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motor behaviors. The first was the forward optomotor response 
(OMR)1,2, in which swimming is elicited by visual gratings mov-
ing in the tail-to-head direction. In our system, the OMR during 
light-sheet scanning was comparable to the OMR without the 
presence of the light sheets (Fig. 1c). We defined an optomotor 
index as the difference in swimming strength during and before 
stimulus presentation. This index was significantly positive in all 
fish tested, with or without the laser (P = 0.031 with laser and P 
= 0.031 without it; two-sided sign test, n = 6 fish), and its magni-
tude was comparable between the two conditions (optomotor 
index: 0.67 ± 0.13 with the laser and 0.72 ± 0.067 without it, mean  
± s.d.; P = 0.22, two-sided paired sign test).

We also tested a more complex behavior: fictive motor adapta-
tion, where the fish adapts its motor output to the strength of visual 
feedback in a closed-loop paradigm1. Again, the behavior was com-
parable with and without the light sheets (Fig. 1d). We defined a 
gain adaptation index as the ratio of swimming during low gain and 
high gain. This index was significantly greater than 1 in all fish tested 
(P = 0.0078 with laser and P = 0.0078 without it; two-sided sign 
test, n = 8). Its magnitude was also comparable between the two 
conditions (gain adaptation index: 2.08 ± 0.57 with the laser and  
1.91 ± 0.47 without it, mean ± s.d.; P = 0.29, two-sided paired sign 
test).

The preservation of the OMR and gain adaptation indicates that 
whole-brain light-sheet imaging is compatible with fictive virtual-
reality assays and can be used to interrogate whole-brain activity 
during visuomotor behavior. As an example, we measured whole-
brain activity during the OMR in a 6 d.p.f. transgenic zebrafish 
expressing the genetically encoded calcium indicator GCaMP6s8 
under the pan-neuronal elavl3 promoter (Supplementary Note). 
Light-sheet imaging captures stimulus and motor–dependent pat-
terns of whole-brain neural activity (Fig. 1e and Supplementary 
Video 1) with single-cell resolution across most of the brain  
(Fig. 1f,g and Supplementary Note). Cells and neuropil distributed 
across the brain showed activity during the optomotor response. We 
additionally assessed resolution using a fish with nuclear-localized 
(histone H2B fusion) expression of GCaMP6s (Supplementary 
Note, Supplementary Figs. 2 and 3, and Supplementary Video 2). 
Fish lines and DNA constructs for elavl3:GCaMP6s and elavl3:H2B-
GCaMP6s are available upon request.

We presented a system for monitoring neural activity, at the cel-
lular level, across the entire brain of the larval zebrafish during  
visuomotor behavior. Resources associated with this work, including 
sample data and analysis resources, are available via http://research.
janelia.org/zebrafish/. This system, in combination with large-scale 
data analysis methods described in a companion paper9, holds 
promise for advancing the understanding of how activity in large 
networks of neurons underlies behavior.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper (doi:10.1038/nmeth.3040).
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Guided visual exploration of genomic 
stratifications in cancer
To the Editor: Cancer is a heterogeneous disease, and molecular 
profiling of tumors from large cohorts has enabled characteriza-
tion of new tumor subtypes. This is a prerequisite for improving 
personalized treatment and ultimately achieving better patient out-
comes. Potential tumor subtypes can be identified with methods 
such as unsupervised clustering1 or network-based stratification2, 
which assign patients to sets based on high-dimensional molecular 
profiles. Detailed characterization of identified sets and their inter-
pretation, however, remain a time-consuming exploratory process. 

To address these challenges, we combined ‘StratomeX’3, an interac-
tive visualization tool that is freely available at http://www.caleydo.org/,  
with exploration tools to efficiently compare multiple patient stratifi-
cations, to correlate patient sets with clinical information or genomic 
alterations and to view the differences between molecular profiles 
across patient sets. Although we focus on cancer genomics here, 
StratomeX can also be applied in other disease cohorts. 

Thousands of patient stratifications can be derived from large can-
cer genomics datasets. This space of patient stratifications—which 
we call the ‘stratome’—contains stratifications based on, for example, 
clustering of mRNA, microRNA or protein expression matrices; the 
mutation or copy number status of genes; or on clinical variables. 
Owing to the size of the stratome and the heterogeneity of the under-
lying datasets, integration of computational and visual approaches is 
indispensable to the analyst in identifying biologically or clinically 
meaningful stratifications as well as clinical parameters and pathways 
that together provide a comprehensive view of each patient set.

StratomeX complements the network viewers, heat maps 
and genome browsers typically used in cancer genomics4 
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(Supplementary Discussion and Supplementary Table 1). To 
visualize the relationships between multiple patient stratifications 
as well as other data (Fig. 1 and Supplementary Fig. 1), stratifica-
tions are represented as columns of stacked blocks where each block 
corresponds to a patient set. Blocks contain visualizations of the data 
associated with those patients, such as heat maps, pathway maps 
overlaid with expression data or survival plots (Supplementary 
Fig. 2). Bands connecting the blocks show the pairwise overlap of 
sets in adjacent stratifications, with the width of the bands repre-
senting the size of the overlap relative to the size of the patient sets 
(Supplementary Fig. 3). This visualization is an efficient tool to 
confirm hypotheses about gene functions or subtypes defined by 
molecular profiles. 

StratomeX also integrates a computational framework for query-
based guided exploration of the stratome directly into the visual-
ization (Fig. 1), which enables discovery of novel relationships 
between patient sets and efficient generation and refinement of 
hypotheses about tumor subtypes. A ‘query wizard’ provides step-
by-step instructions (Supplementary Figs. 1 and 4) for defining 
queries, and a range of computational methods are used to generate 
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rankings (Supplementary Methods). The queries yield a score for 
each stratification, for example, based on their overlap with a par-
ticular patient set or based on their overall similarity to a selected 
stratification. Furthermore, the analyst can query the collection for 
stratifications that contain patient sets that exhibit differences in 
survival or differential regulation of pathways. We use ‘LineUp’5, a 
multi-attribute ranking technique, to visualize the results of these 
queries and to show which stratifications or pathways score highly 
(Fig. 1 and Supplementary Fig. 5). The tight integration between 
the StratomeX and LineUp views, as well as the dynamic computa-
tion of scores, is essential for rapid identification of meaningful rela-
tionships between stratifications, clinical parameters and pathways.

We demonstrate the effectiveness of StratomeX in a case study 
(Supplementary Note, Supplementary Figs. 6–18, Supplementary 
Tables 2 and 3, Supplementary Data 1–4 and Supplementary 
Video 1) in which we explored molecular and clinical data to char-
acterize tumor subtypes in a cohort of over 400 clear cell renal cell 
carcinoma cases reported by The Cancer Genome Atlas consor-
tium6. 

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper (doi:10.1038/nmeth.3073).
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Figure 1 | Seamless integration of visual and computational components in 
the extended StratomeX tool. In the StratomeX view (top) columns represent 
different stratifications, each of which are divided into patient sets, and the 
bands between the columns represent the patients in the intersection of the 
connected sets. The wider the bands, the higher the correlation between 
patient sets. Orange bands indicate selected patients. The results of queries 
are lists of elements ranked by a score, which are shown in the LineUp view 
(bottom). Elements selected in the LineUp view are immediately visualized in 
the StratomeX view, enabling analysts to rapidly explore the results of queries.
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