
Resolve and Expand

Armin Biere

Computer Systems Institute
ETH Zürich, Switzerland

Abstract. We present a novel expansion based decision procedure for quantified boolean formulas
(QBF) in conjunctive normal form (CNF). The basic idea is to resolve existentially quantified variables
and eliminate universal variables by expansion. This process is continued until the formula becomes
propositional and can be solved by any SAT solver. On structured problems our implementationquan-
tor is competitive with state-of-the-art QBF solvers based on DPLL. It is orders of magnitude faster on
certain hard to solve instances.

1 Introduction

Recent years witnessed huge improvements in techniques for checking satisfiability of propositional logic
(SAT). The advancements are driven by better algorithms on one side and by new applications on the
other side. The logic of quantified boolean formulas (QBF) is obtained from propositional logic by adding
quantifiers over boolean variables. QBF allows to represent a much larger class of problems succinctly.

The added expressibility unfortunately renders the decision problem PSPACE complete [20]. Neverthe-
less, various attempts have been made to lift SAT technology to QBF, in order to repeat the success of SAT.
The goal is to make QBF solvers a versatile tool for solving important practical problems such as symbolic
model checking [13] or other PSPACE complete problems.

For QBF the nesting order of variables has to be respected. Accordingly two approaches to solve QBF
exist. Either variables are eliminated in the direction from the outermost quantifier to the innermost quanti-
fier or vice versa. We call the first approachtop-down, and the second onebottom-up.

Current state-of-the-art QBF solvers [4,17,12,9,22] are all top-down and implement a variant of the
search-based Davis & Putnam procedure DPLL [7]. Additionally, QBF requires decision variables to be
chosen in accordance with the quantifier prefix. Learning has to be adapted to cache satisfiable existential
sub goals. DPLL also forms the basis of most state-of-the-art SAT solvers, and therefore it was most natural
to use it for QBF as well.

Even for SAT, there are alternatives to DPLL, based on variable elimination, such as the resolution based
Davis & Putnam procedure DP [8]. It has never been used much in practice, with the exception of [5], since
usually too many clauses are generated.

Eliminating variables by resolution as in DP can be lifted from SAT to QBF as well. The result is a
bottom-up approach for QBF called q-resolution [10]. The only difference between q-resolution and ordi-
nary resolution is, that in certain cases universally quantified variables can be dropped from the resolvent.

In theory, q-resolution is complete but impractical for the same reasons as resolution based DP [8]. It has
not been combined with compact data structures either. In our approach, we apply q-resolution to eliminate
innermost existentially quantified variables. To make this practical, we carefully monitor resource usage,
always pick the cheapest variable to eliminate, and invoke q-resolution only if the size of the resulting
formula does not increase much. We useexpansionof universally quantified variables otherwise.

Expansion of quantifiers has been applied to QBF in [1] and used for model checking in [21,2]. All three
approaches work on formulae or circuit structure instead of (quantified) CNF. We argue that CNF helps
to speed up certain computationally intensive tasks, such as the dynamic computation of the elimination
schedule. First it is not clear how q-resolution can be combined with this kind of structural expansion. In
addition our goal is to eventually combine bottom-up and top-down approaches. CNF currently is the most
efficient data structure for representing formulas in top-down approaches for SAT.

Another general bottom-up approach [16,14,15,6] is also based on quantifier elimination. A SAT solver
is used to eliminate multiple innermost variables in parallel. In practice these approaches have only been
applied to SAT or model checking. In principle it would be possible to apply them directly to QBF. In our
approach single variables are eliminated one after the other. We can also alternate between either eliminating
existential variables of the innermost scope and eliminating universal variables of the enclosing universal
scope.

Resolve and Expand 239

2 Preliminaries

Given a set of variablesV, a literall overV is either a variablev or its negation¬v. A clauseis a disjunction
of literals, also represented by the set of its literals. A conjunctive normal form (CNF) is a conjunction
of clauses. Assume that the set of variables is partitioned intom non empty scopesS1, . . .Sm,⊆ V, with
V = S1∪ . . .∪Sm andSi ∩Sj = /0 for i 6= j. Each variablev∈V belongs to exactly one scopeσ(v). Scopes
are ordered linearlyS1 < S2 . . . < Sm, with S1 the outermost andSm the innermost scope. For each clauseC
the maximal scopeσ(v) over all variablesv in C is unique and defined as the scopeσ(C) of C. The scope
order induces a pre-order on the variables which we extend to an arbitrary linear variable order.

Each scope is labelled asuniversalor existentialby the labellingΩ(Si) ∈ {∃,∀}. Variables are labelled
with the label of their scope asΩ(v) ≡ Ω(σ(v)). We further require that the ordered partition ofV into
scopes is maximal with respect to the labelling, or more preciselyΩ(Si) 6= Ω(Si+1) for 1≤ i < m.

Now a quantified boolean formula (QBF) in CNF is defined as a CNF formulaf together with an ordered
partition of the variables into scopes. This definition matches the QDIMACS formats [11] very closely, with
the additional restriction of maximality.

A variablev is defined to occur in positive (negative) phase, or just positively (negatively), in a clause
C, if C contains the literalv (¬v). A clause in which a variable occurs in both phases istrivial and can
be removed from the CNF. Two clausesC, D, wherev occurs positively inC and negatively inD, can be
resolved to a resolvent clause. The resolvent consists of all literals fromC exceptv and all literals fromD
except¬v.

For a non-trivial clauseC we define the process offorall reductionas follows. The set offorall reducible
variablesin C is defined as the set of universal variables inC for which there is no larger existential variable
in C, with respect to the variable order. The clauseD obtained fromC by forall reduction contains all
variables ofC except forall reducible variables. For instance the two clauses in the following QBF

∃x . ∀y . (x∨y)∧ (¬x∨¬y)

arenot forall reduced. Forall reduction results in removing the literaly in the first clauses and the literal¬y
in the second, which results in two contradicting units. Also note, that forall reduction can result in an empty
clause if the original clause contains universal variables only. Plain resolution followed by forall reduction
is the same as q-resolution [10].

Forall reduction is an equivalence preserving transformation. Thus without loss of generality we can
assume that the CNF is in forall reduced form: by forall reduction no clause can be reduced further. This
assumption establishes the important invariant, thatΩ(σ(C)) = ∃ for all clausesC. In other words, all
clauses have an existential scope. There are no clauses with a universal scope. Particularly, the innermost
scope is always existential (Ω(Sm) = ∃). In our implementation, for each existential scope, we maintain a
list of its clauses, and for each clause a reference to its scope.

3 Elimination

We eliminate variables until the formula is propositional and contains only existential quantifiers. Then it
can be handed to a SAT solver. After establishing the invariant discussed above, a non-propositional QBF
formula has the following structure

Ω(S1) S1 . Ω(S2) S2∀Sm−1 . ∃ Sm . f ∧ g m≥ 2 (1)

where the formulaf is exactlythe conjunction of clauses with scopeSm. We either eliminate a variable
in the innermost existential scopeS∃ ≡ Sm by q-resolution or a variable in the innermost universal scope
S∀ ≡ Sm−1 by expansion.

3.1 Resolve

An existential variablev of S∃ is eliminated as in [8,10] by performing all resolutions onv, adding the forall
reduced resolvents to the CNF, and removing all clauses containingv in either phase. As example consider
the clauses in Fig. 1.

We assume that these 7 clauses are all clauses of a CNF in which the innermost existential variablev
occurs. To eliminatev, we simply perform all 3×2 resolutions between a clause on the left side, in which

240 Armin Biere

×

∨ vr¬

∨ vs

∨∨x vy

∨¬v r

∨ ∨ ∨¬v ¬x ¬y r

Fig. 1.Number of resolution pairs is quadratic.

v occurs positively, with all clauses on the right side, in whichv occurs negatively. In this case 3 resolvents
are trivial. The other three resolvents

(s∨ r), (x∨y∨ r), and (s∨¬x∨¬y∨ r)

are added to the CNF and the original 5 clauses containingv in either phase are removed. As always, before
adding one of the clauses, forall reduction is applied.

3.2 Expand

Expansion of a universal variablev in S∀ requires to generate a copyS′∃ of S∃, with a one-to-one mapping
of variablesu∈ S∃ mapped tou′ ∈ S′∃. With f ′ we denote the conjunction of clauses obtained fromf by
replacing all occurrences ofu∈ S∃ by u′. The result of expandingv∈ S∀ in Eqn.(1) is as follows

Ω(S1) S1 . Ω(S2) S2∀(S∀−{v}) . ∃(S∃∪S′∃) . f{v/0} ∧ f ′{v/1} ∧ g

By f{v/0} we denote the result of substitutingv by the constant 0 inf . This is equivalent to removing all
clauses in whichv occurs in negative phase and removing the occurrences ofv in those clauses in whichv
occurs positively, followed by forall reduction. The substitution by 1 is defined accordingly.

4 Optimizations

Before invoking one of the two costly elimination procedures described in Sec. 3, we first apply unit propa-
gation, a simple form of equivalence reasoning, and the standard QBF version of the pure literal rule. These
simplifications are repeated until saturation.

4.1 Equivalence Reasoning

To detect equivalences we search for pairs of dual binary clauses. A clause is calleddual to another clause
if it consists of the negation of the literals of its dual. If such a pair is found, we take one of the clauses and
substitute the larger literal by the negation of the smaller one throughout the whole CNF.

The search for dual clauses can be implemented efficiently by hashing binary clauses. In more detail,
whenever a binary clause is added, we also save a reference to it in a hash table and check, whether the hash
table already contains a reference to its dual. If this is the case an equivalence is found. After an equivalence
is found, it is used to eliminate one of the variables of the equivalence. Consider the following QBF formula:

∃x . ∀y . ∃z . (x∨z)∧ (x∨y∨¬z)∧ (¬x∨¬z)∧ (¬x∨¬z)

The two underlined dual binary clauses involvingx andz form an equivalence. After the last clause is added,
the equivalencex = ¬z is detected andz is replaced by¬x, which results in the following QBF formula:

∃x . ∀y . (x∨¬x)∧ (x∨y∨x)∧ (¬x∨x)∧ (¬x∨x)

After removal of 3 trivial clauses and forall reduction of the underlined clause, the only clause left is the
unit clausex. In general, before searching for dual clauses, forall reduction has to be applied first. This
way all substitutions triggered by equivalences will always replace existential variables by smaller literals.
Replacing universal variables would be incorrect as the standard example∃x . ∀y . (x∨¬y)∧(¬x∨y) shows.

Resolve and Expand 241

4.2 Subsumption

Expansion often needs to copy almost all clauses of the CNF. Moreover, the elimination procedures of
Sec. 3 produce a lot of redundant subsumed clauses. Therefore, subsumed clauses should be removed. If
a new clause is added, all old clauses are checked for being subsumed by this new clause. This check is
called backward subsumption [19] and can be implemented efficiently on-the-fly, by using a signature-based
algorithm. However, the dual check of forward subsumption [19] is very expensive and is only invoked
periodically, for instance at each expansion step.

The subsumption algorithm is based on signatures, where a signature is a subset of a finite signature
domainD. In our implementationD = {0, . . . ,31} and a signature is represented by an unsigned 32-bit
word. Each literall is hashed toh(l) ∈ D. The signatureσ(C) of a clauseC is the union of the hash values
of its literals. Finally, the signatureσ(l) of a literal l is defined as the union of the signatures of the clauses
in which it occurs, and is updated whenever a clause is added to the CNF.

Let C be a new clause, which is supposed to be added to the CNF. Further assume that the current CNF
already contains a clauseD which is subsumed byC, or more formallyC⊆ D. Then the signature ofC is a
subset of the signature ofD, which in turn is a subset of the signatures of all the literals inD. Since all the
literals ofC are also literals ofD, we obtain the necessary condition,σ(C)⊆ σ(l) for all literals l ∈C. The
signatureσ(l) is still calculated with respect to the current CNF, to whichC has not been added yet.

If this necessary condition fails, then no clause in the current CNF can be backward subsumed by
the new clause. In this case our caching scheme using signatures is successful and we call it a cache hit.
Otherwise, in the case of a cache miss, we need to traverse all clausesD of an arbitrary literal in the new
clause, and explicitly check forC⊆ D. To minimize the number of visited clauses, we take the literal with
the smallest number of occurrences. During the traversal, inclusion of signatures is a necessary condition
again. This can easily be checked, since the signature of a clause is constant, and can be saved.

In practice, the overhead of maintaining signatures and checking for backward subsumption in the way
just described turns out to be low. For forward subsumption no such efficient solution exists, and thus,
forward subsumption, in our implementation, is only invoked before expensive operations, like expansion.
Then we remove all clauses, flush signatures and add back the clauses in reverse chronological order.

Finally, if a clauseC is added to the CNF, the signatures of all its literalsl ∈ C have to be updated.
However, if a clause is removed, hash collision does not allow to subtract its signature from all the signatures
of its literals. Therefore we just keep the old signatures as an over approximation instead. After a certain
number of clauses are removed a recalculation of accurate clause signatures is triggered.

4.3 Tree-Like Prefix

We also realized that there are situations in which a linear quantifier prefix is not optimal and the basic
expansion step as described above copies too many clauses. Consider the QBF

∃x . ∀y,u . ∃z,v . f1(x,y,z)∧ f2(x,u,v)

It is a linearization of the following formula with a tree-like prefix:

∃x

∀y
∧ ∀u

∃z ∃v
f1(x,y,z) f2(x,u,v)

The result of expandingy as described above would contain redundant copies of clauses fromf2 and vice
versa redundant copies off1 when expandingu. In general, this problem can be coped with in the copying
phase of expansion. The idea is to copy only those clauses that contain a variable connected to the expanded
variable. In this context we call a variablelocally connectedto another variable if both occur in the same
clause. The relationconnectedis defined as the transitive closure oflocally connected, ignoring variables
smaller than the expanded variable and all other universal variables in the same scope.

This technique is cheap to implement and avoids to pay the price for one single expansion. But we
have not found an efficient way to use the information about tree like scopes to generate better elimination
schedules on-the-fly.

242 Armin Biere

5 Scheduling

The remaining problem, and one of our key contributions, is an efficient algorithm for on-the-fly generation
of elimination schedules. Our scheduler has to answer the question, which of the variables inS∃ ∪S∀ to
eliminate next. As a cost function for choosing the next variable we try to minimize the size of the CNF
after elimination. The size is measured in number of literals, which is equal to the sum of sizes of all
clauses. We separately calculate for each variable a pessimistic but tight upper bound on the number of
literals added, if the variable is eliminated. The variable with the smallest bound, which can be negative, is
chosen.

For each literall we maintain two counters reflecting the number of occurrences o(l) and the sum s(l)
of the sizes of the clauses in whichl occurs. These counters need to be updated only when a clause is
added or removed. The update is linear in the clause size. This also shows that the obvious alternative cost
function, which minimizes the number of added clauses instead of literals, is less precise, without improving
complexity. For each existential scopeS we maintain a counter reflecting the sum s(S) of the sizes of its
clauses.

5.1 Expansion Cost

For the expansion ofv∈ S∀ in Eqn.(1) according to Sec. 3.2 a tight upper bound on the number of added
literals is calculated as follows. Firstf would be copied, which adds s(S∃) literals. In f clauses are removed
in which v occurs negatively, in the copyf ′ clauses are removed in whichv occurs positively. This means
subtracting both s(v) and s(¬v) from s(S∃). We also have to take care of the single literals removed, and the
cost for eliminatingv by expansion becomes

s(S∃) −
(
s(v)+s(¬v)+o(v)+o(¬v)

)
For all v ∈ S∀ the term s(S∃) is the same. Thus we only need to order these variables with respect to
−

(
s(v)+s(¬v)+o(v)+o(¬v)

)
, which does not depend on other literals. This is essential for efficiency. In

our implementation we use a separate heap based priority queue for each scope.

5.2 Resolving Cost

For the elimination of an existential variablesv∈ S∃ in Eqn. (1) according to Sec. 3.1 the calculation of a
tight upper bound is similar but more involved. Consider Fig. 1. The literals on the left side, exceptv are
copiedo(¬v) times, which results ino(¬v) · (s(v)−o(v)) added literals. The number of copies of literals
from the right side is calculate in the same way. Finally we have to remove all original literals, which all
together results in the following cost, which again only depends on one variable:

o(¬v) ·
(
s(v) − o(v)

)
+ o(v) ·

(
s(¬v) − o(¬v)

)
−

(
s(v) + s(¬v)

)
As the example of Fig. 1 shows, this expression is only an upper bound on the cost of eliminating an exis-
tential variable by resolution. The bound is tight as the following example shows. Take the set of variables
on each side of Fig. 1. If the intersection of these two sets only containv, and all variables are existential,
then the number of added literals exactly matches the bound.

Note that for bad choices ofv calculating the multiplication may easily exceed the capacity of 32 bit
integer arithmetic. Since variables with large costs can not be eliminated anyhow, we used saturating arith-
metic with an explicit representation of infinity instead of arbitrary precision arithmetic.

5.3 Further Scheduling Heuristics

There are two exceptions to the scheduling heuristics just presented. First, as long as the minimal cost to
eliminate an existential variable inS∃ is smaller than a given boundE, we eliminate the cheapest existential
variable by resolution. This technique is also applied to pure propositional formulas. In this wayquantor
can be used as a preprocessor for SAT.

In our experiments, it turned out that in many cases, forcing the formula not to increase in size by setting
E = 0, already reduces the final formula considerably. However, by allowing small increases in size works

Resolve and Expand 243

benchmark family #inst decide qube semprop expandquantor

1 adder* 16 2 2 2 1 3
2 Adder2* 14 2 2 2 2 3
3 BLOCKS* 3 3 3 3 3 3
4 C[0-9]* 27 2 3 2 3 4
5 CHAIN* 11 10 7 11 4 11
6 comp* 5 4 4 5 5 5
7 flip* 7 6 7 7 7 7
8 impl* 16 12 16 16 16 16
9 k* 171 77 91 97 60 108

10 logn* 2 2 2 2 2 2
11 mutex* 2 1 2 2 2 2
12 qbf* 695 518 565 694 130 210
13 R3CNF* 27 27 27 27 25 21
14 robots* 48 0 36 36 15 24
15 term1* 4 2 3 3 1 3
16 toilet* 260 187 260 260 259 259
17 TOILET* 8 8 6 8 8 8
18 tree* 12 10 12 12 8 12
19 vonN* 2 2 2 2 2 2
20 z4ml* 13 13 13 13 13 13

#(among best in family) 6 12 16 9 16
#(single best in family) 0 0 1 0 4

Table 1.Number solved instances for benchmarks families of the QBF evaluation 2003.

even better. For scheduling purposes we useE = 50. This bound should probably be smaller ifquantor is
only used for preprocessing propositional formulas.

Another additional scheduling heuristics monitors the literals per clause ratio of the clauses with scope
S∃. If it reaches a certain threshold, 4.0 in our implementation, an expansion is forced. After each forced
expansion the threshold is increased by 10%. The reasoning behind forced expansion is as follows. A small
literals per clause ratio increases the likelihood that the optimizations of Sec. 4 are applicable. In this sense,
the scheduler should slightly bias decisions towards expansion instead of resolving, in particular, if the
literals per clause ratio is high.

6 Experiments

We focus on structured instances, also called non-random, because we believe them to be more impor-
tant for practical applications. As SAT solver we usedfunex, our own state-of-the-art SAT solver. It has
not particularly been tuned towards our application. We have also seen rare cases wherefunex performs
considerably worse than other SAT solvers, on SAT formulas generated byquantor.

In the first experiment we targeted the non random benchmarks of the SAT’03 evaluation of QBF [11]
and comparedquantor againstsemprop [12], the most efficient solver on these benchmarks in the evalu-
ation [11]. We addeddecide [17] andqube with learning [9] as reference. In order to measure the effect
of optimizations and using q-resolution we also configuredquantor in expandonly mode. In this mode
the scheduler always chooses expansion and all the optimizations are switched off. Exceptions are the pure
literal rule, simplification by unit resolution, and forall reduction. This configuration, markedexpandin
Tab. 1, almost matches the original algorithm of the first version ofquantor, which took part in SAT’03
evaluation of QBF [11].

As platform for this experiment we used an Intel Pentium IV 2.6 GHz with 1.5 GB main memory
running Debian Linux. The results in Tab. 1 are clustered in families of benchmarks. For each family we
count the number of instances solved in the given time limit of 32 seconds and memory limit of 1 GB. The
numbers of families solved are printed in bold for best solvers. For a single best solver the numbers are
underlined.

The comparison of the last two columns shows that expansion alone is very weak, and our new opti-
mizations are essential to obtain an efficient state-of-the-art expansion based QBF solver. The number of

244 Armin Biere

expand quantor

hard instance time space∀ time space∀ ∃ units pure subsu. subst. ∀red.

1 Adder2-6-s (12.2) m.o. – 29.6 19.7 90 13732 126 13282 174081 0 37268
2 adder-4-sat (12.1) m.o. – 0.2 2.8 42 1618 0 884 6487 0 960
3 adder-6-sat (13.0) m.o. – 36.6 22.7 90 13926 0 7290 197091 0 54174
4 C49*1.* 0 0* 98.3 40.8 1 27.9 13.3 1 579 0 0 48 84 0
5 C5*1.* 0 0* 357.0 45.6 2 56.2 16.0 2 2288 10 0 4552 2494 0
6 k pathn-15 (16.5) m.o. – 0.1 0.8 32 977 66 82 2369 2 547
7 k pathn-16 (16.6) m.o. – 0.1 0.8 34 1042 69 85 2567 2 597
8 k pathn-17 (16.2) m.o. – 0.1 0.9 36 1087 72 100 3020 2 639
9 k pathn-18 (16.8) m.o. – 0.1 0.9 36 1146 76 106 3242 2 725

10 k pathn-20 (21.4) m.o. – 0.1 0.9 38 1240 84 149 3967 2 855
11 k pathn-21 (21.0) m.o. – 0.1 1.0 40 1318 84 130 4470 2 909
12 k t4p n-7 (16.8) m.o. – 15.5 105.843 88145 138 58674 760844 8 215
13 k t4p p-8 (21.4) m.o. – 5.8 178.629 12798 206 5012 85911 4 138
14 k t4p p-9 (21.2) m.o. – 0.3 4.5 32 4179 137 1389 23344 10 142
15 k t4p p-10 (17.3) m.o. – 27.9 152.935 130136 193 63876 938973 4 137
16 k t4p p-11 (17.3) m.o. – 86.0 471.538 196785 204 795471499430 4 140
17 k t4p p-15 (21.3) m.o. – 84.6 354.750 240892 169 1816761336774 9 226
18 k t4p p-20 (20.9) m.o. – 3.6 16.1 65 27388 182 21306 197273 11 325

time in seconds, space in MB, m.o. = memory out (> 1 GB)

Table 2.Solved hard instances of SAT’03 evaluation of QBF.

cases in whichquantor is among the best solvers for a family is the same as forsemprop. There are four
more families, for whichquantor is the single best solver, three more than forsemprop. Also note, that the
families qbf* and R3CNF*, on whichquantor performs poorly compared to the other solvers, can actually
be considered to be randomized.

A detailed analysis revealed thatquantor was able to solve 10 instances classified ashard in [11]. These
hard formulas could not be solved by any solver in 900 seconds during the SAT’03 evaluation of QBF [11].
In a second experiment we restricted the benchmark set to these hard instances, a far smaller set.

The new time limit was set to 800 seconds to accommodate for the slightly faster processor (2.6 GHz
instead of 2.4 GHz in [11]). As predicted by the evaluation results in [11] all solvers exceptquantor timed
out on these instances. The results forquantor are presented in Tab. 2. Only solved instances are listed and
are not clustered into families, e.g. C49*1.*0 0* is the single instance with file name matching this pattern.

In all but two of the cases where the full version ofquantor succeeded theexpandonly version quickly
reached the memory limit of 1 GB. We note the time until the memory limit was reached in parentheses. It
is also remarkable that the memory requirements forquantor have a large variance. The columns∀ and∃
contain the number of universal quantifications by expansion and existential quantifications by resolution
respectively.

We added columns containing the numbers of unit simplifications, applications of the pure literal rule,
subsumed clauses, applied substitutions, and number of removed literals due to forall reduction (∀red). With
the exception of subsumption, all optimizations are rather cheap with respect to run-time overhead, and as
the data suggests, should be implemented. In particular the high number of pure literals in solving some
instances is striking. Substitution does not seem to be important. More important, though also more costly,
is subsumption.

For the two hard C[0-9]* instances covered in Tab. 2 more than 99% of the time was spent in the SAT
solver. For the other solved hard instances no call to a SAT solver was needed. In an earlier experiment we
used a slightly slower computer, an Alpha ES40 Server running at 666 MHz. The time limit was set to one
hour, and the memory limit to 8 GB. In this setting, we were able to solve two more of the hard C[0-9]*
benchmarks (with names matching C43*out*) in roughly 2500 seconds each. Again most time was spent in
the SAT solver. Except for those reported in Tab. 2, no further hard instance of [11] could be solved within
these limits.

We also like to report on experiments involving benchmarks from QBFLIB, which turned out to be very
simple forquantor. These include two families of benchmarks consisting of the 10 impl* instances and the
14 tree* instances. These 24 instances can be solved altogether in less than 0.1 seconds.

Resolve and Expand 245

One of the most appealing aspects of QBF is, that an efficient QBF solver may also be used forun-
boundedmodel checking via the translation of [18,20], also described in [17]. This translation needs only
one copy of the transition relation but requires 2· l alternations of quantifiers, wherel = dlog2re andr is the
initialized diameter (radius) of the model. In a boolean encodingl can be bounded by the number of state
bitsn. To check the hypothesis that QBF can be used for model checking in this way, we generated models
of simplen-bit hardware counters, with reset and enable signal.

We check the invalid simple safety property, that the all-one state is not reachable from the initial state
where all state bits are zero. This is the worst-case scenario for bounded model checking [3] since 2n−1
steps are necessary to reach the state violating the safety property. Symbolic model checking [13] without
iterative squaring needs 2n fix point iterations. However, the size of the result of the translation of this
problem to QBF is linear inn, the width of the counters.

With a time out of 60 secondsdecidecould only handle 3-bit-counters,qube andsemprop up to 4
bits, whilequantor solved 7 bits, matching the result by plain BMC with the same SAT solver. Since this
example is very easy for BDD-based model checking, it is clear that QBF based model checking still needs
a long way to go.

7 Conclusion

The basic idea of our QBF decision procedure is to resolve existential and expand universal variables. The
key contribution is the resource-driven, pessimistic scheduler for dynamically choosing the elimination
order. In combination with an efficient implementation of subsumption we obtain an efficient QBF solver
for quantified CNF.

As future work we want to explore additional procedures for simplifying CNF and combine bottom-
up elimination with top-down search. It may be also interesting to look into other representations, such as
BDDs or ZBDDs.

Finally, we would like to thank Uwe Egly and Helmuth Veith for insisting on the argument that there is
a benefit in not only focusing on a linear prefix normal form. Acknowledgements also go to Rainer Hähnle,
whose comments triggered the optimization of our subsumption algorithm.

References

1. A. Ayari and D. Basin. QUBOS: deciding quantified boolean logic using propositional satisfiability solvers. In
Proc.4th Intl. Conf. on Formal Methods in Computer-Aided Design (FMCAD’02), volume 2517 ofLNCS. Springer,
2002.

2. P. Aziz Abdulla, P. Bjesse, and N. Eén. Symbolic reachability analysis based on SAT-solvers. InProc. 6th

Intl. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’00), volume 1785 of
LNCS. Springer, 2000.

3. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic Model Checking without BDDs. InProc. 5th

Intl. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’99), volume 1579 of
LNCS. Springer, 1999.

4. M. Cadoli, A. Giovanardi, and M. Schaerf. An algorithm to evaluate quantified boolean formulae. InProc. 16th
National Conference on Artificial Intelligence (AAAI-98), 1998.

5. P. Chatalic and L. Simon. ZRes: The old Davis-Putnam procedure meets ZBDDs. In17th Intl. Conf. on Automated
Deduction (CADE’17), volume 1831 ofLNAI, 2000.

6. P. Chauhan, E. M. Clarke, and D. Kröning. Using SAT based image computation for reachability analysis. Tech-
nical Report CMU-CS-03-151, Carnegie Mellon University, 2003.

7. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving.Communications of the ACM,
5, 1962.

8. M. Davis and H. Putnam. A computing procedure for quantification theory.Journal of the ACM, 7, 1960.
9. E. Giunchiglia, M. Narizzano, and A. Tacchella. Learning for quantified boolean logic satisfiability. InProc. 18th

National Conference on Artificial Intelligence (AAAI’02), 2002.
10. H. Kleine B̈uning, M. Karpinski, and A. Fl̈ogel. Resolution for quantified boolean formulas.Information and

Computation, 117, 1995.
11. D. Le Berre, L. Simon, and A. Tacchella. Challenges in the QBF arena: the SAT’03 evaluation of QBF solvers. In

Proc. 6th Intl. Conf. on Theory and Applications of Satisfiability Testing (SAT’03), volume 2919 ofLNCS. Springer,
2003.

246 Armin Biere

12. R. Letz. Lemma and model caching in decision procedures for quantified boolean formulas. InProc. Intl. Conf. on
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX’02), volume 2381 ofLNCS.
Springer, 2002.

13. K. L. McMillan. Symbolic Model Checking: An approach to the State Explosion Problem. Kluwer Academic
Publishers, 1993.

14. K. L. McMillan. Applying SAT methods in unbounded symbolic model checking. InProc. 14th Intl. Conf. on
Computer-Aided Verification (CAV’02), volume 2404 ofLNCS. Springer, July 2002.

15. M. Mneimneh and K. Sakallah. Computing vertex eccentricity in exponentially large graphs: QBF formulation
and solution. InProc. 6th Intl. Conf. on Theory and Applications of Satisfiability Testing (SAT’03), volume 2919
of LNCS. Springer, 2003.

16. D. Plaisted, A. Biere, and Y. Zhu. A satisfiability procedure for quantified boolean formulae.Discrete Applied
Mathematics, 130(2), 2003.

17. J. Rintanen. Partial implicit unfolding in the Davis-Putnam procedure for quantified boolean formulae. InInterna-
tional Conference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR’01), 2001.

18. W. J. Savitch. Relation between nondeterministic and deterministic tape complexity.Journal of Computer and
System Sciences, 4, 1970.

19. R. Sekar, I. V. Ramakrishnan, and A. Voronkov. Term indexing. InHandbook of Automated Reasoning, volume II.
North-Holland, 2001.

20. L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time. In5th Annual ACM Symposium on
the Theory of Computing, 1973.

21. P. F. Williams, A. Biere, E. M. Clarke, and A. Gupta. Combining decision diagrams and SAT procedures for
efficient symbolic model checking. InProc. 12th Intl. Conf. on Computer Aided Conf. Verification (CAV’00),
volume 1855 ofLNCS. Springer, 2000.

22. L. Zhang and S. Malik. Conflict driven learning in a quantified boolean satisfiability solver. InProc. Intl. Conf. on
Computer-Aided Design (ICCAD’02), 2002.

