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Abstract The identification of occurrences of design patterns in programs can help

maintainers to understand the program design and implementation. It can also help them to

make informed changes. Current identification approaches are limited to complete occur-

rences, are time- and resource-consuming, and lead to many false positives. We propose to

combine a structural and a numerical approach to improve the identification of complete and

incomplete occurrences of design patterns. We develop a structural approach using expla-

nation-based constraint programming and we enhance this approach using experimentally

built numerical signatures. We show that the use of numerical signatures improves the

identification of complete and incomplete occurrences in terms of performance and precision.

Keywords Program understanding � Design patterns �
Explanation-based constraint programming � Metrics � Exploratory study

1 Introduction

Design-pattern identification is the process by which occurrences of design motifs

(Guéhéneuc and Antoniol 2008), the solutions of design patterns (Gamma et al. 1994), are

identified in (the model of) a program. We present an exploratory study of an approach for

the identification of complete and incomplete occurrences of design motifs in object-

oriented source code.

Maintenance activities account for at least 50% of the total cost of programs (Boehm 1976;

Koskinen 2004). Among these activities, maintainers spend more than half their time in the
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program-comprehension activity, trying to understand the source code of programs and, for

object-oriented programs especially, their designs (Corbi 1989; Spinellis 2003; Wilde 1994).

Several authors suggested that the identification of complete occurrences of design

motifs eases program comprehension, as shown in Sect. 2. A complete occurrence is a set of

classes having structures and organisation identical to a design motif. Complete occurrences

are very interesting during program comprehension, because they highlight classes that

conform entirely to a design motif. However, they seldom exist in programs: developers

rarely follow design motifs strictly because (1) they might use the motifs without knowledge

of the actual patterns, (2) they might misinterpret the patterns and misuse their motifs, (3)

they must adapt the structures and organisation of their classes to many other constraints.

Thus, incomplete occurrences of design motifs are also interesting during program

comprehension. Incomplete occurrences of design motifs are sets of classes that participate

in the solution of a design pattern while not strictly following the structures and organi-

sation suggested by the motif. For example, in JHOTDRAW, the classes Figure, Com-
positeFigure, and PolyLineFigure form a micro-architecture similar to the

composite design motif. This micro-architecture is an incomplete occurrence because its

classes do not conform strictly to the motif: there is no direct inheritance relation between

Figure, on the one hand, CompositeFigure and PolyLineFigure, on the other

hand. An extra class, Abstract Figure has been inserted in the hierarchy.

The identification of incomplete occurrences is (1) costly in time, because of the large

search space that includes all possible combinations of classes, which prohibits on-the-fly

identification and (2) returns many false positives, impeding program comprehension and

cluttering maintainers’ cognitive capabilities. We propose the combination of two design-

motif identification approaches—constraint satisfaction and comparison of metrics—and

devise an exploratory study to assess the efficiency of our approach.

This study joins together our previous study on design-motif identification using

explanation-based constraint programming, also known as DeMIMA (Guéhéneuc and

Antoniol 2008), and on numerical signatures of design motifs (Guéhéneuc et al. 2004). Its

contribution is to put together these two previous studies and to provide a validation of the

benefit of combining the two studies.

1.1 Definition of the problem

A design pattern is a semi-formal description of a recurring design problem and of its

solution. Design patterns described by Gamma et al. (1994) use textual notations and OMT-

like class,1 object, and interaction diagrams to describe solutions to design problems. The

solutions described in design patterns are design motifs, prototypical micro-architectures

from which developers draw inspiration to design, and to implement their programs.

Figure 1 shows a meta-model of design motifs. A design motif declares a set of roles,

which will be played by classes in a program. These roles have one or more relations with

other roles, such as inheritance or composition.

A micro-architecture is a set of classes, which have structures and organisation identical

or similar to the roles defined in a design motif. Figure 2 sketches a meta-model to describe

micro-architectures: a micro-architecture contains one or more roles (the same roles as the

ones in the corresponding design motif) that are played by one or more classes.

When developers use design patterns to solve design problems, their resulting program

designs potentially contain micro-architectures that are similar to some design motifs, i.e.

1 We consider the concept of class extensively, including abstract classes, and interfaces.
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contain both complete and incomplete occurrences of the motifs. We developed DeMIMA

(Albin-Amiot et al. 2001; Guéhéneuc and Antoniol 2008; Guéhéneuc and Jussien 2001), an

explanation-based constraint-programming approach to identify design motifs. This

structural approach goes beyond existing approaches by identifying complete and
incomplete occurrences.

The problem of identifying design motifs with any structural approach, however, is

analogous to the problem of identifying similar sub-graphs in a graph, which is complex

(see for example Antoniol et al. (1998) and Eppstein (1995)), resource consuming, and

yields imprecise and incomplete results: DeMIMA has an average precision of 34% for a

recall of 100%. Its precision varies greatly with the design motif, depending on the pos-

sibility to describe it precisely, for example Command (6.8%), Composite (59.2%),

Decorator (41.5%), Observer (22.9%), Singleton (100%), and State (8.5%). One possible

way to circumvent the limitations of structural identification is to apply heuristics that

reduce the search space by eliminating a significant number of candidate classes.

We build heuristics in the form of numerical signatures common to classes playing roles

in design motifs (Guéhéneuc et al. 2004). Numerical signatures for design motifs are

analogous to biometric data for individuals: they allow efficient and automated elimination

of false positives. The process of building numerical signatures consists of two activities.

First, independent software engineers perform a manual identification of classes playing

roles in design motifs in several object-oriented programs, confirming the developers’

intent through a thorough study of the source code and documentation of the programs.

Second, we infer numerical signatures linking classes playing confirmed roles in design

motifs with the internal attributes of these classes using a machine-learning algorithm.

By their very construction, numerical signatures add semantics to the design-motif

identification process because they are derived from a manual identification of micro-

architectures similar to design motifs. They improve structural identification by eliminating

classes that obviously, given the manual identification, cannot play a role in a given design

motif. The identification of occurrences of design patterns is no longer limited by the large

number of false positives, nor by the complexity of the structural identification.

1.2 Scope of the study

In the following, the term occurrence relates to either a complete or an incomplete occur-

rence. We present an exploratory study of the identification of complete and incomplete

1 * 1 *
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Design Motif Role Relationship
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targets

Fig. 1 Design motif meta-model

1 * 1 *
Micro-Architecture Role Class

Fig. 2 Micro-architecture meta-model
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occurrences of design motifs. The study compares our constraint-based approach with and

without the use of numerical signatures. We show that the use of numerical signatures

reduces the search space of the structural identification efficiently and significantly and,

thus, improves the identification by preventing the identification of many false positives.

Section 2 presents previous work on design-motif identification and summarises the

properties that an approach to design-pattern identification must exhibit. Section 3 intro-

duces our original approach to the identification of design motifs using explanation-based

constraint programming. Section 4 presents our experimental study of the construction of

numerical signatures for roles in design motifs. Section 5 describes and discusses our

exploratory study of the use of numerical signatures to reduce the search space and

to increase the efficiency of design-motif identification with constraint programming.

Section 6 concludes the presentation of our approach to design-motif identification and

introduces a future study.

2 Previous study and desirable characteristics

There is a large body of study that proposes approaches to identify design motifs in source

code (semi-)automatically. We summarise the main approaches, describe the properties

that an approach to design-motif identification should exhibit, and show that none of the

existing approaches possesses all these properties. Finally, we sketch our approach.

2.1 Previous study

Most previous approaches use a structural matching between a design motif and candidate

micro-architectures. Different techniques have been used to perform the structural

matching.

2.1.1 Unification

In his precursor study, Brown (1996) implemented algorithms to identify some design

motifs in Smalltalk code using Smalltalk reflective capabilities. Wuyts (1998) developed

the SOUL environment in which design motifs are described as Prolog predicates and

program constituents (classes, methods, fields…) as facts. A Prolog inference algorithm

unifies predicates and facts to identify classes playing roles in design motifs. Recently,

Fabry and Mens (2004) used the LiCoR library, build on top of SOUL, to specify and

identify design motifs. Other similar studies include Kramer’s (1996). The main limitation

of these approaches is the inherent combinatorial complexity of identifying subsets of all

the classes matching design motifs (Eppstein 1995).

2.1.2 Queries

Bansiya (1998) introduced the DP?? tool to identify occurrences of some design motifs in

C?? source code. The source code is compiled using Microsoft Visual Studio and ad hoc

algorithms are implemented as queries over the intermediate code generated during the

compilation. Other query-based approaches include (Ciupke 1999; Keller et al. 1999).

Queries have the potential to be extremely fast (Beyer et al. 2005) but so far have been

used only to specify motifs in a non-systematic way.
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2.1.3 Constraint resolution

Quilici et al. (1997) used constraint programming to identify design motifs. Their approach

consists of translating the problem of design-motif identification into a problem of con-

straint satisfaction. Design motifs are described as constraint systems for which the classes

of a program form the domains of the variables. The resolution of the constraint systems

provides micro-architectures consisting of classes representing the constraints among the

roles of a design motif. As with the unification approach, the combinatorial complexity of

the resolution proves to be prohibitive. Other such work exists (Guéhéneuc and Jussien

2001; Straw 2004).

2.1.4 Quantitative evaluation

Antoniol et al. (1998) used constraint programming extended with metrics to reduce the

search space before design-motif identification. They designed a multi-stage filtering

process to identify micro-architectures identical to design motifs. For each class of a

program, they computed some metrics (for example, numbers of relations of inheritance,

of association, and of aggregation) and they compared the metric values with expected

values for a design motif to potentially exclude the class from the identification process

and, thus, to reduce the search space. Then, they applied a constraint-based approach to

identify micro-architectures. The expected values of the metrics are derived from the

theoretical descriptions of design motifs. The main limitation of their study lies in the

assumption that implementation (micro-architectures) accurately reflects theory (design

motifs), which is often not the case. Guéhéneuc et al. (2004) recently built on Antoniol’s

approach.

2.1.5 Fuzzy reasoning

Jahnke amd Zündorf (1997) introduced fuzzy-reasoning nets to identify design motifs.

Design motifs are described as fuzzy-reasoning nets, expressing rules of identification of

micro-architecture similar but not identical to design motifs. They illustrated their

approach with the identification of poor implementations of the Singleton design motif

in legacy C?? code. They expressed identification rules with the formalism of fuzzy-

reasoning nets and then computed the certainty of a class being a Singleton starting

from a user’s assumption. The main advantage of their approach is that fuzzy-reasoning

nets deal with inconsistent and incomplete knowledge. However, their approach requires

the description of all possible approximations of a design motif and users’ assumptions.

2.1.6 Similarity scoring

Tsantalis et al. (2006) proposed an approach based on similarity scoring, which provides

an efficient means to compute the similarity between the graph of a design motif and the

graph of a program to identify classes potentially playing a role in the design motif. This

approach is fast and has reasonable precision and recall. They illustrated their approach on

three programs and 10 design motifs. Yet, although efficient in time, this approach is not

interactive, does not explain its results, and only includes a limited set of approximations.

Also, later work showed that its precision and recall are actually lower than presented

(Guéhéneuc and Antoniol 2008).
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2.1.7 Structural and dynamic analyses

Some authors, such as Heuzeroth et al. (2002), combined static and dynamic analyses to

improve the precision of the identification but faced the problem of the choice of the

methods to instrument and of the scenarios to execute. Recently, Ng and Guéhéneuc (2007)

introduced a trace analysis technique to identify occurrences of creational and behavioural

design motifs but this approach can only work as a complement to a structural analysis.

2.2 Desirable characteristics

An approach to design-motif identification should combine the best of the approaches

summarised in Table 1. Thus, it must:

1. Identify incomplete occurrences of design motifs in addition to complete occurrences,

according to the maintainers’ choices and context.

2. Explain why a micro-architecture is similar to a design motif, whether the micro-

architecture is a complete or an incomplete occurrence.

3. Interact (if required and desired) with maintainers by allowing them to guide the

identification of micro-architectures interactively.

4. Be computationally efficient to allow fast and on-line design-motif identification to

help maintainers in their daily tasks, and not to slow down their work.

5. Have good precision to limit the number of spurious micro-architectures, which would

require too much attention from maintainers.

6. Have good recall to limit the number of micro-architectures missed during the

identification process, which would prevent maintainers from performing their tasks

accurately.

Table 1 summarises the qualitative properties of existing approaches. None of these

approaches to the identification of design motifs possesses all these properties

– Unification provides a convenient means to model both the design motif and the

program in which to identify the motif. However, unification does not provide a

convenient means to describe and to identify incomplete occurrences: it requires up-

front the description of all possible incomplete occurrences. Moreover, unification

identifies a large number of false positive micro-architectures and does not provide an

easy way for maintainers to guide the search, and therefore has poor performance.

– Constraint programming uses a single model—a constraint system—to identify both

complete and incomplete occurrences, using explanation-based constraint programming.

Table 1 Summary of the properties of current approaches to design-motif identification

Unification Constraints
resolution

Fuzzy
reasoning

Quantitative
evaluation

Similarity
scoring

Incomplete occurrences No No Yes Yes Yes

Explanations No No No No No

Interactions No No No No No

Performance Limited Limited Limited High High

Precision Limited Low Low Low High

Recall Limited High Low Low High
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Maintainers can guide the identification. However, constraint programming does not

solve the problems of performance, precision, and recall: identification takes many hours

and provides false positive micro-architectures or misses false negative micro-

architectures.

– Metric-based approaches offer an alternative to previous structural approaches. They

are computationally efficient. They have, however, low precision and recall, because

the metric values of classes are compared against theoretical metric values for roles

rather than against experimentally validated values. Also, metric-based approaches do

not allow maintainers to guide the search.

– Fuzzy logic uses the power of neural networks to describe design motifs and to perform

design-motif identification. However, due to the very nature of neural networks, it is

difficult to provide explanations for the identified micro-architectures and to allow

interactions with maintainers during the search. Moreover, performance, precision, and

recall are currently low and should be confirmed in future study.

– Dynamic analyses have the potential to improve the precision and recall of structural

approaches but have not yet been studied in depth. Future study includes exploring the use

of such dynamic analyses and empirically validating their benefits and disadvantages.

We propose an original combination of constraint programming and metric-based

approaches for design-motif identification that possessess all required properties: identi-

fication of both complete and incomplete occurrences, explanations and interactions, sat-

isfactory performance, and good precision and recall.

We use explanation-based constraint programming to identify, in programs, micro-

architectures similar to design motifs, while providing explanations and interactions. We

characterise the roles in design motifs experimentally with numerical signatures. Finally,

we use the numerical signatures to reduce the size of the search space and to limit the

number of false positives.

Our approach circumvents the problems of constraint programming by allowing

incomplete occurrences, explanations, and interactions (detailed in Sect. 3). Also, it

reduces the size of the search space by using numerical signatures characterised experi-

mentally (detailed in Sect. 4 and evaluated in an exploratory study, in Sect. 5).

3 Design-motif identification process

We use explanation-based constraint programming to identify both complete and incom-

plete occurrences of design motifs while providing explanations and allowing interactions.

This section provides all the details necessary to understand our approach and, thus,

extends our previous presentation of DeMIMA in (Guéhéneuc and Antoniol 2008).

3.1 Explanation-based constraint programming

Explanation-based constraint programming has already proved its worth in many appli-

cations (Jussien and Barichard 2000). We recall the fundamentals of explanation-based

constraint programming.

3.1.1 Contradiction explanations

We consider a constraint satisfaction problem (CSP) (V, D, C) where V is the set of

variables, D is the set of domains for the variables, and C is the set of constraints
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(constraint system) among variables. Decisions made during enumeration—variable

assignments—are represented by unary constraints added to or removed from the current

constraint system. These unary constraints are called decision constraints because they are

not defined in the original constraint system but are generated by the solver to represent

decisions taken during the resolution.

A contradiction explanation (also know as nogood (Schiex and Verfaillie 1994)) is a

subset of the current constraint system that leads to a contradiction—no solution. A

contradiction explanation divides in two parts: a subset of the original set of constraints

(C0 , C in Eq. 1) and a subset of the decision constraints introduced during the search.

C ‘ :C0 ^ v1 ¼ a1 ^ � � � ^ vk ¼ ak: ð1Þ
A contradiction explanation without a decision constraint denotes an over-constrained

problem. In a contradiction explanation containing at least one decision constraint, we

choose a variable vj and rewrite Eq. 1 as Eq. 2.

C ‘ C0 ^
^

i2½1...k�nj
ðvi ¼ aiÞ ! vj 6¼ aj: ð2Þ

The left-hand side of the implication is an eliminating explanation for the removal of

value aj from the domain of variable vj. The eliminating explanation is denoted:

explðvj 6¼ ajÞ:

Classical solvers use domain-reduction techniques to solve constraint-satisfaction

problems by removing values from the domains of variables. Thus, recording eliminating

explanations is sufficient to compute contradiction explanations. Indeed, a contradiction is

identified when the solver empties the domain of a variable vj. A contradiction explanation

can be computed with the eliminating explanations associated with each removed value, as

shown in Eq. 3.

C ‘ :
^

a2dðvjÞ
explðvj 6¼ aÞ

0
@

1
A: ð3Þ

Several eliminating explanations generally exist for the removal of a given value.

Recording all eliminating explanations would lead to an exponential space complexity.

Thus, we must forget (erase) eliminating explanations that are no longer relevant to the

current variable assignment. An eliminating explanation is said to be relevant if all its

decision constraints are valid in the current search state (Bayardo Jr. and Miranker 1996).

We keep only one explanation at a time for any value removal and the space complexity

consequently remains polynomial.

In the context of design-motif identification, contradiction explanations include the

constraints that could not be satisfied on the classes forming the domains of the variables.

More details and examples are available in our previous study (Guéhéneuc and Jussien

2001).

3.1.2 Computing contradiction explanations

Minimal contradiction explanations (with respect to inclusion) are the most interesting.

They provide data on dependencies among variables and constraints identified during the

search. Unfortunately, computing such explanations is time-consuming (Junker 2001). A

Software Qual J

123



compromise between size and computability consists of using the knowledge inside the

solver. Indeed, solvers always know why they remove values from the domains of vari-

ables, although often not explicitly. They can compute minimal contradiction explanations

with this knowledge.

3.2 Contradiction explanations and design-motif identification

The process of design-motif identification using explanation-based constraint program-

ming can be divided in the following steps:

1. Modelling a set of design motifs as CSP A variable is associated with each class

defined by a design motif. The variables of our model are integer-valued. The domain

of a variable is a set of integers identifying existing classes in the source code

uniquely. Relationships among classes (inheritance, association…) are represented by

constraints among variables.

2. Modelling the maintainers’ source code to keep only the data needed to apply the

constraints: class names—forming the domains of the variables—and the relations

among classes—verifying the constraints or not.

3. Resolving the CSP to identify both incomplete and complete micro-architectures:

when all solutions to the CSP are found, i.e. when all micro-architectures identical to a

design motif are identified, the resolution is guided by the maintainers to identify

incomplete micro-architectures interactively. Contradiction explanations provided by

the constraint solver can help the maintainers to guide the identification.

We build a library of specialised constraints from the relations among classes used to

describe design motifs (Gamma et al. 1994). Specialised constraints express the relations

of inheritance, creation, association, and so on among classes. Our library offers constraints

covering a broad range of design motifs. However, some design motifs are difficult to

express as CSP and require additional relations or the decomposition of existing relations

into sub-relations. For example, some structural motifs include an important behavioural

aspect, such as the Observer motif: in addition to the typical classes forming the motif and

their inheritance and association relations, an important aspect of the motif is described in

the behaviours of the notify() and udpate() methods. This difficulty is common to

all structural and metric-based approaches.

For example, we provide the following constraints:

– strictInheritance and inheritance establish inheritance relations between

two classes. A strict inheritance relation links two classes playing, respectively, the role

of superclass and subclass. When considering single inheritance, the strict inheritance

relation is a partial order, denoted \, on the set of classes V. For any pair of distinct

classes A and B in V, if B inherits from A then: A\B. The constraint associated with

the strict inheritance relation is a binary constraint between variables A and B. From

this definition of strict inheritance, we derive an inheritance relation, and its associated

constraint, such that the variables may have for values the same class: A\B or A = B.

– association, aggregation, and composition enforce the requirement that

two classes are associated, aggregated, or composed with one another (Guéhéneuc and

Albin-Amiot 2004), respectively. For example, a class A is composed with instances of

a class B if the A class defines one or more fields of type B. Given three classes A, B,

and C, this relation is:

Software Qual J

123



– binary, such a relation links two and only two classes, i.e. association(A,B);

– oriented, a relation from A to B does not imply that B is related to A, i.e.

association(A,B);association(B,A);

– intransitive, a relation from A to B and from B to C does not satisfy the related

constraint, i.e. association(A,C).

3.3 Example of a CSP and its application

We describe a design motif as a CSP: each role is represented as a variable and relations

among roles are represented as constraints among the variables. Additional variables and

constraints may be added to improve the precision and recall of the identification process.

Variables have identical domains: all the classes in the program in which to identify the

design motif.

For example, the identification of micro-architectures similar to the Composite
design motif, shown in Fig. 3, translates into the constraint system:

Variables:

client
component
composite
leaf

Constraints:

association(client, component)
inheritance(component, composite)
inheritance(component, leaf)
composition(composite, component)

where the four constraints represent the association, inheritance, and composition relations

suggested by the Composite design motif. When applying this CSP to identify

occurrences of Composite in JHOTDRAW (Gamma and Eggenschwiler 1998), the four

variables client, component, composite, and leaf have identical domains.

1 1 1..n component

1

Component

operation()

Leaf

operation()

Composite

add(Component)
 ) tnenopmoC ( evomer

 ) tni ( tnenopmoCteg
operation()

for each component
component.operation () 

Client

Fig. 3 Composite design motif
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These domains contain all the 266 classes composing JHOTDRAW (Gamma and

Eggenschwiler 1998):

Domains: dðclientÞ ¼ dðcomponentÞ ¼ dðcompositeÞ ¼ dðleafÞ
¼ f. . .; CH.ifa.draw.figures.AttributeFigure; . . .g

3.4 Behaviour of the CSP solver

The library of specialised constraints cannot alone identify complete and incomplete

occurrences of design motifs. We need a specialised explanation-based CSP solver to

identify micro-architectures similar to design motifs.

Given a design motif expressed as a CSP, the specialised CSP solver computes complete

occurrences first. The resolution ends by a contradiction, i.e. there are no more micro-

architectures. Explanation-based constraint programming provides a contradiction expla-

nation for this contradiction: the set of constraints justifying that other combinations of

classes do not verify the constraints describing the design motif.

We do not need to relax constraints other than those provided by the contradiction

explanation: we would find no additional micro-architectures. The explanation contra-

diction provides knowledge about available incomplete occurrences. This knowledge

allows maintainers to lead the identification process towards interesting incomplete

occurrences, from their viewpoint, by letting constraints relax. Removing a constraint

suggested by a contradiction explanation does not necessarily lead to new micro-archi-

tectures, so the removal is applied iteratively.

A typical user session with our explanation-based constraint solver, JPTIDEJSOLVER,

when looking for the Composite design motif in JHOTDRAW, is illustrated in Fig. 4. First,

the problem and the domain of the variables are loaded and the result file is cleared.

Second, the solver attempts to find complete occurrences. In this particular case, it cannot

find any complete occurrence. Then, it provides the user with the set of constraints pre-

venting complete occurrences to be found and requests the user to choose which con-

straint(s) to relax. In this case, first one constraint is shown, then four constraints. Relaxing

the first constraint leads to finding one incomplete occurrence, where the composition

relation between the roles Composite and Component (coded as [#]?) is replaced by

an aggregation relation (coded as []?). The interaction continues until no more

incomplete occurrences can be found or the user chooses to relax no more constraints.

Figure 4 shows both interactions and explanations.

3.5 Discussion of the identification process

The use of explanation-based constraint programming to identify micro-architectures

similar to design motifs provides three interesting properties:

– Identification of both complete and incomplete occurrences of micro-architectures.

– Explanations about the identified micro-architectures.

– Interactions with the maintainers.

However, as with other structural approaches, our approach has limited performance

and precision. Indeed, it is not possible to know, in general, if removing a constraint will

lead to false positive occurrences. Only a maintainer may decide a priori that removing a

constraint would lead to false positives or a posteriori by examining the obtained occur-

rences. It is possible that removing a constraint leads to both true and false occurrences.
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We showed in our previous study (Guéhéneuc and Antoniol 2008) that, when favoring a

100% recall, our approach has an average precision of 34%. The reason of this limited

precision is the potential number of micro-architectures: for example, the Composite
design motif describes four roles, which are expressed as four variables. The identification

of micro-architectures similar to the Composite design motif in the JHOTDRAW frame-

work, which contains 266 classes, yields potentially 2664 = 5,006,411,536 micro-archi-

tectures. To reduce the search space and improve both performance and recall, we

introduce numerical signatures associated with roles in design motifs.

4 Improving the identification process with numerical signatures

We seek to improve the performance and the precision of the structural identification

process using quantitative values by associating numerical signatures with roles in design

motifs. With numerical signatures, we can reduce the search space in two ways:

– We can assign to each variable a domain containing only those classes for which the

numerical signatures match the expected numerical signatures for the role.

– We can add unary constraints to each variable to match the numerical signatures of the

classes in its domain with the numerical signature of the corresponding role.

These two ways achieve the same result: they remove classes for which the numerical

signatures do not match the expected numerical signature from the domain of a variable,

reducing the search space by reducing the domains of the variables.

Fig. 4 User session with the design-motif identification process based on explanation-based constraint
programming
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4.1 Numerical signatures

Numerical signatures characterise classes that play roles in design motifs. We identify

classes playing roles in motifs using their internal attributes. We measure these internal

attributes using the following families of metrics:

– Size/complexity, i.e. number of methods, of fields.

– Filiation, i.e. number of parents, number of children, and depth of the inheritance tree.

– Cohesion, i.e. degree to which the methods and attributes of a class belong together.

– Coupling, i.e. strength of the link between classes (through either use, association,

aggregation, or composition relations).

We study the use of internal attributes of classes to quantify design-motif roles: we

devise numerical signatures for design-motif roles using internal attributes of classes. We

group these numerical signatures in rules to identify classes playing a given role. For

example, a rule for the role of Singleton in the Singleton design motif could be:

Rule for ‘‘Singleton00 role:

Filiation: Number of parents low

Number of children low

because a class playing the role of Singleton is normally high in the inheritance tree

and has usually no (or only a few) subclasses. A rule for the role of Observer in the

Observer design motif could be:

Rule for ‘‘Observer00 role:

Coupling: Coupling with other classes low

because the purpose of the Observer design motif is to reduce the coupling between the

classes playing the roles of Observer and the rest of the program.

4.2 Building the numerical signatures

Figure 5 shows the process of assigning numerical signatures to design-motif roles. First,

we build a repository of classes forming micro-architectures similar to design motifs in

different programs. Roles played by classes in design motifs are identified manually. Then,

we extract metrics from the programs in which we found micro-architectures to associate a

set of values for the internal attributes to each class in the repository. Then, we feed a

propositional rule-learner algorithm with the sets of metric values. The rule learner returns

a set of rules characterising roles with the metric values of the classes playing these roles.

We cross-validate the rules using the leave-one-out method, a k-fold cross validation

where k equals the number of classes (Kohavi 1995; Stone 1974). Finally, we interpret the

rules obtained (or lack thereof) for roles in design motifs. The following paragraphs detail

each step of the process.

Repository
Creation

Metric
Extraction

Rule Learning InterpretationRule Validation

Fig. 5 Process of assigning numerical signatures to design-motifs roles
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4.2.1 Repository creation

We need a repository of classes forming micro-architectures similar to design motifs to

analyse these classes quantitatively. We built such a repository, PATTERN-LIKE MICRO-

ARCHITECTURE REPOSITORY (P-MART
2) over the course of the past years. We created this

repository using different sources:

– Studies in the literature, such as the original study from Bieman et al. (2003), which

recorded classes playing roles in design motifs from several different C??, Java, and

Smalltalk programs.

– Our tool suite for the identification of design motifs, Pattern Trace Identification,
Detection, and Enhancement in Java (PTIDEJ) (Albin-Amiot et al. 2001; Guéhéneuc and

Albin-Amiot 2001), which implements JPTIDEJSOLVER, our explanation-based con-

straint solver to identify design motifs as described in Sect. 3.

– Assignments in undergraduate and graduate courses, during which students performed

analyses of Java programs.

The repository of micro-architectures similar to design motifs contains, as explained in our

previous study (Guéhéneuc et al. 2004) (which includes a technical description of the file

format):

– For each program, design motifs for which we found similar micro-architectures.

– For each design motif, similar micro-architectures that we found in the program.

– For each micro-architecture, roles played by their classes in the corresponding design

motif.

We validated all the micro-architectures manually before their inclusion in the

repository. We do not claim that we have identified all micro-architectures similar to

design motifs in a given program, but are confident that we found most of them through

repetitive manual analyses of the same programs by different teams of undergraduate and

graduate students. Each team was assigned the task of identifying occurrences of the 23

motifs in Gamma et al. (1994). Each identified occurrence was evaluated by at least one

other team. If both the teams agreed (possibly after discussions), the occurrence was kept,

else the occurrence was discarded.

As of October 2008, P-MARTT contains data from nine programs, for a total of 4,376

classes3 and 138 micro-architectures representing 19 different design motifs. We record

this data in an XML tree, which allows us to traverse the data to compute metrics and

various statistics automatically.

Table 2 summarises the data in P-MART. The two first rows give the names and number of

classes of the surveyed programs. The following rows indicate, for a given design pattern (per

row), the number of micro-architectures found similar to its design motif in each program (per

column). The table also summarises the number of roles defined by a design motif and the

number of classes playing a role in a design motif for all the programs (two last columns).

4.2.2 Metric extraction

We parse the programs surveyed in P-MART and calculate metrics on their classes auto-

matically. Parsing and calculation are performed in a three-step process: first, we build a

2 See www.ptidej.net/downloads/pmart/.
3 We excluded local classes, i.e. classes defined in methods, because of their rarity.
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model of a program using the Pattern and Abstract- level Description Language (PADL)

meta-model and its parsers; second, we compute metrics using Primitives, Operators,
Metrics (POM), an extensible framework for metric calculation based on PADL; third, we

store the results of the metric calculation, names and values, in P-MART, by adding

specific attributes and nodes to the XML tree representation.

We use metrics from the literature to associate values with internal attributes of classes

playing a role in a design motif. Table 3 presents the metrics: for size/complexity, we use

the metrics by Lorenz and Kidd (1994) on new, inherited, and overridden methods and on

the total number of methods, and the count of methods weighted with the number of

method invocations by Chidamber and Kemerer (1993). We do not use metrics related to

fields because no design motif role is characterised by fields specifically: only the Fly-
weight, Memento, Observer, and Singleton design motifs (5 out of 23) expose

the structures of some roles to exemplify typical implementation choices. Moreover, fields

should always be private to their classes with respect to the principle of encapsulation. For

filiation, we use the depth in the inheritance tree, the number of children (Chidamber and

Kemerer 1993), and the number of hierarchical levels below a class, class-to-leaf depth

(Tegarden et al. 1995). For cohesion, we use the ‘C’ metric measuring the connectivity of a

class with the rest of a program (Hitz and Montazeri 1995) and the fifth metric on lack of

cohesion in methods (Briand et al. 1997b). Finally, for coupling, we use two metrics on

class-method import, export coupling (Briand et al. 1997a), and the metric on coupling

between objects (Chidamber and Kemerer 1993).

4.2.3 Rule learning and validation

We use a machine-learning algorithm to find commonalities among classes playing the

same role in a design motif in P-MART. We supply the data to a propositional rule-learner

algorithm, JRIP, implemented in WEKA, an open-source program collecting machine-

learning algorithms for data-mining tasks (Witten and Frank 1999).

We do not provide JRIP with all the data in P-MART because the disparities among

roles, classes, and metric values would lead to uninteresting results. We provide JRIP with

Table 3 External attributes for classes and corresponding metrics

Acronyms Descriptions and references

Size/complexity NM Number of methods (Lorenz and Kidd 1994)

NMA Number of new methods (Lorenz and Kidd 1994)

NMI Number of inherited methods (Lorenz and Kidd 1994)

NMO Number of overridden methods (Lorenz and Kidd 1994)

WMC Weighted methods count (Chidamber and Kemerer 1993)

Filiation CLD Class-to-leaf depth (Tegarden et al. 1995)

DIT Depth in inheritance tree (Chidamber and Kemerer 1993)

NOC Number of children (Chidamber and Kemerer 1993)

Cohesion C Connectivity ‘C’ (Hitz and Montazeri 1995)

LCOM5 Lack of cohesion in methods 5 (Briand et al. 1997b)

Coupling ACMIC Ancestors class-method import (Briand et al. 1997a)

CBO Coupling between object (Chidamber and Kemerer 1993)

DCMEC Descendants class-method export (Briand et al. 1997a)
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subsets of the data related to each role. A subset r of the data contains the metric values for

the n classes playing a role (positive examples) in all the micro-architectures similar to a

design motif. We add to this subset r the metric values of 3 9 n classes not playing the role

(negative examples), chosen randomly in the rest of the data. We make sure the classes

chosen randomly have the expected structure for the role to increase their likeness with the

classes playing the role. The rule learner infers rules related to each role from the subsets r.

We validate the rules using the leave-one-out method with each set of metric values in the

subsets r (Kohavi 1995; Stone 1974).

4.2.4 Rule interpretation

The rule learner infers rules that express the experimental relations among metric values,

on the one hand, and roles in design motifs, on the other. Typically, a rule inferred by the

rule learner for a role ROLE has the form:

Rule for ‘‘ROLE’’ role:

– Numerical signature 1, confidence 1,

– Numerical signature 2, confidence 2,

– …
– Numerical signatureN, confidenceN.

where

Numerical signature 1 ¼ fmetric1 2 V11; . . .;metricm 2 Vm1g
. . .

Numerical signature N ¼ fmetric1 2 V1n; . . .;metricm 2 Vmng

and the values of a metric metrici computed on classes playing the role ROLE belong to a

set Vij � N: The degree of confidenceK is the number of classes concerned by a

numerical signature in a subset r, which we use to compute error and recall ratios.

We collect all rules inferred from the rule learner and process the rules with the

following criteria to remove uncharacteristic rules:

– We remove rules with a recall ratio less than 75% to ensure that the rule characterises

classes much better than random chance.

– We remove rules inferred from small subsets r, i.e. those for which not enough classes

play a given role.

4.3 Discussion of the numerical signatures

We decompose the data in P-MART into 56 subsets r and infer as many rules with the rule

learner, which decompose in 78 numerical signatures. The two first steps in the analysis

process are quantitative and aim at eliminating roles that do not have a sufficient number of

examples for mining numerical signatures and that do not have a high enough recall ratio.

In the first step, we remove 20 of the 56 rules from the rules inferred by the rule learner.

The removed rules correspond to:

– Design motif roles with few corresponding micro-architectures and with a unique (or

only a few) classes in the micro-architectures. Some examples are the roles of

Decorator in the Decorator design motif and of Prototype in Prototype.
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– Design motifs’ roles played by ‘‘ghost’’ classes, i.e., classes known only from import

references, such as classes in external libraries. Some examples are the classes playing

the roles of Command in the Command design motif and of Builder in Builder.

In the second step, we select the 20 rules with a recall ratio greater than 75%, shown in

Table 4, from the 36 remaining rules. All these rules exhibit false positives, with a ratio4

less than 10% (less than 5% for 16 of them). These rules have errors5 less than 23% (less

than 10% for half of them). The differences between the ratios of misclassified false

positives and errors illustrate that, disregarding the size of r, the rules do not overly

misclassify counter-examples.

Most of the rules removed because of their low recall ratios concern non-key roles in

design motifs, i.e. that theoretically do not have a particular numerical signature. For

example, any class may play the role of Client in the Composite design motif.

Similarly, any class may play the role of Invoker in the Command design motif. (For

some researchers, Client, Invoker… are not real roles and are not be taken into

account in the design motifs, see for example (Tsantalis et al. 2006).)

Table 4 Roles with inferred rules with recall ratio greater than 75%

Design motifs Roles False positivesa (%) Errorsb (%) Recalls (%)

Iterator Client 0.00 0.00 100.00

Observer Subject 0.00 0.00 100.00

Observer Observer 2.38 6.67 100.00

Template Method Concrete Class 0.00 0.00 97.06

Prototype Concrete Prototype 0.00 0.00 96.30

Decorator Concrete Component 4.17 12.24 89.58

Visitor Concrete Visitor 0.00 0.00 88.89

Strategy Context 3.70 11.11 88.89

Visitor Concrete Element 2.04 6.45 88.78

Singleton Singleton 8.33 22.22 87.50

Factory Method Concrete Creator 4.30 12.90 87.10

Factory Method Concrete Product 3.45 10.71 86.21

Adapter Target 4.00 12.50 84.00

Composite Leaf 6.47 19.12 82.09

Decorator Concrete Decorator 0.00 0.00 80.00

Iterator Iterator 0.00 0.00 80.00

Command Receiver 6.67 20.00 80.00

State Concrete State 6.67 20.00 80.00

Strategy Concrete Strategy 2.38 8.33 78.57

Command ConcreteCommand 3.23 11.11 77.42

a Refer footnote 5
b Refer footnote 6

4 The ratio of misclassified false positives is (number of counter-examples in r classified as playing a role)/
(number of counter-examples in r).
5 The error is computed as (number of examples in r classified as playing a role)/(size of r).
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In many cases, we obtained a unique numerical signature for a given role in a design

motif. Classes playing the same role have similar structures and organisations generally.

For example, all the classes playing the role of Target in the Adapter design motif

have a low complexity, represented by low values of WMC, as shown in Table 5 (the

degree of confidence is \1 because this numerical signature misclassifies one class; its

error rate is 4%, as shown in Table 4). Such a low complexity is expected because of the

behaviour suggested by the Adapter design motif. Likewise, many other numerical

signatures confirm claims and beliefs about design motifs. For example, classes playing the

role of Observer in the Observer design motif have low coupling, i.e. a low CBO.

Classes playing the roles of Singleton in the Singleton design motif have low

coupling and generally belong to the upper part of the inheritance tree.

In a few cases, we obtain more than one numerical signature for a role. An example is the

role of ConcreteVisitor in the Visitor design motif. The most frequent numerical

signatures characterise classes with low coupling (low CBO) and a large number of methods

(high NM), as expected from the problem dealt with by the Visitor design motif. The

second numerical signature states that the number of inherited methods is low (low NMI) for

some classes playing the role of ConcreteVisitor. When exploring the micro-archi-

tectures similar to the Visitor design motif in our repository, we notice that, in

JREFACTORY, some classes play the roles of both ConcreteVisitor and Visitor,

which limits the number of inherited methods. This second numerical signature is particular

to one program, thus unveiling design choices specific to the program or to a coding style.

Numerical signatures cannot be used to identify design motifs alone. Indeed, two or

more classes may play an identical role in different uses of a design motif and the same

class may play two or more roles in one or more design motifs. They define necessary but

not sufficient conditions for classes. For example, a potential Target in the Adapter
design motif must not be complex according to the rule in Table 5. However, any non-

complex class is not a Target.

5 Exploratory study

The numerical signatures can help to improve the identification process of both complete

and incomplete occurrences in terms of performance and precision, by removing from the

domains of the variables the classes for which metric values do not match the expected

numerical signatures, i.e. by removing the classes that do not obviously play a role in the

design motif. Thus, the identification process can:

– Be computationally efficient, with a reduced search space.

– Have good precision through the removal of classes that do not play a role in the design

motif.

– Keep the perfect recall favoured in our approach, so that maintainers can focus on a

small number of interesting micro-architectures.

We now validate the new identification process combining both explanation-based

constraint programming and numerical signatures. The objective of this exploratory study

Table 5 Rules inferred for the role of Target in the Adapter design motif

Rule ‘‘Target’’ �WMC ( 2; 24=25:
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is to assess whether or not search-space reduction using numerical signatures improves the

performance and the precision of the constraint-based identification. We do not evaluate

the constraint-based identification per se because we do not explicitly assess the validity of

the occurrences identified by either the original or the enhanced version of the constraint-

based identification process.

5.1 Assumptions

This exploratory study is based on two main assumptions. The first assumption for the

applicability of our approach is the availability of enough known micro-architectures from

which to derive the numerical signatures. The second assumption is that the design motif

roles have distinguishing structures and organisations. Consequently, the explorational

setting is chosen in the context of these assumptions. Also, the results will be further

discussed in Sect. 5.6 bearing these assumptions in mind.

5.2 Research questions

To assess whether our approach indeed improves the identification process, we need to

answer the following two research questions:

RQ1: Does the use of numerical signatures reduce significantly the time of identifying
occurrences of design motifs? The tasks of computing metrics for each class, and

verifying if the obtained values match numerical signatures, take time. This time

must be significantly lower than the time we gain by reducing the search space.

RQ2: Does the use of numerical signatures reduce the number of false positives while
preserving all occurrences?We must ensure that numerical signatures exclude

from the search space only classes not playing a role in a design motif, thus

improving the precision while maintaining the perfect recall.

We answer these questions through an explorational protocol that we instantiate for nine

programs and three design motifs.

5.3 Protocol

Let tcp and tcp?ns be the identification times using, respectively, explanation-based con-

straint programming (cp) and explanation-based constraint programming enhanced with

numerical signatures (cp ? ns). The time tcp?ns includes the time required to reduce the

size of the domains of the variables by applying the numerical signatures. Each identifi-

cation process produces a set of candidate occurrences, ocp and ocp?ns, respectively. We

propose the following protocol to answer the two previous research questions:

1. First, we identify all the occurrences of a design motif in a program P, using the

constraint-based approach (with the set of all classes as domains for the variables). As

results, we obtain tcp and ocp.

2. Second, we identify the occurrences of the design motif using the enhanced approach

(i.e. reducing the domain of each variable using numerical signatures associated with

the role). We thus obtain tcp?ns and ocp?ns. The search-space reduction does not yield

more occurrences than those identified by the original algorithm.
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3. Third for RQ1, we compute the difference between the identification times

td = tcp?ns - tcp to assess whether the difference is significant.

4. Fourth for RQ2, we compute the set difference oe = ocp - ocp?ns containing all the

occurrences excluded from the identification process thanks to the numerical

signatures. We check manually if each micro-architecture in oe is a false positive.

5.4 Setting

We apply the protocol to nine programs to identify three design motifs.

5.4.1 Studied design motifs

There exists a large number of design patterns in the literature in addition to those proposed

originally (Gamma et al. 1994). We validate our approach on the three design motifs that

have the largest numbers of classes playing roles in P-MART: Abstract Factory,
Adapter, and Composite (see column ‘‘Numbers of classes playing a role’’ in

Table 2). We choose the Composite design motif also because of its popularity:

Composite is often used as a typical example of structural design pattern in the litera-

ture. We choose the Abstract Factory design motif also because other approaches do

not identify it although it is commonly used in many known programs as shown in P-

MART.

5.4.2 Used programs

The data we used was extracted from nine open-source and freely available programs:

GANTT PROJECT v1.10.2, HOLUBSQL v1.0, JHOTDRAW v5.1, JSETTLERS v1.0.5, JTANS v1.0,

JuZZLE v0.5, LEXI v0.0.1a, RISK v1.0.7.5. Table 6 presents these programs and related data.

The sizes of the programs vary from 99 to 616 classes which are characteristics of small-to-

medium scale programs.

Although three of these programs have been used to build numerical signatures

(JHOTDRAW v5.1, JUNIT v3.7, and LEXI v0.0.1a, as seen in Table 2), we avoid a bias by

excluding these three programs from any experiment involving numerical signatures. For

example, JHOTDRAW, from which we derive signatures for the Adapter and Composite
design motifs, is used only to evaluate the identification of Abstract Factory.

Table 6 Information on the programs used for the experiments

Programs Sizes Information

GANTT PROJECT v1.10.2 616 Tasks management software ganttproject.sourceforge.net

HOLUBSQL v1.0 151 Embedded SQL interpreter www.holub.com/software/holubSQL/

JHOTDRAW v5.1 266 Graph drawing framezork www.jhotdraw.org

JSETTLERS v1.0.5 255 Settlers of Catan board game jsettlers.sourceforge.net

JTANS v1.0 206 Tangram puzzle game jtans.sourceforge.net

JUNIT v3.7 289 Unit testing framework www.junit.org

JUZZLE v0.5 99 Simple puzzle game juzzle.sourceforge.net

LEXI v0.0.1a 216 Text editor lexi.sourceforge.net

RISK v1.0.7.5 256 Strategy game javarisk.sourceforge.net
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5.4.3 Tools

The experiment is supported by the PTIDEJ tool suite for metrics computation and micro-

architectures identification. The constraint-based identification was implemented by

JPTIDEJSOLVER, a dedicated constraint solver that uses PALM, the Java reference imple-

mentation of explanation-based constraint programming, built with the JCHOCO library

(Labuthe 2000). We integrate numerical signatures as pre-constraints in a variant of

JPTIDEJSOLVER.

5.4.4 Time computation

We need to retrieve the computation time required to identify design motifs in a program

with and without numerical signatures to verify our first question. We retrieve identifi-

cation times using a profiler, ECLIPSE PROFILER (Scheglov and Shackelford 2004). We

perform all computations seven times on an AMD ATHLON 64 bits processor at 2 GHz.

Computations take an average of 50 min to identify all the micro-architectures similar to

one given design motif in one given system. We consider in this experiment that a com-

putation time greater than 1 hour is unrealistic in an industrial and/or interactive setting:

computation is aborted and computation time is said to be infinite.

5.4.5 Manipulation of the micro-architectures

Our dedicated constraint solver, JPTIDEJSOLVER, and its variant with numerical signatures,

generates several files containing textual representations of the identified micro-architec-

tures and various statistics. We store and manually analyse the micro-architectures found

with and without numerical signatures to check our second question. We analyse the

textual representations by hand and using our tool, PTIDEJ, which loads the textual repre-

sentations and displays the micro-architectures on top of the UML-like representations of

the programs.

5.5 Results

5.5.1 RQ1

Using the raw data in Table 7, Table 8 presents the percentages of time differences

between the identification with and without numerical signatures; N/A indicates that

both complete and incomplete occurrences of the motif considered were used in the

signature inference process of the searched motif. 100 - e indicates that the identifi-

cation process without numerical signatures was aborted because of computation time

([1 h). In such cases, the time reduction between the completed part of the process and

the identification process with numerical signatures is close to 100%. This was the case

for the identification of the Adapter and Composite design motifs in GANTT

PROJECT (616 classes).

Although the computation of the numerical signatures introduces overhead, the overall

identification times significantly decrease for almost all design motif–program combina-

tions. For the Composite design motif, the identification time is reduced by more that

90% (more than 99% for most of the programs). For the Abstract Factory and

Adapter design motif, we find only one case (JUZZLE) where no improvement occurred.

We explain this lack of improvement by the fact that this program is small and contains
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only a few occurrences of design motifs. In general, the gain in time is more than 90% for

the Adapter design motif and between 23 and 90% for the Abstract Factory design

motif. These results answer RQ1: the use of numerical signatures reduces significantly the
time of identifying occurrences of design motifs.

An interesting finding is that, without search-space reduction, identification time is

correlated positively with the number of elements in a program (classes and relations). For

two of the three design motifs, identification time follows an exponential function. With

the numerical signature, identification time is independent of the size of a program.

Table 7 Times for identification of micro-architectures similar to design motifs, with and without
numerical signatures

Programs Times for identification (in seconds)

Without numerical
signatures

With numerical
signatures

Differences

Adapter

GANTT PROJECT v1.10.2 N/A 157127 N/A

HOLUBSQL v1.0 1106 3 1103

JHOTDRAW v5.1 Excluded because used to compute numerical signatures

JSETTLERS v1.0.5 417139 799 416340

JTANS v1.0 1445 53 1392

JUNIT v3.7 68172 6372 61800

JUZZLE v0.5 21 21 0

LEXI v0.0.1a 4936 156 4780

RISK v1.0.7.5 2435 134 2301

Abstract Factory

GANTT PROJECT v1.10.2 6480 575 5905

HOLUBSQL v1.0 13 10 3

JHOTDRAW v5.1 1202 275 927

JSETTLERS v1.0.5 2449 278 2171

JTANS v1.0 25 5 20

JUNIT v3.7 1301 512 789

JUZZLE v0.5 1 1 0

LEXI v0.0.1a 21 7 14

RISK v1.0.7.5 83 29 54

Composite

GANTT PROJECT v1.10.2 N/A 266 N/A

HOLUBSQL v1.0 21073 12 21061

JHOTDRAW v5.1 Excluded because used to compute numerical signatures

JSETTLERS v1.0.5 N/A 1615 N/A

JTANS v1.0 2824 19 2805

JUNIT v3.7 Excluded because used to compute numerical signatures

JUZZLE v0.5 44 3 41

LEXI v0.0.1a 34926 21 34905

RISK v1.0.7.5 3373 23 3350
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5.5.2 RQ2

Tables 9, 10, and 11 show, for each design motif and for each program, the numbers of

identified occurrences (both complete and incomplete), without (NIO) and with (NIOS)

numerical signatures, respectively. Occurrences eliminated by the use of numerical sig-

natures can be either false positives (NFP) or true positives (NTP). As summarised in the

tables, all the eliminated occurrences are false positives: no true positive occurrence is

missed as a result of the use of numerical signatures. Therefore, these results answer RQ2:

the use of numerical signatures reduces the number of false positives while preserving all
valid occurrences, it improves the precision while keeping the perfect recall.

We explain this finding by comparing existing structural approaches and our numerical

signature-based approach in terms of syntax and semantics. Numerical signatures describe

by their very construction both the syntax and the semantics of design motifs. Indeed,

numerical signatures, beyond their computation on structural elements of programs

Table 8 Time reductions for each program and pattern

Programs Time Reductions in %

Adapter Abstract Factory Composite

GANTT PROJECT v1.10.2 100 - e 91.13 100 - e

HOLUBSQL v1.0 99.73 23.08 99.94

JHOTDRAW v5.1 N/A 77.12 N/A

JSETTLERS v1.0.5 99.81 88.65 100 - e

JTANS v1.0 96.33 80.00 99.33

JUNIT v3.7 90.65 60.65 N/A

JUZZLE v0.5 0.00 0.00 93.18

LEXI v0.0.1a 96.84 66.67 99.94

RISK v1.0.7.5 94.50 65.06 99.32

Table 9 Summary of the results of design-motif occurrences identification

Programs Adapter

NIO NIOS NFP NTP

GANTTPROJECT v1.10.2 N/A 588 N/A N/A

HOLUBSQL v1.0 70 17 53 0

JHOTDRAW v5.1 N/A N/A N/A N/A

JSETTLERS v1.0.5 11,479 0 11,479 0

JTANS v1.0 128 2 126 0

JUNIT v3.7 2,490 234 2,256 0

JUZZLE v0.5 3 3 0 0

LEXI v0.0.1a 57 3 54 0

RISK v1.0.7.5 11 11 0 0

NIO, NIOS, NFP, and NTP are the numbers of identified occurrences without and with numerical signatures,
of false positives, and of true positives, respectively
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(classes and relations), integrate semantics through the manual analyses performed on the

data used to built the signatures. Thus, in comparison to purely structural approaches,

which only consider the syntax (structure) of programs, our approach uses semantics by

considering the semantics (or lack thereof) of a class playing a role in a design motif.

5.6 Threats to the validity

Our experiment is subject to several threats to its validity.

Construct validity threats concern the relation between theory and observation. It is

possible that the numerical signatures do not describe the role that a class plays in a design

motif but some other concerns of the class. Following our first and second assumptions, we

limited this threat by eliminating from our study roles that do not have a sufficient number

of examples and any numerical signatures with a low recall ratio.

Table 10 Summary of the results of design-motif occurrences identification

Programs Abstract Factory

NIO NIOS NFP NTP

GANTT PROJECT v1.10.2 706 143 563 0

HOLUBSQL v1.0 50 10 40 0

JHOTDRAW v5.1 2,934 817 2,117 0

JSETTLERS v1.0.5 631 20 611 0

JTANS v1.0 51 0 51 0

JUNIT v3.7 327 72 255 0

JUZZLE v0.5 9 0 9 0

LEXI v0.0.1a 18 1 17 0

RISK v1.0.7.5 43 0 43 0

NIO, NIOS, NFP, and NTP are the numbers of identified occurrences without and with numerical signatures,
of false positives, and of true positives, respectively

Table 11 Summary of the results of design-motif occurrences identification

Programs Composite

NIO NIOS NFP NTP

GANTT PROJECT v1.10.2 N/A 0 N/A N/A

HOLUBSQL v1.0 455 0 455 0

JHOTDRAW v5.1 N/A N/A N/A N/A

JSETTLERS v1.0.5 N/A 584 N/A N/A

JTANS v1.0 525 0 525 0

JUNIT v3.7 N/A N/A N/A N/A

JUZZLE v0.5 20 0 20 0

LEXI v0.0.1a 88 0 88 0

RISK v1.0.7.5 72 0 72 0

NIO, NIOS, NFP, and NTP are the numbers of identified occurrences without and with numerical signatures,
of false positives, and of true positives, respectively
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Internal validity and Conclusion validity threats concern the relation between the

observed improvements and the use of numerical signatures. We believe that the main

threat concern the experimenter bias. Although the differences between the constraint-

based approach and the enhanced constraint-based approach is most likely due to the use of

the numerical signatures, we are both the developers and the experimenters of the

approaches and, therefore, we could have biased inadvertently the results. All data and

programs are available on-line6 for other researchers to confirm our results.

External validity threats concern the generalisation of the results. Although we con-

sidered nine diverse small-to-medium size Java programs and three design motifs with

very different designs, we cannot generalise the improvements in performance and pre-

cision to all programs and motifs. Future study includes studying more design motifs to

assess the generalisability of the improvements. We could also apply our approach to other

identification approaches, although previous study such as Tsantalis’ (2006) have equiv-

alent or lower precisions (Guéhéneuc and Antoniol 2008).

Reliability validity threats concern the replicability of our study. Our implementations

and data are available on-line (refer footnote 6). The data in P-MART is freely available as

are the programs with which the experiment was performed.7

6 Conclusion and future study

We presented an exploratory study of an approach to identify complete and incomplete

occurrences of design motifs in object-oriented programs. We developed an explanation-

based approach enhanced through the use of experimentally built numerical signatures,

which characterise the classes playing roles in design motifs. We showed that our approach

has better performance and precision than a purely structural approach, while preserving its

favoured perfect recall. Indeed, in comparison with previous approaches, our approach

possesses the following properties, as summarised in Table 12:

– Identification of complete and incomplete occurrences of design motifs.

– Explanations of the identified micro-architectures and interactions with maintainers.

– High performance and precision; perfect recall.

Table 12 Comparisons of the properties of current approaches to design-motif identification with our
approach

Unification Constraints
resolution

Fuzzy
reasoning

Quantitative
evaluation

Our
approach

Incomplete forms No No Yes Yes Yes

Explanations No No No No Yes

Interactions No No No No Yes

Performance Limited Limited Limited High High

Precision High High Low Low High

Recall Low Low Low Low High

6 http://www.ptidej.org/downloads/experiments/SQJ09/.
7 http://www.ptidej.net/downloads/pmart/.
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The exploratory study of our approach, involving nine programs with three common

design motifs, allowed us to conclude that numerical signatures reduce identification time

significantly as well as reduce the number of false positive occurrences.

Future study includes improving the representation of design motifs to include non-

structural design motifs by using dynamic data in addition to structural data. It also

includes the use of incomplete occurrences to identify refactoring opportunities. We also

plan to generate and study the improvement in performance and precision for other design

motifs to perform a complete empirical study of the improvements. In general, replication

of this study with other programs and motifs is required to confirm the results discussed

here.
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