
IEEE TRANSACTIONS ON JOURNAL NAME, VOL. ??, NO. ??, MONTH 2007 1

Feature Location using Probabilistic Ranking
of Methods based on Execution Scenarios

and Information Retrieval
Denys Poshyvanyk, Member, IEEE, Yann-Gaël Guéhéneuc, Member, IEEE, Andrian Marcus,
Member, IEEE, Giuliano Antoniol, Member, IEEE, Václav Rajlich, Member, IEEE Computer

Society

Abstract—This paper recasts the problem of feature location in source code as a decision-making problem in the presence of
uncertainty. The solution to the problem is formulated as a combination of the opinions of different experts. The experts in this
work are two existing techniques for feature location: a scenario-based probabilistic ranking of events and an information
retrieval-based technique that uses latent semantic indexing. The combination of these two experts is empirically evaluated
through several case studies, which use the source code of the Mozilla Web browser and the Eclipse integrated development
environment. The results show that the combination of experts significantly improves the effectiveness of feature location when
compared to each of the experts used independently.

Index Terms—program understanding, feature identification, concept location, dynamic and static analyses, information
retrieval, Latent Semantic Indexing, scenario-based probabilistic ranking, open source software.

—————————— ——————————

1 INTRODUCTION

OFTWARE evolution requires adding new functional-
ities to programs, improving existing functionalities,
and removing bugs, which can be considered as a re-

moval of unwanted functionalities. A feature represents
in a program some functionality that is accessible by and
visible to the developers and usually it is captured by
explicit requirements. Identifying the parts of the source
code that correspond to a specific functionality is a pre-
requisite to evolution and is one of the most common ac-
tivities undertaken by developers. This process is called
feature (or concept) location [1] and it is a part of the incre-
mental change process [2].

Although incremental change ultimately needs to iden-
tify all components to-be-changed, the programmer must
find the location in the code where the first change must
be made. For that, the programmer uses a search process
where the search space is the whole program and where
various search techniques narrow down the search space.
The literature limits this step to finding small number of

feature components and it is considered sufficient for a
successful feature location to find only one such compo-
nent. The full extent of the change is then handled by
impact analysis, which starts where concept location ends
and finds all remaining impacted components. Method-
ologically the two activities are different from each other
and this is the reason why they are treated separately in
the literature [3], [4], [5], [6], [7], [8]. Different types of
techniques are effective in one activity versus the other.
In this work, we are specifically addressing the identifica-
tion of methods in object-oriented software that are part
of the implementation of a feature (i.e., they change when
the feature is altered) and can be used as starting points in
impact analysis.

While developers often perform feature location
manually, tool support is needed for large and complex
programs. Existing tools supporting feature location rely
on data collected by static and–or dynamic analysis of the
program. Dynamic feature location is based on collecting
and analyzing execution traces, which identify methods
that are executed for a specific scenario. Unfortunately,
dynamic analyses are often unable to distinguish between
overlapping features, because the same methods may
contribute to several features. Static analyses better filter
and organize data but they can rarely identify methods
contributing to a specific execution scenario exactly. The
research community has long recognized the need to
combine static and dynamic techniques into hybrid tech-
niques to improve the effectiveness of feature location [9],
[10], [11], [12]. The general benefits of combining static
and dynamic analyses, for example described by Ernst
[13], are that each kind of analysis collects data that

xxxx-xxxx/0x/$xx.00 © 200x IEEE

S

————————————————
• D. Poshyvanyk, A. Marcus and V. Rajlich are with the Department of

Compute Science at Wayne State University, Detroit, MI, 48202
E-mail: (denys, amarcus, rajlich)@cs.wayne.edu.

• Y-G. Guéhéneuc is with the Department of Experimental Software Engi-
neering, University of Montreal, Canada.
E-mail: guehene@iro.umontreal.ca

• G. Antoniol is with the Département de Génie Informatique, École Poly-
technique de Montréal, Canada. E-mail: antoniol@ieee.org

Manuscript received 11/08/2006.

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, MONTH 2007

would be unavailable to the other analysis but could im-
prove its performance. Indeed, static analyses are con-
servative and sound while dynamic analyses are efficient
and precise (given appropriate test suites). Thus, combin-
ing static and dynamic analyses compensate the impreci-
sion of static analyses and the unsoundness of dynamic
analyses.

All current hybrid techniques share a common as-
sumption: the fact that a method belongs to an execution
trace or that a module is activated by a feature can be de-
termined with a complete certainty and thus can be ex-
pressed with a Boolean value. However, in reality, im-
precision in the measures because of scheduling and
sampling, uncertainty in the environment, perturbations
in the execution due to multi-tasking, or simply lack of
knowledge, lead towards expressing the relation between
scenarios and features in nondeterministic terms [14].
When a specified scenario is executed, a deterministic
relation between the trace and the scenario exists, yet we
cannot be certain whether a method call and–or a field
access is relevant to the feature. Thus, we have a non-
deterministic relation between scenarios and features.

We use both certain and uncertain data extracted re-
spectively with static and dynamic analyses and filtered
by probabilistic and information retrieval techniques to
identify features in source code. We use two previously
developed techniques for feature location that provide
complementary results. The first technique is based on
Latent Semantic Indexing (LSI) [15] of the source code
[16]. The second technique is a Scenario-based Probabilis-
tic Ranking (SPR) of events observed while executing the
program under given scenarios [12], [17]. We choose
these techniques because they have shown promising
results and are actively developed in-house.

Using LSI, developers can query static documents (i.e.,
code and documentation) and obtain a ranked list of code
fragments relevant to a feature. Using SPR, developers
analyze dynamic traces resulting from the execution of
different scenarios and obtain a list of entities (i.e., meth-
ods and classes), again ranked according to their rele-
vance to a feature of interest.

By definitions, both the LSI-based and the SPR-based
techniques provide an uncertain judgment. We draw a
parallel between them and two collaborating experts, who
provide their judgments independently. We are in the
position of a manager who must combine these two ex-
perts’ subjective forecasts [18], [19] to increase the cer-
tainty of the result. We use an affine transformation [18]
to combine the two experts’ judgements. The affine coef-
ficient expresses our confidence in each expert and its
ability to identify features correctly. The proposed com-
bination of experts provides a new feature location tech-
nique named PROMESIR (Probabilistic Ranking Of
Methods based on Execution Scenarios and Information
Retrieval).

We show that feature location with PROMESIR outper-
forms the judgment of either single expert. We perform
the comparison through several case studies. First, we
apply PROMESIR to the scenarios presented in an earlier
case study [12] and the results clearly show the superior-

ity of the new method. Then, we identify methods and
classes involved in several documented bugs. We com-
pare the methods and classes identified by PROMESIR
with those actually contained in the official patches for
fixing the bugs. We show that PROMESIR identifies the
relevant methods with better accuracy than either of the
two techniques individually.

The remaining sections of this paper are organized as
follows. Section 2 presents an overview of related work
on dynamic and static techniques for feature location. It
also briefly introduces background information on the
LSI-based and SPR-based techniques. Section 3 presents
our new technique for feature location, namely PROME-
SIR. The evaluation of the new technique with several
case studies is presented in Section 4. The conclusions
and future work are outlined in Section 5.

2 PREVIOUS WORK
Existing techniques for feature location broadly fall into
three categories, based on the type of information they
use: dynamic, static, and hybrid.

Software reconnaissance by Wilde et al. [20] was the
first published dynamic technique to identify features by
analyzing execution traces of test cases. Two sets of test
cases are used to build two execution traces: an execution
trace where the desired feature is exercised and an execu-
tion trace where the feature is not exercised. The two
traces are compared to identify the entities of the program
that implement the feature. This technique was recently
extended to improve its accuracy [12], [14], [21] by intro-
ducing new criteria on selecting execution scenarios and
by analyzing the execution traces differently. Similarly,
Wong et al. [22] analyzed execution slices of test cases to
identify features in the source code.

Biggerstaff et al. [23] introduced static feature location
as the “concept assignment problem” and designed a tool
that utilizes parsing, simple clustering, identifier names,
and a browser, to support the identification. The simplest
and most used static techniques are based on searching
the source code using text pattern matching tools, such as
Unix grep [24]. A significant improvement over the grep-
based tools are the information retrieval-based ap-
proaches [16], which provide ranked results to the devel-
oper’s queries. Chen and Rajlich [25] proposed a tech-
nique for feature location based on searching the Abstract
System Dependence Graph (ASDG). This process is im-
proved in [26], where the search of the dependency graph
is guided based on the analysis of the topology of the
structural dependencies. Some methods combine differ-
ent kinds of static information (i.e., lexical and structural),
such as the one proposed by Zhao et al. [27], which uses
information retrieval and a branch-reserving call graph to
search the source code. A comparison of static feature
location techniques is presented in [28].

Eisenbarth et al. [9] combined both static (i.e., depend-
encies) and dynamic (i.e., execution traces) data to iden-
tify features in programs. They use formal concept analy-
sis to relate features together. Salah and Mancordis [29]
also use static and dynamic data to identify features in

POSHYVANYK ET AL.: FEATURE LOCATION USING PROBABILISTIC RANKING OF METHODS BASED ON EXECUTION SCENARIOS -… 3

Java programs.
In the remainder of this section, we further introduce

the LSI-based (Section 2.1) and the SPR-based (Section
2.2) techniques, which form the foundation of our new
PROMESIR technique.

2.1. Information Retrieval-based Feature Location
using Latent Semantic Indexing

Static feature location is essentially a search task, whether
the developer searches the source code or the documenta-
tion and most information retrieval techniques, including
LSI, facilitate this search. LSI is an advanced information
retrieval method that analyzes the relation between
words and documents in large bodies of text. For every
document in the text, the technique generates a real-
valued vector description. This representation can be
used to index and to compare documents, using different
similarity measures. The central concept of LSI is that
information about contexts in which a particular word
appears or does not appear provides a set of constraints
that determines the similarity of the meanings of words
with one another. By applying LSI to source code and its
internal documentation (i.e., comments), candidate com-
ponents can be compared using these similarity meas-
ures. More technical details on LSI are available in [15].
We chose LSI over vector space models (VSM) or other IR
methods for two main reasons. First, LSI has been shown
to address the problems of polysemy and synonymy [15]
quite well, which is important with respect to the feature
location problem, because developers usually construct
queries without knowing precisely the vocabulary of the
target system. Second, in our previous work on traceabil-
ity link recovery [30], we showed that LSI outperforms
VSM and Bayes classifiers.

Internal source code documentation has been recog-
nized as commonly written in a subset of English [31] that
lends itself to the use of information retrieval techniques.
In addition, identifiers in the source code form a language
of their own with no defined grammar or morphological
rules. LSI is well-suited to deal with such situations, as it
does not use a predefined grammar or vocabulary. The
meanings of the words in LSI are derived from their us-
age rather than from a dictionary or thesaurus, which is
an advantage over a traditional natural language ap-
proach [31], where a subset of the English grammar and a
dictionary must be developed.

In software engineering, LSI has been used for many
tasks closely related to feature location, such as reuse [32],
[33], [34], abstract data types identification [35], clone de-
tection [36], traceability link recovery between source
code and external documentation [30], [37], conceptual
coupling [38] and cohesion [39], clustering [40], require-
ments tracing [41], establishing traceability links between
artefacts [42], etc.

Marcus et al. [16] proposed an information retrieval-
based technique for feature location using LSI. Using LSI
for feature location allows the developer to formulate
queries in natural language (or a close format) and the
results are returned as a list of source code elements,
ranked by the relevance to the query. As an analogy, LSI

is used for feature location in source code much like to-
day’s popular search engines (e.g., Google) are used to
search the Web or local hard drives.

Figure 1 shows the main steps in the feature location
process using LSI. Tool support exists to use this method
in MS Visual Studio for C++ projects [43] and in Eclipse
for Java projects [44]. The process has five major steps:

1. Corpus creation. The source code is parsed using a
developer-defined granularity level (i.e., methods or
classes) and documents are extracted from the source
code. A corpus is created to be indexed with LSI, such
that each method (and–or class) will have a correspond-
ing document in the corpus.

2. Indexing. The corpus is indexed using LSI and a
representation of the corpus as a real-valued vector sub-
space is created. In this subspace, each document (hence
each method or class) has a corresponding vector.

3. Query formulation. A developer selects a set of
words that describe the feature. This set of words consti-
tutes the query. The tool checks whether the words from
the query are present in the vocabulary of the source code
(generated by LSI). If no word is present, then the tool:

a. Suggests similar words using the vocabulary of the
source code.

b. Eliminates the word from the initial query. If the
elimination of a word significantly alters the meaning of
the query, step 3 is reapplied with additional words for
the query.

4. Ranking documents. Similarities between the query
and every document from the source code are computed.
We use the cosine between the vectors corresponding to
the query and a document as similarity measure. This
similarity measure yields values between [-1, 1] for any
pair of vectors, with 1 corresponding to identical docu-
ments. Negative values are associated with unrelated
documents. The similarity between a query expressing
some semantic characteristics of a feature and a set of
data about the source code (e.g., manual pages, documen-
tation, classes, or methods) indexed via LSI enables the
production of a ranking of documents relevant to the fea-
ture. All the documents are ranked by the similarity
measure in descending order. The final score for each
document x and the current query is denoted as flsi(x).

5. Results examination. The developer examines the
source code documents sorted by flsi(x), starting with
documents with highest similarities. For every source
code document examined, a decision is required whether
the document is part of the feature or not. If it is part of

Fig. 1. The feature location process using LSI

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, MONTH 2007

the feature, then the search succeeded, if it is not and new
knowledge obtained from the investigated documents
helps formulate a better query (e.g., narrow down the
search criteria), then step 3 should be reapplied else the
next document in the list should be examined.

In our experience, developers tend to look at only the
few first documents before they formulate new queries
[16], [28], [45], [46]. Detailed examples on how this
method is used can be found in Section 4.5 and in [16],
[28].

2.2. Feature Location using Scenario-based
Probabilistic Ranking

We present for the sake of completeness the SPR-based
technique, previously published in [12], [17]. SPR is a
dynamic analysis technique that links features with pro-
gram source code and thus identifies entities of the pro-
gram implementing the specific feature using different
scenarios.

A scenario defines the context in which a feature is
studied, for example the sequence of the developer’s ac-
tions with the program. Let F′ (and F respectively) be a
set of scenarios (not) exercising a feature of interest; sce-
narios are used to collect traces. A trace is a sequence of
events, dynamically collected by executing a given sce-
nario. Events are traditionally defined loosely [17] but, in
the context of this work, they correspond to method and
function calls. An interval is a subsequence of contiguous
events belonging to a trace. Intervals may or may not
pertain to a feature and thus may or may not contain
relevant events. A feature of interest is characterized
dynamically by the events related to it and statically by its
micro-architecture, which is a collection of entities acti-
vated by the feature (i.e., classes, interfaces, fields, and
methods).

We want to classify events as relevant or irrelevant
with respect to the many possible different features inten-
tionally or accidentally exercised in the sets of scenarios F′
and F. Exercising scenarios in F′ produces the class CI′, a
set of intervals I′i containing events relevant to the fea-
ture. Scenarios in F produce CI, a class of intervals Ij con-
taining events irrelevant to the feature. Intervals I′i (Ij,
respectively) are marked as relevant (irrelevant, respec-
tively) during trace collection. However, they may con-
tain irrelevant (relevant, respectively) events due to un-
certainty. Yet, relevant events have frequencies higher in
CI′ than in CI intervals. Consequently, the problem of
deciding if an event ek contributes to a feature is mapped
to the problem of testing if the event ek is statistically
more frequent in the I′i intervals than in the Ii intervals.
For any given interval I (either I′i or Ij), the ek frequency is
computed as the ratio NI(ek) / NI, where NI(ek) is the num-
ber of times ek appears in I and NI is the overall number of
events in I. We classify events as relevant when their fre-
quencies in intervals I′i is higher than in intervals Ij. The
classification process is parameterized by a threshold Θ
and a level of confidence α. For each pair of intervals in
CI′ and CI and for each event we perform hypothesis test-
ing attempting to reject the null hypothesis H0 with a con-
fidence level of α, that the event frequency is the same in

two intervals I′i and Ij. If the null hypothesis is rejected
more than Θ times the event is tagged as relevant to the
feature. We then use a relevance index to rank and asso-
ciate the most relevant events with the feature of interest.
Let ei be an event classified as relevant and let NCI′ (ei) be
the number of times ei appears in all intervals belonging
to CI′ (NC′(ei) the number of times it appears in CI′) further
assume that NCI′ is the overall number of events in CI′ (NCI
the overall number of CI events), then the score referred
to as fspr(ei) is computed as:

()

()
() ()

I

I

I I

I I

C i

C
spr i

C i C i

C C

N e
N

f e
N e N e

N N

′

′

′

′

=
+

 (1)

Several events may have the same score and the num-
ber of relevant events might be too large to be of any help
to developers, therefore we filter ranked relevant events
and keep only those with a higher relevance. We use
Equation 2 and a positive threshold t to reduce the set of
feature-relevant events and thus to limit the number of
events that developers must consider as relevant to a fea-
ture of interest:

{ () }t i spr ie f e tE = | ≥′ (2)

We extend the definition of fspr in Equations 1 and 2 as
applying to the methods and–or functions corresponding
to events rather than to the events themselves. We thus
can directly compute the score of a method or a function.

Then, we use the subset E′t of ranked relevant methods
and functions to build a micro-architecture representing
the feature of interest, which can be displayed against the
program architecture and compared to other micro-
architectures to help developers precisely locate respon-
sibilities.

Results reported in the following case studies were ob-
tained by selecting an acceptance threshold value of NCI′ ×
NCI – 1, and α of 1.00%; these values, in our experience,
ensure relatively small sets E′t while retaining most rele-
vant events.

3 PROMESIR: COMBINING THE EXPERTS
We propose a new technique to improve the precision of
feature location by combining the LSI- and SPR-based
techniques into PROMESIR. We consider the LSI and
SPR rankings of source-code elements as the judgments of
two independent experts, who provide their expertise to
solve the problem of identifying a feature. We draw in-
spiration from Jacobs [18] to combine the LSI and SPR
rankings via an affine transformation, using the following
equation:

()∑
=

=
n

i
iii xfxf

1

)(βλ (3)

where fi(x) is the judgment of the ith expert, λi is a weight
expressing our confidence in the ith expert and βi is a re-
normalization constant. We use re-normalization con-

POSHYVANYK ET AL.: FEATURE LOCATION USING PROBABILISTIC RANKING OF METHODS BASED ON EXECUTION SCENARIOS -… 5

stants because the different experts may express judg-
ments that are not commensurable. The λi coefficient can
also be selected so that fi(x) lies in the interval [0, 1], as we
do in our case. The judgments of the experts should be in
the same interval, thus imposing the constraints that the

weight λi defines an affine transformation: ∑
=

=
n

i
i

1
1λ

Our experts state their respective judgments based on
different data. The LSI expert builds its judgment based
on the source code lexical similarities, while the SPR ex-
pert grounds its judgment on the probabilistic ranking of
dynamic events observed in execution traces. Yet, both
experts answer, through different means, the same ques-
tion: “What is the location of a feature of interest?” PROME-
SIR combines the valuable expertise of both experts to
obtain a more accurate answer and to minimize the de-
veloper’s effort.

We must align the definitions used in each technique
to formally define the PROMESIR technique. Let x be an
entity (method or class in an object-oriented program or a
function when analyzing non object-oriented programs)
declared in the implementation of a program. As previ-
ously mentioned, we denote with flsi(x) and fspr(x) the
score assigned to x by our experts, LSI and SPR respec-
tively. The flsi(x) and fspr(x) scores are not defined over a
same domain: flsi(x) score takes values in [-1, 1] while
fspr(x) score is defined over [0, 1]. The combination of the
two experts’ judgments with Equation 3 requires a re-
normalization of their scores. This normalization must
not disrupt the LSI and SPR experts’ judgments because
we want to promote entities that both experts consider
relevant. Among several possible renormalizations, we
select a very simple transformation grounded on the fact
that the negative values of the LSI-based similarities are
irrelevant. The re-normalized LSI and SPR scores are ob-
tained as follows:

()

()
()

1

1 0

0

spr

lsi
lsi

x

if f x
x

else

β

β

=

⎧ >⎪= ⎨
⎪⎩

 (4)

The combination of the two experts in PROMESIR

leads to rewrite Equation 3 as:

() () () ()1PROMESIR spr spr lsi lsif x f x f xλβ λ β= + − (5)

where λ expresses our confidence on the respective

ability of the LSI or SPR experts to score entities relevant
to a feature of interest with better accuracy. We use the
scores fPROMESIR(x) to sort source code entities and present
the ranked list to the developers, who examine the source
code entities starting with those with highest scores and
in descending order, until entities most relevant to the
feature are found.

Given this combination method, the results of one ex-
pert do not depend on the other. Thus, PROMESIR al-

lows for LSI and SPR to be run in parallel, if so desired.
Both experts need user input, but they operate differently,
as presented above: LSI is based on an iterative approach,
where results are improved at each step, whereas SPR is
non-iterative. Consequently, PROMESIR is also an itera-
tive technique as follows:

1. Compute fspr(x) as described in Section 2.2.
2. Run steps 1, 2, 3, 4 from the LSI-based approach as

described in Section 2.1.
3. Combine the rankings based on Equation 5.
4. Examine the results as in step 5 of the LSI-based

method.
In the following case studies, we applied each tech-

nique in parallel, so we can assess their accuracy indi-
vidually. In this case PROMESIR is not applied itera-
tively, but the combination of judgments is done on the
best result of each expert.

4. EVALUATION OF PROMESIR
We performed several case studies to assess the effective-
ness of PROMESIR. All the case studies are designed and
conducted according to recommendations in the state-of-
the-art [47]. We present a case study replicating a previ-
ously published experiment [12], further developed in
[17]. We show that PROMESIR, on average, is more effec-
tive than either LSI or SPR.

In each task, we compare the rankings produced by
LSI, SPR, and PROMESIR. We conclude with a discus-
sion on the increase of effectiveness and on the choice of
the queries and scenarios.

4.1. Design and Objectives of the Case Studies
In the following case studies, we chose methods as the
level of granularity for the software entities and we assess
and compare the effectiveness of the three techniques
when identifying a first method relevant to a feature of
interest. We focus on the first identified method because
the other methods implementing the feature are inferred
during the design of a change, which includes impact
analysis and change propagation. Thus, we set the goal
of each case study as the accurate location of at least one
method that implements part of the feature.

We also chose large open-source programs to show the
scalability of our techniques and to allow replication of
the studies. In each case study but the first one, we use
documented bugs to assess our work: each documented
bug is used as a gold standard against which we compare
the results of the techniques. Indeed, the documentation
of each bug specifies which methods were changed to fix
this bug. We consider these changed methods as belong-
ing to the unwanted feature associated with the bug. One
method may belong to more than one bug (i.e., changed
in different bug fixes), but it is at least exercised in the
associated unwanted feature. We do not attempt to iden-
tify defects (i.e., the root cause of a bug) such as a loop off
by one, because we work at the method level and have
therefore no information on the executed statements. We
used the following criteria to select bugs for the case
study:

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, MONTH 2007

• We chose well-known, documented, and reproduci-
ble bugs;

• We selected bugs that do not include methods and
classes involved in the first case study to prevent ob-
taining better results by chance;

• We chose bugs with available and approved patches
applied in recent releases.

None of the authors knew the parts of the programs
corresponding to the features to eliminate potential bias.
In particular, the evaluations of the relevance of each
technique is founded solely on the methods identified by
the techniques and on the methods present in the official
patches associated with each bug, thus as experimenters,
we did not have to make any subjective decisions biasing
the results of our evaluations.

In the following case studies, we use a λ value of 0.5.
We investigate the influence of the λ value on the
PROMESIR ranking in the discussions.

4.2. Objects of the Case Studies
We use two large open-source programs for our case
studies: Eclipse1 and Mozilla2. Eclipse is an open-source
integrated development environment. It is a platform
used both in the open-source community and in industry,
for example as a base for the WebSphere family of devel-
opment environments. Eclipse is mostly written in Java,
with C/C++ code used mainly for the widget toolkit,
which we do not analyze. We use versions 2.0.0, 2.1.0,
2.1.3, 3.0.1, 3.1.1, and 3.3M1. For example, version 2.1.3
contains 7,648 classes with 89,341 methods in more than
8,000 source code files for about 2.4 MLOC (millions lines
of code).

Mozilla is an open-source Web browser ported to al-
most all known software and hardware platforms. It is as
large as many industrial size programs and it is devel-
oped mostly in C++. We do not analyze the parts of
Mozilla written in other programming languages, like C,
Java, IDL, XML, HTML, etc. In our case studies, we use
the source code of versions 1.5.1 and 1.6 of Mozilla. Ver-
sion 1.5.1 includes 4,853 classes and 53,617 methods im-
plemented in more than 10,000 source files and 3,500 dif-
ferent subdirectories, for about 3.7 MLOC.

We choose to use conservative reverse-engineering
techniques and apply strict rules classifying as classes
only entities declared as such according to the C++ syn-
tax. Moreover, we consider structures and complex tem-
plates (e.g., templates mixed with structures) as outside of
the boundary of reverse-engineered models and do not
recover their attributes, methods, and locations in source
code files. Different tools were used to extract informa-
tion from Mozilla and Eclipse [48].

In each study, we follow the method for LSI ranking
described in Section 2.1. We construct the corpus for each
software system by extracting all comments and identifi-
ers from the source code. The resulting text is processed
as follows: some tokens are eliminated (e.g., operators,
special symbols, some numbers, keywords of the pro-
gramming language, standard library function names,

1 www.eclipse.org
2 www.mozilla.org

etc.); the identifier names in the source code are split into
parts based on known coding standards whereas the
original form of each identifier is preserved as well; a
document of the corpus is created with the comments and
identifiers corresponding to one method. We do not use a
predefined vocabulary or a predefined grammar, there-
fore no morphological analysis or transformations are
applied. Some researchers use word stemming, however
this is an optional step, which is not required while using
LSI. Table 1 shows the size of the corpora we created.
Based on our previous experience [49], we use a dimen-
sionality reduction factor of 500, which accurately repre-
sents a semantic space of this size.

Similarly, the use of the SPR technique follows the pat-
tern described in Section 2.2. The SPR technique provides
sets of ranked methods using their frequencies in the exe-
cution traces.

4.3. Measuring the Effectiveness of the Techniques
We need a uniform measure to compare the effectiveness
of the feature location techniques. This measure must be
suited to evaluate the results of all LSI, SPR, and
PROMESIR techniques. We do not use standard informa-
tion retrieval measures such as precision and recall, be-
cause the feature location techniques may assign scores to
all methods in a program, consequently, and without a
threshold, recall always equals 1.0 while precision equals
1/k, with k the number of methods in the program. We
could use a threshold to include in the precision and re-
call only methods with a score higher than the threshold.
However, this would artificially increase the number of
parameters of our techniques.

Thus, to compare the techniques, we use the rank of
the first related method as a measure of effectiveness of
every technique. Every technique, LSI, SPR, and
PROMESIR outputs a ranked list of methods that devel-
opers must investigate. The goal of each technique is to
reduce the effort of the developers in the location process.
Thus, we measure the effort that the developers must
spend as the number of methods from the list that they
need to investigate until they find the first related
method. We do not take into account the size of the soft-
ware system, because in every case the developer must
investigate n methods before finding the first relevant
method. In analogy, consider an Internet search engine,
which provides the list of results in response to a user’s
query. The searching effort may be measured as the
number of links she must visit before she finds relevant
information. Note that the size of the World Wide Web
grows every day while this fact successfully remains la-
tent from the user’s perspective.

TABLE 1
LSI CORPUS VITALS FOR MOZILLA AND ECLIPSE

POSHYVANYK ET AL.: FEATURE LOCATION USING PROBABILISTIC RANKING OF METHODS BASED ON EXECUTION SCENARIOS -… 7

Formally, we define the effectiveness of a technique j,
Ej, as the rank r(mi) of the method mi, where mi is the top-
ranked method among the methods that must be changed
to fix a bug (i.e., implementing part of the located fea-
ture). The effectiveness measure shows how many meth-
ods must be investigated before the first method relevant
to the feature is located. Obviously, in the best case sce-
nario, the developer will find one of the desired methods
in the first place, so she only needs to investigate that
method, hence the efficiency value is one (1). A higher
effectiveness value indicates more search effort needed.

While the effectiveness measure can be applied to the
results of LSI and PROMESIR without any problems, we
need to make certain assumptions for SPR. The SPR
technique may score many methods of the source code as
100% relevant to a feature of interest (i.e., r(mi) = 1), while
not all of them are in fact relevant. Thus, to define the
SPR effectiveness measure, we follow the average case sce-
nario in which developers must investigate half of the
methods from the set of methods ranked as 100% relevant
to the feature.

Regardless of the technique used to identify features,
eventually the developer must inspect a number of meth-
ods until she finds one method that actually implements
part of the feature. Effectiveness measures how many
methods the developer must inspect to identify a starting
point of the feature. The goal of each technique is to as-
sist the developer such that she needs to look at fewer
methods. The effectiveness can be regarded as an inverse
measure as the lower the rank of the first method the bet-
ter the result is. In other words, low effectiveness value
shows that less search effort is needed to locate the start-
ing point of feature implementation.

4.4. The First Case Study – Book-marking in
Mozilla

This first case study replicates a previous case study [12],
where the feature to be located is “save a bookmark”, which
can be stated as: “identifying methods in Mozilla that are part
of the feature activated when a URL is saved”. We perform
the same case study (i.e., the same scenario and the same
feature location task) to compare the previous results
from SPR ranking alone with results from LSI and
PROMESIR. This replication is important to compare the

three ranking techniques with one another. It is a partial
replication because we replicate the scenario and the task
only – we do not apply again the SPR ranking, as the re-
sults are available elsewhere [17].

We considered two scenarios in which a developer is
interested in understanding the inner workings of Mozilla
regarding its book-marking feature:
• Scenario 1: The developer visits a URL. She opens

Mozilla, clicks on a previously bookmarked URL,
waits for the page to load, and closes the browser;

• Scenario 2: The developer acts as before but, once the
page is loaded, she saves the URL using the mouse
right button and closes the Web browser.

We applied the SPR ranking by running Mozilla ac-
cording to the two scenarios and by collecting corre-
sponding dynamic traces [17]. We then produced sets of
relevant methods to the feature of interest. LSI rankings
were computed by formulating a query with the terms
related to “bookmark” from the vocabulary of Mozilla gen-
erated during indexing with LSI. We used our judgment
to assess whether the terms relate to the feature of creat-
ing a new bookmark. We created the following query:
“bookmark newbookmark bookmarkname bookmarkresource
bookmarkadddate createbookmark insertbookmarkitem delete-
bookmark bookmarknode”. Three methods (identified via
manual inspection) are relevant to this feature, all from
the class nsBookmarkService: AddBookmarkImmediately, Cre-
ateBookmark, and CreateBookmarkInContainer. LSI ranked
these methods on the 1st, 14th, and 36th positions respec-
tively. No ranking is reported for SPR because the meth-
ods responsible for implementing the feature were scored
100% relevant among 272 methods and thus could be as-
signed any arbitrary rank between 1 and 272. PROMESIR
ranks these three methods on the 1st, 2nd, and 4th position
respectively. The ranks of the three methods highlights
that LSI and SPR are complementary techniques. Indeed,
none of the other 33 methods ranked by LSI do not ap-
pear in the 272 methods from SPR.

The effectiveness for LSI, SPR, and PROMESIR respec-
tively, are: ELSI = 1, ESPR = 272 / 2 = 136, and EPROMESIR = 1.

The values of effectiveness for LSI and PROMESIR are
equal because we only consider the rank of the first top
method. These results provide evidence that the combi-
nation of experts is likely to improve individual rankings.

TABLE 2
METHODS RESPONSIBLE FOR THE UNWANTED FEATURES IN ECLIPSE

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, MONTH 2007

The following case studies are much more extensive,
ranging across application domains and programming
languages, and have the goal of verifying the findings of
the first case study.

4.5. The Second Case Study – Locating Bugs in
Eclipse

We applied the three techniques to locate three different
unwanted features (i.e., bugs) in Eclipse. Each bug is cho-
sen for its characteristics that satisfy the previously de-
scribed criteria. These bugs are:

1. Bug #741493, described as “The search words after ' "
' will be ignored”, present in the versions 3.0.0, 3.0.1,
3.0.2, and fixed in version 3.1.1.

2. Bug #51384, described as “Double-click-drag to select
multiple words doesn’t work”, present in version 2.1.3
and fixed in version 3.3M1.

3. Bug #317795, described as “UnifiedTree should en-
sure file/folder exists”. This bug exists in the version
2.0.0 and subsequently fixed in 2.1.0.

Methods and functions modified by developers to re-
move the bugs were identified by inspecting the provided
patches recognized by the Eclipse source code reviewers.
Table 2 reports the patched methods that have been actu-
ally modified to fix those bugs. Very often more than one
patch was produced in the process of fixing a bug. In
such a case, we considered both the first patch, often cor-
responding to a quick answer to the urgent need to fix the
bug, and the last patch, usually involving careful reor-
ganization or even refactoring of several classes and
methods. For example, for the bug #5138 there are two
patches, thus we considered the union of the modified
methods from both patches. We did not consider inter-
mediate patches, as they are always superseded by the
last patch and may contain spurious changes.

In Table 3 we list descriptions of two families of sce-
narios (one exercising the feature and one not) used to

3 https://bugs.eclipse.org/bugs/show_bug.cgi?id=74149
4 https://bugs.eclipse.org/bugs/show_bug.cgi?id=5138
5 https://bugs.eclipse.org/bugs/show_bug.cgi?id=31779

obtain the SPR rankings and the queries which were exe-
cuted to obtain the best LSI rankings of the methods for
each Eclipse bug.

In each instance the scenarios are extracted from the
bug description. Selecting the initial queries and refining
them is based on the experience of the developer. A naïve
approach is to simply use the entire bug description as
initial query and then refine it, based on the results or
select several related terms from the bug description. We
choose to start from simple queries consisting only of a
few terms and this approach resulted in formulating at
least one extra query each time and at most three extra
queries. Table 3 shows only the last performed query,
which generated the best LSI ranking. We show in detail
how the queries were formulated for bug #74149 to better
understand this approach.

Based on the bug description and the developer’s in-
terpretation, using the method explained in Section 2.1,
the initial query is formulated as “search query”. The re-
sults did not return any relevant method in the top of the
ranked list.

Given these results, we reformulated the query to be
more specific to our search. We noticed that the word
“token” is used in methods that deal with parsing a query
and the Eclipse vocabulary indicates the existence of the
word “quoted”. We combined these words into a new
query, “search query quoted token”, which returned one
relevant method in the 5th position (see Figure 2 and Table

TABLE 3
SCENARIOS AND QUERIES USED FOR ECLIPSE

Fig. 2. The list of ranked results for the query ‘search query quoted
token’ for bug#74149

POSHYVANYK ET AL.: FEATURE LOCATION USING PROBABILISTIC RANKING OF METHODS BASED ON EXECUTION SCENARIOS -… 9

3). For the first query “search query” the top four re-
turned methods are the same as for the second query. We
used similar judgments in our case studies. For simplic-
ity, we only report the final query from here on.

Table 4 reports the name of the method first identified
as relevant to the bug and its ranking by each method. As
explained before, the SPR ranking is in fact the number of
methods that are considered 100% relevant to the feature
of interest by this technique, divided by two, because we
consider average case scenario. We also compute the im-
provement that PROMESIR brings over the individual
technique. Based on the results in Table 4 we conclude
that combining the two LSI and SPR techniques dramati-
cally improves the effectiveness of the feature location.

4.6. Third Case Study – Locating Bugs in Mozilla
We applied the three techniques to locate five different
bugs in Mozilla. Each bug is chosen for its characteristics
that satisfy the previously described criteria. These bugs
are:

1. Bug #1821926, described as “quotes (“) are not re-
moved from collected e-mail addresses”, present in
Mozilla v1.6 and fixed in v1.7.

2. Bug #2161547, described as “Anchors in e-mails are
broken - clicking anchor doesn't go to target in an e-
mail”, existing in v1.5.1 and patched in v1.6.

3. Bug #2252438, described as “Text is printed in mir-
ror-image on all pages in1.6a display and print-preview
is correct, but the generated postscript is wrong”, pre-
sent in v1.6 and fixed in v1.7.

4. Bug #2094309, which is described as “Ctrl+Delete
and Ctrl+BackSpace delete words in the wrong direc-
tion”, present in v1.5.1 and fixed in v1.6.

5. Bug #23147410, described as: “If a user gets a lot of
attachments (e.g. thirty) with only one short line the
content of this file is damaged”, located in v1.5.1 and
fixed in v1.6.

Methods and functions modified by developers to re-
move the bugs were identified by inspecting the patches
endorsed by Mozilla source code reviewers. Table 5 re-
ports the methods that have been patched.

As with Eclipse, more than one patch could have been
produced in the process of fixing the bugs. In such a case,
we considered the union of the changed methods from
the first patch and the most recent patch.

Table 6 reports a narrative description of the two fami-

6 https://bugzilla.mozilla.org/long_list.cgi?buglist=182192
7 https://bugzilla.mozilla.org/show_bug.cgi?id=216154
8 https://bugzilla.mozilla.org/show_bug.cgi?id=225243
9 https://bugzilla.mozilla.org/show_bug.cgi?id=209430
10 https://bugzilla.mozilla.org/show_bug.cgi?id=231474

lies of scenarios (one exercising the feature and the other
not) used to obtain the SPR rankings and the queries used
to rank methods using LSI.

We explain in more details the computation of the SPR
rankings. Scenario 1, used to build the CI′ was executed
only once while we re-used all available scenario execu-
tions not interfering with the given bug detection to build
CI. This corresponds to mimicking a situation in which
developers reuse as much as possible previous knowl-
edge and collected data to accomplish theirs tasks.

For each bug, the scenarios produce events, identifying
called methods and functions. These events are collected
to build the CI′ and CI sets. Table 7 summarizes the num-
bers of unique methods and classes belonging to the CI′
and CI sets respectively for each bug.

CI′ and CI cardinalities are spread fairly evenly across
bugs and even for the smaller sets, the task to manually
identify methods responsible for the bug by comparing
sets and inspecting methods or classes would be over-
whelming. For example, bug #182192 involves one class
and two methods while CI′ and CI sets contain thousands
of classes and methods. Obviously, the methods to be
modified must belong to either CI′ or to the intersection
CI′ ∪ CI, which contains respectively 188 and 2,694 unique
methods, when compared using Unix comm. Yet, the cost
of manually inspecting these 188 + 2,694 unique methods
is still substantially higher than the effort required when
studying E′1 methods only. Table 8 reports E′1 and E′0
figures for Mozilla bugs. Clearly, the SPR technique takes

TABLE 4
EFFECTIVENESS OF EACH TECHNIQUE FOR THE ECLIPSE BUGS

TABLE 5
METHODS AND FUNCTIONS RESPONSIBLE FOR THE UNWANTED

FEATURES IN MOZILLA, GLOBAL FUNCTIONS ARE IDENTIFIED WITH
THE ‘ROOT::’ PREFIX

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, MONTH 2007

advantage of its probabilistic nature and its ability to rank
relevant versus non-relevant events. E′1 and E′0 cardinal-
ities have to be compared with the corresponding cardi-
nalities of CI′, because at most E′1 methods would require
inspection if F′ and F scenarios are carefully chosen.
However, SPR cannot distinguish between two methods
or classes involved in E′1 sets.

Table 9 reports for each bug, the top ranked methods
and their rankings with LSI, SPR, and PROMESIR, with λ
= 0.5. For SPR, the ranking is the cardinality of the E′1 set
divided by two. We also compute the improvement fac-
tor that PROMESIR brings over the individual tech-
niques. Again, PROMESIR increases dramatically the
effectiveness of the feature location over the individual
techniques.

We chose different values for λ but did not observe
any significant changes in the final ranks of the methods
when considering values of λ around 0.5. We further dis-
cuss the impact of λ on the final results in Section 4.7.

4.7. Discussion
Each feature location technique has its strengths and

weaknesses. Given the different types of data and proc-
esses they use, they do not have common weaknesses and
thus their combination overcomes in part their respective
shortcommings. Each method relies on the developers as
SPR requires a developer to define and run scenarios and
LSI needs developer-defined queries. Poor choice of sce-
narios or queries impacts negatively the results. The SPR
technique allows the developer to define multiple scenar-
ios to address this problem, while the LSI-based tech-
nique provides the developer with terms related to her
query to help improve it. The results of the LSI are im-
pacted by the extent to which the comments and identifi-
ers in the program reflect the domain or the developer’s
familiarity with the vocabulary of the program. These
factors do not influence SPR, where the tendency is to
rank more methods than necessary as relevant to a fea-
ture, while poor queries or language will return no rele-
vant method in the top of the ranked list when using LSI.

The case studies provide data to assess the effective-
ness of PROMESIR and to assess the help brought to the
developer for identifying features in the source code. In
the Mozilla case study the average improvement of

TABLE 6
SCENARIOS AND QUERIES USED FOR THE MOZILLA

TABLE 7
CARDINALITYOF SETS CI′ AND CI MEASURED IN NUMBERS OF UNIQUE METHODS AND CLASSES FOR MOZILLA BUGS

POSHYVANYK ET AL.: FEATURE LOCATION USING PROBABILISTIC RANKING OF METHODS BASED ON EXECUTION SCENARIOS -… 11

PROMESIR over SPR was close to the one obtained in
Ecplise (121 vs. 182), whereas the improvement in the LSI
case is more dramatic (20 vs. 4). One possible explanation
is the quality of the text in Eclipse with respect to the text
in Mozilla. In addition, except for one bug in Mozilla, we
ran only two queries for each bug, whereas in Eclipse we
used three for two of the bugs and two queries for the
other bug. Refining the queries more could have resulted
in better results. In each case we found significant im-
provement in terms of effectiveness of PROMESIR over
SPR or LSI alone.

The case studies support our claim that combining ex-
pert judgments improves the effectiveness of feature loca-
tion. The results of the case studies show that the new
technique performs better than any one of the two tech-
niques alone.

In all case studies, we chose a value of λ = 0.5, this
value allows PROMESIR to outperform LSI and SPR. We
studied the change in the rankings of relevant methods as
we varied λ and notice that λ = 0.5 is an adequate value,
which means that neither technique is favoured over the
other. In Figure 3, we present the rankings of the first
relevant method for each bug (in Mozilla and in Eclipse)
with respect to the value of λ, using a step of 0.01. This
plot shows that as λ decreases the ranking of the first
relevant method tends to be higher (i.e., the effectiveness
of the hybrid technique deteriorates). This behaviour is
expected because, as λ becomes close to 0.0 or 1.0, one
expert is strongly favoured over the other (i.e., LSI over
SPR respectively). In extremes, when λ is equal to 0.0, the
ranking is provided by the LSI technique alone and by the
SPR technique alone when λ is equal to 1.0 (see Table 4
and Table 9). With λ values between 0.2 and 0.99 we ob-
tain quite stable results, similar to the ones obtained with
λ = 0.2, showing that the two techniques truly comple-
ment each other.

As mentioned before, PROMESIR performs best when
LSI and SPR are used in parallel, such that the result of
each query is combined with SPR. In the case studies we
combined only the rankings of the last query with SPR,
which allowed a better comparison with LSI alone.
PROMESIR would improve the results even more if the
combination was iterative. For example, for one of the
bugs (i.e., bug# 225243 from Mozilla) we refined the LSI
query three times before we combined the results with
SPR approach. In that case, the third LSI query ranked

the first method related to the feature in position 24 and
PROMESIR ranked it on position 6 (see Table 9). If we
rank the results of the first LSI query with PROMESIR,
then the same method ranks on position 12 (with LSI
alone this method ranks 124).

In this work we do not compare PROMESIR with other
techniques for feature location, because SPR and LSI have
been compared with other approaches elsewhere: SPR
was compared with grep and formal concept analysis ap-
plied on execution traces in [17], whereas LSI was com-
pared with grep and search of dependencies in [28].

4.8. Threats to Validity
Several issues may have affected the results of the case
studies and thus may possibly limit generalizations. We
made all efforts to minimize the effect of these issues.

One such issue is the extent to which the programs
used in the case studies are representative of those actu-
ally used in practice. Although Eclipse and Mozilla are
real-world programs, this threat could be reduced if we
experiment with other programs of different sizes and
domains.

Another issue is the use of scenarios to obtain rankings
of methods with SPR, because we could have chosen by
chance “best” or “worst” scenarios to identify the fea-
tures. However, the results of the case studies are posi-

TABLE 8
SIZE OF E′T MEASURED IN METHODS AND CLASSES FOR MOZILLA

BUGS FOR T=1 (100 % RELEVANT) AND T>0

Fig. 3. The effect of λ on the PROMESIR ranking (each line shows the
effect of λ on the rankings of the first method related to the considered
bug)

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, MONTH 2007

tive although we are not experts in the Eclipse or Mozilla
source code and cannot ensure that our scenarios are the
best to capture those particular features. By presenting
several results, we expect that the used scenarios are av-
eraged in the sense of their ability to properly capture the
desired features.

The queries formulated to obtain LSI rankings are de-
pendent on the developer’s knowledge, thus the results
may be impacted by the actual query. However, as we
discussed in several of the examples, the developer does
not need an extensive knowledge of the source code to
formulate LSI queries, which with PROMESIR will pro-
duce good results. In fact, even in the naïve situation,
where a developer uses the bug description as a query,
PROMESIR performs better than LSI alone.

The effectiveness measure for SPR is defined on an av-
erage case scenario. In reality, a developer may find the
relevant method in a set indicated by SPR much faster.
Nonetheless, given the large difference between the
PROMESIR and SPR accuracies, modifying this assump-
tion would not change the results dramatically.

We could take into account the number of unsuccessful
queries when applying LSI. However, in most cases, the
results investigated after the first query would be in the
top of the results for the second query, so the developer
does not need to investigate these results again and thus
there is no real increase in the searching effort. Also, it
could be possible to penalize the effectiveness measure
with a value depending on the number of queries. Still,
this will not affect the overall results as the new measure
will change the PROMESIR rankings as well.

The features may be implemented by more methods
than those suggested by a patch, as correcting the prob-
lem may involve just part of the implementation. This
fact does not influence our results because considering
more relevant methods increases or maintains the same
effectiveness of the techniques.

In addition, we ran LSI and SBP in parallel, thus penal-
izing PROMESIR. Using PROMESIR in an iterative fash-
ion, as described in Section 3, yields better accuracy, as
mentioned in Section 4.7.

5. CONCLUSIONS AND FUTURE WORK
The main contribution of the paper is a new technique
(PROMESIR) for feature location that combines an infor-

mation retrieval technique (LSI) with a dynamic tech-
nique (SPR). We used PROMESIR in a set of case studies
for bug location in two large open-source programs,
Eclipse and Mozilla. The case studies showed that LSI
and SPR, based on different analysis methods and data,
complement each other, and the results obtained with the
combined techniques are better than those of any one of
the techniques used independently.

Feature location using PROMESIR proves to be accu-
rate and fast, but the technology behind is computation-
ally intensive. We will focus some of our future efforts on
making the supporting tools as effective as possible. In
addition, we plan to investigate how well PROMESIR can
be used to support tasks subsequent to feature location,
such as impact analysis and change propagation, when
the entire feature implementation needs to identified.

ACKNOWLEDGMENT
Giuliano Antoniol was partially supported by NSERC,
Canada Research Chair in Software Change and Evolu-
tion. Yann-Gaël Guéhéneuc was partially supported by
NSERC, Discovery Grant. Both Andrian Marcus and
Václav Rajlich were partially supported in this work
through grants from the National Science Foundation
(CCF-0438970) and the National Institute for Health
(NHGRI 1R01HG003491) and 2006 IBM Eclipse Innova-
tion Awards.

REFERENCES
 [1] V. Rajlich and N. Wilde, ʺThe Role of Concepts in Program

Comprehension,ʺ Proc. IEEE International Workshop on Program
Comprehension (IWPCʹ02), 2002, pp. 271‐278.

[2] V. Rajlich and P. Gosavi, ʺIncremental Change in Object‐
Oriented Programming,ʺ in IEEE Software, 2004, pp. 2‐9.

[3] S. Bohner and R. Arnold, Software Change Impact Analysis. Los
Alamitos, CA: IEEE Computer Society, 1996.

[4] J.‐P. Queille, J.‐F. Voidrot, N. Wilde, M. Munro, and ʺThe Im‐
pact Analysis Task in Software Maintenance: A Model and a
Case Study,ʺ Proc. International Conference on Software Mainte‐
nance, 1994, pp. 234 ‐ 242.

[5] L. C. Briand, J. Wuest, and H. Lounis, ʺUsing Coupling Meas‐
urement for Impact Analysis in Object‐Oriented Systems,ʺ Proc.
International Conference on Software Maintenance, 1999, pp. 475‐
483.

TABLE 9
EFFECTIVENESS OF EACH TECHNIQUE FOR THE MOZILLA BUGS

POSHYVANYK ET AL.: FEATURE LOCATION USING PROBABILISTIC RANKING OF METHODS BASED ON EXECUTION SCENARIOS -… 13

[6] M. Lindvall and K. Sandahl, ʺTraceability Aspects of Impact
Analysis in Object‐oriented Systems,ʺ Journal of Software Main‐
tenance: Research and Practice, vol. 10, no. 1, pp. 37‐57, 1998.

[7] G. Antoniol, G. Canfora, G. Casazza, and A. Lucia, ʺIdentifying
the Starting Impact Set of a Maintenance Request: A Case
Study,ʺ Proc. 4th European Conference on Software Maintenance
and Reengineering (CSMR2000), pp. 227‐231.

[8] V. Rajlich, ʺChanging the Paradigm of Software Engineering,ʺ
in Communications of ACM. vol. August, 2006, pp. 67‐70.

[9] T. Eisenbarth, R. Koschke, and D. Simon, ʺLocating Features in
Source Code,ʺ IEEE Transactions on Software Engineering, vol. 29,
no. 3, pp. 210 ‐ 224, March 2003.

[10] M. Salah, S. Mancoridis, G. Antoniol, and M. Di Penta, ʺTo‐
wards Employing Use‐Cases and Dynamic Analysis to Com‐
prehend Mozilla,ʺ Proc. 21st IEEE International Conference on
Software Maintenance (ICSMʹ05), 2005, pp. 639‐642.

[11] D. Eng, ʺCombining static and dynamic data in code visualiza‐
tion,ʺ Proc. ACM SIGPLAN‐SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering (PASTEʹ02), 2002, pp.
43‐50.

[12] G. Antoniol and Y. Guéhéneuc, ʺFeature Identification: A Novel
Approach and a Case Study,ʺ Proc. 21st IEEE International Con‐
ference on Software Maintenance (ICSMʹ05), 2005, pp. 357‐366.

[13] M. Ernst, ʺStatic and Dynamic Analysis: Synergy and Duality,ʺ
Proc. ICSE Workshop on Dynamic Analysis (WODAʹ03), 2003, pp.
24‐27.

[14] D. Edwards, S. Simmons, and N. Wilde, ʺAn approach to fea‐
ture location in distributed systems,ʺ Software Engineering Re‐
search Center 2004.

[15] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, ʺIndexing by Latent Semantic Analysis,ʺ Journal
of the American Society for Information Science, vol. 41, pp. 391‐
407, 1990.

[16] A. Marcus, A. Sergeyev, V. Rajlich, and J. Maletic, ʺAn Informa‐
tion Retrieval Approach to Concept Location in Source Code,ʺ
Proc. 11th IEEE Working Conference on Reverse Engineering
(WCREʹ04), 2004, pp. 214‐223.

[17] G. Antoniol and Y. G. Guéhéneuc, ʺFeature Identification: An
Epidemiological Metaphor,ʺ IEEE Transactions on Software Engi‐
neering, vol. 32, no. 9, pp. 627‐641, 2006.

[18] R. Jacobs, ʺMethods for combining expertsʹ probability assess‐
ments,ʺ Neural Computation, vol. 7, no. 5, pp. 867‐888, September
1995.

[19] R. Winkler and R. Clemen, ʺMultiple Experts vs. Multiple
Methods: Combining Correlation Assessments,ʺ Decision Analy‐
sis, vol. 1, no. 3, pp. 167‐176, September 2004.

[20] N. Wilde and T. Gust, ʺLocating User Functionality in Old
Code,ʺ Proc. IEEE International Conference on Software Mainte‐
nance, 1992, pp. 200‐205.

[21] A. D. Eisenberg and K. De Volder, ʺDynamic Feature Traces:
Finding Features in Unfamiliar Code,ʺ Proc. 21st IEEE Interna‐
tional Conference on Software Maintenance (ICSMʹ05), 2005, pp.
337‐346.

[22] E. Wong, W. Gokhale, S. S., and J. R. Horgan, ʺQuantifying the
closeness between program components and features,ʺ Journal
of Systems and Software, vol. 54, no. 2, pp. 87‐98, Oct. 2000.

[23] T. J. Biggerstaff, B. G. Mitbander, and D. E. Webster, ʺProgram
Understanding and the Concept Assignment Problem,ʺ CACM,
vol. 37, no. 5, pp. 72‐82, May 1994.

[24] A. V. Aho, ʺPattern matching in strings,ʺ in Formal Language
Theory: Perspectives and Open Problems New York: Academic
Press, 1980, pp. 325‐347.

[25] K. Chen and V. Rajlich, ʺCase Study of Feature Location Using
Dependence Graph,ʺ Proc. 8th IEEE International Workshop on
Program Comprehension (IWPCʹ00), 2000, pp. 241‐249.

[26] M. Robillard, ʺAutomatic Generation of Suggestions for Pro‐
gram Investigation,ʺ Proc. Joint European Software Engineering
Conference and ACM SIGSOFT Symposium on the Foundations of
Software Engineering, 2005, pp. 11 ‐ 20

[27] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang, ʺSNIAFL: To‐
wards a Static Non‐interactive Approach to Feature Location,ʺ
ACM Transactions on Software Engineering and Methodologies
(TOSEM), vol. 15, no. 2, pp. 195‐226, 2006.

[28] A. Marcus, V. Rajlich, J. Buchta, M. Petrenko, and A. Sergeyev,
ʺStatic Techniques for Concept Location in Object‐Oriented
Code,ʺ Proc. 13th IEEE International Workshop on Program Com‐
prehension (IWPCʹ05), 2005, pp. 33‐42.

[29] M. Salah and S. Mancoridis, ʺA hierarchy of dynamic software
views: from object‐interactions to feature‐interactions,ʺ Proc.
20th IEEE International Conference on Software Maintenance
(ICSMʹ04), 2004, pp. 72‐81.

[30] A. Marcus, J. I. Maletic, and A. Sergeyev, ʺRecovery of Trace‐
ability Links Between Software Documentation and Source
Code,ʺ International Journal of Software Engineering and Knowledge
Engineering, vol. 15, no. 4, pp. 811‐836, October 2005.

[31] L. H. Etzkorn and C. G. Davis, ʺAutomatically Identifying Re‐
usable OO Legacy Code,ʺ IEEE Computer, vol. 30, no. 10, pp.
66‐72, October 1997.

[32] W. Frakes and B. A. Nejmeh, ʺSoftware Reuse through Informa‐
tion Retrieval,ʺ ACM SIGIR Forum, vol. 21, no. 1‐2, pp. 30 ‐ 36
Sept.‐March 1986.

[33] Y. S. Maarek, D. M. Berry, and G. E. Kaiser, ʺAn Information
Retrieval Approach for Automatically Constructing Software
Libraries,ʺ IEEE Transactions on Software Engineering, vol. 17,
no. 8, pp. 800‐813, 1991.

[34] Y. Ye and G. Fischer, ʺSupporting Reuse by Delivering Task‐
Relevant and Personalized Information,ʺ Proc. IEEE/ACM Inter‐
national Conference on Software Engineering (ICSEʹ02), 2002, pp.
513‐523.

[35] J. I. Maletic and A. Marcus, ʺSupporting Program Comprehen‐
sion Using Semantic and Structural Information,ʺ Proc. 23rd In‐
ternational Conference on Software Engineering (ICSEʹ01), Canada,
2001, pp. 103‐112.

[36] A. Marcus and J. I. Maletic, ʺIdentification of High‐Level Con‐
cept Clones in Source Code,ʺ Proc. Automated Software Engineer‐
ing (ASEʹ01), 2001, pp. 107‐114.

[37] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora, ʺEnhancing
an Artefact Management System with Traceability Recovery
Features,ʺ Proc. 20th IEEE International Conference on Software
Maintenance (ICSMʹ04), 2004, pp. 306‐315.

[38] D. Poshyvanyk and A. Marcus, ʺThe Conceptual Coupling
Metrics for Object‐Oriented Systems,ʺ Proc. 22nd IEEE Interna‐
tional Conference on Software Maintenance (ICSMʹ06), 2006, pp.
469 ‐ 478.

[39] A. Marcus and D. Poshyvanyk, ʺThe Conceptual Cohesion of
Classes,ʺ Proc. 21st IEEE International Conference on Software
Maintenance (ICSMʹ05), 2005, pp. 133‐142.

[40] A. Kuhn, S. Ducasse, and T. Girba, ʺEnriching Reverse Engi‐
neering with Semantic Clustering,ʺ Proc. 12th Working Confer‐
ence on Reverse Engineering, 2005, pp. 133‐142.

[41] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, ʺAdvancing
candidate link generation for requirements tracing: the study of
methods,ʺ IEEE Transactions on Software Engineering, vol. 32, no.
1, pp. 4‐19, January 2006 2006.

[42] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora, ʺADAMS Re‐
Trace: a Traceability Recovery Tool,ʺ Proc. Proceedings of the

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, MONTH 2007

Ninth European Conference on Software Maintenance and Reengi‐
neering (CSMRʹ05), 2005.

[43] D. Poshyvanyk, A. Marcus, Y. Dong, and A. Sergeyev, ʺIRiSS ‐
A Source Code Exploration Tool,ʺ Proc. 21st IEEE International
Conference on Software Maintenance (ICSMʹ05), 2005, pp. 69‐72.

[44] D. Poshyvanyk, A. Marcus, and Y. Dong, ʺJIRiSS ‐ an Eclipse
plug‐in for Source Code Exploration,ʺ Proc. 14th IEEE Interna‐
tional Conference on Program Comprehension (ICPCʹ06), 2006, pp.
252‐255.

[45] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, ʺAn Ex‐
ploratory Study of How Developers Seek, Relate, and Collect
Relevant Information during Software Maintenance Tasks,ʺ
IEEE Transactions on Software Engineering (TSE) vol. 32, no. 12,
pp. 971‐987, December 2006.

[46] M. P. Robillard, W. Coelho, and G. C. Murphy, ʺHow effective
developers investigate source code: an exploratory study,ʺ IEEE
Transactions on Software Engineering (TSE), vol. 30, no. 12, pp.
889‐ 903, 2004.

[47] R. K. Yin, Applications of Case Study Research, 2 ed. CA, USA:
Sage Publications, Inc, 2003.

[48] Y. G. Guéhéneuc and A. A. Hervé, ʺRecovering Binary Class
Relationships: Putting Icing on the UML Cake,ʺ Proc. 19th Con‐
ference on Object‐Oriented Programming, Systems, Languages and
Applications (OOPSLAʹ04), 2004, pp. 301‐‐314.

[49] D. Poshyvanyk, Y. G. Guéhéneuc, A. Marcus, G. Antoniol, and
V. Rajlich, ʺCombining Probabilistic Ranking and Latent Se‐
mantic Indexing for Feature Identification,ʺ Proc. 14th IEEE In‐
ternational Conference on Program Comprehension (ICPCʹ06), 2006,
pp. 137‐146.

Denys Poshyvanyk is a PhD candidate in the Department of Com-
puter Science at Wayne State University. He received MS and MA
degrees in Computer Science from the National University of Kyiv-
Mohyla Academy, Ukraine and Wayne State University in 2003 and
2006 respectively. His research interests include software mainte-
nance and evolution, program comprehension, program analysis,
software metrics, and software visualization. He is a Microsoft Stu-
dent Partner for Wayne State University. He is member of the IEEE
and ACM.

Yann-Gaël Guéhéneuc is assistant professor at the Department of
Computing Science and Operations Research of University of Mont-
real where he leads the Ptidej team on evaluating and enhancing the
quality of object-oriented programs by promoting the use of patterns,
at the language-, design-, or architectural-levels. He holds a Ph.D. in
software engineering from University of Nantes, France (under Pro-
fessor Pierre Cointe's supervision) since 2003 and an Engineering
Diploma from École des Mines of Nantes since 1998. His Ph.D. the-
sis was funded by Object Technology International, Inc. (now IBM
OTI Labs.), where he worked in 1999 and 2000. His research inter-
ests are program understanding and program quality during devel-
opment and maintenance, in particular through the use and the iden-
tification of recurring patterns. He is interested also in empirical soft-
ware engineering where he uses eye-trackers to understand and to
develop theories about program comprehension. He has published
many papers in international conferences and journals.

Andrian Marcus is assistant professor in the Department of Com-
puter Science at Wayne State University. He received his PhD in
Computer Science from Kent State University in 2003 and he has
prior degrees from the University of Memphis and the “Babeş-Bolyai”
University of Cluj, Romania. His research interests include software
evolution, program understanding, and software visualization, focus-
ing on using information retrieval techniques to support software
engineering tasks. He serves on the Steering Committee of the
IEEE International Conference on Software Maintenance since 2005.
He is recipient of a Fulbright Junior Research Fellowship in 1997.

Giuliano Antoniol received his degree in electronic engineering
from the Universita' di Padova in 1982. In 2004 he received his PhD

in Electrical Engineering at the École Polytechnique de Montréal.
He worked in companies, research institutions and universities. In
2005 he was awarded the Canada Research Chair Tier I in Software
Change and Evolution. Giuliano Antoniol published more than 100
papers in journals and international conferences. He served as a
member of the Program Committee of international conferences
and workshops such as the International Conference on Software
Maintenance, the International Conference on Program Compre-
hension, the International Symposium on Software Metrics. He is
presently a member of the Editorial Board of the Journal Software
Testing Verification & Reliability, the Journal Information and Soft-
ware Technology, the Journal of Empirical Software Engineering and
the Journal of Software Quality. He is currently Associate Professor
in the École Polytechnique de Montréal, where he works in the area
of software evolution, software traceability, software quality and
maintenance.

Václav Rajlich is a professor and former chair of the Department of
Computer Science at Wayne State University. His research interests
include program comprehension and program evolution. He pub-
lished approximately 80 peer-reviewed articles.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

