Upsortable: Programming Top-K Queries Over Data
Streams

Julien Subercaze, Christophe Gravier, Syed Gillani
Abderrahmen Kammoun, Frédérique Laforest
Univ Lyon, UJM Saint-Etienne
Laboratoire Hubert Curien UMR 5516
F-42023, Saint-Etienne, France

ABSTRACT

Top-k queries over data streams is a well studied problem.
There exists numerous systems allowing to process contin-
uous queries over sliding windows. At the opposite, non-
append only streams call for ad-hoc solutions, e.g. tailor-
made solutions implemented in a mainstream programming
language. In the meantime, the Stream API and lambda
expressions have been added in Java 8, thus gaining pow-
erful operations for data stream processing. However, the
Java Collections Framework does not provide data struc-
tures to safely and conveniently support sorted collections of
evolving data. In this paper, we demonstrate Upsortable,
an annotation-based approach that allows to use existing
sorted collections from the standard Java API for dynamic
data management. Our approach relies on a combination
of pre-compilation abstract syntax tree modifications and
runtime analysis of bytecode. Upsortable offers the devel-
oper a safe and time-efficient solution for developing top-k
queries on data streams while keeping a full compatibility
with standard Java.

1. INTRODUCTION

Stream data processing systems have drawn the attention
of the database community for more than a decade [1, 3,
10]. Numerous systems have been developed to handle con-
tinuous queries in the frame of real-time applications. The
sliding-window paradigm is well-suited for processing the
large amount of real-time data in standard real-time moni-
toring applications [9, 4]. This paradigm underlies the vast
majority of existing data stream processing systems. Among
the capabilities of such systems, top-k querying within slid-
ing windows has been widely covered [12, 15, 11]. On the
data structure side, there is a vast body of work on approxi-
mate evaluation of frequent items, top-k and cardinality for
stream processing [5, 13, 6].

The sliding window paradigm covers the needs for major
monitoring applications, but one size does not fit all and

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.

Proceedings of the VLDB Endowment, Vol. 10, No. 12

Copyright 2017 VLDB Endowment 2150-8097/17/08.

more complex analytics have requirements that cannot be
met by this paradigm. If the data expiration is not linear
with the time systems based on sliding-windows fall short
[8]. Therefore these real-world data stream processing ap-
plications require ad-hoc developments with standard pro-
gramming languages.

Programming languages have also evolved to answer the
need for data stream processing. Be it with Domain Specific
Languages [2, 16, 17], language extensions [14, 7] or with
evolutions of standard API like Stream for Java, this field
demonstrated many advances in the last few years. How-
ever, the existing data structures of these languages have
been designed for static data processing and their correct
use with evolving data is cumbersome — top-k query pro-
cessing requires maintaining sorted collections. We show
that maintaining sorted collections of dynamic data is par-
ticularly error-prone and leads to hard-to-detect bugs. In
this demo, we tackle the issue of maintaining dynamically
sorted collections in Java in a safe and transparent manner
for the application developer. For this purpose, we devel-
oped an annotation-based approach called Upsortable — a
portmanteau of update and sort — that uses compilation-
time abstract syntax tree modifications and runtime byte-
code analysis. Upsortable is fully compatible with standard
Java and is therefore available to the greatest number of de-
velopers *.

2. THE CASE FOR UPSORTABLE

The standard Java Collections API contains three imple-
mentations of sorted data structures: the java.util. TreeSet
backed by a Red-Black tree, the java.util. PriorityQueue that
implements a priority heap, and for thread-safety purpose,
the java.util.concurrent. ConcurrentSkipListSet implements
a concurrent variant of Skip List. These structures especially
implement add and remove primitives, as well as methods
to navigate within these collections. These structures are
therefore well-suited for the implementation of exact top-k
queries: elements are kept sorted according to either a com-
parator provided at the creation time of data structure or by
the natural ordering of the elements. In both cases, a pair-
wise comparison method is used to sort the objects and this
method must provide a total ordering. When dealing with
data streams, the value of some fields of an object are sub-
ject to evolution and this evolution may require a reordering

https://github. com/jsubercaze/Upsortable

1873

within the collections this object belongs to. With the afore-
mentioned sorted data structures — as well as third-parties
Java Collections API such as Guava? or Eclipse Collections®
— the developer must first remove the object from each sorted
collections, update its internal fields and reinsert the object
in these collections. The sorted collections may otherwise
become irredeemably broken. Figure 1 depicts such an ex-
ample. Hence, this remove, update and then insert process
is very error-prone, especially in large code base where ob-
jects belong to different sorted collections, depending on the
state of the application. Broken sorted collections are also
hard to identify at runtime and may go undetected for a
while. This is typical for the top-k queries, where the collec-
tions might be broken after the k-th element. The behaviour
of the corrupted data structure is not predictable, it ranges
from inconsistent results to wrong inserts and impossible re-
movals — as depicted in Figure 1 where the removal of D is
impossible since it cannot be reached.

Figure 1: Example of a corrupted Red-Black tree after up-
date of Object A via call to its setter.

To circumvent this issue, the standard solution is to rely
on the Observer design pattern. This pattern implies that
the objects must keep track of the collections they belong
to. This requires to add an extra data structure within the
objects to store pointers to the collections they belong to.
The field setters must be updated to remove, update and
insert the object (acting as the notify in the pattern). Using
a dynamic array to store the pointer is the most compact
way, however it may lead to useless remove and update if
the modified field does not participate in the comparison of
some sorted structures that the objects belong to. Using
a Hashmap circumvents this issue by mapping fields to the
structures where the object belongs and where the fields
participate in the comparison. However in both cases, when
dealing with millions/billions of objects that are created and
destroyed during the application lifetime, this solution has
a very high memory cost. Moreover, it still requires heavy
modifications of the source code by the application developer
who must handcraft these routines for each object definition
and for each setter.

Listing 1: Annotation based solution

@Upsortable
public class MyObject {

private int firstField;
private String secondField;

2https://github.com/google/guava
Shttps://www.eclipse.org/collections/

3. SOLUTION OVERVIEW

Our solution proposes an alternative to the Observer pat-
tern that does not require any other source code modifica-
tion than adding an annotation and has a restricted memory
fingerprint. The developer simply uses the @Upsortable an-
notation at the class level to declare that the internal fields
are subject to modification and that the sorted collections it
belongs to must be dynamically updated — such as depicted
in Listing 1. Our framework performs all the required up-
dates to maintain the collections correctly sorted when set-
ters update values in the object fields.

The underlying idea of our solution is that in real-time
applications the number of sorted collections is very small
compared to the number of objects that are sorted within
these collections — dozens against millions in practice. We
leverage this imbalance to devise an approach that does not
require to add any extra data structure to the objects defini-
tion. Instead of linking objects to the collections they belong
to, as in the Observer pattern, a global map links each field
definition to the list of collections where it participates in
the comparison process.

To relieve the developer from the burden of implementing
this process, our framework consists of two parts: a trans-
parent source code injection during the compilation phase
and an encapsulation of the standard API sorted collections
to automatically manage the global collection.

3.1 AST modifications

The Java compilation is a two-steps process. The first
step parses and compiles the source code and the second
one processes the annotations. The Lombok project? has
demonstrated the feasibility of modifying and recompiling
the Abstract Syntax Tree (AST) during the second step, al-
lowing annotations to transparently inject source code. Our
framework, based on Lombok, injects setters methods for
the classes annotated @Upsortable. The pseudo code of the
setter method is given in Algorithm 1. The setter retrieves
the sorted collections associated to the current field name —
obtained via reflection — and performs the remove, update,
insert operations. The algorithm keeps track of the sets the
current object participates in (by contract, remove() returns
true if the object was present). As a consequence, we are
guaranteed to insert the updated object in the correct col-
lections. Usage of WeakReference is detailed in Section 3.3.
Figure 2 depicts the source code injection via AST modifi-
cation during the annotation processing phase.

3.2 Bookkeeping
To keep track of the mappings between the fields names

and the sorted collections, we encapsulate the creation of
the sorted collections using the static factory pattern.

Listing 2: Collection instantiation with upsortable

//Without upsortable
TreeSet<MyObject> mySet = new
TreeSet <>(comparator) ;

//With upsortable
UpsortableSet <MyObject> mySet =
Upsortables.newTreeSet (comparator) ;

“https://projectlombok.org/

1874

Abstract Syntax Tree

source code

@Upsortable
public class MyObject {
private int value;

parse source

legend

foo | AST node generated by parser

! bar 1 ASTnode generated by annotation processor

code

[field | ["public’]

» Major compilation step
| method |

public String toString() {

return “value :" + value; name

}

name,

XXX | Program representation

body returnType

} |’va|ue’| |’toString' | AST subtree ‘String’
for toString()

process
annotations

fields modifiers member name o)
—r T T mz=Lo-ooo o B il I - 60: invokevirtual #79
[field | ['public’] [method | 1 ‘setValue' || SingleVarDecl | | ASTsubtree ! ‘void' ! e—) - :
__________________ [TR A . 63: invokevirtual #82
| forsetvalue() . recompile X
name, name, body returnType name 66: getstatic #43
72:dup
...... i - 73:aload_0
[value’] | ‘toString’ | AST subtree ‘String’ [| ‘newVal’ | :’int’: () B
fortostring) | 777777 T
Modified Abstract Syntax Tree Byte Code

Figure 2: Upsortable Abstract Syntax Tree modifications at annotation processing time.

Algorithm 1: Injected Setter code during annotation
processing

N

[+ I =

©

10

12
13
14

15

16

17
18

Input: newValue: the new value of the field
// Fails fast if unchanged
if this.field == newValue then
| return
end
// List of references to the collections concerned by
this field
refsList < refMap.get(currentFieldName);
// Remove this from the collections, remove cleaned
references
participatingCollections = newArrayList();
for ref € refsList do
if ref is cleaned then
| remove from refList
else
if ref.deref().remove(this) then
| participatingCollections.add(ref.deref())
end
end
end
// Update the value
this. field < newValue
// Reinsert in the right collections
for collection € participatingCollections do
| collection.add(this)
end

We created a class called Upsortables that exposes static

methods to create sorted structures backed by the standard
Java API ones: TreeSet, ConcurrentSkipList and Priori-
tyQueue. These static factory methods require the usage
of comparator for the creation of sorted collections, disal-
lowing the usage of natural ordering. The comparator im-
plements per definition a compare(MyObject o1, MyObject
02) method. The static factory methods analyze the con-
tent of the compare method via runtime bytecode analysis

in order to extract the fields of MyObject that participates
in the comparison. For this purpose, we use Javassist, a
common bytecode manipulation library. The extracted field
names are then associated to the sorted collection that is
being created in the global map. For performance reasons,
we provide two versions of this global collection, one being
thread-safe, the other not. On the developer point-of-view,
besides the usage of the annotation, the sorted collection
instantiation is the only modification, albeit minor, that is
required to use Upsortable. Listing 2 depicts the minor
changes that this encapsulation implies. The burden on the
developer side is therefore very limited and does not bring
any particular difficulty.

3.3 Garbage Collection

Sorted collections may be created and deleted during the
lifecycle of the application. Our framework shall therefore
not interfere with the lifetime of these collections and shall
especially not prevent them from being collected by the
garbage collector (GC). To prevent the Hashmap that maps
fields definitions to the Upsortable collections to hold a refer-
ence to these collections that would prevent their collection
by the GC, we use a WeakReference. Contrarily to the soft
references, weak ones do not interfere with the garbage col-
lection of the objects they refer to. The injected setters’
code takes care of removing weak references that have been
cleaned up by the garbage collector. By relying on the Lis-
tlterator, we are able to both process valid references and
remove cleaned ones in a single iteration over the list of weak
references.

3.4 Discussion

The Upsortable approach offers a convenient and safe so-
lution to manage dynamically sorted collections. Naturally,
safety and convenience have a performance impact. Keeping
track of the relation between fields and sorted collections in

1875

Upsortable has a very limited memory fingerprint — espe-
cially compared to the Observer design pattern — and the
CPU impact is also limited. Since we leverage the imbalance
between the number of objects and collections, this leads to
a very few useless removes (a O(log(n)) operation for three
data structures) and has a very limited impact of several
percents (< 5%) of the runtime in the practice, depending
on the input data.We show the attendee the impact of the
framework on a real-world application in the second scenario
of our demonstration.

4. DEMONSTRATION

In this demo, we will showcase i) the impact of Upsortable
on development time in the frame of an illustrative scenario,
where annotated class instances participate to a single col-
lection; ii) the usage of Upsortable in a complex scenario
with real-world data in a large code base.

Annotating a class field using Upsortable: For this
demo, we provide a Java project that consumes a stream of
temperatures measurements issued by one hundred different
temperature sensors. Each temperature value streamed to
the system is represented in memory as instances of the class
TemperatureSensor, which holds two fields: a sensor iden-
tifier (a unique String) and the current temperature value
for this sensor (a float). In this application, any new sensor
value supersedes the previous one. The functional objective
of the system is to deliver, at each new received value, the
ten sensors with the greatest values (top-10 query over all
sensors). We showcase how to effectively use the Upsortable
annotation in order to answer such a query over stream with
as little development time as possible. That is by adding the
Upsortable annotation and adding the temperature sensors
values to an UpsortableSet — using the set that encapsulates
Java collections API TreeSet. Would the attendee prefer to
use another collection such as a ConcurrentSkipList or a
PriorityQueue, we then showcase the easiness of changing
the underlying data structure. Besides being a first sce-
nario demonstrating the practical interest for Upsortable,
the attendees will be shown that only two lines of code and
an annotation (@Upsortable) are required to implement the
top-k query over data stream.

Non-appendable data stream processing. The aim
of the second demo program for Upsortable is to provide a
data stream processing scenario over highly heterogeneous
data and more complex continuous queries. This program
is part of our answer to the DEBS 2016 Grand Challenge [8]
that was selected as finalist runner-ups. In this application,
the underlying scenario addresses the analysis metrics for a
dynamic (evolving) social network graph. The item within
the stream are social events of four kinds: new friendship
between users, a new post created, a new comment posted
in response to a post, or a user declares a like on a post. This
query is of complex nature since instances belong to several
collections that must be continuously tracked to be updated
when constituting instances are updated. The continuous
query that the system must answer is the identification of
the posts that currently trigger the most activity in the so-
cial network. Posts expiration is triggered when their scores
reach zero, which is not bound to a sliding window but actu-
ally to the activity of the social network. The total score of
an active post is computed as the sum of its own score plus
the score of all its related comments. A decreasing factor is
applied to both posts and comments — older events results

1876

in lower weights. Since posts lifespan cannot be predicted,
this application showcases a non append-only application
[12]. The attendee will gain a deeper understanding of the
power of Upsortable where instances are candidates belong
to several collections — and this ownership to different col-
lections can change over time. The main issue tackled here
ensues from events that can become obsolete and updated
frequently — when a like or a comment is produced for a
given post, this updates its score hence its ranking in the
continuous top-k query data structure. We showcase that
this previously prone-to-error and time-consuming task is a
case where Upsortable shines.

S. REFERENCES

[1] D. J. Abadi et al. Aurora: a new model and
architecture for data stream management. VLDB/J,
pages 120-139, 2003.

J. Bosboom et al. StreamJIT: A commensal compiler
for high-performance stream programming. In
OOPSLA, pages 177-195, 2014.

S. Chandrasekaran et al. Telegraphcq: continuous
dataflow processing. In SIGMOD, pages 668—668.
ACM, 2003.

G. Chen et al. Realtime data processing at facebook.
In SIGMOD, pages 1087-1098. ACM, 2016.

G. Cormode and S. Muthukrishnan. An improved
data stream summary: the count-min sketch and its
applications. Journal of Algorithms, pages 58-75,
2005.

M. Durand and P. Flajolet. Loglog counting of large
cardinalities. In ESA, pages 605—-617, 2003.

P. Eugster and K. Jayaram. EventJava: An extension
of Java for event correlation. In ECOOP, pages
570-594. Springer, 2009.

V. Gulisano et al. The DEBS 2016 grand challenge. In
DEBS, pages 289-292, 2016.

S. Kulkarni et al. Twitter heron: Stream processing at
scale. In SIGMOD, pages 239-250, 2015.

J. Meehan et al. S-store: Streaming meets transaction
processing. PVLDB, pages 2134-2145, 2015.

A. Metwally et al. Efficient computation of frequent
and top-k elements in data streams. In ICDT, pages
398-412, 2005.

K. Mouratidis, S. Bakiras, and D. Papadias.
Continuous monitoring of top-k queries over sliding
windows. In SIGMOD, pages 635—646, 2006.

N. Ntarmos, P. Triantafillou, and G. Weikum.
Counting at large: Efficient cardinality estimation in
internet-scale data networks. In ICDE, page 40, 2006.
G. Schueller and A. Behrend. Stream fusion using
reactive programming, linq and magic updates. In
FUSION, pages 1265-1272, 2013.

M. A. Soliman et al. Top-k query processing in
uncertain databases. In ICDFE, pages 896-905, 2007.
X. Su et al. Changing engines in midstream: A Java
stream computational model for big data processing.
PVLDB, pages 1343—-1354, 2014.

W. Thies, M. Karczmarek, and S. Amarasinghe.
Streamit: A language for streaming applications. In
International Conference on Compiler Construction,
pages 179-196, 2002.

2]

(13]

(14]

(15]

(16]

(17]

