
Noname manuscript No.
(will be inserted by the editor)

Investigating the Relation between Lexical Smells and
Change- and Fault- Proneness: An Empirical Study

Latifa Guerrouj · Zeinab Kermansaravi ·
Venera Arnaoudouva · Benjamin C.
M. Fung · Foutse Khomh · Giuliano
Antoniol · Yann-Gaël Guéhéneuc

Received: date / Accepted: date

Abstract Past and recent studies have shown that design smells which are
poor solutions to recurrent design problems make object-oriented systems dif-
ficult to maintain, and that they negatively impact the class change- and
fault-proneness. More recently, lexical smells have been introduced to capture
recurring poor practices in the naming, documentation, and choice of iden-
tifiers during the implementation of an entity. Although recent studies show
that developers perceive lexical smells as impairing program understanding,
no study has actually evaluated the relationship between lexical smells and
software quality as well as their interaction with design smells.

Latifa Guerrouj
École de Technologie Supérieure, Montréal, Canada
E-mail: Latifa.Guerrouj@etsmtl.ca

Zeinab Kermansaravi
École Polytechnique de Montréal, Canada
E-mail: Zeinab.Kermansaravi@polymtl.ca

Venera Arnaoudouva
Washington State University, USA
E-mail: Venera.Arnaoudova@wsu.edu

Benjamin C. M. Fung
McGill University, Canada
E-mail: Ben.Fung@mcgill.ca

Foutse Khomh
École Polytechnique de Montréal, Canada
E-mail: Foutse.Khomh@polymtl.ca

Giuliano Antoniol
École Polytechnique de Montréal, Canada
E-mail: Giuliano.Antoniol@polymtl.ca

Yann-Gaël Guéhéneuc
École Polytechnique de Montréal, Canada
E-mail: Yann-gael.Gueheneuc@polymtl.ca

2 Latifa Guerrouj et al.

In this paper, we detect 29 smells consisting of 13 design smells and 16 lex-
ical smells in 30 releases of three projects: ANT, ArgoUML and Hibernate. We
analyze to what extent classes containing lexical smells have higher (or lower)
odds to change or to be subject to fault-fixing than other classes containing
design smells.

Our results show and bring empirical evidence on the fact that lexical
smells can make, in some cases, classes with design smells more fault-prone.
In addition, we empirically demonstrate that classes containing design smells
only are more change and fault-prone than classes with lexical smells only.

1 Introduction

Design smells are bad practices in software development; they represent “poor”
design or implementation solutions to recurring design problems [1,2]. Most of-
ten developers introduce design smells when they are not knowledgable enough
about a system, they do not have the needed expertise to solve the problem
at hand, or they do not understand the logic behind how it works. Design
smells do not usually prevent a program from functioning normally. However,
their presence reveals the existence of flaws in the system’s design or imple-
mentation. Previous studies indicate that design smells may affect software
comprehensibility [3] and possibly increase change and fault-proneness [4,5].
Ehsan et al. [6] have found that design smells can be used to predict faults
as files that have design smells tend to have a higher density of faults than
other files. A recent investigation by Yamashita and Moonen has shown that
the majority of developers are concerned about design smells [7]. Recently,
researchers have introduced another family of smells called, lexical smells [8].
Lexical smells are defined as recurring poor practices in the naming, documen-
tation, and choice of source code identifiers in the implementation of an entity.
Their introduction was motivated by the role played by source code lexicon
in capturing and encoding developers’ intent and knowledge [9,10] as well as
in source code understandability [11,12]. Lexical smells have been shown to
enhance fault prediction when used along with traditional structural metrics
[13]. In addition, they have been proven to negatively impact concept location
[14]. Recently, researchers have studied how developers perceive them [15].

Although some previous works have investigated the relation between the
occurrence of design smells and a class change- and fault-proneness, to the
best of our knowledge we are the first to investigate the additional impact
lexical smells can have on class change- and fault-proneness when occurring
with design smells. Specifically, we compare, in terms of change- and fault-
proneness between 1) classes with both design and lexical smells and classes
with design smells only, 2) classes containing both design and lexical smells
and classes with lexical smells only, as well as 3) classes with design smells
only and those with lexical smells only. As baseline, we use design smells since
they have been already proven to correlate with changes and faults [5].

3

This work is also the first to detect such a variety and large number of
smells. We explore 29 smells consisting of 13 design smells and 16 lexical ones
that we identified using widely-adopted techniques from the literature [8,16].
Our investigation focus on 13 design smells from Brown et al. [1] and Fowler
[2]. We chose these design smells because they are representative of design
and implementation problems related to object-oriented systems. In addition,
they have been thoroughly described and received significant attention from
researchers (e.g., [1,5,6]). As for lexical smells, we selected the family described
in [15] since its represents the most recent catalog of lexical smells, we detected
them using the most recent approach for identifying lexical smells [8].

We empirically show through the analysis of 30 releases from three different
projects that, in many cases, the occurrence of lexical smells can make classes
with design smells more fault-prone. In addition, classes with both lexical and
design smells are more change- and fault- prone than classes containing lexical
smells only. Furthermore, classes with design smells only are more change
and fault-prone than classes containing lexical smells only. We believe that
such findings bring more awareness to developers about the additional role
that lexical smells can have on fault-proneness when they occur with design
smells. A software manager could use our design and lexical smells detection
approaches applied in this work to assess the volume of classes with such
families of smells to possibly better estimate the effort needed for refactoring.

Paper organization. The rest of the paper is organized as follows. Section
2 describes the methodology followed while Section 3 reports our empirical
study. In Section 4, we show the findings of our study. Section 5 discusses the
threats to validity. Section 6 presents related work. Finally, Section 7 concludes
and outlines directions for future work.

2 Methodology

This section describes the methodology followed and summarized in Fig. 1. It
consists of (i) mining data repositories, (ii) detecting design and (iii) lexical
smells across different releases of the studied systems, as well as (iv) identifying
changes and post-release defects.

2.1 Step 1: Data Collection and Processing

The first phase of our methodology consists of mining data repositories. We an-
alyze a total of 30 releases from different open-source systems (i.e., ArgoUML,
ANT, and Hibernate). We selected these projects since they are made publicly
available to the research community and practitioners, they have a consider-
able number of releases, committers, as well as development history. Our study
includes 12 releases of ArgoUML, 11 releases of Hibernate, and 7 releases of

4 Latifa Guerrouj et al.

Git/SVN

Repositories

BugZilla or JIRA

Mining Source Code
Repositories

Detecting Design Smells

Detecting Lexical
Smells

Mining Bug
Repositories

Computing Change-
and Fault- proneness
(Post-release Bugs)

Analyzing and
Interpreting Results

Fig. 1 Main steps of the followed methodology.

ANT. ArgoUML1 is an open-source UML modeling tool. Hibernate2 (ORM)
is an open-source Java persistence framework project while ANT3 is a sys-
tem related to software build processes. We chose these systems because they
belong to different domains and have different sizes.

The first step of our data collection process consists of downloading the
source code of the considered releases for all systems, which we used as an
input for the design and lexical smells detection approaches. We then mined
the source code change history repositories from the version control systems
of the systems, i.e., Git4 for ANT and Hibernate and SVN for ArgoUML, to
identify changes and fault-fixes. The Git/SVN repository of each system was
downloaded using appropriate perl scripts and the data was then stored in a
PostgreSQL database. We used SQL queries to obtain the source code change
history of each system release as well as information including the number
of changes, classes that underwent changes, summary of the changes, change
logs, etc.

In the last step, we mined bug repositories corresponding to each system
with the purpose of identifying changes that were fixing faults. For ArgoUML,
issues dealing with fixing faults are marked as “DEFECT” in the issue tracking
system5. For ANT, we mined BugZilla6 while JIRA7 was mined to determine
fault-fixing issues for Hibernate. Section 2.4 describes the steps of this phase
in details.

1 http://argouml.tigris.org/
2 http://hibernate.org/
3 http://ant.apache.org/
4 http://git-scm.com/
5 http://argouml.tigris.org/issues
6 https://www.bugzilla.org/
7 https://www.atlassian.com/software/jira

5

Finally, we use statistical tests to analyze the collected data and address
our research questions.

2.2 Step 2: Identifying Design Smells

Code smells/antipatterns are “poor” implementation and–or design choices,
thought to make object-oriented systems hard to maintain. In practice, code
smells may concern the design of a class and hence concretely manifest them-
selves in the source code as classes with specific implementation. We call such
smells Design Smells.

To identify design smells in each release of the studied projects. We use
the DECOR (Defect dEtection for CORrection) approach [16]. DECOR is
based on a thorough domain analysis of code and design smells from the lit-
erature, from which is built a domain-specific language. This language uses
rules to describes design smells, with different types of properties: lexical (e.g.,
class names), structural (e.g., classes declaring public static variables), inter-
nal (e.g., number of methods), and the relation among properties (e.g., as-
sociation, aggregation, and composition relations among classes). Using this
domain-specific language, DECOR proposes the descriptions of several design
smells. It also provides algorithms and a framework, DeTeX, to convert de-
sign smell descriptions automatically into detection algorithms. DeTeX allows
detecting occurrences of design smells in systems written in various object-
oriented programming languages, such as Java or C++. We used DECOR
because it has been widely-acknowledged and used in past and recent research
[5,4,3]; it achieves 100 percent of recall and a precision greater than 31% in
the worst case, with an average greater than 60%. More precisely, DECOR
yields 100% of recall and have precisions between 41.1 and 87% for three
types: Blob, SpaghettiCode, and SwissArmyKnife. The detection algorithms
for these three types have an average accuracy of 99% for the Blob, of 89% for
the SpaghettiCode, and of 95% for the SwissArmyKnife; and a total average
of 94% [16].

In this study, we focus on 13 design smells from Brown et al. [1] and Fowler
et al. [2]. The motivation behind our choice is that these design smells have
been thoroughly described and that they have received significant attention
from researchers [1,5,6]. We could detect several occurrences of these design
smells across the studied releases, and they are representative of design and
implementation problems related to object-oriented systems.

– AntiSingleton: A class that provides mutable class variables, which con-
sequently could be used as global variables.

– Blob: A class that is too large and not cohesive enough, that monopolises
most of the processing, takes most of the decisions, and is associated to
data classes.

– ClassDataShouldBePrivate: A class that exposes its fields, thus violat-
ing the principle of encapsulation.

6 Latifa Guerrouj et al.

– ComplexClass: A class that has (at least) one large and complex method,
in terms of cyclomatic complexity and LOCs.

– LargeClass: A class that has (at least) one long method.
– LazyClass: A class that has few fields and methods (with little complex-

ity).
– LongMethod: A class that has a method that is overly long, in term of

LOCs.
– LongParameterList: A class that has (at least) one method with a too

long list of parameters with respect to the average number of parameters
per methods in the system.

– MessageChain: A class that uses a long chain of method invocations to
realise (at least) one of its functionality.

– RefusedParentBequest: A class that redefines inherited methods using
empty bodies, thus breaking polymorphism.

– SpaghettiCode: A class declaring long methods with no parameters and
using global variables. These methods interact too much using complex
decision algorithms. This class does not exploit and prevents the use of
polymorphism and inheritance.

– SpeculativeGenerality: A class that is defined as abstract but that has
very few children, which do not make use of its methods.

– SwissArmyKnife: A class whose methods can be divided in disjunct set
of many methods, thus providing many different unrelated functionalities.

2.3 Step 3: Identifying Lexical Smells

The third phase of our methodology consists of identifying lexical smells in
each release of the studied projects. We detect lexical smells at the level of
each system’s release using the LAPD (Lexical Anti-Patterns Detection) ap-
proach presented and described in [8] for Java source code; it relies on the
Stanford natural language parser [17] to identify the Part-of-Speech of the
terms constituting the identifiers and comments and to establish relations be-
tween those terms. We used LAPD because, to the best of our knowledge, it is
the most recent novel approach that deals with large number of lexical smells;
it has a catalog of 16 lexical smells. The rationale and specifications of these
lexical smells are detailed in [8]. In the following, we list the lexical smells
detected by LAPD and used in this work.

– “Get” - more than an accessor: A getter that performs actions other
than returning the corresponding attribute without documenting it.

– “Is” returns more than a Boolean: The name of a method is a pred-
icate suggesting a true/false value in return. However, the return type is
not Boolean but rather a more complex type allowing, thus, a wider range
of values without documenting them.

– “Set” method returns: A set method having a return type different
than void and not documenting the return type/values with an appropriate
comment.

7

– Expecting but not getting a single instance: The name of a method
indicates that a single object is returned but the return type is a collection.

– Validation method does not confirm: A validation method (e.g., name
starting with “validate”, “check”, “ensure”) does not confirm the valida-
tion, i.e., the method neither provides a return value informing whether the
validation was successful, nor documents how to proceed to understand.

– “Get” method does not return: The name suggests that the method
returns something (e.g., name starts with “get” or “return”) but the return
type is void. The documentation should explain where the resulting data
is stored and how to obtain it.

– Not answered question: The name of a method is in the form of predi-
cate whereas the return type is not Boolean.

– Transform method does not return: The name of a method suggests
the transformation of an object but there is no return value and it is not
clear from the documentation where the result is stored.

– Expecting but not getting a collection: The name of a method sug-
gests that a collection should be returned but a single object or nothing is
returned.

– Method name and return type are opposite: The intent of the
method suggested by its name is in contradiction with what it returns.

– Method signature and comment are opposite: The documentation
of a method is in contradiction with its declaration.

– Says one but contains many: The name of an attribute suggests a single
instance, while its type suggests that the attribute stores a collection of
objects.

– Name suggests Boolean but type does not: The name of an attribute
suggests that its value is true or false, but its declaring type is not Boolean.

– Says many but contains one: The name of an attribute suggests multi-
ple instances, but its type suggests a single one. Documenting such inconsis-
tencies avoids additional comprehension effort to understand the purpose
of the attribute.

– Attribute name and type are opposite: The name of an attribute is in
contradiction with its type as they contain antonyms. The use of antonyms
can induce wrong assumptions.

– Attribute signature and comment are opposite: The declaration
of an attribute is in contradiction with its documentation. Whether the
pattern is included or excluded is, thus, unclear.

2.4 Step 4: Identifying Post-Release Defects

The fourth phase of our methodology consists of identifying post-release de-
fects. To determine whether a change fixes a fault, we search, using regu-
lar expressions, in change logs from the system versioning Git/SVN for co-
occurrences of fault identifiers with keywords like “fixed issue #ID”, “bug
ID”, “fix”, “defect”, or “patch”. A similar approach was applied to identify

8 Latifa Guerrouj et al.

fault-fixing and fault-inducing changes in prior works [18,19]. Following cur-
rent practices on the identification of post-release defects [18,20,21], we define
post-release faults as those with fixes recorded in the six-month period after
the release date. Once this step is performed, we identify, for each bug ID, the
corresponding bug report from the corresponding issue tracking system, i.e.,
Bugzilla8 or Jira9 and extract relevant information from each report including:

– Issue ID.
– Issue type, i.e., fault, enhancement, feature, patch, feature request, etc.
– Issue status, i.e., new, closed, reponed, resolved, fixed, verified, or not.
– Issue resolution, e.g., fixed, invalid, duplicate, etc.

We extracted further information about bugs such as the priority of the
bug, its opening and closing dates, as well as the bug summary. We did not
leverage them in this investigation but kept them in our database for possible
further investigations.

We first make sure that the issues correspond to the system (i.e., prod-
uct) under analysis since some communities (e.g., Apache) use the same issue
tracking system for multiple products. Second, we verify whether the issue
IDs identified at the level of commits from the Git/SVN versioning system
are true positives. Then, we differentiate fault fixes from other types of issues
involving enhancements, feature requests, etc. based on the issue type, status,
and resolution. As in prior works [18,19,22], we search faults characterized by
“CLOSED” status and “FIXED” resolution. In such a way, fault fixes are used
as measure of fault-proneness and invalid or duplicate issues are excluded. Our
pipeline for the extraction of bug data mirrors the methodology followed by
recent studies on smells [4] as well as studies conducted in other contexts (e.g.,
code review, refactoring, quality assurance, etc.) [18,19,22,20,21].

2.5 Step 5: Identifying Defect-Inducing Changes

To make sure a fault was in the specific release, we have applied the widely-
applied SZZ [23] algorithm. This algorithm links each defect fix to the source
code change that introduced the original defect relying on information from
Version control systems (i.e., Git or SVN) and Issue Tracking Systems (e.g.,
BugZilla or JIRA). The SZZ algorithm consists of three main steps. The first
stage consists of identifying defect-fixes changes. SZZ searches, in change com-
ments, for keywords such as “fixed issue #ID”, “bug ID”, “fix”, “defect”,
“patch”, “crash”, “freeze”, “breaks”, “wrong”, “glitch”, “proper”. The second
step verifies if that change is really a defect fixing change using information
from Issue tracking systems. For such a purpose, we search for the defect iden-
tification numbers mentioned in the change logs in the BugZilla or JIRA Issue
Tracking Systems. The third step determines when the defect is introduced.

8 https://www.bugzilla.org/
9 https://www.atlassian.com/software/jira

9

We first use the diff command to locate the lines that were changed by the
defect fix. Then, we use the annotate and blame commands to trace back to the
last revision where the changes of lines have been made. If no defect report is
specified in the fixing change, then similar to prior work [18], we assume that
the last change before the fixing change was the change that introduced the
defect [23,18].

3 Study Description

In this section, we present the empirical study that we have performed to
validate our research questions.

Table 1 Characteristics of the Analyzed Projects.

.

Projects #Rel. #Dev. #Size (LOCs) #All Classes #Changes #Classes Changed #Faulty Changes

ANT 7 51 1,660,256 14,067 15,353 64,167 587
ArgoUML 13 25 644,829 27,822 5,300 23,153 201
Hibernate 10 89 7,239,075 21,876 9,075 89,658 179

The goal of this study is to investigate the relationship between design
and lexical smells occurring on classes in object-oriented systems and software
quality by analyzing the relation between the presence of smells from the two
families and the change- and fault-proneness of classes.

The purpose is to show to what extent classes with lexical smells have
higher odds to change or to be subject to fault-fixing changes than classes
containing design smells or classes with no smell.

The quality focus is the change- and fault-proneness of classes in object
oriented systems.

The perspective is that of researchers and practitioners interested in un-
derstanding the relation between the occurrence of lexical and/or design smells
and a class change- and fault-proneness, which can be beneficial for quality
assurance teams when prioritizing for example change- and fault-prone classes
for testing.

The context consists of three open-source projects: ArgoUML, ANT, Hi-
bernate. We analyze a total number of 30 releases: 12 releases for ArgoUML, 11
releases for Hibernate, and 7 releases for ANT. Table 1 summarizes the main
characteristics of the analyzed systems including the number of releases, size,
total number of classes for each system, number of developers, total number
of changes, total number of changed classes, number of fault-fixing changes.

In terms of smells detected, Table 2 indicates for each project release, the
number of design smells as well as lexical ones. Additionally, it shows the
percentage (in parentheses) of classes with such families of smells with respect
to the total number of classes. For example, the cell at the intersection of
the ANT 151 release row and design smells column reports that the total

10 Latifa Guerrouj et al.

number of design smells detected in the release ANT 151 is 545 and that the
percentage of classes containing these smells is 21.25 (i.e., 384 out of a total of
1807 classes). We also report the percentage of classes with both design and
lexical smells.

3.1 Research Questions

The study reported in this section aims at addressing the following research
questions:

– RQ1: Are classes with a particular family of smells (design, lexi-
cal, or both design and lexical) more change-prone than others?
Specifically, we test the following null hypothesis:
H01 : The proportion of classes undergoing at least one change between
two releases is not different between classes containing different families of
smells.

– RQ2: Are classes with a particular family of smells (design, lex-
ical, or both design and lexical) more fault-prone than others?
Specifically, we test the following null hypothesis:
H02 : The proportion of classes undergoing at least one fault-fixing change
between two releases does not differ between classes with different families
of smells.

H01 and H02 are two-tailed because we are interested in investigating
whether a family of smells relate to an increase or decrease of change-proneness
and fault-proneness.

3.2 Variables Selection

– Independent variables: number of classes containing the 29 smells where
13 of them are design smells and 16 are lexical ones. In our computations,
we use variables Si,j,k which indicate the number of times that a class i
has a design, lexical, or both design and lexical smells j in a release k. We
aggregate these variables into a Boolean variable Si,k indicating if a class
i has or not in any smells.

– Dependent variables: measure the phenomena related to classes with
different families of smells:

1. Change-proneness: refers to whether a class underwent at least a
change between release k (in which it has some smells) and the subse-
quent release k + 1. Changes are identified, for each class in a system,
by looking at commits in their control-version systems (Git or SVN).
For the sake of simplicity, we assumed to have one class per file, i.e.,
as in prior works [5], we do not consider inner classes and non public
top-level.

11

Table 2 Number of Design and Lexical smells in each release (in parentheses, the percent-
ages of classes (Number of classes with smells/Total number of classes)).

A
N
T

A
r
g
o
U
M

L
H
ib

e
r
n
a
te

R
el

.
#

D
es

ig
n

#
L

ex
ic

a
l

#
B

o
th

R
el

.
#

D
es

ig
n

#
L

ex
ic

a
l

#
B

o
th

R
el

.
#

D
es

ig
n

#
L

ex
ic

a
l

#
B

o
th

1
5
1

5
4
5

(3
8
4
/
1
8
0
7
)

9
5

(7
1
/
1
8
0
7
)

2
7

(2
7
/
1
8
0
7
)

0
.1

4
1
7
0
5

(8
3
1
/
1
8
4
4
)

1
0
9

(8
4
/
1
8
4
4
)

6
0

(2
4
/
1
8
4
4
)

3
.6

.1
1
2
0
7

(7
3
7
/
1
9
3
1
)

8
9
3

(5
1
1
/
1
9
3
1
)

1
0
2

(1
0
0
/
1
9
3
1
)

1
5
2

5
5
1

(3
8
7
/
1
8
2
4
)

9
6

(7
0
/
1
8
2
4
)

2
9

(2
9
/
1
8
2
4
)

0
.1

6
1
6
5
0

(8
2
9
/
1
8
2
9
)

1
1
6

(8
9
/
1
8
2
9
)

7
0

(2
6
/
1
8
2
9
)

3
.6

.2
1
1
8
2

(7
1
8
/
1
9
3
2
)

9
0
5

(5
1
6
/
1
9
3
2
)

9
4

(7
7
/
1
9
3
2
)

1
5
4

4
4
5

(3
0
0
/
1
5
0
0
)

7
2

(5
3
/
1
5
0
0
)

2
6

(2
6
/
1
5
0
0
)

0
.1

8
.1

2
9
9
4

(1
5
8
2
/
1
8
8
2
)

1
7
3

(1
3
4
/
1
8
8
2
)

8
5

(4
1
/
1
8
8
2
)

3
.6

.3
1
2
0
0

(7
2
5
/
1
9
3
3
)

9
0
9

(5
1
8
/
1
9
3
3
)

0
(0

)
1
7
0

6
8
5

(4
7
6
/
5
2
6
)

2
6
3

(1
6
9
/
5
2
6
)

9
0

(4
2
/
5
2
6
)

0
.2

0
1
5
0
4

(7
7
2
/
1
8
5
4
)

1
9
0

(1
4
4
/
1
8
5
4
)

7
3

(4
3
/
1
8
5
4
)

3
.6

.4
1
1
9
0

(7
2
3
/
1
9
3
3
)

9
1
2

(5
2
0
/
1
9
3
3
)

0
(0

)
1
8
0

7
5
5

(5
3
9
/
2
3
5
3
)

2
6
8

(1
7
4
/
2
3
5
3
)

9
8

(9
3
/
2
3
5
3
)

0
.2

2
1
6
0
8

(8
1
8
/
1
9
1
9
)

1
8
9

(1
4
7
/
1
9
1
9
)

8
7

(4
1
/
1
9
1
9
)

3
.6

.6
1
2
2
6

(7
6
9
/
1
9
3
3
)

9
1
9

(5
2
4
/
1
9
3
3
)

0
(0

)
1
9
2

7
0
7

(4
8
9
/
2
4
1
7
)

2
8
0

(1
8
0
/
2
4
1
7
)

9
7

(8
3
/
2
4
1
7
)

0
.2

4
1
7
3
1

(9
3
3
/
1
9
7
6
)

1
9
2

(1
4
8
/
1
9
7
6
)

1
2
0

(4
5
/
1
9
7
6
)

3
.6

.7
3
4
3
2

(1
0
1
5
/
1
9
3
3
)

9
1
9

(5
2
4
/
1
9
3
3
)

0
(0

)
1
5

5
5
1

(3
8
1
/
1
8
3
9
)

1
0
0

(7
6
/
1
8
3
9
)

2
7

(2
3
/
1
8
3
9
)

0
.2

6
1
6
9
1

(9
7
4
/
2
2
1
6
)

2
5
5

(1
9
3
/
2
2
1
6
)

1
2
2

(4
8
/
2
2
1
6
)

3
.6

.8
1
6
6
1

(9
7
7
/
1
9
3
5
)

9
1
9

(5
2
8
/
1
9
3
5
)

0
(0

)
0
.2

6
.2

1
6
3
4

(9
5
7
/
2
2
1
6
)

2
5
4

(1
9
2
/
2
2
1
6
)

1
0
8

(4
2
/
2
2
1
6
)

3
.6

.9
1
8
5
0

(1
1
0
7
/
1
9
3
5
)

9
1
9

(5
2
8
/
1
9
3
5
)

0
(0

)
0
.2

8
1
6
3
0

(9
3
1
/
2
2
8
3
)

3
6
4

(2
8
8
/
2
2
8
3
)

9
2

(5
0
/
2
2
8
3
)

4
.2

.5
2
2
1
7

(1
3
0
3
/
2
6
5
4
)

2
2
1
7

(1
3
0
3
/
2
6
5
4
)

0
(0

)
0
.2

8
.1

1
6
7
7

(9
6
2
/
2
2
8
3
)

3
6
4

(2
8
8
/
2
2
8
3
)

3
2

(3
2
/
2
2
8
3
)

4
.2

.7
1
1
0
9

(6
5
2
/
2
6
6
5
)

1
1
0
9

(6
5
2
/
2
6
6
5
)

0
(0

)
0
.3

0
1
6
5
5

(9
5
4
/
2
2
7
1
)

3
4
3

(2
8
1
/
2
2
7
1
)

1
1
9

(3
8
/
2
2
7
1
)

4
.3

.0
1
2
0
7

(7
1
9
/
3
0
2
7
)

1
2
0
7

(7
1
9
/
3
0
2
7
)

0
(0

)
0
.3

0
.1

1
6
9
2

(9
9
0
/
2
2
7
1
)

3
4
5

(2
8
2
/
2
2
7
1
)

1
2
6

(3
0
/
2
2
7
1
)

12 Latifa Guerrouj et al.

2. Fault-proneness: refers to whether a class underwent at least a fault
fixing change between releases k and k + 1. We identified fault fixing
changes following the methodology described in Section 2.4 based on
the traceability of faults/issues to changes by matching their IDs in the
commits [24] and the issue tracking systems.

3.3 Analysis Method

We study whether changes and faults in a class are related to the class con-
taining a specific family of smells (e.g., lexical or design smells) regardless of
the kinds of smells from each family (e.g., Blob or LazyClass design smells).
More precisely, we test whether the proportions of classes exhibiting (or not) at
least one change/fault significantly vary between classes with 1) design smells,
2) lexical smells, or 3) both design and lexical smells. Our analysis methods
and statistical procedures applied in this study mirror the ones followed in
previous studies about smells (e.g., [4]).

To address RQ1, we compute the following:

1. #Design: number of classes of a project release for which there was at
least one class change and at least one design smell among the 13 design
smells detected.

2. #Lexical: number of classes of a project release for which there was at
least one class change and at least one lexical smell among the 16 design
smells detected.

3. #Design-Lexical: number of classes of a project release for which there
was at least one class change and at least a design and a lexical smell (both)
among the 29 design and lexical smells detected.

4. #No-Design: number of classes of a project release for which there was
no design smell, while there was at least one class change.

5. #No-Lexical: number of classes of a project release for which there was
no lexical smell, while there was at least one class change.

6. #No-Design-Lexical: number of classes of a project release for which
there was no design and lexical smells at the same time, while there was
at least one class change.

Then, we use the Fisher exact test [25] to assess whether the proportion be-
tween different families of smells significantly differs in terms of changes/faults.
Specifically, we first test the statistical difference between the proportions of
design and lexical smells (i.e., (1,4) and (2,5)) in terms of changes/faults.
Then, we test wether the difference between the proportions of design and lex-
ical smells and design smells (i.e., (3,6) and (1,4)) is statistically significant.
Finally, we investigate the statistical difference, in terms of change- and fault-
proneness, between the proportions of design and lexical smells and lexical
smells (i.e., (3,6) and (2,5)).

As for RQ2, we compute the same proportions above, for the different
considered families of smells, but for faults (instead of changes) and then we

13

Table 3 Change-Proneness Results: Design and Lexical Smells vs. Design Smells (only).

Design and Lexical vs. Design Smells

Release #Design-Lexical #Design #No-Design-Lexical #No-Design Adj. p-value OR

ANT 151 27 266 0 119 <0.0001 -
ANT 152 29 269 0 119 <0.0001 -
ANT 154 26 244 0 57 0.012 -
ANT 170 42 146 48 331 0.0047 1.98
ANT 180 93 357 5 183 <0.0001 9.51
ANT 192 83 292 14 198 <0.0001 4.01
ANT 15(MAIN) 23 162 4 220 <0.0001 7.77
Hibernate 3.6.1 100 736 2 22 1 1.49
Hibernate 3.6.2 77 589 17 149 0.68 1.14
Hibernate 3.6.3 0 538 0 181 1 0
Hibernate 3.6.4 0 452 0 274 1 0
Hibernate 3.6.7 0 304 0 420 1 0
Hibernate 3.6.8 0 315 0 455 1 0
Hibernate 4.2.5 0 512 0 504 1 0
Hibernate 4.2.7 0 492 0 486 1 0
Hibernate 4.3.0 0 469 0 639 1 0
ArgoUML 0.14 24 365 36 471 0.68 0.86
ArgoUML 0.16 26 397 44 437 0.10 0.65
ArgoUML 0.18 41 514 44 1077 0.003 1.95
ArgoUML 0.18.1 43 576 30 201 0.0083 0.50
ArgoUML 0.20 41 459 46 364 0.14 0.70
ArgoUML 0.22 45 653 75 285 <0.0001 0.26
ArgoUML 0.24 48 496 74 483 0.02 0.63
ArgoUML 0.26 42 435 66 525 0.22 0.76
ArgoUML 0.26.2 50 606 42 328 0.052 0.64
ArgoUML 0.28 96 374 64 591 0.232 0.79
ArgoUML 0.28.1 38 540 81 418 <0.0001 0.36
ArgoUML 0.30 241 370 965 595 <0.0015 0.50
ArgoUML 0.30.1 231 520 88 445 <0.0001 0.36

assess whether the differences between the computed proportions significantly
differs in terms of faults.

We also use the Odds Ratio (OR) [25] as an effect size measure. Odds ratio
indicates the likelihood of an event (i.e., change or fault) to occur. The OR
is defined as the ratio of the odds p of an event occurring in one sample, i.e.,
the set of classes with one family of smells or both, i.e., lexical, design, or
lexical and design smells (experimental group), to the odds q of it occurring in
the other sample, i.e., the set of classes containing another different family of
smells from the three investigated families, i.e., lexical, design, or lexical and

design smells (control group): OR = p/(1−p)
q/(1−q) .

The interpretation of odds ratio is as follow. An odds ratio of 1 indicates
that the event (i.e., change or fault) is equally likely in both samples. OR > 1
indicates that the event is more likely in the first sample (experimental group)
while an OR < 1 shows the opposite (control group).

Since we perform several tests on the same data, we adjust p-values using
the Bonferroni correction procedure [25]. This procedure works as follow: it
divides the critical p-value (alpha) by the number of comparisons, n, being
made: alpha/n. In this study, we perform three pair of tests (e.g., design
vs. lexical smells) when analyzing change/fault proneness, the null hypothesis
is, therefore, rejected only if the p-value is less than 0.016 (0.05/3). We use
Bonferroni because it is a simple procedure [25].

14 Latifa Guerrouj et al.

Table 4 Change-Proneness Results: Design and Lexical Smells vs. Lexical Smells (only).

Design and Lexical vs. Lexical Smells

Release #Design-Lexical #Lexical #No-Design-Lexical #No-Lexical Adj. p-value OR

ANT 151 27 58 0 13 0.01 -
ANT 152 29 57 0 13 0.0093 -
ANT 154 26 51 0 2 1 -
ANT 170 42 59 48 110 0.08 1.62
ANT 180 93 157 5 17 0.24 2.00
ANT 192 83 129 14 51 0.011 2.33
ANT 15(MAIN) 23 38 4 38 0.0013 5.66
Hibernate 3.6.1 100 157 2 354 <0.0001 112.42
Hibernate 3.6.2 77 131 17 385 <0.0001 13.24
Hibernate 3.6.3 0 209 0 309 1 0
Hibernate 3.6.4 0 208 0 312 1 0
Hibernate 3.6.7 0 63 0 461 1 0
Hibernate 3.6.8 0 60 0 468 1 0
Hibernate 4.2.5 0 29 0 1274 1 0
Hibernate 4.2.7 0 24 0 628 1 0
Hibernate 4.3.0 0 59 0 660 1 0
ArgoUML 0.14 24 26 36 58 0.28 1.48
ArgoUML 0.16 26 30 44 59 0.73 1.16
ArgoUML 0.18 41 50 44 84 0.12 1.56
ArgoUML 0.18.1 43 53 30 91 0.0023 2.45
ArgoUML 0.20 41 43 46 104 0.0073 2.14
ArgoUML 0.22 45 53 75 95 0.79 1.075
ArgoUML 0.24 48 62 74 131 0.22 1.36
ArgoUML 0.26 42 54 66 138 0.07 1.52
ArgoUML 0.26.2 50 69 42 219 <0.0001 3.76
ArgoUML 0.28 32 44 64 244 0.00031 2.76
ArgoUML 0.28.1 38 53 81 228 0.0059 2.01
ArgoUML 0.30 30 41 96 241 0.033 1.83
ArgoUML 0.30.1 38 51 88 231 0.0091 1.95

4 Results and Discussion

We now present and discuss the results of the empirical study that we con-
ducted to answer the research questions formulated in Section 3.

4.1 RQ1. Are classes with a particular family of smells more change-prone
than others?

1. Classes containing both design and lexical smells vs. classes with
design smells

Table 3 summarizes the obtained odds ratios.

For ANT, in all analyzed releases, Fisher’s exact test indicates a significant
difference in the proportion of changed classes between the group of classes
containing in both design and lexical smells and those having design smells
only. Odds ratios vary across systems and, within each system, across releases.
For ANT, we found an OR greater than 1 in all releases. The OR ranges
from 1.98 (ANT 170) to 9.51 (ANT 180). This finding means, that for ANT,
classes with both design and lexical smells are more change-prone than classes
containing design smells only.

15

For ArgoUML, in 6 releases (out of a total of 13), Fisher’s exact test in-
dicates a significant difference in the proportion of changed classes between
the group of classes with both design and lexical smells and those containing
design smells only. Odds ratios vary across systems and, within each system,
across releases. We find an OR greater than 1 for the release 0.18; this indi-
cates that classes with both design and lexical smells are more change-prone
than classes with design smells only. For the rest of releases, the OR is less
than 1 and in few cases close to 1, i.e., the odd of experiencing a change is the
same for classes with both lexical and design smells and classes with design
smells only.

For Hibernate, we did not find any significant differences.
Overall, we could not find that classes having both design and lexical smells

are more change-prone than classes containing design smells only across all
systems and releases. We therefore conclude that lexical smells do not increase
the odds of a class to experience a change, i.e., they do not make classes with
design smells more change-prone:

This finding brings empirical evidence on the fact that lexical smells
do not contribute to the change-proneness of design smells when both
occur in classes of object-oriented systems.

2. Classes having design and lexical smells vs. classes containing
lexical smells

Table 4 shows the difference in proportions between the change-proneness
of classes with both design and lexical smells and classes with lexical smells
only. As it can be noticed, results vary depending on the system. However, in
several cases, Fisher’s exact test show significant differences with OR greater
than 1. For ANT, the OR ranges between 2.33 (ANT 192) and 5.66 (ANT 15
MAIN) while for Hibernate the OR is higher, it is between 13.24 (Hibernate
3.6.1) and 112.42 (Hibernate 3.6.2) which means that the difference, in terms
of changes, is really high. For ArgoUML, the OR is between 1.95 (ArgoUML
0.30.1) and 3.76 (ArgoUML 0.26.2); theses results suggest that, in most cases,
the odd of experiencing a change is higher for classes with both design and
lexical smells than it is for classes with lexical smells only. We therefore con-
clude that classes with both design and lexical smells are changed in greater
proportion than classes having only in lexical smells. When comparing the
Odd ratios of (Design and Lexical vs. Design Smells) and (Design and Lexical
vs. Lexical Smells), we observe that:

The occurrence of design smell in a class that experienced a lexical
smell seems to have a stronger relationship with change-proneness than
the occurrence of lexical smell in a class that experienced a design
smell.

A possible explanation to the low odds ratio for classes with lexical smells
is the type of changes underwent by such classes. We manually checked the
change logs of a set of such classes for the three analyzed systems and we

16 Latifa Guerrouj et al.

observed that they underwent changes mainly related to spelling, formatting
(whitespace, etc.), checkstyle, imports organization, javadoc fixes, namespaces,
spell checkers, as well as identifier naming. Classes with design smells under-
went, in addition to such types of changes, others associated with code fixing,
refactoring, design, optimization of performance, memory issues, static code
analysis, etc. This is why more likely lexical smells do not boost change rates
that much.

3. Classes containing design smells vs. classes with lexical smells
Table 5 reports on the proportion of changed classes in the groups of classes

experiencing design smells only and classes experiencing lexical smells only.
As it can be noticed, in most of the system’s releases, Fisher’s exact test

indicates that the difference between the change-proneness of classes with de-
sign smells only vs. classes with lexical smells only is statistically significant.
Except for ANT, in which the OR is less than 1 indicating that the proportion
of classes having design smells that changed, is lower than the proportion of
classes with lexical smells that changed, the OR is greater than 1 for all other
releases of the analyzed systems. It ranges between 2.47 (Hibernate 3.4.6) and
75.16 (Hibernate 3.6.1) for Hibernate and between 1.78 (ArgoUML 0.16) and
7.20 (ArgoUML 0.30) for ArgoUML. This findings is very likely due to the
fact that design smells are, in general, well known and established than lex-
ical smells, i.e., they change more often in comparison with lexical smells as
developers know they need to change them. We therefore conclude that:

Design smells contribute more to the change-proneness of lexical smell
classes than lexical smells do to the change-proneness of design smells
classes.

Overall, we reject the hypothesis H01 since, in most of the analyzed sys-
tems, there is a significant difference between the proportion of classes un-
dergoing at least one change between two releases, for classes belonging to
different families of smells.

4.2 RQ2. Are classes having a particular family of smells more fault-prone
than others?

In this section, we first present the results obtained using as a measure of fault-
proneness the post-release defects. Then, we show our findings when defects
are identified using SZZ.

4.2.1 Fault-Proneness using Post-Release Defects

1. Classes with design and lexical smells vs. classes having design
smells

Table 6 summarises Fisher’s exact test results and ORs. The differences in
the proportions of classes that undergo fault-fixing changes is mostly signifi-
cant for ANT with an OR greater than 1 varying from 2.18 to 2.76; indicating

17

Table 5 Change-Proneness Results: Design Smells vs. Lexical Smells.

Design Smells vs. Lexical Smells

Release #Design #Lexical #No-Design #No-Lexical Adj. p-val OR

ANT 151 266 58 119 13 0.0328 0.50
ANT 152 269 57 119 13 0.044 0.51
ANT 154 244 51 57 2 0.0044 0.16
ANT 170 146 59 331 110 0.33 0.72
ANT 180 357 157 183 17 <0.0001 0.21
ANT 192 292 129 198 51 0.0039 0.58
ANT 15(MAIN) 162 38 220 38 0.25 0.73
Hibernate 3.6.1 736 157 22 354 <0.0001 75.16
Hibernate 3.6.2 589 131 149 385 <0.0001 11.58
Hibernate 3.6.3 538 209 181 309 <0.0001 4.38
Hibernate 3.6.4 452 208 274 312 <0.0001 2.47
Hibernate 3.6.7 304 63 420 461 <0.0001 5.28
Hibernate 3.6.8 315 60 455 468 <0.0001 5.39
Hibernate 4.2.5 512 29 504 1274 <0.0001 44.55
Hibernate 4.2.7 492 24 486 628 <0.0001 26.44
Hibernate 4.3.0 469 59 639 660 <0.0001 8.20
ArgoUML 0.14 365 26 471 58 0.027 1.72
ArgoUML 0.16 397 30 437 59 0.0137 1.78
ArgoUML 0.18 514 50 1077 84 0.25 0.80
ArgoUML 0.181 576 53 201 91 <0.0001 4.91
ArgoUML 0.20 459 43 364 104 <0.0001 3.04
ArgoUML 0.22 653 53 285 95 <0.0001 4.10
ArgoUML 0.24 496 62 483 131 <0.0001 2.16
ArgoUML 0.26 435 54 525 138 <0.0001 2.11
ArgoUML 0.262 606 69 328 219 <0.0001 5.85
ArgoUML 0.28 374 44 591 244 <0.0001 3.50
ArgoUML 0.281 540 53 418 228 <0.0001 5.54
ArgoUML 0.30 370 41 595 241 <0.0001 7.20
ArgoUML 0.30.1 520 51 445 231 <0.0001 5.28

that in ANT, the fault-proneness of classes with both design and lexical smells
is higher than the fault-proneness of classes with design smells only. For the
remaining systems, there is no statistically significant difference between the
proportions of classes that underwent fault-fixing changes among the groups
of classes with both design and lexical smells and classes with design smells,
suggesting that in general:

Lexical smells do not make classes with design smells more fault-prone
(than they already are).

2. Classes with design and lexical smells vs. classes having lexical
smells

Table 7 shows significant differences for some releases of the three systems.
For three releases of ANT, OR values are greater than 1 ranging between 1.96
(ANT 170) and 3.67 (ANT 15 MAIN). For two releases of Hibernate the ORs
are almost equal to 5. These findings suggest that, for the mentioned releases,

18 Latifa Guerrouj et al.

Table 6 Fault-Proneness Results: Design and Lexical Smells vs. Design (only).

Design and Lexical vs. Design Smells

Release #Design-Lexical #Design #No-Design-Lexical #No-Design Adj. p-value OR

ANT 151 17 183 10 202 0.16 1.87
ANT 152 16 158 13 230 0.17 1.78
ANT 154 18 154 8 147 0.10 2.14
ANT 170 55 191 35 286 0.00029 2.34
ANT 180 50 174 48 366 0.00051 2.18
ANT 192 57 189 40 301 0.00029 2.86
ANT 15(MAIN) 20 194 7 188 0.02 2.76
Hibernate 3.6.1 6 28 96 730 0.278 1.62
Hibernate 3.6.2 6 29 88 709 0.271 1.66
Hibernate 3.6.3 0 28 0 691 1 0
Hibernate 3.6.4 0 33 0 693 1 0
Hibernate 3.6.7 0 33 0 698 1 0
Hibernate 3.6.8 0 32 0 692 1 0
Hibernate 4.2.5 0 32 0 738 1 0
Hibernate 4.2.7 0 43 0 973 1 0
Hibernate 4.3.0 0 41 0 937 1 0
ArgoUML 0.14 6 79 53 573 0.83 0.82
ArgoUML 0.16 5 100 55 736 0.53 0.66
ArgoUML 0.18 7 110 63 724 0.57 0.73
ArgoUML 0.18.1 13 141 72 1450 0.053 1.85
ArgoUML 0.20 12 143 60 634 0.87 0.88
ArgoUML 0.22 15 163 63 660 1 0.96
ArgoUML 0.24 12 165 93 773 0.13 0.60
ArgoUML 0.26 16 188 72 791 0.88 0.93
ArgoUML 0.26.2 17 190 61 770 0.65 1.12
ArgoUML 0.28 14 194 78 740 0.22 0.68
ArgoUML 0.28.1 13 188 78 777 0.26 0.68
ArgoUML 0.30 14 188 105 770 0.045 0.54
ArgoUML 0.30.1 15 178 111 817 0.10 0.62

the odd of experiencing a fault-fixing change is higher for classes with both
design and lexical smells than for classes with lexical smells only. We therefore
conclude that, in some cases:

The occurrence of design smell in a class that experienced a lexical
smell have a strong relationship with fault-proneness than the occur-
rence of lexical smell in a class that experienced a design smell.

This finding is likely due to the fact that fault-fixing changes related to
classes with design smells cover (according to the fault-fixing change logs) a
variety of types including implementation problems, features, API changes,
bugs after modification, deployment, and FindBugs reported problems while
lexical smells are mostly associated with formatting issues, identifier naming,
data types, enumeration types, spelling, checkstyle, etc. This justifies why
design smells boost faults rates that much.

3. Classes having design smells vs. classes with lexical smells
Table 8 reports on the proportion of classes that underwent fault-fixing

changes in the groups of classes experiencing design smells only and classes
experiencing lexical smells only. Except for ANT and ArgoUML 0.16 and 0.18,
Fisher’s exact test show significant differences with an OR greater than 1 in
all studied cases. For Hibernate, the OR ranges between 2.75 and 8.75 while
it varies between 1.78 and 7.20 for ArgoUML. This finding brings further

19

Table 7 Fault-Proneness Results: Design and Lexical Smells vs. Lexical Smells (only).

Design and Lexical vs. Lexical Smells

Release #Design-Lexical #Design #No-Design-Lexical #No-Design Adj. p-value OR

ANT 151 17 29 10 42 0.06 2.43
ANT 152 16 26 13 44 0.12 2.06
ANT 154 18 27 8 26 0.15 2.14
ANT 170 55 75 35 94 0.01 1.96
ANT 180 50 70 48 104 0.09 1.54
ANT 192 57 77 40 103 0.01 1.90
ANT 15(MAIN) 20 33 7 43 0.007 3.67
Hibernate 3.6.1 6 7 96 504 0.011 4.48
Hibernate 3.6.2 6 7 88 509 0.007 4.93
Hibernate 3.6.3 0 4 0 514 1 0
Hibernate 3.6.4 0 5 0 515 1 0
Hibernate 3.6.7 0 5 0 519 1 0
Hibernate 3.6.8 0 5 0 519 1 0
Hibernate 4.2.5 0 5 0 523 1 0
Hibernate 4.2.7 0 8 0 1295 1 0
Hibernate 4.3.0 0 8 0 644 1 0
ArgoUML 0.14 6 6 53 75 0.56 1.41
ArgoUML 0.16 5 6 55 78 1 1.18
ArgoUML 0.18 7 7 63 82 0.77 1.29
ArgoUML 0.18.1 13 17 72 117 0.68 1.24
ArgoUML 0.20 12 17 60 117 0.52 1.37
ArgoUML 0.22 15 17 63 117 0.23 1.63
ArgoUML 0.24 12 17 93 117 0.84 0.88
ArgoUML 0.26 16 17 72 117 0.33 1.52
ArgoUML 0.26.2 17 17 61 117 0.11 1.91
ArgoUML 0.28 14 19 78 269 0.017 2.53
ArgoUML 0.28.1 0.68 17 78 264 0.024 2.58
ArgoUML 0.30 14 17 105 264 0.06 2.06
ArgoUML 0.30.1 15 17 111 264 0.04 2.09

evidence to recent works [26] on the relationship between smells and faults. It
suggests that:

The occurrence of design smell in a class has a strong relationship with
the class’s fault-proneness than the occurrence of lexical smell.

We reject the hypothesis H02 since in most cases there is a significant
difference between the proportion of classes undergoing at least one fault-
fixing change between two releases, for classes belonging to different families
of smells.

4.2.2 Fault-Proneness using SZZ

1. Classes with design and lexical smells vs. classes having design
smells

Table 9 reports the results of Fisher’s exact test and OR. It indicates
the difference in proportions between the fault-proneness of classes with both
design and lexical smells and classes with design smells only. As it can be
noticed, results are mostly significant for ArgoUML. All results are statistically
significant for all release except for 0.16, with an OR varying between 4.92 and
0. We also found statistically significant results for Hibernate in particular for
the 3.6.1 and 3.6.2 releases with ORs equal to 2.74 and 2.48 respectively.

20 Latifa Guerrouj et al.

Table 8 Fault-Proneness Results: Design Smells vs. Lexical Smells.

Design Smells vs. Lexical Smells

Release #Design #Lexical #No-Design #No-Lexical Adj. p-val OR

ANT 151 183 29 202 42 0.36 1.31
ANT 152 158 26 230 44 0.59 1.16
ANT 154 154 27 147 26 1 1.08
ANT 170 191 75 286 94 0.36 0.83
ANT 180 174 70 366 104 0.05 0.70
ANT 192 189 77 301 103 0.32 2.84
ANT 15(MAIN) 194 33 188 43 0.25 1.34
Hibernate 3.6.1 28 7 730 504 0.01 2.75
Hibernate 3.6.2 29 7 709 509 0.0089 2.97
Hibernate 3.6.3 28 4 691 514 0.00041 5.20
Hibernate 3.6.4 33 5 693 515 0.000169 4.89
Hibernate 3.6.7 33 5 698 519 0.00016 4.90
Hibernate 3.6.8 32 5 692 519 0.0002 4.79
Hibernate 4.2.5 43 8 973 1295 <0.0001 7.14
Hibernate 4.2.7 41 8 937 644 0.00052 8.75
Hibernate 4.3.0 40 8 1068 711 0.00084 3.32
ArgoUML 0.14 365 26 471 58 0.027 1.72
ArgoUML 0.16 397 30 437 59 0.0137 1.78
ArgoUML 0.18 514 50 1077 84 0.25 0.80
ArgoUML 0.18.1 576 53 201 91 <0.0001 4.91
ArgoUML 0.20 459 43 364 104 <0.0001 3.04
ArgoUML 0.22 653 53 285 95 <0.0001 4.10
ArgoUML 0.24 496 62 483 131 <0.0001 2.16
ArgoUML 0.26 435 54 525 138 <0.0001 2.11
ArgoUML 0.26.2 606 69 328 219 <0.0001 5.85
ArgoUML 0.28 374 44 591 244 <0.0001 3.50
ArgoUML 0.28.1 540 53 418 228 <0.0001 5.54
ArgoUML 0.30 370 41 595 241 <0.0001 7.20
ArgoUML 0.30.1 520 51 445 231 <0.0001 5.28

However, we did not find any statistically significant results for ANT. Unlike
the findings obtained by leveraging post-release defects, these results show
that in some cases:

The occurrence of lexical smells can make classes with design smells
more fault-prone.

2. Classes with design and lexical smells vs. classes having lexical
smells

Table 10 summarizes the results obtained using Fisher’s exact test and OR
for what concerns the differences in terms of the proportions of fault-proneness
of classes with both design and lexical smells and classes with lexical smells
only. As it can be noticed, results are all statistically significant for Hibernate,
with an OR between 6.34 and 2.29. For ArgoUML, we found statistically signif-
icant results for three releases only, i.e., 0.10.1, 0.14, and 0.12 with ORs equal
to 3.69, 4.0, and 3.96 respectively. For ANT, only the release 170 yields sta-
tistically significant results with an OR equals to 2.04. These findings suggest

21

Table 9 Fault-Proneness Results using SZZ: Design and Lexical Smells vs. Design (only).

Design and Lexical Smells vs. Design Smells

Project Release #Design #Lexical #No-Design #No-Lexical Adj. p-val OR

Ant 151 8 92 19 292 0.49 1.34
152 8 93 20 294 0.64 1.26
15 8 91 19 290 0.49 1.34
154 8 90 20 210 1.0 0.93
192 21 108 65 381 0.67 1.14
180 21 108 64 431 0.31 1.31
170 20 111 54 365 0.46 1.22

ArgoUML 0.10.1 24 316 5 324 0.000437 4.92
0.28 0 365 89 568 0.0 0.0
0.24 0 395 73 542 0.0 0.0
0.26 0 393 88 585 0.0 0.0
0.20 0 407 67 369 0.0 0.0
0.22 0 408 70 414 0.0 0.0
0.30 0 364 88 593 0.0 0.0
0.14 21 387 7 448 0.003365 3.47
0.16 22 412 20 421 0.75 1.12
0.26.2 0 360 88 599 0.0 0.0
0.12 21 329 6 322 0.00564 3.43
0.18.1 22 416 60 379 <0.0001 0.33
0.30.1 0 358 89 636 0.0 0.0
0.28.1 0 376 89 588 0.0 0.0

Hibernate 4.2.5 12 84 110 931 0.60 1.21
3.6.1 11 71 43 686 0.017058 2.47
3.6.2 11 69 43 668 0.016986 2.48
3.6.3 8 70 43 648 0.22 1.72
3.6.4 8 70 43 655 0.22 1.74
3.6.6 8 69 43 661 0.14 1.78
3.6.7 8 72 43 651 0.22 1.68
3.6.8 8 71 43 698 0.13 1.83
4.2.7 12 83 110 894 0.60 1.18
4.3.0 11 91 139 1016 0.87 0.88

that, for the mentioned releases, the odd of experiencing a fault is higher for
classes with both design and lexical smells than for classes with lexical smells
only. We therefore confirm the results obtained using post-release defects as a
measure of fault-proneness and can conclude that:

The occurrence of design smell in a class having a lexical smell has a
strong relationship with fault-proneness than the occurrence of lexical
smell in a class that experienced a design smell.

3. Classes having design smells vs. classes with lexical smells
Table 11 reports on the proportion of classes that underwent fault-fixing

changes in the groups of classes experiencing design smells only and classes
experiencing lexical smells only. As it can be noticed, the results for Hibernate
are all statistically significant, with an OR varying between 3.48 and 1.94.
For ArgoUML, out of the 14 studied releases, ten show statistically significant

22 Latifa Guerrouj et al.

Table 10 Fault-Proneness Results using SZZ: Design and Lexical Smells vs. Lexical Smells
(only).

Design and Lexical Smells vs. Lexical Smells

Project Release #Design #Lexical #No-Design #No-Lexical Adj. p-val OR

Ant 151 8 12 19 59 0.17 2.07
152 8 11 20 60 0.16 2.18
15 8 12 19 64 0.15 2.25
154 8 11 20 42 0.58 1.53
192 21 26 65 154 0.05 1.91
180 21 26 64 148 0.06 1.87
170 20 26 54 143 0.049164 2.04

ArgoUML 0.10.1 24 39 5 30 0.019952 3.69
0.28 0 0 89 288 1.0 -
0.24 0 0 73 148 1.0 -
0.26 0 0 88 193 1.0 -
0.20 0 0 67 144 1.0 -
0.22 0 0 70 147 1.0 -
0.30 0 0 88 281 1.0 -
0.14 21 36 7 48 0.004267 4.0
0.16 22 36 20 53 0.25 1.62
0.26.2 0 0 88 192 1.0 -
0.12 21 38 6 43 0.006988 3.96
0.18.1 22 26 60 108 0.23 1.52
0.30.1 0 0 89 282 1.0 -
0.28.1 0 0 89 288 1.0 -

Hibernate 4.2.5 12 29 110 622 0.024941 2.34
3.6.1 11 20 43 491 <0.0001 6.28
3.6.2 11 20 43 496 <0.0001 6.34
3.6.3 8 17 43 501 0.000795 5.48
3.6.4 8 17 43 503 0.000777 5.5
3.6.6 8 17 43 507 0.000741 5.55
3.6.7 8 17 43 507 0.000741 5.55
3.6.8 8 17 43 511 0.000707 5.59
4.2.7 12 29 110 623 0.024821 2.34
4.3.0 11 24 139 695 0.03655 2.29

results with an OR up to 4.56. Additionally, we found statistically significant
results for two releases 192 and 170, with ORs equal to 1.68 and 1.67 re-
spectively. While these results bring further evidence on the fact that design
smells have an impact on fault-proneness and confirm our results obtained us-
ing post-release defects, they are different from the findings of a recent study
by Hall et al. [26] who have examined the relationship between faults and five
smells of Fowler (i.e., Data Clumps, Switch Statements, Speculative General-
ity, Message Chains, and Middle Man). In fact, the results of their empirical
investigation have demonstrated that Switch Statements do not have any ef-
fect on faults, while Message Chains and Data Clumps for example increased
faults in some cases and reduced them in others. Results also indicated that
in cases where smells have significantly affected faults, the size of that effect
was small. Overall, we conclude that:

23

The occurrence of design smell in a class has a strong relationship with
the class’s fault-proneness than the occurrence of lexical smell.

Table 11 Fault-Proneness Results using SZZ: Design Smells vs. Lexical Smells.

Design Smells vs. Lexical Smells

Project Release #Design #Lexical #No-Design #No-Lexical Adj. p-val OR

Ant 151 92 12 292 59 0.22 1.55
152 93 11 294 60 0.12 1.73
15 91 12 290 64 0.13 1.67
154 90 11 210 42 0.19 1.64
192 108 26 381 154 0.02948 1.68
180 108 26 431 148 0.14 1.43
170 111 26 365 143 0.037109 1.67

ArgoUML 0.10.1 316 39 324 30 0.31 0.75
0.28 365 0 568 288 0.0 -
0.24 395 0 542 148 0.0 -
0.26 393 0 585 193 0.0 -
0.20 407 0 369 144 0.0 -
0.22 408 0 414 147 0.0 -
0.30 364 0 593 281 0.0 -
0.14 387 36 448 48 0.56 1.15
0.16 412 36 421 53 0.11 1.44
0.26.2 360 0 599 192 0.0 -
0.12 329 38 322 43 0.55 1.16
0.18.1 416 26 379 108 0.0 4.56
0.30.1 358 0 636 282 0.0 -
0.28.1 376 0 588 288 0.0 -

Hibernate 4.2.5 84 29 931 622 0.002605 1.94
3.6.1 71 20 686 491 0.000216 2.54
3.6.2 69 20 668 496 0.000193 2.56
3.6.3 70 17 648 501 <0.0001 3.18
3.6.4 70 17 655 503 <0.0001 3.16
3.6.6 69 17 661 507 <0.0001 3.11
3.6.7 72 17 651 507 <0.0001 3.3
3.6.8 71 17 698 511 <0.0001 3.06
4.2.7 83 29 894 623 0.001353 1.99
4.3.0 91 24 1016 695 <0.0001 2.59

5 Threats to Validity

Construct Validity threats concern the relation between theory and obser-
vation. A main threat is related to the techniques used to detect design and
lexical smells. We applied DECOR [16] for the identification of design smells
since it has been widely used in previous studies on design smells, while we
applied LADP to detect lexical smells because it is the most novel and recent
approach [8]. Other possible design smells detection techniques (e.g., inFusion,

24 Latifa Guerrouj et al.

JDeodorant or PMD) can be used to confirm our findings. Another threats re-
late to our method for detecting post-release bugs. In effect, we have used a
method that is widely-applied in the literature [18,20,21]. Yet, We are aware
that this accuracy is not perfect since it includes its authors’ subjective un-
derstanding of the code smells [16]. Additionally, DECOR accuracy may have
an impact on our results since we may have classified a class without smells as
a class involving smells and vice-versa. In the future, we intend to apply other
techniques and tools to confirm our findings [16].

Internal Validity threats deal with alternative explanations of our re-
sults. It is important to mention that we do not claim causation but we bring
empirical evidence of the relationship between the presence of a particular
family of smells and the occurrences of changes, and faults. Another threat
is related to errors related to faut-fixing changes. We mitigated such a threat
by not computing only the post-release defects but also defects using the SZZ
algorithm [23].

Conclusion validity threats concern the relation between the treatment
and the outcome. Proper tests were performed to statistically reject the null
hypotheses. In particular, we used non-parametric tests, which do not make
any assumption on the underlying distributions of the data, and, specifically,
Fisher’s exact test. Also, we based our conclusions not only on the presence
of significant differences but also on the presence of a practically relevant
difference, estimated by means of Odds ratio measures. Last, but not least,
we dealt with problems related to performing multiple Fisher tests using the
Bonferroni correction procedure.

Reliability validity threats concern the possibility of replicating this
study. We make publicly available all information and necessary details to
replicate our study. Moreover, the source code repositories and issue-tracking
systems are publicly available to obtain the same data. The raw data used to
compute the statistics presented in this paper is available on-line10.

External validity threats concern the possibility of generalizing our re-
sults. We studied three systems having their corresponding control version
system from where we extracted changes and fault-fixes. It is true that three
projects is not a large number. However, we analyzed a large number of re-
leases, i.e., 30 releases in total. The investigated systems have different sizes
and belong to different domains. Such a number of systems and releases may
not be representative of all systems and thus we cannot guarantee that similar
findings will be obtained when applying our approach to other open or closed
source systems. Additionally, further validation on a larger set of systems from
different domains is recommended to make sure our results are generalizable.
Finally, we used a specific yet representative family of lexical and design smells.
Different smells could be investigated in future work and could lead to different
results.

10 http://swat.polymtl.ca/data/Replication-Package-Smells-SQJ-2015.zip

http://swat.polymtl.ca/data/Replication-Package-Smells-SQJ-2015.zip

25

6 Related Work

6.1 Design Smells

6.1.1 Design Smells Definition and Detection

Webster [27] was the first who wrote about smells in object-oriented devel-
opment. A taxonomy of 22 code smells was introduced by Fowler et al. [2].
They pointed out to the fact that such smells are indicators about design
or implementation issues which can be addressed using refactoring. Recently,
Suryanarayana et al. [28] provided a catalog of 25 structural design smells
that contribute to technical debt in software projects. Other works focused
on the detection of smells [16]. Palomba et al. [29,30] suggested an approach
called HIST (Historical Information for Smell deTection) to detect five different
code smells, namely Divergent Change, Shotgun Surgery, Parallel Inheritance,
Blob, and Feature Envy, by exploiting change history information mined from
versioning systems. The results indicate that HIST’s precision ranges between
61% and 80%, and its recall ranges between 61% and 100%. More importantly,
the results confirm that HIST is able to identify code smells that cannot be
detected by approaches solely based on code analysis. More precisely, the au-
thors analyzed HIST accuracy in two different scenarios. In the first scenario,
they applied HIST on 20 different open-source projects and showed that in
comparison with previous work, there is an improvement in precision while
the recall was nearly the same. They concluded that HIST can detect code
smells which were not detected by the competitive algorithm. The second sce-
nario investigated to what extent developers can trust and consider the smells
detected by HIST. The findings showed that more than 75% of these detected
code smells are real design or implementation problems [29,30]. Recently, re-
searchers [31] have applied machine learning algorithms to detect code smells.
They investigated 16 different machine-learning algorithms on four code smells
(i.e., Data Class, Large Class, Feature Envy, Long Method) and 74 software
systems. Their findings show that machine learning can help achieve a high
accuracy (i.e., > 96 %) when detecting code smells, and that only a hundred
training examples are sufficient to reach at least 95% accuracy [31].

6.1.2 Design Smells and Software Evolution

Other researchers have analyzed the relation between smells and software qual-
ity. For example, Khomh et al. [5] have discovered the relation between smells
and change- and fault- proneness. Li and Shatnawi [32] show relationships be-
tween six code smells and probability of class error in three different versions
of Eclipse. Their investigation showed that classes with smells, such as God
Class, God Method and Shotgun Surgery is strongly related to class error.

Hall et al. [26] have examined the relationship between faults and five
smells of Fowler (i.e., Data Clumps, Switch Statements, Speculative Gener-
ality, Message Chains, and Middle Man) using Negative Binomial regression

26 Latifa Guerrouj et al.

models. They analyzed three open-source systems: Eclipse, ArgoUML, and
Apache Commons. Their findings have shown that Switch Statements do not
have any effect on faults in any of the three systems; Message Chains increased
faults in two systems; Message Chains which occurred in larger files reduced
faults; Data Clumps reduced faults in Apache and Eclipse but increased faults
in ArgoUML; Middle Man reduced faults only in ArgoUML, and Speculative
Generality reduced faults only in Eclipse. Results also indicated that in cases
where smells did significantly affect faults, the size of that effect was small.
While some smells do indicate fault-prone code in some circumstances their
effect on faults is small. The authors concluded that arbitrary refactoring is
unlikely to significantly reduce fault-proneness and in some cases may increase
fault-proneness.

Cardoso et al. [33] have investigated co-occurrences between design pat-
terns and bad smells on five systems such as AsoectJ, Hibernate, JHotDraw,
Velocity and WebMail. The results of their study indicated co-occurrences
between Command and GodClass, as well as between Template Method and
Duplicated Code. They concluded that some of design pattern misuse may
increase the possibility of arising of bad smells

Olbrich et al. [34] analyzed the evolution of two different code smells, i.e.,
Shotgun surgery and God class over time in the development process of two
software systems. They showed that components containing such code smells
do not decrease over time given the fact that refactoring activities were not
actively performed on these systems.

Peters et al. [35] studied the lifespan of five different code smells over dif-
ferent releases. They revealed that long-lived code smells increase over time
given the low number of refactorings performed by developers on the consid-
ered systems. Such investigation confirm that code smells mostly remain in
systems. Recently, Taba et al. have [6] suggested multiple metrics based on
smells to improve fault prediction. Also, Palomba et al. [36] have conducted
a study where developers with code entities of three systems affected and not
by bad smells, and they asked them to tell whether the code have potential
design problem, and if any, the nature and severity of the problem. The results
of such study provide insights on the characteristics of bad smells yet unex-
plored in depth. Also, Yamashita and Moonen [7] have demonstrated through
a user study with professional developers that the majority of developers are
concerned about code smells.

6.2 Lexical Smells

6.2.1 Lexical Smells Definition and Detection

De Lucia et al. suggested COCONUT to verify consistency between the lexi-
con of high-level artifacts and of source code based on the textual similarity
between the two artifacts [37].

27

Abebe and Tonella built an ontology to assist developers in the choice of
identifiers consistent with the concepts already used in the system [38].

A more recent work proposed an approach to identify inconsistencies among
identifiers, source code, and comments; this technique handles generic nam-
ing and comments issues in object-oriented programs, and specifically in the
lexicon and comments of methods and attributes [15].

Tan et al. proposed several approaches to identify inconsistencies between
code and comments. The first called, @iComment, detects lock- and call- re-
lated inconsistencies [39]. The second approach, @aComment, detects synchro-
nization inconsistencies related to interrupt context [40]. A third approach,
@tComment, automatically infers properties form Javadoc related to null val-
ues and exceptions; it performs test case generation by considering violations
of the inferred properties [41].

6.2.2 Lexical Smells and Software Evolution

Abebe et al. [13] investigated whether using Lexicon Bad Smells (LBS) in
addition to structural metrics improves fault prediction. They assessed the
capability of their predictive models using i) only structural metrics, and ii)
structural metrics and LBS. The results of their study conducted on three
open-source systems, ArgoUML, Rhino, and Eclipse, indicate that there is an
improvement in the majority of the cases.

The same authors investigated to what extent lexicon bad smells can hin-
der the execution of maintenance tasks. The results indicate that lexicon bad
smells negatively affect concept location when using IR-based techniques [14].

We agree with the above-mentioned works that design smells are indicators
about poor code quality and that lexical bad smells can hinder the execution
of program understanding and maintenance tasks as well as decreasing the
quality of programs. In our work, we empirically investigate the additional
relationship that lexical smells can have with change- and fault-proneness.

7 Conclusion and Future Work

We provide further empirical evidence that design and lexical bad smells relate
to change- and fault- proneness. Our investigation consists of the analysis of
30 releases of three different open-source systems: ArgoUML, Hibernate and
ANT. We detected 29 smells in each release, i.e., 13 design smells using the
DECOR approach and 16 lexical smells using the novel LDAP approach. To
study the relation between the detected families of smells and change- and
fault- proneness, we leveraged the change history of the studied systems using
information from their Git/SVN versioning systems. We also mined their bug
repositories.

Interestingly, our findings show that lexical smells can make, in some cases,
classes with design smells more fault-prone when both occur in classes of
object-oriented systems. In addition, they indicate that, in a lot of cases, classes

28 Latifa Guerrouj et al.

containing design smells are more change- and fault-prone than classes with
lexical smells. The occurrence of design smell in a class that experienced a
lexical smell has a strong relationship with change- and fault-proneness than
the occurrence of lexical smell in a class that experienced a design smell.

We believe such results could guide development and quality assurance
teams to better focus their refactoring efforts on components with design smells
(while not neglecting lexical smells) to assure good quality for their systems.
As future work, we intend to conduct a user study involving professional de-
velopers both internal, i.e., contributors to the development of the systems
as well as external ones from industry to better understand the interaction
between design and lexical smells, and identify which specific type of design
smells (e.g., Spaghetti Code) and lexical smells (e.g., Attribute signature and
comment are opposite) should be given higher priority during refactoring.

References

1. W. J. Brown, R. C. Malveau, H. W. S. McCormick, and T. J. Mowbray, AntiPatterns:
Refactoring Software, Architectures, and Projects in Crisis: Refactoring Software, Ar-
chitecture and Projects in Crisis, 1st ed. John Wiley & Sons, 1998.

2. M. Fowler, Refactoring: Improving the Design of Existing Code. Boston, MA, USA:
Addison-Wesley, 1999.

3. A. Marwen, K. Foutse, Y. Guéhéneuc, and A. Giuliano, “An empirical study of the
impact of two antipatterns, blob and spaghetti code, on program comprehension.” IEEE
Computer Society, 2011, pp. 181–190.

4. F. Khomh, M. D. Penta, and Y. Guéhéneuc, “An exploratory study of the impact of
code smells on software change-proneness.” in WCRE. IEEE Computer Society, 2009,
pp. 75–84.

5. F. Khomh, M. D. Penta, Y. Guéhéneuc, and G. Antoniol, “An exploratory study of
the impact of antipatterns on class change- and fault-proneness.” Empirical Software
Engineering, vol. 17, no. 3, pp. 243–275, 2012.

6. S. E. S. Taba, F. Khomh, Y. Zou, A. E. Hassan, and M. Nagappan, “Predicting bugs
using antipatterns.” in ICSM. IEEE, 2013, pp. 270–279.

7. A. F. Yamashita and L. Moonen, “Do developers care about code smells? an exploratory
survey.” in WCRE. IEEE, 2013, pp. 242–251.

8. V. Arnaoudova, M. D. Penta, G. Antoniol, and Y. Guéhéneuc., “A new family of software
anti-patterns: Linguistic anti-patterns,” March 2013, pp. 187–196.

9. E. Soloway, J. Bonar, and K. Ehrlich, “Cognitive strategies and looping constructs: an
empirical study,” Commun. ACM, vol. 26, no. 11, pp. 853–860, 1983.

10. A. Mayrhauser and A. M. Vans, “Program comprehension during software maintenance
and evolution,” IEEE Computer, pp. 44–55, 1995.

11. A. Takang, P. A. Grubb, and R. D. Macredie, “The effects of comments and identi-
fier names on program comprehensibility: an experiential study,” Journal of Program
Languages, vol. 4, no. 3, pp. 143–167, 1996.

12. D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “Effective identifier names for compre-
hension and memory,” Innovations in Systems and Software Engineering, vol. 3, no. 4,
pp. 303–318, 2007.

13. A. S. Lemma, A. Venera, T. Paolo, A. Giuliano, and Y. Guéhéneuc, “Can lexicon bad
smells improve fault prediction?” in WCRE, 2012, pp. 235–244.

14. S. L. Abebe, S. Haiduc, P. Tonella, and A. Marcus, “The effect of lexicon bad smells on
concept location in source code.” in SCAM. IEEE, 2011, pp. 125–134.

15. V. Arnaoudova, M. D. Penta, and G. Antoniol, “Linguistic antipatterns: What they
are and how developers perceive them,” Empirical Software Engineering (EMSE), p.
In press, 2015.

29

16. N. Moha, Y. Guéhéneuc, D. Laurence, and L. M. Anne-Franccoise, “Decor: A method
for the specification and detection of code and design smells,” IEEE Transactions on
Software Engineering (TSE), vol. 36, no. 1, pp. 20–36, 2010.

17. K. Toutanova and C. D. Manning, “Enriching the knowledge sources used in a maximum
entropy part-of-speech tagger,” October 2000, pp. 63–70.

18. Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha, and N. Ubayashi,
“A large-scale empirical study of just-in-time quality assurance,” IEEE Trans. Software
Eng., vol. 39, no. 6, pp. 757–773, 2013.

19. S. Kim, E. J. W. Jr., and Y. Zhang, “Classifying software changes: Clean or buggy?”
IEEE Trans. Software Eng., vol. 34, no. 2, pp. 181–196, 2008.

20. S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact of code review
coverage and code review participation on software quality: A case study of the qt, vtk,
and itk projects,” in Proceedings of the 11th Working Conference on Mining Software
Repositories, ser. MSR 2014, 2014, pp. 192–201.

21. ——, “An empirical study of the impact of modern code review practices on software
quality,” Empirical Software Engineering, 2015, to appear.

22. G. Bavota, B. D. Carluccio, A. D. Lucia, M. D. Penta, R. Oliveto, and O. Strollo, “When
does a refactoring induce bugs? an empirical study.” in SCAM, 2012, pp. 104–113.

23. J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce fixes?” ACM
sigsoft software engineering notes, vol. 30, no. 4, pp. 1–5, 2005.

24. M. Fischer, M. Pinzger, and H. Gall, “Populating a release history database from version
control and bug tracking systems,” in In Proceedings of the International Conference
on Software Maintenance, 2003, pp. 23–32.

25. D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures
(fourth edition). Chapman & All, 2007.

26. T. Hall, M. Zhang, D. Bowes, and Y. Sun, “Some code smells have a significant but
small effect on faults,” ACM Transactions on Software Engineering and Methodology,
vol. 23, no. 4, p. 33, 2014.

27. B. F. Webster, Pitfalls of object-oriented development. M & T, 1995.
28. G. Suryanarayana, Refactoring for Software Design Smells: Managing Technical Debt

1st Edition. Morgan Kaufmann, 2014.
29. F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, A. D. Lucia, and D. Poshyvanyk,

“Detecting bad smells in source code using change history information.” in ASE, 2013,
pp. 268–278.

30. F. Palomba, G. Bavota, M. D. Penta, R. Oliverto, D. Poshyvanyk, and A. D. Lucia,
“Mining version histories for detecting code smells,” IEEE Transactions on Software
Engineering, vol. 41, no. 5, pp. 462–489, 2015.

31. M. M. V. Z. M. M. A. Arcelli Fontana, F., “Comparing and experimenting machine
learning techniques for code smell detection,” Empirical Software Engineering, 2015.

32. W. L. 0014 and R. Shatnawi, “An empirical study of the bad smells and class error
probability in the post-release object-oriented system evolution.” Journal of Systems
and Software, vol. 80, no. 7, pp. 1120–1128, 2007.

33. B. Cardoso and E. Figueiredo, “Co-occurrence of design patterns and bad smells in soft-
ware systems: An exploratory study,” in Proceedings of the annual conference on Brazil-
ian Symposium on Information Systems: Information Systems: A Computer Socio-
Technical Perspective. Brazilian Computer Society, 2015, pp. 347–354.

34. S. M. Olbrich, D. Cruzes, V. R. Basili, and N. Zazworka, “The evolution and impact of
code smells: A case study of two open source systems.” in ESEM, 2009, pp. 390–400.

35. R. Peters and A. Zaidman, “Evaluating the lifespan of code smells using software repos-
itory mining.” in CSMR. IEEE, 2012, pp. 411–416.

36. F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, and A. D. Lucia, “Do they really smell
bad? a study on developers’ perception of bad code smells,” in ICSME’14, 2014, pp.
101–110.

37. A. De Lucia, M. Di Penta, and R. Oliveto, “Improving source code lexicon via trace-
ability and information retrieval,” IEEE Trans. Software Eng., no. to appear, 2010.

38. S. L. Abebe and P. Tonella, “Automated identifier completion and replacement,” in
CSMR’13, 2013, pp. 263–272.

30 Latifa Guerrouj et al.

39. L. Tan, D. Yuan, G. Krishna, and Y. Zhou, “/* iComment: Bugs or bad comments?
*/,” in Proceedings of the 21st ACM Symposium on Operating Systems Principles
(SOSP07), October 2007.

40. L. Tan, Y. Zhou, and Y. Padioleau, “aComment: Mining annotations from comments
and code to detect interrupt-related concurrency bugs,” in Proceedings of the 33rd
International Conference on Software Engineering (ICSE11), May 2011.

41. S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens, “@tComment: Testing javadoc com-
ments to detect comment-code inconsistencies,” in Proceedings of the 5th International
Conference on Software Testing, Verification and Validation (ICST), April 2012.

	Introduction
	Methodology
	Study Description
	Results and Discussion
	Threats to Validity
	Related Work
	Conclusion and Future Work

