
JXPATH-7.

We analyzed these classes and observed a bug in JTeXpert
at the last stage of source-code generation, more precisely, in
the assertions generation. This bug appears when JTeXpert
puts in the source code a constant string with a length
greater than 4000. Actually, during the assertions generation,
JTeXpert takes a value returned by a method call and uses it
as an oracle. In addition, JTeXpert does not check the size
of a constant string before inserting it in the source-code.
Therefore, if a returned value is a string with length greater
than 4000 this type of bug will emerge.

IV. ANALYSIS AND DISCUSSIONS

JTeXpert did not generate any test-case file for 415 out of
1450 runs, which represents 27% of the competition runs.
We randomly selected 10 of the CUTs affected and ran
JTeXpert on them on the competition platform. JTeXpert
performed well on all the selected CUTs and we have not
observed in any run that JTeXpert failed to generate test
suite. At the beginning, we thought this could be a bug in
JTeXpert. To refute this hypothesis, we analyzed the JTeX-
pert error-log files that keep track of all the exceptions raised
during test-case generation. We did not find any exception
that could stop the execution of JTeXpert before writing the
test-case file. There are two other possible components could
be behind this problem: (1) the communication protocol
between JTeXpert and the contest platform or (2) the contest
platform itself. We closely inspected the source code of the
simple communication protocol (runJTeXpert). runJTeXpert
only builds the JTeXpert command line and receives/sends
simple messages from/to the contest platform. There is
nothing special or complex in this protocol and we used
the same version before in the last two SBST contests.
We also analyzed the log files produced by the contest
platform but we have not found any relevant information
to understand this problem. So far, the mysterious problem
that prevents JTeXpert to generate test suites for 415 CUTs
remains undetermined. We continue our investigation and
hope identifying the problem before presenting this paper at
the workshop.

Overall, we believe that JTeXpert got a fair rank but with
an unfair score. Evosuit [3] deserves the first rank because its
team did not stop improving it whereas our engagements and



Table II
AVERAGE COVERAGE AND TOTAL SCORE ACHIEVED BY JTEXPERT ON THE SBST-CONTEST-2017 BENCHMARKS

Benchmark Class Name Score Coverage Total
Mutation Branch Line Mutant Branch Line

BCEL-1 org.apache.bcel.classfile.Utility 0 0 0 0 0 344 501
BCEL-10 org.apache.bcel.verifier.structurals.Subroutines 24.99 0.55 0.6 0.68 75 72 119
BCEL-2 org.apache.bcel.verifier.structurals.InstConstraintVisitor 0 0 0.02 0.05 243 776 1076
BCEL-3 org.apache.bcel.generic.ConstantPoolGen 31.49 0.69 0.72 0.85 163 140 280
BCEL-4 org.apache.bcel.generic.InstructionList 0 0 0 0 0 219 431
BCEL-5 org.apache.bcel.verifier.statics.Pass3aVerifier 0 0.01 0 0.04 69 72 120
BCEL-6 org.apache.bcel.verifier.structurals.LocalVariables 28.93 0.66 0.54 0.72 50 54 62
BCEL-7 org.apache.bcel.util.Class2HTML 0 0 0 0 0 45 95
BCEL-8 org.apache.bcel.generic.BranchInstruction 34.23 0.74 0.78 0.8 32 24 61
BCEL-9 org.apache.bcel.classfile.StackMapEntry 24.29 0.51 0.64 0.73 114 196 189
FREEHEP-1 org.freehep.math.minuit.MnPlot 2.42 0.02 0.09 0.13 110.48 116 203
FREEHEP-10 org.freehep.math.minuit.MnUserTransformation 13.98 0.33 0.51 0.56 112 72 169
FREEHEP-2 org.freehep.math.minuit.MnLineSearch 0 0 0.03 0.08 120 94 104
FREEHEP-3 org.freehep.math.minuit.MnFunctionCross 0 0 0.02 0.09 119.43 160 220
FREEHEP-4 org.freehep.math.minuit.MnAlgebraicSymMatrix 6.1 0.08 0.25 0.24 108 126 237
FREEHEP-5 org.freehep.math.minuit.MnUserParameterState 11.07 0.27 0.28 0.49 128.57 110 262
FREEHEP-6 org.freehep.math.minuit.SimplexBuilder 0 0 0.01 0.05 95.24 54 97
FREEHEP-7 org.freehep.math.minuit.MnHesse 0 0.02 0.01 0.1 114.9 48 126
FREEHEP-8 org.freehep.math.minuit.MnPrint 14.39 0.27 0.38 0.44 161.9 72 210
FREEHEP-9 org.freehep.math.minuit.MnMinos 0 0 0.04 0.11 78 74 111
GSON-1 com.google.gson.internal.bind.ReflectiveTypeAdapterFactory 0 0 0 0 0 36 63
GSON-10 com.google.gson.internal.Excluder 0 0 0 0 0 82 89
GSON-2 com.google.gson.internal.LinkedHashTreeMap 0 0 0 0 0 170 234
GSON-3 com.google.gson.JsonPrimitive 0 0 0 0 0 80 82
GSON-4 com.google.gson.stream.JsonReader 0 0 0 0 0 468 656
GSON-5 com.google.gson.internal.LinkedTreeMap 0 0 0 0 0 150 190
GSON-6 com.google.gson.internal.bind.JsonTreeReader 0 0 0 0 0 86 165
GSON-7 com.google.gson.GsonBuilder 0 0 0 0 0 38 94
GSON-9 com.google.gson.reflect.TypeToken 0 0 0 0 0 60 93
IMAGE-1 org.apache.commons.imaging.formats.tiff.write.TiffImageWriterBase 15.24 0.33 0.34 0.5 107 180 304
IMAGE-2 org.apache.commons.imaging.common.RationalNumber 31.4 0.59 0.81 0.89 91.43 60 76
IMAGE-3 org.apache.commons.imaging.formats.bmp.BmpImageParser 0 0 0 0 0 193 380
IMAGE-4 org.apache.commons.imaging.formats.tiff.TiffField 33.18 0.75 0.72 0.77 184 134 253
JXPATH-1 org.apache.commons.jxpath.util.BasicTypeConverter 0 0 0 0 0 298 233
JXPATH-10 org.apache.commons.jxpath.ri.axes.SimplePathInterpreter 0 0 0 0 197 184 271
JXPATH-2 org.apache.commons.jxpath.ri.compiler.Path 8.5 0.2 0.17 0.21 88 86 111
JXPATH-3 org.apache.commons.jxpath.ri.compiler.CoreOperationCompare 24.71 0.52 0.52 0.56 49 64 62
JXPATH-4 org.apache.commons.jxpath.util.MethodLookupUtils 30.47 0.62 0.68 0.71 87.62 102 139
JXPATH-5 org.apache.commons.jxpath.ri.compiler.Step 14.73 0.33 0.28 0.28 42 50 54
JXPATH-6 org.apache.commons.jxpath.JXPathContext 29.97 0.67 0.73 0.81 50 46 96
JXPATH-7 org.apache.commons.jxpath.ri.parser.XPathParserTokenManager 9.3 0.18 0.36 0.49 352 872 1029
JXPATH-8 org.apache.commons.jxpath.util.ValueUtils 18.81 0.46 0.56 0.5 152 150 246
JXPATH-9 org.apache.commons.jxpath.ri.model.beans.PropertyIterator 0 0 0 0 122 98 154
LA4J-1 org.la4j.vector.sparse.CompressedVector 25.44 0.58 0.74 0.78 97.14 126 198
LA4J-10 org.la4j.linear.GaussianSolver 33.61 0.72 0.87 0.91 53 22 37
LA4J-2 org.la4j.decomposition.EigenDecompositor 15.21 0.12 0.58 0.63 241 222 429
LA4J-3 org.la4j.matrix.sparse.CRSMatrix 0.91 0.03 0.05 0.06 18.76 210 339
LA4J-4 org.la4j.matrix.dense.Basic1DMatrix 12.1 0.24 0.36 0.52 112.86 66 116
LA4J-5 org.la4j.Matrix 4.77 0.11 0.32 0.35 124.29 280 520
LA4J-6 org.la4j.linear.ForwardBackSubstitutionSolver 32.46 0.7 0.77 0.87 36 20 26
LA4J-7 org.la4j.matrix.sparse.CCSMatrix 1.56 0.05 0.08 0.09 37.52 210 339
LA4J-8 org.la4j.matrix.dense.Basic2DMatrix 14.55 0.34 0.36 0.51 73.33 68 105
LA4J-9 org.la4j.decomposition.SingularValueDecompositor 20.21 0.11 0.89 0.91 161 175 265
OKHTTP-1 okhttp3.Cookie 0 0.01 0.02 0.05 108 208 236
OKHTTP-2 okhttp3.internal.platform.AndroidPlatform 0 0 0 0 0 30 88
OKHTTP-3 okhttp3.ConnectionSpec 26.88 0.65 0.53 0.66 71 66 82
OKHTTP-4 okhttp3.internal.http.HttpHeaders 22.3 0.5 0.47 0.55 71 62 83
OKHTTP-5 okhttp3.internal.tls.DistinguishedNameParser 7.66 0.16 0.19 0.3 200 168 156
OKHTTP-6 okhttp3.CacheControl 33.79 0.78 0.72 0.84 59 70 128
OKHTTP-7 okhttp3.internal.tls.OkHostnameVerifier 0 0 0 0.05 63 64 80
OKHTTP-8 okhttp3.HttpUrl 0 0 0 0 0 183 221
RE2J-1 com.google.re2j.Parser 14.49 0.12 0.62 0.7 183.67 538.1 723.81
RE2J-2 com.google.re2j.CharClass 33.89 0.71 0.86 0.86 102 112 176
RE2J-3 com.google.re2j.Simplify 14.95 0.11 0.58 0.6 58 56 64
RE2J-4 com.google.re2j.Utils 39.33 0.77 0.93 0.97 117 96 86
RE2J-5 com.google.re2j.Compiler 25.61 0.29 0.85 0.96 103 85 117
RE2J-6 com.google.re2j.Machine 26.67 0.41 0.8 0.91 104 121 159
RE2J-7 com.google.re2j.Regexp 7.47 0.17 0.26 0.35 108 119 164
RE2J-8 com.google.re2j.RE2 26.47 0.34 0.93 0.96 167 98 204

Total/Average 849 28.93% 28.22% 33.71% 123,609 210,632 312,665



involvements in other projects have prevented us to maintain
JTeXpert during the last two years. We believe that our score
could be match better, we spent few days analyzing the
results to understand why JTeXpert could not generate any
test suite for more than 400 runs. We found that few of them
are uncompilable due to a bug in source-code generation
but for the vast majority there is nothing in JTeXpert can
explain this big number of failures. Many times, we used a
manual command line to run JTeXpert on different classes
on the contest platform but we could not reproduce the
0% coverage which JTeXpert systematically got during the
contest. When we used the contest-platform scripts, we
could reproduce the same results, 0% coverage. We believe
there is something wrong with the scripts/programs, e.g.,
in certain conditions a script may remove the test-cases or
a bug may prevent a script to continue its execution. It is
very frustrating to see this problem unsolved and have not
the access to the platform scripts/source to understand and
identify the root of this mysterious problem.

V. CONCLUSION

In this paper, we reported and analyzed the results ob-
tained by JTeXpert in the SBST Contest 2017. JTeXpert
performed well compared to its results in the two previous
SBST Contests 2016 and 2015. However, the SBST Contest
2017 showed us new bugs in JTeXpert that should be tackled
before the next SBST Contest.

Actually, the SBST Contest 2017 offered a new oppor-
tunity to test some ideas that we partially implemented
in JTeXpert. We also learned, that the current version of
JTeXpert still needs further improvements to become a
mature and robust software-testing tool.

ACKNOWLEDGEMENT

We would like to thank the SBST Contest organizers,
Annibale Panichella and Urko Rueda, for their continuous
support in improving our testing tool and identifying new
research directions that may make JTeXpert better.

REFERENCES

[1] Sakti, A., Pesant, G., Guéhéneuc, Y.G.: Instance generator
and problem representation to improve object oriented code
coverage. IEEE Transactions on Software Engineering 41
(2015) 294–313

[2] Panichella, A., Rueda, U.: Java unit testing tool competition:
Fifth round (2017)

[3] Fraser, G., Arcuri, A.: Evosuite: automatic test suite generation
for object-oriented software. In: Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on
Foundations of software engineering, ACM (2011) 416–419


