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Abstract—This paper recasts the problem of feature location in source code as a decision-making problem in the presence of 
uncertainty.  The solution to the problem is formulated as a combination of the opinions of different experts.  The experts in this 
work are two existing techniques for feature location: a scenario-based probabilistic ranking of events and an information 
retrieval-based technique that uses latent semantic indexing.  The combination of these two experts is empirically evaluated 
through several case studies, which use the source code of the Mozilla Web browser and the Eclipse integrated development 
environment.  The results show that the combination of experts significantly improves the effectiveness of feature location when 
compared to each of the experts used independently. 
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——————————      —————————— 

1 INTRODUCTION

OFTWARE evolution requires adding new functional-
ities to programs, improving existing functionalities, 
and removing bugs, which can be considered as a re-

moval of unwanted functionalities.  A feature represents 
in a program some functionality that is accessible by and 
visible to the developers and usually it is captured by 
explicit requirements.  Identifying the parts of the source 
code that correspond to a specific functionality is a pre-
requisite to evolution and is one of the most common ac-
tivities undertaken by developers.  This process is called 
feature (or concept) location [1] and it is a part of the incre-
mental change process [2]. 

Although incremental change ultimately needs to iden-
tify all components to-be-changed, the programmer must 
find the location in the code where the first change must 
be made.  For that, the programmer uses a search process 
where the search space is the whole program and where 
various search techniques narrow down the search space.  
The literature limits this step to finding small number of 

feature components and it is considered sufficient for a 
successful feature location to find only one such compo-
nent.  The full extent of the change is then handled by 
impact analysis, which starts where concept location ends 
and finds all remaining impacted components.  Method-
ologically the two activities are different from each other 
and this is the reason why they are treated separately in 
the literature [3], [4], [5], [6], [7], [8].  Different types of 
techniques are effective in one activity versus the other.  
In this work, we are specifically addressing the identifica-
tion of methods in object-oriented software that are part 
of the implementation of a feature (i.e., they change when 
the feature is altered) and can be used as starting points in 
impact analysis. 

While developers often perform feature location 
manually, tool support is needed for large and complex 
programs.  Existing tools supporting feature location rely 
on data collected by static and–or dynamic analysis of the 
program.  Dynamic feature location is based on collecting 
and analyzing execution traces, which identify methods 
that are executed for a specific scenario.  Unfortunately, 
dynamic analyses are often unable to distinguish between 
overlapping features, because the same methods may 
contribute to several features.  Static analyses better filter 
and organize data but they can rarely identify methods 
contributing to a specific execution scenario exactly.  The 
research community has long recognized the need to 
combine static and dynamic techniques into hybrid tech-
niques to improve the effectiveness of feature location [9], 
[10], [11], [12].  The general benefits of combining static 
and dynamic analyses, for example described by Ernst 
[13], are that each kind of analysis collects data that 
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would be unavailable to the other analysis but could im-
prove its performance.  Indeed, static analyses are con-
servative and sound while dynamic analyses are efficient 
and precise (given appropriate test suites).  Thus, combin-
ing static and dynamic analyses compensate the impreci-
sion of static analyses and the unsoundness of dynamic 
analyses. 

All current hybrid techniques share a common as-
sumption: the fact that a method belongs to an execution 
trace or that a module is activated by a feature can be de-
termined with a complete certainty and thus can be ex-
pressed with a Boolean value.  However, in reality, im-
precision in the measures because of scheduling and 
sampling, uncertainty in the environment, perturbations 
in the execution due to multi-tasking, or simply lack of 
knowledge, lead towards expressing the relation between 
scenarios and features in nondeterministic terms [14].  
When a specified scenario is executed, a deterministic 
relation between the trace and the scenario exists, yet we 
cannot be certain whether a method call and–or a field 
access is relevant to the feature.  Thus, we have a non-
deterministic relation between scenarios and features. 

We use both certain and uncertain data extracted re-
spectively with static and dynamic analyses and filtered 
by probabilistic and information retrieval techniques to 
identify features in source code.  We use two previously 
developed techniques for feature location that provide 
complementary results.  The first technique is based on 
Latent Semantic Indexing (LSI) [15] of the source code 
[16].  The second technique is a Scenario-based Probabilis-
tic Ranking (SPR) of events observed while executing the 
program under given scenarios [12], [17].  We choose 
these techniques because they have shown promising 
results and are actively developed in-house. 

Using LSI, developers can query static documents (i.e., 
code and documentation) and obtain a ranked list of code 
fragments relevant to a feature.  Using SPR, developers 
analyze dynamic traces resulting from the execution of 
different scenarios and obtain a list of entities (i.e., meth-
ods and classes), again ranked according to their rele-
vance to a feature of interest. 

By definitions, both the LSI-based and the SPR-based 
techniques provide an uncertain judgment.  We draw a 
parallel between them and two collaborating experts, who 
provide their judgments independently.  We are in the 
position of a manager who must combine these two ex-
perts’ subjective forecasts [18], [19] to increase the cer-
tainty of the result.  We use an affine transformation [18] 
to combine the two experts’ judgements.  The affine coef-
ficient expresses our confidence in each expert and its 
ability to identify features correctly.  The proposed com-
bination of experts provides a new feature location tech-
nique named PROMESIR (Probabilistic Ranking Of 
Methods based on Execution Scenarios and Information 
Retrieval). 

We show that feature location with PROMESIR outper-
forms the judgment of either single expert.  We perform 
the comparison through several case studies.  First, we 
apply PROMESIR to the scenarios presented in an earlier 
case study [12] and the results clearly show the superior-

ity of the new method.  Then, we identify methods and 
classes involved in several documented bugs.  We com-
pare the methods and classes identified by PROMESIR 
with those actually contained in the official patches for 
fixing the bugs.  We show that PROMESIR identifies the 
relevant methods with better accuracy than either of the 
two techniques individually. 

The remaining sections of this paper are organized as 
follows.  Section 2 presents an overview of related work 
on dynamic and static techniques for feature location.  It 
also briefly introduces background information on the 
LSI-based and SPR-based techniques.  Section 3 presents 
our new technique for feature location, namely PROME-
SIR.  The evaluation of the new technique with several 
case studies is presented in Section 4.  The conclusions 
and future work are outlined in Section 5. 

2 PREVIOUS WORK 
Existing techniques for feature location broadly fall into 
three categories, based on the type of information they 
use: dynamic, static, and hybrid. 

Software reconnaissance by Wilde et al. [20] was the 
first published dynamic technique to identify features by 
analyzing execution traces of test cases.  Two sets of test 
cases are used to build two execution traces: an execution 
trace where the desired feature is exercised and an execu-
tion trace where the feature is not exercised.  The two 
traces are compared to identify the entities of the program 
that implement the feature.  This technique was recently 
extended to improve its accuracy [12], [14], [21] by intro-
ducing new criteria on selecting execution scenarios and 
by analyzing the execution traces differently.  Similarly, 
Wong et al. [22] analyzed execution slices of test cases to 
identify features in the source code. 

Biggerstaff et al. [23] introduced static feature location 
as the “concept assignment problem” and designed a tool 
that utilizes parsing, simple clustering, identifier names, 
and a browser, to support the identification.  The simplest 
and most used static techniques are based on searching 
the source code using text pattern matching tools, such as 
Unix grep [24].  A significant improvement over the grep-
based tools are the information retrieval-based ap-
proaches [16], which provide ranked results to the devel-
oper’s queries.  Chen and Rajlich [25] proposed a tech-
nique for feature location based on searching the Abstract 
System Dependence Graph (ASDG).  This process is im-
proved in [26], where the search of the dependency graph 
is guided based on the analysis of the topology of the 
structural dependencies.  Some methods combine differ-
ent kinds of static information (i.e., lexical and structural), 
such as the one proposed by Zhao et al. [27], which uses 
information retrieval and a branch-reserving call graph to 
search the source code.  A comparison of static feature 
location techniques is presented in [28]. 

Eisenbarth et al. [9] combined both static (i.e., depend-
encies) and dynamic (i.e., execution traces) data to iden-
tify features in programs.  They use formal concept analy-
sis to relate features together.  Salah and Mancordis [29] 
also use static and dynamic data to identify features in 
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Java programs. 
In the remainder of this section, we further introduce 

the LSI-based (Section 2.1) and the SPR-based (Section 
2.2) techniques, which form the foundation of our new 
PROMESIR technique. 

2.1. Information Retrieval-based Feature Location 
using Latent Semantic Indexing 

Static feature location is essentially a search task, whether 
the developer searches the source code or the documenta-
tion and most information retrieval techniques, including 
LSI, facilitate this search.  LSI is an advanced information 
retrieval method that analyzes the relation between 
words and documents in large bodies of text.  For every 
document in the text, the technique generates a real-
valued vector description.  This representation can be 
used to index and to compare documents, using different 
similarity measures.  The central concept of LSI is that 
information about contexts in which a particular word 
appears or does not appear provides a set of constraints 
that determines the similarity of the meanings of words 
with one another.  By applying LSI to source code and its 
internal documentation (i.e., comments), candidate com-
ponents can be compared using these similarity meas-
ures.  More technical details on LSI are available in [15].  
We chose LSI over vector space models (VSM) or other IR 
methods for two main reasons.  First, LSI has been shown 
to address the problems of polysemy and synonymy [15] 
quite well, which is important with respect to the feature 
location problem, because developers usually construct 
queries without knowing precisely the vocabulary of the 
target system.  Second, in our previous work on traceabil-
ity link recovery [30], we showed that LSI outperforms 
VSM and Bayes classifiers. 

Internal source code documentation has been recog-
nized as commonly written in a subset of English [31] that 
lends itself to the use of information retrieval techniques.  
In addition, identifiers in the source code form a language 
of their own with no defined grammar or morphological 
rules.  LSI is well-suited to deal with such situations, as it 
does not use a predefined grammar or vocabulary.  The 
meanings of the words in LSI are derived from their us-
age rather than from a dictionary or thesaurus, which is 
an advantage over a traditional natural language ap-
proach [31], where a subset of the English grammar and a 
dictionary must be developed. 

In software engineering, LSI has been used for many 
tasks closely related to feature location, such as reuse [32], 
[33], [34], abstract data types identification [35], clone de-
tection [36], traceability link recovery between source 
code and external documentation [30], [37], conceptual 
coupling [38] and cohesion [39], clustering [40], require-
ments tracing [41], establishing traceability links between 
artefacts [42], etc.   

Marcus et al. [16] proposed an information retrieval-
based technique for feature location using LSI.  Using LSI 
for feature location allows the developer to formulate 
queries in natural language (or a close format) and the 
results are returned as a list of source code elements, 
ranked by the relevance to the query.  As an analogy, LSI 

is used for feature location in source code much like to-
day’s popular search engines (e.g., Google) are used to 
search the Web or local hard drives. 

Figure 1 shows the main steps in the feature location 
process using LSI.  Tool support exists to use this method 
in MS Visual Studio for C++ projects [43] and in Eclipse 
for Java projects [44].  The process has five major steps: 

1. Corpus creation.  The source code is parsed using a 
developer-defined granularity level (i.e., methods or 
classes) and documents are extracted from the source 
code.  A corpus is created to be indexed with LSI, such 
that each method (and–or class) will have a correspond-
ing document in the corpus. 

2. Indexing.  The corpus is indexed using LSI and a 
representation of the corpus as a real-valued vector sub-
space is created.  In this subspace, each document (hence 
each method or class) has a corresponding vector. 

3. Query formulation.  A developer selects a set of 
words that describe the feature.  This set of words consti-
tutes the query.  The tool checks whether the words from 
the query are present in the vocabulary of the source code 
(generated by LSI).  If no word is present, then the tool: 

a. Suggests similar words using the vocabulary of the 
source code. 

b. Eliminates the word from the initial query.  If the 
elimination of a word significantly alters the meaning of 
the query, step 3 is reapplied with additional words for 
the query. 

4. Ranking documents.  Similarities between the query 
and every document from the source code are computed.  
We use the cosine between the vectors corresponding to 
the query and a document as similarity measure.  This 
similarity measure yields values between [-1, 1] for any 
pair of vectors, with 1 corresponding to identical docu-
ments.  Negative values are associated with unrelated 
documents.  The similarity between a query expressing 
some semantic characteristics of a feature and a set of 
data about the source code (e.g., manual pages, documen-
tation, classes, or methods) indexed via LSI enables the 
production of a ranking of documents relevant to the fea-
ture.  All the documents are ranked by the similarity 
measure in descending order.  The final score for each 
document x and the current query is denoted as flsi(x). 

5. Results examination.  The developer examines the 
source code documents sorted by flsi(x), starting with 
documents with highest similarities.  For every source 
code document examined, a decision is required whether 
the document is part of the feature or not.  If it is part of 

Fig. 1. The feature location process using LSI  
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the feature, then the search succeeded, if it is not and new 
knowledge obtained from the investigated documents 
helps formulate a better query (e.g., narrow down the 
search criteria), then step 3 should be reapplied else the 
next document in the list should be examined. 

In our experience, developers tend to look at only the 
few first documents before they formulate new queries 
[16], [28], [45], [46].  Detailed examples on how this 
method is used can be found in Section 4.5 and in [16], 
[28]. 

2.2. Feature Location using Scenario-based 
Probabilistic Ranking 

We present for the sake of completeness the SPR-based 
technique, previously published in [12], [17].  SPR is a 
dynamic analysis technique that links features with pro-
gram source code and thus identifies entities of the pro-
gram implementing the specific feature using different 
scenarios. 

A scenario defines the context in which a feature is 
studied, for example the sequence of the developer’s ac-
tions with the program.  Let F′ (and F respectively) be a 
set of scenarios (not) exercising a feature of interest; sce-
narios are used to collect traces.  A trace is a sequence of 
events, dynamically collected by executing a given sce-
nario.  Events are traditionally defined loosely [17] but, in 
the context of this work, they correspond to method and 
function calls.  An interval is a subsequence of contiguous 
events belonging to a trace.  Intervals may or may not 
pertain to a feature and thus may or may not contain 
relevant events.  A feature of interest is characterized 
dynamically by the events related to it and statically by its 
micro-architecture, which is a collection of entities acti-
vated by the feature (i.e., classes, interfaces, fields, and 
methods). 

We want to classify events as relevant or irrelevant 
with respect to the many possible different features inten-
tionally or accidentally exercised in the sets of scenarios F′ 
and F.  Exercising scenarios in F′ produces the class CI′, a 
set of intervals I′i containing events relevant to the fea-
ture.  Scenarios in F produce CI, a class of intervals Ij con-
taining events irrelevant to the feature.  Intervals I′i (Ij, 
respectively) are marked as relevant (irrelevant, respec-
tively) during trace collection.  However, they may con-
tain irrelevant (relevant, respectively) events due to un-
certainty.  Yet, relevant events have frequencies higher in 
CI′ than in CI intervals.  Consequently, the problem of 
deciding if an event ek contributes to a feature is mapped 
to the problem of testing if the event ek is statistically 
more frequent in the I′i intervals than in the Ii intervals. 
For any given interval I (either I′i or Ij), the ek frequency is 
computed as the ratio NI(ek) / NI, where NI(ek) is the num-
ber of times ek appears in I and NI is the overall number of 
events in I.  We classify events as relevant when their fre-
quencies in intervals I′i is higher than in intervals Ij.  The 
classification process is parameterized by a threshold Θ   
and a level of confidence α.  For each pair of intervals in 
CI′ and CI and for each event we perform hypothesis test-
ing attempting to reject the null hypothesis H0 with a con-
fidence level of α, that the event frequency is the same in 

two intervals I′i and Ij.  If the null hypothesis is rejected 
more than Θ times the event is tagged as relevant to the 
feature.  We then use a relevance index to rank and asso-
ciate the most relevant events with the feature of interest.  
Let ei be an event classified as relevant and let NCI′ (ei) be 
the number of times ei appears in all intervals belonging 
to CI′ (NC′(ei) the number of times it appears in CI′) further 
assume that NCI′ is the overall number of events in CI′ (NCI 
the overall number of CI events), then the score referred 
to as fspr(ei) is computed as: 
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Several events may have the same score and the num-
ber of relevant events might be too large to be of any help 
to developers, therefore we filter ranked relevant events 
and keep only those with a higher relevance.  We use 
Equation 2 and a positive threshold t to reduce the set of 
feature-relevant events and thus to limit the number of 
events that developers must consider as relevant to a fea-
ture of interest: 

{ ( ) }t i spr ie f e tE = | ≥′                                                   (2) 

We extend the definition of fspr in Equations 1 and 2 as 
applying to the methods and–or functions corresponding 
to events rather than to the events themselves.  We thus 
can directly compute the score of a method or a function. 

Then, we use the subset E′t of ranked relevant methods 
and functions to build a micro-architecture representing 
the feature of interest, which can be displayed against the 
program architecture and compared to other micro-
architectures to help developers precisely locate respon-
sibilities. 

Results reported in the following case studies were ob-
tained by selecting an acceptance threshold value of NCI′ × 
NCI – 1, and α of 1.00%; these values, in our experience, 
ensure relatively small sets E′t while retaining most rele-
vant events. 

3 PROMESIR: COMBINING THE EXPERTS 
We propose a new technique to improve the precision of 
feature location by combining the LSI- and SPR-based 
techniques into PROMESIR.  We consider the LSI and 
SPR rankings of source-code elements as the judgments of 
two independent experts, who provide their expertise to 
solve the problem of identifying a feature.  We draw in-
spiration from Jacobs [18] to combine the LSI and SPR 
rankings via an affine transformation, using the following 
equation: 

( )∑
=

=
n

i
iii xfxf

1

)( βλ                                                     (3) 

where fi(x) is the judgment of the ith expert, λi is a weight 
expressing our confidence in the ith expert and βi is a re-
normalization constant.  We use re-normalization con-
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stants because the different experts may express judg-
ments that are not commensurable.  The λi coefficient can 
also be selected so that fi(x) lies in the interval [0, 1], as we 
do in our case.  The judgments of the experts should be in 
the same interval, thus imposing the constraints that the 

weight λi defines an affine transformation:  ∑
=

=
n

i
i

1
1λ  

Our experts state their respective judgments based on 
different data.  The LSI expert builds its judgment based 
on the source code lexical similarities, while the SPR ex-
pert grounds its judgment on the probabilistic ranking of 
dynamic events observed in execution traces.  Yet, both 
experts answer, through different means, the same ques-
tion: “What is the location of a feature of interest?”  PROME-
SIR combines the valuable expertise of both experts to 
obtain a more accurate answer and to minimize the de-
veloper’s effort. 

We must align the definitions used in each technique 
to formally define the PROMESIR technique.  Let x be an 
entity (method or class in an object-oriented program or a 
function when analyzing non object-oriented programs) 
declared in the implementation of a program.  As previ-
ously mentioned, we denote with flsi(x) and fspr(x) the 
score assigned to x by our experts, LSI and SPR respec-
tively.  The flsi(x) and fspr(x) scores are not defined over a 
same domain: flsi(x) score takes values in [-1, 1] while 
fspr(x) score is defined over [0, 1].  The combination of the 
two experts’ judgments with Equation 3 requires a re-
normalization of their scores.  This normalization must 
not disrupt the LSI and SPR experts’ judgments because 
we want to promote entities that both experts consider 
relevant.  Among several possible renormalizations, we 
select a very simple transformation grounded on the fact 
that the negative values of the LSI-based similarities are 
irrelevant.  The re-normalized LSI and SPR scores are ob-
tained as follows:  
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The combination of the two experts in PROMESIR 

leads to rewrite Equation 3 as:  
 

( ) ( ) ( ) ( )1PROMESIR spr spr lsi lsif x f x f xλβ λ β= + −     (5) 

 
where λ expresses our confidence on the respective 

ability of the LSI or SPR experts to score entities relevant 
to a feature of interest with better accuracy.  We use the 
scores fPROMESIR(x) to sort source code entities and present 
the ranked list to the developers, who examine the source 
code entities starting with those with highest scores and 
in descending order, until entities most relevant to the 
feature are found. 

Given this combination method, the results of one ex-
pert do not depend on the other.  Thus, PROMESIR al-

lows for LSI and SPR to be run in parallel, if so desired.  
Both experts need user input, but they operate differently, 
as presented above: LSI is based on an iterative approach, 
where results are improved at each step, whereas SPR is 
non-iterative.  Consequently, PROMESIR is also an itera-
tive technique as follows: 

1. Compute fspr(x) as described in Section 2.2. 
2. Run steps 1, 2, 3, 4 from the LSI-based approach as 

described in Section 2.1. 
3. Combine the rankings based on Equation 5. 
4. Examine the results as in step 5 of the LSI-based 

method. 
In the following case studies, we applied each tech-

nique in parallel, so we can assess their accuracy indi-
vidually.  In this case PROMESIR is not applied itera-
tively, but the combination of judgments is done on the 
best result of each expert. 

4. EVALUATION OF PROMESIR 
We performed several case studies to assess the effective-
ness of PROMESIR.  All the case studies are designed and 
conducted according to recommendations in the state-of-
the-art [47].  We present a case study replicating a previ-
ously published experiment [12], further developed in 
[17].  We show that PROMESIR, on average, is more effec-
tive than either LSI or SPR. 

In each task, we compare the rankings produced by 
LSI, SPR, and PROMESIR.  We conclude with a discus-
sion on the increase of effectiveness and on the choice of 
the queries and scenarios. 

4.1. Design and Objectives of the Case Studies 
In the following case studies, we chose methods as the 
level of granularity for the software entities and we assess 
and compare the effectiveness of the three techniques 
when identifying a first method relevant to a feature of 
interest.  We focus on the first identified method because 
the other methods implementing the feature are inferred 
during the design of a change, which includes impact 
analysis and change propagation.  Thus, we set the goal 
of each case study as the accurate location of at least one 
method that implements part of the feature. 

We also chose large open-source programs to show the 
scalability of our techniques and to allow replication of 
the studies.  In each case study but the first one, we use 
documented bugs to assess our work: each documented 
bug is used as a gold standard against which we compare 
the results of the techniques.  Indeed, the documentation 
of each bug specifies which methods were changed to fix 
this bug.  We consider these changed methods as belong-
ing to the unwanted feature associated with the bug.  One 
method may belong to more than one bug (i.e., changed 
in different bug fixes), but it is at least exercised in the 
associated unwanted feature.  We do not attempt to iden-
tify defects (i.e., the root cause of a bug) such as a loop off 
by one, because we work at the method level and have 
therefore no information on the executed statements.  We 
used the following criteria to select bugs for the case 
study: 
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• We chose well-known, documented, and reproduci-
ble bugs; 

• We selected bugs that do not include methods and 
classes involved in the first case study to prevent ob-
taining better results by chance; 

• We chose bugs with available and approved patches 
applied in recent releases.  

None of the authors knew the parts of the programs 
corresponding to the features to eliminate potential bias.  
In particular, the evaluations of the relevance of each 
technique is founded solely on the methods identified by 
the techniques and on the methods present in the official 
patches associated with each bug, thus as experimenters, 
we did not have to make any subjective decisions biasing 
the results of our evaluations. 

In the following case studies, we use a λ value of 0.5.  
We investigate the influence of the λ value on the 
PROMESIR ranking in the discussions. 

4.2. Objects of the Case Studies 
We use two large open-source programs for our case 
studies: Eclipse1 and Mozilla2.  Eclipse is an open-source 
integrated development environment.  It is a platform 
used both in the open-source community and in industry, 
for example as a base for the WebSphere family of devel-
opment environments.  Eclipse is mostly written in Java, 
with C/C++ code used mainly for the widget toolkit, 
which we do not analyze.  We use versions 2.0.0, 2.1.0, 
2.1.3, 3.0.1, 3.1.1, and 3.3M1.  For example, version 2.1.3 
contains 7,648 classes with 89,341 methods in more than 
8,000 source code files for about 2.4 MLOC (millions lines 
of code).  

Mozilla is an open-source Web browser ported to al-
most all known software and hardware platforms.  It is as 
large as many industrial size programs and it is devel-
oped mostly in C++.  We do not analyze the parts of 
Mozilla written in other programming languages, like C, 
Java, IDL, XML, HTML, etc.  In our case studies, we use 
the source code of versions 1.5.1 and 1.6 of Mozilla.  Ver-
sion 1.5.1 includes 4,853 classes and 53,617 methods im-
plemented in more than 10,000 source files and 3,500 dif-
ferent subdirectories, for about 3.7 MLOC.   

We choose to use conservative reverse-engineering 
techniques and apply strict rules classifying as classes 
only entities declared as such according to the C++ syn-
tax.  Moreover, we consider structures and complex tem-
plates (e.g., templates mixed with structures) as outside of 
the boundary of reverse-engineered models and do not 
recover their attributes, methods, and locations in source 
code files.  Different tools were used to extract informa-
tion from Mozilla and Eclipse [48]. 

In each study, we follow the method for LSI ranking 
described in Section 2.1.  We construct the corpus for each 
software system by extracting all comments and identifi-
ers from the source code.  The resulting text is processed 
as follows: some tokens are eliminated (e.g., operators, 
special symbols, some numbers, keywords of the pro-
gramming language, standard library function names, 
 

1 www.eclipse.org 
2 www.mozilla.org 

etc.); the identifier names in the source code are split into 
parts based on known coding standards whereas the 
original form of each identifier is preserved as well; a 
document of the corpus is created with the comments and 
identifiers corresponding to one method.  We do not use a 
predefined vocabulary or a predefined grammar, there-
fore no morphological analysis or transformations are 
applied.  Some researchers use word stemming, however 
this is an optional step, which is not required while using 
LSI.  Table 1 shows the size of the corpora we created.  
Based on our previous experience [49], we use a dimen-
sionality reduction factor of 500, which accurately repre-
sents a semantic space of this size. 

Similarly, the use of the SPR technique follows the pat-
tern described in Section 2.2.  The SPR technique provides 
sets of ranked methods using their frequencies in the exe-
cution traces. 

4.3. Measuring the Effectiveness of the Techniques 
We need a uniform measure to compare the effectiveness 
of the feature location techniques.  This measure must be 
suited to evaluate the results of all LSI, SPR, and 
PROMESIR techniques.  We do not use standard informa-
tion retrieval measures such as precision and recall, be-
cause the feature location techniques may assign scores to 
all methods in a program, consequently, and without a 
threshold, recall always equals 1.0 while precision equals 
1/k, with k the number of methods in the program.  We 
could use a threshold to include in the precision and re-
call only methods with a score higher than the threshold.  
However, this would artificially increase the number of 
parameters of our techniques. 

Thus, to compare the techniques, we use the rank of 
the first related method as a measure of effectiveness of 
every technique.  Every technique, LSI, SPR, and 
PROMESIR outputs a ranked list of methods that devel-
opers must investigate.  The goal of each technique is to 
reduce the effort of the developers in the location process.  
Thus, we measure the effort that the developers must 
spend as the number of methods from the list that they 
need to investigate until they find the first related 
method.  We do not take into account the size of the soft-
ware system, because in every case the developer must 
investigate n methods before finding the first relevant 
method.  In analogy, consider an Internet search engine, 
which provides the list of results in response to a user’s 
query.  The searching effort may be measured as the 
number of links she must visit before she finds relevant 
information.  Note that the size of the World Wide Web 
grows every day while this fact successfully remains la-
tent from the user’s perspective.  

TABLE 1 
LSI CORPUS VITALS FOR MOZILLA AND ECLIPSE 
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Formally, we define the effectiveness of a technique j, 
Ej, as the rank r(mi) of the method mi, where mi is the top-
ranked method among the methods that must be changed 
to fix a bug (i.e., implementing part of the located fea-
ture).  The effectiveness measure shows how many meth-
ods must be investigated before the first method relevant 
to the feature is located.  Obviously, in the best case sce-
nario, the developer will find one of the desired methods 
in the first place, so she only needs to investigate that 
method, hence the efficiency value is one (1).  A higher 
effectiveness value indicates more search effort needed. 

While the effectiveness measure can be applied to the 
results of LSI and PROMESIR without any problems, we 
need to make certain assumptions for SPR.  The SPR 
technique may score many methods of the source code as 
100% relevant to a feature of interest (i.e., r(mi) = 1), while 
not all of them are in fact relevant.  Thus, to define the 
SPR effectiveness measure, we follow the average case sce-
nario in which developers must investigate half of the 
methods from the set of methods ranked as 100% relevant 
to the feature. 

Regardless of the technique used to identify features, 
eventually the developer must inspect a number of meth-
ods until she finds one method that actually implements 
part of the feature.  Effectiveness measures how many 
methods the developer must inspect to identify a starting 
point of the feature.  The goal of each technique is to as-
sist the developer such that she needs to look at fewer 
methods.  The effectiveness can be regarded as an inverse 
measure as the lower the rank of the first method the bet-
ter the result is.  In other words, low effectiveness value 
shows that less search effort is needed to locate the start-
ing point of feature implementation. 

4.4. The First Case Study – Book-marking in 
Mozilla 

This first case study replicates a previous case study [12], 
where the feature to be located is “save a bookmark”, which 
can be stated as: “identifying methods in Mozilla that are part 
of the feature activated when a URL is saved”.  We perform 
the same case study (i.e., the same scenario and the same 
feature location task) to compare the previous results 
from SPR ranking alone with results from LSI and 
PROMESIR.  This replication is important to compare the 

three ranking techniques with one another.  It is a partial 
replication because we replicate the scenario and the task 
only – we do not apply again the SPR ranking, as the re-
sults are available elsewhere [17]. 

We considered two scenarios in which a developer is 
interested in understanding the inner workings of Mozilla 
regarding its book-marking feature: 
• Scenario 1:  The developer visits a URL.  She opens 

Mozilla, clicks on a previously bookmarked URL, 
waits for the page to load, and closes the browser; 

• Scenario 2:  The developer acts as before but, once the 
page is loaded, she saves the URL using the mouse 
right button and closes the Web browser. 

We applied the SPR ranking by running Mozilla ac-
cording to the two scenarios and by collecting corre-
sponding dynamic traces [17].  We then produced sets of 
relevant methods to the feature of interest.  LSI rankings 
were computed by formulating a query with the terms 
related to “bookmark” from the vocabulary of Mozilla gen-
erated during indexing with LSI.  We used our judgment 
to assess whether the terms relate to the feature of creat-
ing a new bookmark.  We created the following query: 
“bookmark newbookmark bookmarkname bookmarkresource 
bookmarkadddate createbookmark insertbookmarkitem delete-
bookmark bookmarknode”.  Three methods (identified via 
manual inspection) are relevant to this feature, all from 
the class nsBookmarkService: AddBookmarkImmediately, Cre-
ateBookmark, and CreateBookmarkInContainer.  LSI ranked 
these methods on the 1st, 14th, and 36th positions respec-
tively.  No ranking is reported for SPR because the meth-
ods responsible for implementing the feature were scored 
100% relevant among 272 methods and thus could be as-
signed any arbitrary rank between 1 and 272.  PROMESIR 
ranks these three methods on the 1st, 2nd, and 4th position 
respectively.  The ranks of the three methods highlights 
that LSI and SPR are complementary techniques.  Indeed, 
none of the other 33 methods ranked by LSI do not ap-
pear in the 272 methods from SPR. 

The effectiveness for LSI, SPR, and PROMESIR respec-
tively, are: ELSI = 1, ESPR = 272 / 2 = 136, and EPROMESIR = 1. 

The values of effectiveness for LSI and PROMESIR are 
equal because we only consider the rank of the first top 
method.  These results provide evidence that the combi-
nation of experts is likely to improve individual rankings.  

TABLE 2
METHODS RESPONSIBLE FOR THE UNWANTED FEATURES IN ECLIPSE 
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The following case studies are much more extensive, 
ranging across application domains and programming 
languages, and have the goal of verifying the findings of 
the first case study. 

4.5. The Second Case Study – Locating Bugs in 
Eclipse 

We applied the three techniques to locate three different 
unwanted features (i.e., bugs) in Eclipse.  Each bug is cho-
sen for its characteristics that satisfy the previously de-
scribed criteria.  These bugs are: 

1. Bug #741493, described as “The search words after ' " 
' will be ignored”, present in the versions 3.0.0, 3.0.1, 
3.0.2, and fixed in version 3.1.1. 

2. Bug #51384, described as “Double-click-drag to select 
multiple words doesn’t work”, present in version 2.1.3 
and fixed in version 3.3M1. 

3. Bug #317795, described as “UnifiedTree should en-
sure file/folder exists”.  This bug exists in the version 
2.0.0 and subsequently fixed in 2.1.0. 

Methods and functions modified by developers to re-
move the bugs were identified by inspecting the provided 
patches recognized by the Eclipse source code reviewers.  
Table 2 reports the patched methods that have been actu-
ally modified to fix those bugs.  Very often more than one 
patch was produced in the process of fixing a bug.  In 
such a case, we considered both the first patch, often cor-
responding to a quick answer to the urgent need to fix the 
bug, and the last patch, usually involving careful reor-
ganization or even refactoring of several classes and 
methods.  For example, for the bug #5138 there are two 
patches, thus we considered the union of the modified 
methods from both patches.  We did not consider inter-
mediate patches, as they are always superseded by the 
last patch and may contain spurious changes. 

In Table 3 we list descriptions of two families of sce-
narios (one exercising the feature and one not) used to 
 

3 https://bugs.eclipse.org/bugs/show_bug.cgi?id=74149 
4 https://bugs.eclipse.org/bugs/show_bug.cgi?id=5138 
5 https://bugs.eclipse.org/bugs/show_bug.cgi?id=31779 

obtain the SPR rankings and the queries which were exe-
cuted to obtain the best LSI rankings of the methods for 
each Eclipse bug. 

In each instance the scenarios are extracted from the 
bug description.  Selecting the initial queries and refining 
them is based on the experience of the developer.  A naïve 
approach is to simply use the entire bug description as 
initial query and then refine it, based on the results or 
select several related terms from the bug description.  We 
choose to start from simple queries consisting only of a 
few terms and this approach resulted in formulating at 
least one extra query each time and at most three extra 
queries.  Table 3 shows only the last performed query, 
which generated the best LSI ranking.  We show in detail 
how the queries were formulated for bug #74149 to better 
understand this approach. 

Based on the bug description and the developer’s in-
terpretation, using the method explained in Section 2.1, 
the initial query is formulated as “search query”.  The re-
sults did not return any relevant method in the top of the 
ranked list. 

Given these results, we reformulated the query to be 
more specific to our search.  We noticed that the word 
“token” is used in methods that deal with parsing a query 
and the Eclipse vocabulary indicates the existence of the 
word “quoted”.  We combined these words into a new 
query, “search query quoted token”, which returned one 
relevant method in the 5th position (see Figure 2 and Table 

TABLE 3
SCENARIOS AND QUERIES USED FOR ECLIPSE 

 

Fig. 2. The list of ranked results for the query ‘search query quoted 
token’ for bug#74149 
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3).  For the first query “search query” the top four re-
turned methods are the same as for the second query.  We 
used similar judgments in our case studies.  For simplic-
ity, we only report the final query from here on. 

Table 4 reports the name of the method first identified 
as relevant to the bug and its ranking by each method.  As 
explained before, the SPR ranking is in fact the number of 
methods that are considered 100% relevant to the feature 
of interest by this technique, divided by two, because we 
consider average case scenario.  We also compute the im-
provement that PROMESIR brings over the individual 
technique.  Based on the results in Table 4 we conclude 
that combining the two LSI and SPR techniques dramati-
cally improves the effectiveness of the feature location. 

4.6. Third Case Study – Locating Bugs in Mozilla 
We applied the three techniques to locate five different 
bugs in Mozilla.  Each bug is chosen for its characteristics 
that satisfy the previously described criteria.  These bugs 
are: 

1. Bug #1821926, described as “quotes (“) are not re-
moved from collected e-mail addresses”, present in 
Mozilla v1.6 and fixed in v1.7. 

2. Bug #2161547, described as “Anchors in e-mails are 
broken - clicking anchor doesn't go to target in an e-
mail”, existing in v1.5.1 and patched in v1.6. 

3. Bug #2252438, described as “Text is printed in mir-
ror-image on all pages in1.6a display and print-preview 
is correct, but the generated postscript is wrong”, pre-
sent in v1.6 and fixed in v1.7. 

4. Bug #2094309, which is described as “Ctrl+Delete 
and Ctrl+BackSpace delete words in the wrong direc-
tion”, present in v1.5.1 and fixed in v1.6.  

5. Bug #23147410, described as: “If a user gets a lot of 
attachments (e.g. thirty) with only one short line the 
content of this file is damaged”, located in v1.5.1 and 
fixed in v1.6. 

Methods and functions modified by developers to re-
move the bugs were identified by inspecting the patches 
endorsed by Mozilla source code reviewers.  Table 5 re-
ports the methods that have been patched. 

As with Eclipse, more than one patch could have been 
produced in the process of fixing the bugs.  In such a case, 
we considered the union of the changed methods from 
the first patch and the most recent patch. 

Table 6 reports a narrative description of the two fami-
 

6 https://bugzilla.mozilla.org/long_list.cgi?buglist=182192 
7 https://bugzilla.mozilla.org/show_bug.cgi?id=216154 
8 https://bugzilla.mozilla.org/show_bug.cgi?id=225243 
9 https://bugzilla.mozilla.org/show_bug.cgi?id=209430 
10 https://bugzilla.mozilla.org/show_bug.cgi?id=231474 

lies of scenarios (one exercising the feature and the other 
not) used to obtain the SPR rankings and the queries used 
to rank methods using LSI.   

We explain in more details the computation of the SPR 
rankings.  Scenario 1, used to build the CI′ was executed 
only once while we re-used all available scenario execu-
tions not interfering with the given bug detection to build 
CI.  This corresponds to mimicking a situation in which 
developers reuse as much as possible previous knowl-
edge and collected data to accomplish theirs tasks. 

For each bug, the scenarios produce events, identifying 
called methods and functions.  These events are collected 
to build the CI′ and CI sets.  Table 7 summarizes the num-
bers of unique methods and classes belonging to the CI′ 
and CI sets respectively for each bug. 

CI′ and CI cardinalities are spread fairly evenly across 
bugs and even for the smaller sets, the task to manually 
identify methods responsible for the bug by comparing 
sets and inspecting methods or classes would be over-
whelming.  For example, bug #182192 involves one class 
and two methods while CI′ and CI sets contain thousands 
of classes and methods.  Obviously, the methods to be 
modified must belong to either CI′ or to the intersection 
CI′ ∪ CI, which contains respectively 188 and 2,694 unique 
methods, when compared using Unix comm.  Yet, the cost 
of manually inspecting these 188 + 2,694 unique methods 
is still substantially higher than the effort required when 
studying E′1 methods only.  Table 8 reports E′1 and E′0 
figures for Mozilla bugs.  Clearly, the SPR technique takes 

TABLE 4
EFFECTIVENESS OF EACH TECHNIQUE FOR THE ECLIPSE BUGS 

 

 

TABLE 5 
METHODS AND FUNCTIONS RESPONSIBLE FOR THE UNWANTED 

FEATURES IN MOZILLA, GLOBAL FUNCTIONS ARE IDENTIFIED WITH 
THE ‘ROOT::’ PREFIX 
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advantage of its probabilistic nature and its ability to rank 
relevant versus non-relevant events.  E′1 and E′0 cardinal-
ities have to be compared with the corresponding cardi-
nalities of CI′, because at most E′1 methods would require 
inspection if F′ and F scenarios are carefully chosen.  
However, SPR cannot distinguish between two methods 
or classes involved in E′1 sets. 

Table 9 reports for each bug, the top ranked methods 
and their rankings with LSI, SPR, and PROMESIR, with λ 
= 0.5.  For SPR, the ranking is the cardinality of the E′1 set 
divided by two.  We also compute the improvement fac-
tor that PROMESIR brings over the individual tech-
niques.  Again, PROMESIR increases dramatically the 
effectiveness of the feature location over the individual 
techniques. 

We chose different values for λ but did not observe 
any significant changes in the final ranks of the methods 
when considering values of λ around 0.5.  We further dis-
cuss the impact of λ on the final results in Section 4.7. 

4.7. Discussion 
Each feature location technique has its strengths and 

weaknesses.  Given the different types of data and proc-
esses they use, they do not have common weaknesses and 
thus their combination overcomes in part their respective 
shortcommings.  Each method relies on the developers as 
SPR requires a developer to define and run scenarios and 
LSI needs developer-defined queries.  Poor choice of sce-
narios or queries impacts negatively the results.  The SPR 
technique allows the developer to define multiple scenar-
ios to address this problem, while the LSI-based tech-
nique provides the developer with terms related to her 
query to help improve it.  The results of the LSI are im-
pacted by the extent to which the comments and identifi-
ers in the program reflect the domain or the developer’s 
familiarity with the vocabulary of the program.  These 
factors do not influence SPR, where the tendency is to 
rank more methods than necessary as relevant to a fea-
ture, while poor queries or language will return no rele-
vant method in the top of the ranked list when using LSI. 

The case studies provide data to assess the effective-
ness of PROMESIR and to assess the help brought to the 
developer for identifying features in the source code.  In 
the Mozilla case study the average improvement of 

TABLE 6
SCENARIOS AND QUERIES USED FOR THE MOZILLA 

 

TABLE 7
CARDINALITYOF SETS CI′ AND CI MEASURED IN NUMBERS OF UNIQUE METHODS AND CLASSES FOR MOZILLA BUGS 
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PROMESIR over SPR was close to the one obtained in 
Ecplise (121 vs. 182), whereas the improvement in the LSI 
case is more dramatic (20 vs. 4).  One possible explanation 
is the quality of the text in Eclipse with respect to the text 
in Mozilla.  In addition, except for one bug in Mozilla, we 
ran only two queries for each bug, whereas in Eclipse we 
used three for two of the bugs and two queries for the 
other bug.  Refining the queries more could have resulted 
in better results.  In each case we found significant im-
provement in terms of effectiveness of PROMESIR over 
SPR or LSI alone. 

The case studies support our claim that combining ex-
pert judgments improves the effectiveness of feature loca-
tion.  The results of the case studies show that the new 
technique performs better than any one of the two tech-
niques alone. 

In all case studies, we chose a value of λ = 0.5, this 
value allows PROMESIR to outperform LSI and SPR.  We 
studied the change in the rankings of relevant methods as 
we varied λ and notice that λ = 0.5 is an adequate value, 
which means that neither technique is favoured over the 
other.  In Figure 3, we present the rankings of the first 
relevant method for each bug (in Mozilla and in Eclipse) 
with respect to the value of λ, using a step of 0.01.  This 
plot shows that as λ decreases the ranking of the first 
relevant method tends to be higher (i.e., the effectiveness 
of the hybrid technique deteriorates).  This behaviour is 
expected because, as λ becomes close to 0.0 or 1.0, one 
expert is strongly favoured over the other (i.e., LSI over 
SPR respectively).  In extremes, when λ is equal to 0.0, the 
ranking is provided by the LSI technique alone and by the 
SPR technique alone when λ is equal to 1.0 (see Table 4 
and Table 9).  With λ values between 0.2 and 0.99 we ob-
tain quite stable results, similar to the ones obtained with 
λ = 0.2, showing that the two techniques truly comple-
ment each other. 

As mentioned before, PROMESIR performs best when 
LSI and SPR are used in parallel, such that the result of 
each query is combined with SPR.  In the case studies we 
combined only the rankings of the last query with SPR, 
which allowed a better comparison with LSI alone.  
PROMESIR would improve the results even more if the 
combination was iterative.  For example, for one of the 
bugs (i.e., bug# 225243 from Mozilla) we refined the LSI 
query three times before we combined the results with 
SPR approach.  In that case, the third LSI query ranked 

the first method related to the feature in position 24 and 
PROMESIR ranked it on position 6 (see Table 9).  If we 
rank the results of the first LSI query with PROMESIR, 
then the same method ranks on position 12 (with LSI 
alone this method ranks 124). 

In this work we do not compare PROMESIR with other 
techniques for feature location, because SPR and LSI have 
been compared with other approaches elsewhere: SPR 
was compared with grep and formal concept analysis ap-
plied on execution traces in [17], whereas LSI was com-
pared with grep and search of dependencies in [28]. 

4.8. Threats to Validity 
Several issues may have affected the results of the case 
studies and thus may possibly limit generalizations.  We 
made all efforts to minimize the effect of these issues. 

One such issue is the extent to which the programs 
used in the case studies are representative of those actu-
ally used in practice.  Although Eclipse and Mozilla are 
real-world programs, this threat could be reduced if we 
experiment with other programs of different sizes and 
domains. 

Another issue is the use of scenarios to obtain rankings 
of methods with SPR, because we could have chosen by 
chance “best” or “worst” scenarios to identify the fea-
tures.  However, the results of the case studies are posi-

TABLE 8 
SIZE OF E′T MEASURED IN METHODS AND CLASSES FOR MOZILLA 

BUGS FOR T=1 (100 % RELEVANT) AND T>0 

 

 

 
Fig. 3. The effect of λ on the PROMESIR ranking (each line shows the 
effect of λ on the rankings of the first method related to the considered 
bug) 
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tive although we are not experts in the Eclipse or Mozilla 
source code and cannot ensure that our scenarios are the 
best to capture those particular features.  By presenting 
several results, we expect that the used scenarios are av-
eraged in the sense of their ability to properly capture the 
desired features. 

The queries formulated to obtain LSI rankings are de-
pendent on the developer’s knowledge, thus the results 
may be impacted by the actual query.  However, as we 
discussed in several of the examples, the developer does 
not need an extensive knowledge of the source code to 
formulate LSI queries, which with PROMESIR will pro-
duce good results.  In fact, even in the naïve situation, 
where a developer uses the bug description as a query, 
PROMESIR performs better than LSI alone. 

The effectiveness measure for SPR is defined on an av-
erage case scenario.  In reality, a developer may find the 
relevant method in a set indicated by SPR much faster.  
Nonetheless, given the large difference between the 
PROMESIR and SPR accuracies, modifying this assump-
tion would not change the results dramatically. 

We could take into account the number of unsuccessful 
queries when applying LSI.  However, in most cases, the 
results investigated after the first query would be in the 
top of the results for the second query, so the developer 
does not need to investigate these results again and thus 
there is no real increase in the searching effort.  Also, it 
could be possible to penalize the effectiveness measure 
with a value depending on the number of queries.  Still, 
this will not affect the overall results as the new measure 
will change the PROMESIR rankings as well. 

The features may be implemented by more methods 
than those suggested by a patch, as correcting the prob-
lem may involve just part of the implementation.  This 
fact does not influence our results because considering 
more relevant methods increases or maintains the same 
effectiveness of the techniques. 

In addition, we ran LSI and SBP in parallel, thus penal-
izing PROMESIR.  Using PROMESIR in an iterative fash-
ion, as described in Section 3, yields better accuracy, as 
mentioned in Section 4.7. 

5. CONCLUSIONS AND FUTURE WORK 
The main contribution of the paper is a new technique 
(PROMESIR) for feature location that combines an infor-

mation retrieval technique (LSI) with a dynamic tech-
nique (SPR).  We used PROMESIR in a set of case studies 
for bug location in two large open-source programs, 
Eclipse and Mozilla.  The case studies showed that LSI 
and SPR, based on different analysis methods and data, 
complement each other, and the results obtained with the 
combined techniques are better than those of any one of 
the techniques used independently. 

Feature location using PROMESIR proves to be accu-
rate and fast, but the technology behind is computation-
ally intensive.  We will focus some of our future efforts on 
making the supporting tools as effective as possible.  In 
addition, we plan to investigate how well PROMESIR can 
be used to support tasks subsequent to feature location, 
such as impact analysis and change propagation, when 
the entire feature implementation needs to identified. 
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