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1 DGIGL, École Polytechnique de Montréal, Canada
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Abstract—Identifying concepts in execution traces is a
task often necessary to support program comprehension or
maintenance activities. Several approaches—static, dynamic or
hybrid—have been proposed to identify cohesive, meaningful
sequence of methods in execution traces. However, none of the
proposed approaches is able to label such segments and to
identify relations between segments of the same trace.

This paper present SCAN (Segment Concept AssigNer) an
approach to assign labels to sequences of methods in execution
traces, and to identify relations between such segments. SCAN
uses information retrieval methods and formal concept analysis
to produce sets of words helping the developer to understand
the concept implemented by a segment. Specifically, formal
concept analysis allows SCAN to discover commonalities be-
tween segments in different trace areas, as well as terms more
specific to a given segment and high level relations between
segments.

The paper describes SCAN along with a preliminary man-
ual validation—upon execution traces collected from usage
scenarios of JHotDraw and ArgoUML—of SCAN accuracy
in assigning labels representative of concepts implemented by
trace segments.

Keywords-Concept identification, dynamic analysis, informa-
tion retrieval, formal concept analysis.

I. INTRODUCTION

Many software engineering tasks require a preliminary ac-
tivity which consists of identifying those program elements
(e.g., classes, methods, etc.) that contribute to implement
specific domain concepts, application features or computa-
tion phases [1], [2], as well as understanding the relations
among them. A typical scenario where developers need to
assign a concept to program elements is the following. Let
us assume that (1) an unwanted behavior (e.g., a failure) has
been observed in a software system under certain execution
conditions, and that (2) we can reproduce the failure by
means of execution traces collected while executing the
specific scenario leading to the failure. Such traces may be
very large and manually analyzing them might be a very
expensive, labor-intensive and error-prone task.

To alleviate the burden of manual analysis, different
concept location approaches have been proposed in the liter-
ature, including static approaches [3], dynamic approaches
[4], [5], and hybrid ones [6], [7], [8], [9], [10]. The hybrid

approach proposed by Asadi et al. [9] and by Medini et al.
[10] resorts to the textual content of the methods contained
in execution traces to split traces into segments that likely
participate in the implementation of the concepts related
to the features of interest. The underlying assumption is
that when a specific feature is executed within a complex
scenario (e.g., “Open a Web page from a browser” or
“Save an image in a paint application”), the set of relevant
methods being invoked is likely to be conceptually cohesive,
decoupled from those of other features and invoked in
sequence. The main drawback of such hybrid approaches
[9], [10], as well as of dynamic approaches such as [4], is
that the developer has little support in the phase of assigning
concepts to trace chunks i.e., attaching a label representative
of the implemented concept.

This paper presents SCAN (Segment Concept
AssigNer)—an approach inspired by previous work
on aspect mining [5] and method summarization [11],
[12], [13], [14]—to assign meaningful labels to chunks of
segmented traces. SCAN labels trace segments by applying
Information Retrieval (IR) techniques to terms extracted
from method signatures. Then, to highlight relations (and
differences) between segments, SCAN uses Formal Concept
Analysis (FCA) on selected terms used to label each
segment. Specifically, relations between segments and terms
as well as between different segments can be discovered by
inspecting the FCA lattice. Multi-threading is an important
feature of modern processors, however, it induces variability
in traces collected for the a given scenario. To limit the
effect of multi-threading variability in assigning labels
to segments, SCAN is able to merge segments obtained
in multiple executions of the same scenario. Although
SCAN is designed to complement previous work on trace
segmentation [9], [10], SCAN is generic and can be applied
to the output of any trace segmentation technique.

We have applied SCAN to assign labels to segmented
traces produced by executing scenarios of two widely known
Java applications, JHotDraw and ArgoUML. First, we have
segmented traces with a tool set implementing the approach
by Medini et al. [10]. Then, we have used SCAN to label
each segment with a list of terms. To evaluate the quality



of the obtained labeling, we compared them with manually-
assigned labels obtained by 1) inspecting the source code, 2)
checking the available documentation, and 3) performing a
step-by-step analysis of the execution traces. We performed
a qualitative as well as a quantitative analysis. From a
qualitative point of view in most cases SCAN suggested
labeling terms are effective to help grasping the segment
functionality. The quantitative analysis reveals a more var-
iegated situation with encouraging results. We measured
accuracy as precision and recall between manually assigned
labels and automatic labels; recall median varies between
50% and 80%, while precision ranges between 30% and 70%
depending from the application and scenario. In essence, at
minimum 50% of term used to manually label the segment
is retrieved by SCAN, supporting the claim that it can help
program comprehension. Finally, qualitative analysis of the
FCA lattices supports the claim that SCAN effectively detect
segments relations.

II. RELATED WORK

Commonalities can be found between this work and
previous studies on concept identification or code (method)
summarization. However, the latter is not the focus of our
work, since our aim is not obtaining a description of a
method valid for all its clients. We rather aim at extracting
descriptive information that characterizes the contribution of
a method to a specific execution scenario. To the best of our
knowledge, no previous work considered the extraction of
descriptive concepts from execution trace segments.

The work by Asadi et al. [9] is somehow more related
to the current study as they present a concept location
approach using a genetic algorithm. The previous work by
Medini et al. [10] is an evolution toward scalability of
the works by Asadi et al. [9]. In these works ([9] and
[10]), authors identified concepts by finding cohesive and
decoupled segments in a trace using a genetic algorithm and
dynamic programming [10].

Pirzadeh et al. [15] proposed a trace sampling framework
based on stratified sampling to reduce the size of a trace
by distributing the desired characteristics of an execution
trace similarly in both the sampled and the original trace.
To generate sampled execution traces, random sampling
techniques have been extensively used. Random sampling
may generate in samples that are not representative of the
original trace. This work was extended [16] by extracting
higher-level views that characterize the relevant information
about execution traces.

We share with the previous works summarized above the
general idea of concept location and specifically of assigning
a concept to a execution trace segment. However, this work
extends such works and in particular the previous work
by Medini et al. [10] with the aim of providing segment
labeling, i.e., it performs the reverse engineering of segment-
specific concepts from linguistic information associated with

the execution scenario of interest.
Recently, Sridhara et al. [12] presented a novel technique

to automatically generate comments for Java methods. They
used the signature and the body of a method to generate
a descriptive natural language summary of the method. The
developer is left in charge to verify the accuracy of generated
summaries. The work was extended and improved [13] by
using a classification of code into fragments, to generate a
natural language description of each fragment. The authors
identified three types of fragments: sequence fragments,
conditional fragments and loop fragments. We share with
summarization work the goal of producing meaningful lin-
guistic descriptions of program elements starting from the
source code. However, our goal is different: we aim at
obtaining a high-level description of a segment, possibly
representative of a feature or concept implemented by the
segment.

In general, we also share with many existing works
the idea of using information retrieval as well as concept
analysis. Information retrieval has been widely adopted in
traceability recovery and feature location [17], [6]. Concept
analysis proved useful in many software engineering tasks
such as feature location [18], remodularization [19], aspect
mining [5] and design patter identification [20], just to name
a few. Here we use information retrieval and concept anal-
ysis as a tool to support linguistic information processing,
with the aim of labeling trace segments.

III. BACKGROUND NOTIONS

In this section we briefly summarize key concepts and
techniques used in this paper.

A. Trace Segmentation

This section summarizes the trace segmentation approach
by Medini et al. [10]. As mentioned in the introduction,
the approach aims at grouping together subsequent method
invocations that form conceptually cohesive [21] groups.

Before segmenting the traces, the approach first prunes
out—by analyzing invocation distributions—utility methods
repeated in various trace regions e.g., methods related to
mouse events. Then, the trace is compressed using a run
length encoding algorithm, to remove repetitions of method
invocations.

On the filtered and compressed trace we model methods
as documents, by collecting methods name, parameters and
bodies. Each document (method) is processed as in informa-
tion retrieval systems applied to software engineering [21].
We first extract terms from the source code, split compound
identifiers separated by camel case (e.g., getBook is split
into get and book), remove programming language key-
words and English stop words, and perform stemming [22].
We then index the obtained terms using the tf-idf indexing
mechanisms [23]. We obtain a term–document matrix, and
finally, we apply Latent Semantic Indexing (LSI) [24] to



reduce the term–document matrix into a concept–document1

matrix, choosing, as in previous work [9], an LSI subspace
size equal to 50. We used FacTrace to generate the concept–
document matrix [25].

The final step consists in applying dynamic program-
ming optimization techniques to segment the obtained trace.
The cost function driving the search relies on conceptual
(i.e., textual) cohesion and coupling measures [21], [26],
rather than structural cohesion and coupling measures. More
precisely it attempts to balance segment cohesion, average
(textual) similarity between the source code of any pair of
methods invoked in a given segment, and coupling between
a segment and all other segments in the trace. More details
can be found in [9], [10].

B. Formal Concept Analysis

To identify relations between concepts identified in dif-
ferent segments, we use Formal Concept Analysis (FCA).
FCA [27] groups objects that have common attributes. In
this paper, objects are segments and attributes are terms
extracted for the segments by means of IR techniques. The
starting point for concept analysis is a context, i.e., a set
of objects, a set of attributes, and a binary relation between
objects and attributes, stating which attributes are possessed
by each object. In our case, the binary relation states which
term (attribute) is included by each segment (object). A
concept is a maximal collection of objects that has common
attributes, i.e., it is a grouping of all the objects that share
a set of attributes, in our case, a cohesive set of segments
sharing terms. More formally a concept is a pair of sets
(X,Y ) such that:

X = {o ∈ O|∀a ∈ Y : (o, a) ∈ P} (1)
Y = {a ∈ A|∀o ∈ X : (o, a) ∈ P} (2)

where O is the set of objects, A is the set of attributes and
P is the binary possess relation between them. X is said
the extent of the concept and Y is said the intent. To apply
FCA, in this paper we used the Concept Explorer2 tool.

IV. THE SCAN APPROACH

SCAN consists of the following main building blocks: a
segmentation merger, a component for relevant term iden-
tification, and a FCA module, to identify relations between
segments. SCAN accepts as input one or more segmented
traces. In this work, without loss of generality, we consider
the trace segmentations obtained using the tool by Medini
et al. [9], [10].

1In LSI “concepts” refer to orthonormal dimensions of the LSI space,
while in the rest of the paper “concept” means some abstraction relevant
to developers.

2http://conexp.sourceforge.net/

A. Segmentation Merger

The role of the segmentation merger is to recognize
similarities between segments belonging to multiple exe-
cution traces and merge them. Because of multi-threading,
of variations in application inputs (some of which not
fully controllable by the software engineer instrumenting
the application), and of variations in machine load condi-
tion, multiple executions of the same scenario may lead
to different sets of segments, or even to related segments
containing method invocations in different ordering (due to
thread interleaving).

Let S = (s1, . . . , sn) and Z = (z1, . . . , zm) be two
segmentations, (i.e., sequences of segments), the merger
computes the n × m set of similarities between elements
of the two sequences and associates pairs with a similarity
higher than a given threshold. Let n > m, thus we have
more segments in S, for each zi the merger computes all
similarities σ(zi, sj) and keeps pairs above a given thresh-
old. SCAN attempts to find both one to one as well as many
to one relations between the shorter segmentation (likely
containing larger segments) and the other one, containing
more and (on average) shorter segments.

Highly-similar segments, of different traces for the same
scenario, are supposed to contribute to the same function-
ality, regardless of the specific thread interleaving or trace
area they occurred. The similarity between two segments is
computed as the Jaccard coefficient between terms extracted
from the method signatures. Specifically, the signatures of
the methods contained in a segment are processed; terms
extracted; and language types removed. The result is a set
of terms and the higher the number of terms in common the
higher will be the similarity (the Jaccard coefficient for two
sets A and B is defined as the ratio between the intersection
A ∩B and the union A ∪B).

As far as the threshold is concerned, in order to merge two
segments SCAN requires a (reasonably) high similarity, not
necessarily close to one. In fact, two segments might deserve
being merged, even though their similarity is not extremely
high. Suppose one of the two segments is substantially
larger, containing a higher number of terms than the second
segment, and let us further assume it contains the second
segment as a sub-segment. In this situation, their similarity
may be arbitrarily low. However, the segmentation approach
[9], [10] protects us against such a situation, as the computed
segments are ensured to be cohesive and decoupled (see
Section III). In fact, the algorithm has no reward in gluing
together non-cohesive methods. In essence, our aim is to
merge segments that share no less than 50% of the linguistic
information. By trial-and-error, we found that reasonable
threshold values range between 60% and 80%, where 80%
might become too conservative (i.e., it might not merge
segments that are different just because of a different thread
interleaving).



Once pairs of corresponding segments have been identi-
fied, the merger generates a synthetic trace. Continuing with
the example above, a synthetic trace is generated containing
n segments. Each segment is the result of a (possibly
multiple) union (i.e., the union of the corresponding segment
method signatures): si ∪ zj , for all pairs where σ(zi, sj)
is above threshold. The merger keeps track of the pairs of
merged segments, so as to be able to map the information
computed in subsequent phases to the original segments.

B. Relevant Term Identification

This step represents the core of the proposed approach,
and aims at labeling segments. The first issue to consider
is to choose the most appropriate source of information.
Since execution traces are composed of method invocations,
we could consider (i) terms contained in method signatures
only, (ii) the whole source code lexicon of the invoked
methods, or (iii) as before but including comments. Since
a previous study [28] found that lexicon from method
signatures provide more meaningful terms when labeling
software artifacts, and since often developers tend to pay
more attention when labeling API rather than when naming
local variables or commenting source code, we decided to
use only terms contained in the signature of invoked methods
and their parameters.

Given a split trace T and a segmentation S =
(s1, . . . , sn), SCAN extracts the signatures of all the invoked
methods for each identified segment si. Then, SCAN models
the segmentation as a set of documents, where each segment
si is a document, and computes for each term tl ∈ si the
tf-idf metric [23]. Specifically, tf-idf provides a measure of
the relevance of a term for the segment, rewarding terms
having a high-frequency in a segment (high tf) and appear
in few segments (high idf). We make the hypothesis that
a term appearing often in a particular segment, but not in
other segments, provides linguistic information important for
that given segment. Previous work [28] aimed at empirically
investigating automatic labeling strategies for static source
code artifacts suggest the use of tf-idf.

SCAN ranks the terms of the segment terms by tf-
idf and keeps the topmost ones. The number of retained
terms is supposed to be a compromise between a synthetic
and a verbose description. Several possible strategies are
foreseeable to select the top-ranked terms. First, it is possible
to retain a maximum percentage (say top 10%) of the terms
that have the highest ranking; second, a gap-based strategy is
applicable (i.e., retaining all terms up to when the difference
between two subsequent terms in the ranked list is above a
certain percentage gap); and third, one could choose a fixed
number of topmost terms. In this paper, we adopt the latter
strategy, and we found that considering the topmost 10 to 20
terms represents a reasonable compromise, that can produce
meaningful segment labels.

C. Identifying Concepts Using Formal Concept Analysis

While the labeling produced in the previous step is ex-
pected to fully describe a segment functionality, what is still
missing is the information about relations existing between
different segments. For example, segments with identical
reduced term description may appear multiple times, in
different trace areas. Furthermore, two segments may share
many terms, which possibly indicates the existence of a
higher level concept common to both segments.

To discover this kind of information, SCAN uses FCA to
highlight commonalities and differences between segments,
by identifying terms shared between multiple segments and
terms that are specific to particular segments. Specifically,
SCAN produces a FCA context, where objects are segments
and attributes are segment relevant terms. The produced
lattice is then manually inspected by the software engineer.

Figure 1 shows an example of an FCA lattice for the
ArgoUML scenario “add a new class”. We can notice some
relations between segments. For example, Segments 4, 10
and 16 are linguistically identical; they actually implement
the same feature. They are also in relation with Segments
2, 8 and 14, as they share with those segments the term
“display”. Segments 4, 10 and 16 belong to the same
concept, while being in different parts of the input trace.
Methods of Segment 4 are called before those of Segment
10. Moreover, there are other segments between Segment
4 and Segment 10. In practice, it can be noticed that
Segments 4, 10 and 16 represent the same computational
phase repeated in different trace areas. This is represented
very clearly and explicitly in the concept lattice of Figure 1.
The same holds for segments sharing the same super-concept
(e.g., “display”), which indicates a common functionality
executed in different phases.

V. CASE STUDY

The goal of this study is to evaluate SCAN, with the
purpose of assessing its capabilities to label segments and
to identify relations between such segments. The quality
focus is the comprehension of execution traces. Maintainers
have to perform this task during program understanding. The
context consists of execution traces collected from two Java
systems, JHotDraw and ArgoUML.

JHotDraw3 is a Java framework for drawing 2D graphics.
JHotDraw started in October 2000 with the main purpose
of illustrating the use of design patterns in a real context.
JHotDraw has been widely used in various research works
due to its structure (based on extensive adoption of design
patterns) and documentation. In this evaluation we have used
JHotDraw release 5.1, which consists of 155 classes in about
8 KLOC. ArgoUML4 is an open-source UML modeling tool
with advanced features, such as reverse engineering and

3http://www.jhotdraw.org
4http://argouml.tigris.org



Figure 1. ArgoUML FCA lattice for the scenario “add a new class”.

code generation. The ArgoUML project started in September
2000 and is still active. Similarly to JHotDraw, ArgoUML
has been widely studied and used in various research works.
We have used ArgoUML release 0.19.8, which contains
1,230 classes in about 113 KLOC.

For both programs, we collected execution traces for
different scenarios. Specifically, we reused some of the
scenarios previously used to validate trace segmentation [9],
[10], plus we added some more, based on the knowledge
we gained about this application. Tables I and IV reports
details about the exercised scenarios and the collected traces.
In the following, we refer to each scenario with a brief
English sentence such as “Draw Ellipse, Delete Ellipse”.
We imply that, when the scenario is executed, other than
the two features (drawing an ellipse and deleting it), also
application start-up and shut-down are executed.

The study aims at answering the following two research
questions:

• RQ1. How effective is SCAN in assigning labels to
segments?

• RQ2. Does SCAN help to discover relations between
segments? Does it help to discover the macro phases
in a trace?

To address RQ1, one of the authors manually built labels
for each segment and validated the SCAN results. We then
compare manually built labels with the ones produced by
SCAN by computing precision and recall [29] for each
segment i of a scenario j:

Precisioni,j =
|Mi,j ∩ Si,j |
|Si,j |

Recalli,j =
|Mi,j ∩ Si,j |
|Mi,j |

where Mi,j is the set of words contained in the manually
generated label for segment i of scenario j and, similarly,
Si,j is the set of words produced by SCAN. Note that,
before computing precision and recall, we preprocess the

Table I
STATISTICS OF JHOTDRAW COLLECTED TRACES.
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JHotDraw

Draw Rectangle (1) 15,706 930 54
Draw Rectangle (2) 4,850 555 35
Draw Rectangle, Delete Rectangle (1) 5,960 554 32
Draw Rectangle, Delete Rectangle (2) 5,960 554 32
Draw Ellipse (1) 4,545 556 36
Draw Ellipse (2) 5,252 562 33
Draw Ellipse, Delete Ellipse (1) 10,760 953 53
Draw Ellipse, Delete Ellipse (2) 17,931 1,433 74
Draw Rectangle, Draw Ellipse (1) 10,908 864 23
Draw Rectangle, Draw Ellipse (2) 17,471 1,096 46
Draw Rectangle, Draw Ellipse (3) 8,790 690 30

manual labels similarly to what done when producing labels
automatically. Specifically, (i) we split compound words
(using camel case and underscore heuristics), (ii) we remove
English stop words, and (iii) we perform Porter stemming.

To address RQ2, we analyze the lattice produced by FCA
to identify relations between different segments.

In the following, we report results aimed at addressing
the three research questions, presenting, for the sake of
clarity, all results for JHotDraw first, and then all results
for ArgoUML.

A. JHotDraw

Table II shows SCAN generated labels in the first column
and the manual labels in the second column for one of
the JHotDraw scenarios. The top part of Table III reports
descriptive statistics (first and third quartile, median, mean
and standard deviation) of precision and recall. It can be
noticed that, for instance, the mean Precision varies be-



tween 0.56 of “Draw Rectangle, Draw Eclipse” and 0.65
of “Draw Rectangle, Delete Rectangle”, while the mean
recall is stable around 0.81-0.82. Hence, for JHotDraw the
automatic labeling performs relatively well, also considering
that such results are perfectly in line with performances of
automatically labeling of source code artifacts [28], which
we argue are easier to label than execution traces.

To better understand the rationale of the identified seg-
ments and check the meaningfulness of the provided labels,
we performed a fine-grained analysis of the segments. By
exploring the content of each segment of the trace described
in Table II, we found, for example, that Segment 1 contains
methods that start the application (menu and icons creation).
Segment 2 to Segment 24 correspond to phases needed
to prepare canvas for creating and adding a figure to it.
Furthermore, Segment 2, Segment 4 and Segment 24 contain
methods to execute the “draw figure” command. Differently
from the others, Segment 19 contains methods involved in
bringing the selected figure to front and to send the other
figures to back. Segment 20 contains methods needed to
create box and figure locations. For segments between 24
and 33, we found that each of these segments corresponds to
deletion and removal of figures, change listeners and events.

Similar results have been obtained for the other scenarios.
In summary, we can claim that SCAN is able to assign
labels in most of cases similar or representative to manually
defined labels and that these labels actually correspond to the
concepts encountered in the segments based on our manual
inspection of code, documentation and executions.

To address RQ2, we exploited FCA to identify linguisti-
cally overlapping segments. In other words, segments having
the same or shared labels implement similar or related
concepts. By looking at Figure 2 we can notice that, for
example, segments 4 and 23 are identical and implement
the same concept. This was confirmed by manual inspection
of the source code. A developer can therefore use lattice
information to infer relations between segments and identify
segments implementing the same feature/concept. We can
also notice that sometimes a computation phase, represented
as an FCA concept, is contained in a more abstract one.
For example, in Figure 2 segments 28 and 30 are contained
in a superconcept of the concept containing segments 26
and 31. In fact, they all share some labels (listen, change,
remove, figure), but the latter segments (26, 31) have their
own specific labels (intern, multicast).

B. ArgoUML

Table IV reports information about traces and identified
segments for ArgoUML. As for JHotDraw, we compared
the automatically generated labels with the ones produced
manually. Table V shows, for the ArgoUML scenario “New
Class”, automatic and manually generated labels for the
identified trace segments. For ArgoUML, the performance
analysis of the comparison between manually produced

Figure 2. Excerpt of the JHotDraw FCA lattice for the scenario ‘Draw
Rectangle, Delete Rectangle”.

Table IV
STATISTICS OF THE ARGOUML COLLECTED TRACES.
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ArgoUML

New Class (1) 82,579 2,785 22
New Class (2) 60,853 2,239 19
New Package(1) 13,115 800 15
New Package (2) 21,423 1,642 19
New Class, New Package (1) 38,940 1,220 13
New Class, New Package (2) 50,650 1,146 13
New Class, New Package (3) 36,408 1,251 12

labels and labels produced by SCAN (reported in the bottom
part of Table III) reveals that performances are relatively
lower than those obtained for JHotDraw. In particular, the
mean precision ranges between 0.36 of “New Package” and
0.40 of “New Class”, while the mean recall ranges between
0.48 of “New Class, New Package” and 0.64 of “New
Class”. The lower performances can be explained by the
ArgoUML lexicon which is not as good as the JHotDraw
one (JHotDraw was designed for pedagogical purposes, i.e.,
to show the usage of design patterns, hence source code
artifacts are carefully named).

We also performed a sanity check of SCAN’s capability
of recognizing different instances of the same scenario.
Figure 3 shows the FCA lattice produced for two executions
of the scenario “New Package”, with two trace instances,
“NewPackage1” and “NewPackage2”. All segments and
concepts are similar between the two traces, except for
segment 10 of “NewPackage1”, which confirms SCAN’s
ability to recognize the occurrence of the same concepts
in different executions.

We performed an in-depth analysis by exploring the



Table II
SCAN GENERATED AND MANUAL LABELS FOR THE JHOTDRAW TRACE “DRAW RECTANGLE, DELETE RECTANGLE”.

Segment Automatic Label Manual Labels
Number
1 draw iconkit creat palett text tool button line imag icon Create drawing palette button tool and create icons kit.
2 draw cut transfer figur command view Execute draw figure command.
3 draw menu copi shortcut past add command transfer duplic view Add a command with the given shortcut to the menu.
4 draw transfer delet figur command view Execute draw figure command.
5 ungroup draw group command view Command to group and ungroup the selection into a group figure.
6 draw back send bring command front view Create a command to bring to front and send to back the selected figures from others.
7 applic draw creat menu align command Application menu creation and draw command.
8 applic draw graphic java palett menu button paint command tool Draw command and get the selected botton from the menu palette tool.
9 add figur chang listen Add a figure change listener.
10 add figur multicast intern chang event listen Add a figure change event.
11 box decor anim display figur Display the box and the borders of the figure.
12 figur set initi attribut Initialize figure attributes.
13 figur empti size Verify if the figure size is empty.
14 draw tool view editor standard Draw the standard drawing tool.
15 draw applic tool set button Set the tool of the editor.
16 graphic execut button revers enumer paint command tool select view Execute command to paint the selected graphic button.
17 delet command execut duplic Execute command to delete the duplicated selection.
18 ungroup group command execut Execute command to group and ungroup the selection into a group figure.
19 execut back send bring command front Execute command to bring to front and send to back the selected figures from others.
20 box relat locat handl west doubl kit north east south Handle the locations and display the box of the figure.
21 unlock view unfreez draw standard Unfreezes the view by releasing the drawing lock.
22 draw tool standard key press event view Handling the key events in the drawing view.
23 draw transfer delet figur command view Execute draw figure command.
24 draw remov request standard delet figur chang bounc event select Delete the event from the selection.
25 box decor anim display figur Display the box and the borders of the figure.
26 remov intern figur multicast chang event listen Remove the figure change event.
27 releas decor figur Release the figure decorator.
28 remov figur chang listen Remove the figure change listener.
29 decor peel remov intern figur multicast releas chang event listen Remove the figure change listener.
30 remov figur chang listen Remove the figure change listener.
31 remov intern figur multicast chang event listen Remove the figure change event.
32 draw enabl execut standard command key element check select view Execute command to check enabled elements key from the selection.

Table III
DESCRIPTIVE STATISTICS OF PRECISION AND RECALL WHEN COMPARING SCAN LABELS WITH MANUALLY-PRODUCED LABELS.

JHotDraw
Scenario Precision Recall

Q1 median Q3 mean σ Q1 median Q3 mean σ
Draw Rectangle 0.50 0.60 0.83 0.64 0.25 0.75 0.83 1.00 0.81 0.20
Draw Rectangle, Delete Rectangle 0.50 0.60 0.72 0.65 0.21 0.70 0.80 1.00 0.82 0.15
Draw Rectangle, Draw Eclipse 0.40 0.60 0.70 0.56 0.22 0.67 0.80 1.00 0.81 0.19

ArgoUML
Scenario Precision Recall

Q1 median Q3 mean σ Q1 median Q3 mean σ
New Class 0.29 0.40 0.50 0.40 0.13 0.50 0.67 0.75 0.64 0.14
New Package 0.29 0.33 0.50 0.36 0.17 0.50 0.50 0.71 0.54 0.21
New Class, New Package 0.20 0.33 0.50 0.38 0.24 0.25 0.50 0.67 0.48 0.20

content of each segment of the traces. By manually in-
specting code and documentation of ArgoUML, as well as
the Cookbook for Developers [30], we found that Segment
1 contains methods for system start-up: Setup the project
and implement factory and helper interfaces that control
the lifetime and properties of elements in the repository.
Segment 2 to Segment 7 correspond to “prepare creation”
and “addition” of a new UML Class. For example, Segment
2 and Segment 3 contain methods to generate the module
identification key. Segment 4 contains methods to create
a class and define parameters. Similar results have been
obtained for the other scenarios.

Figure 1 shows the FCA lattice for the execution trace
of the scenario “New Class”. As for JHotDraw, also for
ArgoUML FCA helps to highlight relations between seg-
ments. For example, segments 4, 10 and 16 implement the
same concept. The concept containing segments 3, 9 and 15
is a super-concept of the one containing segments 2, 8 and
14 and in fact it points to higher level concepts (generate
key java module), while the sub-concept includes segments
specific of the display functionality.

To identify macro phases in a trace, we consider relations
between cohesive sets of segments, regarded as execution
phases. One phase is built by repeated segments in a trace.



Table V
SCAN GENERATED AND MANUAL LABELS FOR THE ARGOUML TRACE “NEW CLASS”.

Segment Automatic Label Manual Labels
Number
1 event member helper notat manag project diagram implement model factori Add project member and implement factory and helper interfaces
2 modul java display key generat Display the module identification key
3 modul java key generat Generate the module identification key
4 oper type facad classifi meta mdr associ class impl paramet Create class and define parameters
5 vertex state meta mdr type impl Display the state vertex
6 composit state meta synch mdr type impl Display SynchSTate and composite state
7 member helper notat factori project diagram chang model event manag Manage diagram events changes
8 modul java display key generat Display the module identification key
9 modul java key generat Generate the module identification key
10 oper type facad classifi meta mdr associ class impl paramet Create class and define parameters
11 vertex state meta mdr type impl Display the state vertex
12 composit state meta synch mdr type impl Display SynchSTate and composite state
13 event member helper notat manag project diagram implement model factori Add project member, implement factory and helper interfaces
14 modul java display key generat Display the module identification key
15 modul java key generat Generate the module identification key
16 oper type facad classifi meta mdr associ class impl paramet Create class and define parameters
17 vertex state meta mdr type impl Display the state vertex
18 composit state meta synch mdr type impl Display SynchSTate and composite state
19 notat helper facad event pump mdr model chang impl listen Add model event change listener

Figure 3. FCA lattice for the scenario “New Package”.

For example, in Figure 1, segments 2, 3, 4, 5 and 6 define an
execution phase on the trace and this phase is repeated two
times: first with segments 8, 9, 10, 11 and 12, and then with
segments 14, 15, 16, 17 and 18. The rest of the segments
are also converted to an execution phases.

After defining the phases we can draw a higher level flow
diagram of phases with labels as shown in Figure 4, using
the temporal relations between phases. The “New Class”
scenario, generating 32 segments, can be summarized into
four macro execution phases. The first phase deals with the
system startup, this is followed by activity needed to create
class and properties (e.g., state, composite, etc). The third
phase is devoted to managing diagram events and, finally,
the last phase models add events and model changes.

While phase recognition is currently a manual process,
we plan to investigate methods to automate it, as part of
our future work. Since the FCA lattice combined with the
temporal ordering of segments was very useful for manual
phase recognition, we think that there is ample room for
automation of this process.

C. Discussion

For what concerns RQ1, quantitative results might be read
as indicators of poor performance of the label assignment
algorithm, with the recall/precision around 50% and above.
As mentioned above, the achieved performance are in line
with those obtained when comparing automatically gener-
ated and manually generated labels for source code artifacts
[28]; moreover, the obtained results confirm that also for
execution traces a simple labeling based on lexicon extracted
from method signature is enough.

Also, if we complement the quantitative data with the
qualitative investigation performed on the automatically la-
belled segments, we can conclude that this level of simi-
larity between automatic and manual label sets is definitely
adequate to support program understanding tasks. This is
because we expect that developer with some knowledge
about the application would find it relatively easy to distill
the relevant concepts from the automatic labels, even if such
labels contain some noise and overlap only by 50% with the
manually produced labels. For instance, consider the label



Figure 4. Flow diagram of phases for the scenario “New Class”.

set produced for Segment 1 of JHotDraw (see Table II): it
is relatively easy for someone having a (even limited) appli-
cation knowledge to recognize the terms creat draw palett
button tool iconkit as key terms for the implemented concept.
Even though the manually produced label is longer and
more explanatory (Create drawing palette button tool and
create icons kit), the terms selected from the automatically
produced label represent a very good and crisp summary of
it. Similar considerations can be applied for Segment 18 of
ArgoUML, where synch composite state are a meaningful
summary for Display SynchState and composite state.

Regarding the inter-concept relations and the manual
recognition of phases (RQ2), qualitative results indicate that
the automatically-produced labels, organized into a concept
lattice where similar or identical segments are grouped
together, are extremely useful to understand commonalities
and differences between segments and to extract a view
where macro phases can be labelled by the terms associated
with the super-concepts of the involved segments. Cohesive
sets of similar segments can be identified in the concept
lattice. Such sets, in turn, define macro phases, that labelled
with super-concept terms. The temporal ordering of the
segments involved in different macro-phases suggests the
temporal organization of the recognized phases. We think
this has huge potential in supporting comprehension of
complex execution scenarios for large software systems.

D. Threats to Validity

Threats to internal validity concern confounding factors
that could affect our results. These could be due to the
presence, in the execution traces, of extra method invoca-
tions related to GUI events or other system events. Also,
the order of invocation in different executions may depend

on multi-threading. This may affect tf-idf values and could
produce different results in terms of relevant information.
The frequency-based pruning and the analysis of different
execution trace instances for one scenario mitigate these
threats.

Threats to external validity concern the possibility to
generalize our results. Although we apply our approach on
traces from two different systems, further studies on larger
traces and more complex systems are needed, especially to
better demonstrate accuracy in assigning labels representa-
tive of concepts implemented by trace segments.

VI. CONCLUSION

This paper proposed SCAN, an approach aimed at sup-
porting developers to discover concepts in segments of
execution traces by (i) assigning labels (sets of words) to
each segment, (ii) discovering relations between segments
via formal concept analysis, and (iii) helping to group
segments into macro phases. SCAN has been conceived on
top of the trace segmentation approach presented in [9],
[10] in mind. However, it is not tied to any specific trace
segmentation approach.

To evaluate the accuracy and effectiveness of SCAN in
assigning meaningful sets of words representative of the
concepts implemented in segments, we have performed a
manual validation on several traces of both JHotDraw and
ArgoUML, two widely-known Java applications, often used
as a benchmark in software engineering research.

We performed both a qualitative and a quantitative val-
idation aiming at verifying the relation between manually
defined labels and segment labels automatically generated
by SCAN. Quantitative analysis shows different ranges of
similarities between manual and automatic labels. On JHot-
Draw the median of recall (precision) 80% (60%), while for
ArgoUML it is above 50% (30%). We believe that for the
given task it is important to favor recall over precision and
developers are able to quickly discard wrong information
while retrieving the information is a long and expensive task.

The manual inspection of automatically-produced labels
indicates that these are quite informative and useful to re-
construct the target concepts associated with each segments.
The relatively low precision values should not be inter-
preted as poor performance. On the contrary, our qualitative
analysis indicates that such performance is sufficient for
manual concept assignment and phase recognition, and it
is perfectly in line with performances of automatic labeling
of source code artifacts using information retrieval methods
[28]. Finally, the lattices obtained by FCA help to highlight
meaningful relations among segments and to successfully
highlight phases of execution scenarios.

While phase recognition is still mostly manual work,
we plan to investigate how to automate it in our future
work. Other directions for future work will also focus on
further validation of SCAN with a pool of independent



developers. We also intend to study the effect of object-
oriented naming conventions, and to further study the impact
of multi-threading in label assignment. Moreover, we would
like to investigate the possibility of applying SCAN to label
multiple trace segmentations, i.e., segmentations of traces
corresponding to different scenarios.
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