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Preface

Welcome to the third Doctoral Symposium of the International Symposium on
Formal Methods. This year, the Formal Methods Symposium and its Doctoral
Symposium are organized in Eindhoven, the Netherlands. It is also part of the
Formal Methods Week featuring a number of scientific events dedicated to For-
mal Methods and their application.

The call for papers for the Doctoral Symposium was sent out in July 2009
and has attracted 20 papers from 13 different countries. The review commit-
tee then spent about one month reviewing the submitted papers and discussing
them. The final decision was a particularly difficult one since 14 out of 20 papers
received an average positive score from the reviewers; hence, many good sub-
missions had to be rejected due to the limited time dedicated to the symposium
and to guarantee sufficient room for discussion for the accepted papers. Finally,
the review committee accepted 10 papers from 6 different countries, which are
presented in this proceedings.

We would like to thank several people and organizations which helped us in
organizing this symposium. First and foremost, we would like to acknowledge
the help and support provided by the FM 2009 organization committee and
program co-chairs: Tijn Borghuis, Erik de Vink, Jos Baeten, Ana Cavalcanti
and Dennis Dams. We are grateful to Formal Methods Europe association for
providing generous travel grants and free tickets to the conference dinner for the
participating students. Also, we would like to thank our Review and Examination
Committees, as well as the additional sub-referees for their time and effort in
reviewing and selecting among the submitted papers. Our best thanks go to
Professor Cliff B. Jones for accepting our invitation to give an invited talk in
this symposium. Finally we would like to thank the students who have submitted
to and participated in the Doctoral Symposium, without whom this event would
not even materialize.

September 2009 MohammadReza Mousavi and Emil Sekerinski
Co-Chairs of FM 2009 Doctoral Symposium
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Exploiting Architectural Constraints and
Branching Bisimulation Equivalences in

Component-Based Systems

Christian Lambertz?

Department of Computer Science, University of Mannheim, Germany
lambertz@informatik.uni-mannheim.de

Abstract. We introduce a condition for the verification of properties in
component-based systems that allows for components with variants and
hence supports reusability. Thereby, the architecture of the system and
behavior equivalences between the components are exploited in order to
cope with the state space explosion problem. We use the model of inter-
action systems as the component model and extend it with unobservable
behavior and a new composition operator.

1 Introduction

In component-based systems the fault-free composition of the components plays
an important role in order to construct fault-free systems. But, the well-known
state space explosion problem, that arises in the composition step, makes a di-
rect state space analysis unfeasible. Thus, many techniques were developed that
reduce the state space, e.g., compositional reasoning, partial order reduction, ab-
stract interpretation, and symmetry reduction. Another approach is to exploit
the architecture of the composed system.

The exploitation of the architecture and of behavioral equivalences is used
as such a technique by Bernardo et al. [1]. They introduce the notion of compo-
nent compatibility which means that the composite behavior of two components,
where any joint action is concealed, is weak bisimilar to the behavior of one of
the components with corresponding concealed actions. For instance, if a compo-
nent b which only interacts with one component m is compatible to m, then b is
not important for the global behavior of the system. Instead of considering both
components one can safely consider only m.

This approach is extensible to the whole system. It is particularly suited for
acyclic architectures, such as star-like or tree-like ones. For instance in star-like
architectures, the compatibility check is performed for every border component
together with the central component. If it succeeds, the behavior of the whole
system can be reduced by only considering the behavior of the central compo-
nent.
? I thank my advisor Mila Majster-Cederbaum for proposing this research direction.
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A similar idea is used by Hennicker et al. [5]. They call the compatibility be-
havior neutrality and provide a reduction strategy for such neutral components.

However, as shown by our example in Sec. 3, the mentioned strategies are not
suited for versatile components that offer many variants for different contexts.
This versatility supports the reusability property that is typically desired in
component-based system design. Similarly arguing, the compatibility assumption
of [1] is rather restrictive. If a border component alters the behavior of the central
component but this alteration is not important for the interaction with the other
components, the approach already fails.

Our contribution to overcome the versatility problems of the existing ap-
proaches is that we propose a condition that allows for more liberal alterations.
We use interaction systems by Gössler and Sifakis [4] as the component model.
Note that our technique does not rely on this model; our ideas carry over to
other models of concurrency as well. The key idea of interaction systems is the
separation of the components’ description and their glue code. Each component’s
description consists of a static and a dynamic part. The static part describes the
available actions for cooperation, and the dynamic part models the local behav-
ior as a labeled transition system. The glue code is described as a set of so-called
interactions and models the cooperation. The global behavior can be computed
by combining the local behaviors according to the glue code. We extend the orig-
inal definition of [4] by the concept of closed interactions that cannot be used
for further compositions and that become unobservable in the global behavior.
Additionally, we provide a new composition operator.

In the following, we focus on component systems with star-like and tree-like
architectures. This is reasonable since many interesting cases, e.g., master/client
architectures, follow such a pattern. In CSP, for instance, the connection diagram
of processes constructed with the subordination operator forms a tree [6].

Furthermore, we use branching bisimilarity (denoted by ≈b in the following)
instead of weak bisimilarity (denoted by ≈), which is used by Bernardo et al. [1]
and Hennicker et al. [5], because branching bisimilarity preserves more properties
of systems (a logical characterization of ≈b in CTL*–X exists [2]), it is more
efficient to calculate, and, as remarked by van Glabbeek and Weijland [3], many
system that are weak bisimilar are also branching bisimilar.

2 Definitions

Before we give a precise definition of interaction systems, we define several op-
erators for the manipulation of sets that are needed in the following.

Definition 1 (Set Manipulation). Let X and Y be two sets of sets with
X ∩ Y = ∅ ∨ X ∩ Y = {∅}. The (nonempty) interjoin of these sets is denoted
by X ./Y := {x ∪ y | x ∈ X ∧ y ∈ Y } \ ({∅} ∪ X ∪ Y ), i.e., the interjoin
contains only new sets that were not contained in X or Y before. The power set
of a set x is denoted by ℘(x ) := {x ′ | x ′ ⊆ x}. We overload this operator for sets
of sets, i.e., the union of all power sets of sets x contained in X is denoted by
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℘(X ) :=
⋃

x∈X ℘(x ). The set of sets X is said to respect the sets in Y , denoted
by X v Y , if ∀ x ∈ X ∃ y ∈ Y : x ⊆ y.

Definition 2 (Interaction System). An interaction system is defined by means
of a tuple Sys := (K ,A, Int , Intclosed, {Ti}i∈K ). Here K is a finite set of com-
ponents, which are referred to as i ∈ K. The actions of component i are given
by the action set Ai with the property ∀ i , j ∈ K : i 6= j ⇒ Ai ∩ Aj = ∅. All
available actions are contained in the global action set A :=

⋃
i∈K Ai .

A nonempty finite set α ⊆ A of actions is called an interaction if it contains
at most one action of every component, i.e., |α∩Ai | ≤ 1 for all i ∈ K. For any
interaction α and component i we put i(α) := Ai ∩α. We say that i participates
in α if i(α) 6= ∅.

The interaction set Int of Sys is a set of interactions that covers all actions,
i.e.,

⋃
α∈Int α = A. The set of closed interactions Intclosed ⊆ Int contains inter-

actions that cannot be used to create new interactions among the components (we
define later how this creation works). An additional special interaction, the un-
observable interaction τ , is available but not contained in the global interaction
set, i.e., τ 6∈ Int.

Finally, for each component i a labeled transition system Ti describes the
local behavior of i , i.e., Ti :=

(
Qi ,Ai ,∆i , q0

i
)

where Qi is the local state space,
each local alphabet Ai contains all actions of component i, the local transition
relation is ∆i ⊆ Qi ×Ai ×Qi , and q0

i ∈ Qi is the local initial state.
The global behavior of Sys is a labeled transition system [[Sys]] :=

(
Q ,A,∆, q0

)
which is obtained in a straightforward manner. The global state space is given
by Q := ×i∈KQi . States are denoted by tuples q := (q1, . . . , qn), and the global
initial state is q0 :=

(
q0
1 , . . . , q0

n
)
. The global alphabet A := Int \ Intclosed ∪ {τ}

contains all non-closed interactions and the special interaction τ . The global
transition relation ∆ ⊆ Q × A×Q is defined canonically: For any α ∈ Int and
any q , q ′ ∈ Q we have

– (q , α, q ′) ∈ ∆ if α 6∈ Intclosed and ∀ i ∈ K : if i(α) = {ai} then (qi , ai , q ′i) ∈
∆i and if i(α) = ∅ then qi = q ′i and

– (q , τ, q ′) ∈ ∆ if α ∈ Intclosed and ∀ i ∈ K : if i(α) = {ai} then (qi , ai , q ′i) ∈
∆i and if i(α) = ∅ then qi = q ′i .

Next, we define a composition operator for interaction systems. This compo-
sition should only be possible for disjoint interaction systems: Two interaction
systems Sys and Sys ′ are disjoint, if their set of components and global action
sets are disjoint.

Definition 3 (Composition: Interconnecting Interaction Systems). Let
Sys and Sys ′ be two disjoint interaction systems, and let I + ⊆ ℘(Int\Intclosed) ./
℘(Int ′ \ Int ′closed) be a set of new interactions. Let I− ⊆ (Int \ Intclosed) ∪
(Int ′ \ Int ′closed) with I− v I + be a set of old interactions that should not be
included in the composite interaction system because any of these old interactions
is part of a new interaction. Let (I +, I−) denote this composition information.
The composition of Sys and Sys ′ with respect to the composition information
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is the interaction system Sys ⊗
(I+,I−)

Sys ′ := (K ∪K ′,A ∪A′, (I + ∪ Int ∪ Int ′) \

I−, Intclosed ∪ Int ′closed, {Ti}i∈K∪K ′).

We now define subsystems of interaction systems by considering subsets of
the components. Afterwards, we define an operator for declaring interactions as
closed.

Definition 4 (Subsystem Construction). Let Sys be an interaction system
and K1 ⊆ K a set of components. The subsystem of Sys obtained by only con-
sidering the components in K1, denoted by Sys[K1], is the interaction system
Sys[K1] := (K1,A[K1], Int [K1], Intclosed[K1], {Ti}i∈K1

) with A[K1] :=
⋃

i∈K1
Ai ,

Int [K1] := {α ∩ A[K1] | α ∈ Int ∧ α ∩ A[K1] 6= ∅}, and Intclosed[K1] := {α ∈
Intclosed | α ⊆ A[K1]}.

Definition 5 (Closing of Interactions). Let Sys be an interaction system and
Î be a set of interactions. The closing of the interactions contained in Î in Sys,
denoted by Sys \\ Î , is the interaction system Sys \\ Î := (K ,A, Int , Intclosed ∪
(Î ∩ Int), {Ti}i∈K ).

In order to avoid confusing parentheses when the three operators are used to-
gether, we define the following order of operators: In the absence of parentheses,
subsystem construction takes precedence over closing, which takes precedence
over composition.

In the following, we focus our analyses on systems with a particular archi-
tecture: The interaction graph of an interaction system Sys contains a node for
every component and the set of edges {{i , j} | ∃ α ∈ Int such that components
i and j participate in α}. If the interaction graph forms a tree in the graph-
theoretical sense we say that Sys is tree-like. If it contains exactly one inner
node we say that Sys is star-like.

Note that the above definition of tree/star-like interaction systems implies
that all interactions are binary. Furthermore, we assume for simplicity that any
tree-like interaction system that is considered in the following satisfies the exclu-
sive communication property, i.e., any action of any component is only contained
in interactions with exactly one other component. This requirement does not re-
strict our approach, because an arbitrary tree-like interaction systems Sys can be
transformed into an equivalent tree-like interaction system Sys ′ with exclusive
communication in polynomial time [7].

3 Motivation: Versatile Merchandise Management
System

Consider a merchandise management system (MMS) for wholesalers which man-
ages orders of customers and supplies in the wholesaler’s storage. Therefore, the
MMS offers several modes of operation: A wholesaler may deliver after receiv-
ing an order, may demand from the customer to ask for a reservation before
ordering, and may accept direct orders but request nevertheless a reservation for
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internal purposes. Additionally, any reservation is printed out for internal use.
This versatile behavior is reasonable if we assume that the MMS was developed
by a software company that wants to sell the MMS as a software component to a
variety of wholesalers. We consider now a particular wholesaler that bought and
uses this MMS who has a storage system in which every product needs to get
reserved before it will be delivered. Additionally, this wholesaler requests from
its customers to ask for a reservation before placing an order. This setting is
modeled as an interaction system with three components representing the MMS
m, the storage system s, and a customer c. The behavior of the components is
depicted in Fig. 1. Obviously, this interaction system is star-like.

Fig. 1. Behavior of the components: the MMS m, the storage system s, and the customer c.
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The interactions are given by Int := {{reservem , reserves}, {deliverm , delivers},
{askm , askc}, {orderm , orderc}, {printm}}. Note that many more customers could
be added to the system, e.g., the customers are classified into several groups. Fur-
thermore, many more storage systems could be added, e.g., distributed storage
places exist each with an own system. Of course, the star-like architecture is
preserved this way.

We want to verify the deadlock-freedom of the system. If we want to use the
approach of Bernardo et al. [1] or Hennicker et al. [5], we have to check whether
the behavior of the subsystem consisting of either a storage system or a customer
composed with the MMS is weak bisimilar to the behavior of the MMS where
any action used in an interaction in the former system is closed. We need to
check all such pairs.

Stated in our notation, we need to check for i := s, c whether [[Sys[{m, i}] \\ Îm,i ]]
?
≈ [[Sys[{m}] \\ Îm,i ]] holds where Îm,i denotes the interactions in which both m
and i participate. This is not the case for i = c as illustrated in Fig. 2, because
the path “τ {deliverm}” is only possible in the latter system.

Fig. 2. Global behavior of Sys[{m, c}] \\ Îm,c (on the left) and Sys[{m}] \\ Îm,c (on the right).
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But, this path is not possible in the global system, i.e., the restrictions that
component c puts on m play no role for the interaction with component s. We
can express this situation with the following equivalence:

[[Sys[{m, c}] \\ Îm,c ⊗
〈m,s〉

Sys[{s}]]] ≈b [[Sys[{m}] \\ Îm,c ⊗
〈m,s〉

Sys[{s}]]]

where 〈m, s〉 denotes the composition information of m and s. Since this equiv-
alence holds and also

[[Sys[{m, s}] \\ Îm,s ⊗
〈m,c〉

Sys[{c}]]] ≈b [[Sys[{m}] \\ Îm,s ⊗
〈m,c〉

Sys[{c}]]]

holds, we can conclude that no border component restricts the central compo-
nent m in a way, that the interactions of m with any other border component
are interfered.

Next, we formalize the ideas behind the example and show how it can be
applied to arbitrary interaction systems whose topology follows a particular
architectural constraint. Afterwards, we complete the example by showing its
deadlock-freedom.

4 Exploiting the Architecture and Branching Bisimilari-
ties

Consider an interaction system Sys with a star-like architecture, i.e., one central
component is surrounded by border components and each border component
interacts only with the central component. Note that we have already extended
our approach to tree-like systems. The following theorem is also applicable in
the tree-like case because such a systems consists of many star-like subsystems.
Thereby, we use the graph-theoretical center of the interaction graph as the
central component of the tree-like system.

An arbitrary border component i in Sys does not interfere the central com-
ponent m, if any restriction put on m by i plays no role for the interaction of m
with any other border component. Of course, the border component i is allowed
to restrict the behavior of the central component, but only in this non-interfering
way. The idea behind the non-interference is that the border component i does
not heavily influence the global behavior of the system and its behavior can
be neglected in the analysis. We formalize this idea for all border components
in Theorem 1. Thereby, the non-interference is modeled by branching bisimilar
behavior.

Theorem 1. Given a star-like interaction system Sys with exclusive communi-
cation. Let m denote the central component. If for all distinct pairs i , j ∈ K \{m}
holds

[[Sys[{m, i}] \\ Îm,i ⊗
〈m,j 〉

Sys[{j}]]] ≈b [[Sys[{m}] \\ Îm,i ⊗
〈m,j 〉

Sys[{j}]]]

with Îm,i := {α ∈ Int [{m, i}] | α 6∈ Int [{m}] ∨ ∃ α′ ∈ Int [{m, i}] : α ⊂ α′}
and 〈m, j 〉 := (I +

m,j , I
−
m,j ) in each case with I +

m,j := Int [{m, j}] and I−m,j := {α ∈
Int [{m}] ∪ Int [{j}] | α 6∈ Int [{m, j}]} then it holds that

[[Sys \\ Î ]] ≈b [[Sys[{m, k}] \\ Î ]]
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with Î :=
⋃

i∈K\{m,k} Îm,i = {α ∈ Int | α 6∈ Int [{m, k}] ∨ ∃ α′ ∈ Int : α ⊂ α′}
and an arbitrary border component k ∈ K \ {m}.

Theorem 1 shows that the global behavior of a star-like interaction system
Sys, which could be too large for a direct analysis, can be minimized if certain
equivalences between subsystems hold. But, the minimization is only useful if
properties of Sys are preserved. Fortunately, branching bisimilarity preserves
many properties [2]. The following corollary provides this preservation for the
minimization.

Corollary 1. Given a star-like interaction system Sys with exclusive commu-
nication and a property expressed as a CTL*–X formula φ. Let m denote the
central component of Sys and k one of the border components.

If Theorem 1 holds for Sys, i.e., [[Sys \\ Î ]] ≈b [[Sys[{m, k}] \\ Î ]] with Î :=
{α ∈ Int | α 6∈ Int [{m, k}] ∨ ∃ α′ ∈ Int : α ⊂ α′}, and if no interaction in which
a border component but component k participates is used as an atomic proposition
in φ, i.e., AP(φ) ⊆ (Int \ Î ) ∪ {⊥}, then the satisfiability of φ in Sys is implied
by the satisfiability of φ in Sys[{m, k}], i.e., Sys[{m, k}] |= φ⇒ Sys |= φ.

Completing the Example in Section 3 We want to verify the deadlock-freedom
of the MMS by verifying whether the CTL*–X formula φ = AG EF true holds.
We apply Theorem 1, and since it holds and Sys[{m, c}] satisfies φ, the system
is deadlock free.

5 Future Work

If the premises of Theorem 1 do not hold for all border components, a smaller
system could be obtained by only considering a subsystem which satisfies the
theorem. Additionally, special protocols which represent small parts of a compo-
nent’s behavior could be used to further simplify the checks. Other architectures
are also under consideration.
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Using CSP for Software Verification

Moritz Kleine

Technische Universität Berlin
Institute for Software Engineering and Theoretical Computer Science

Berlin, Germany
mkleine@cs.tu-berlin.de

Abstract. In this paper, we present our approach to verifying software
by synthesizing a CSP model from its compiler intermediate representa-
tion. This allows us to reason about the implementations of concurrent
programs on the CSP level and to reuse existing CSP tools. The corre-
spondence of an implementation to its CSP-based specification can be
established by proving that the synthesized CSP model is a refinement
of the specification. The main contribution of this work is a new source-
language-independent semi-automated approach to verifying concurrent
software.

1 Introduction

This research addresses the problem of building usable software verification sys-
tems for concurrent systems implemented in a general-purpose programming
language. One problem in this field is developing efficient tools and integrated
tool chains supporting software verification. Additionally, still an active field
of research is the development of specification languages that are suitable for
software verification, e.g. Spec# [1], KeY-C [12] and VCC [2]. To facilitate the
verification of concurrent programs, we propose an approach that builds on the
automated synthesis of a low-level CSP model from the compiler intermediate
representation (IR) of their implementation-level description. Our work explores
several ways of building the low-level model, which formalizes the IR of the pro-
gram and outlines different ways of exploiting the low-level model for software
verification.

1.1 Brief Introduction to CSP

Communicating Sequential Processes (CSP) is a process calculus developed in
the early 1980s [4]. It is capable of specifying and verifying reactive and con-
current systems, where the modeling of communication plays a key role. CSP
is equipped with a rich set of process operators for defining possibly infinite
transition systems by, for example, prefixing (a → P), sequential composition
(P1; P2), hiding (P\A) and parallel composition (P1[| A]]P2). The semantics of
CSP processes can be given in different ways. The most popular semantics are
trace semantics, failure semantics and failure-divergence semantics [13]. All these
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semantics are supported by the automatic refinement checker FDR2 [4], which
is one of the tools we use for verification purposes.

CSPM is a machine-readable version of CSP that has been developed as
the input language for the FDR2 tool. CSPM extends CSP by a small but
powerful functional language, which offers constructs such as lambda and let
expressions and supports advanced concepts like pattern matching and currying.
The language provides a number of predefined data types, e.g. booleans, integers,
sequences and sets, and also allows user-defined data types. The global event set
is defined by the set of typed channel declarations of a CSPM script.

CSPM is now the de facto standard of machine-readable CSP. Besides FDR2,
the model checker and animator ProB [10] supports CSPM , so CSPM models
can also be explored by animation and verified by LTL model checking.

1.2 Brief Introduction to LLVM

The Low Level Virtual Machine (LLVM) compiler infrastructure provides a mod-
ular framework that can be easily extended by user-defined compilation passes. It
also offers a diverse set of predefined analyses and optimizations that can be used
out of the box. This makes LLVM a great platform for the development of source
code transformation and analysis tools. The heart of the compiler infrastructure
project is its intermediate representation (IR). It is a typed assembler-like lan-
guage [9], which is used internally as the basis for compiler optimizations. The
LLVM framework provides gcc-based frontends for a variety of programming
languages.

2 Synthesizing a Low-Level CSP Model

In [8], we sketched how to synthesize a low-level CSP model from the LLVM
IR of a concurrent program. The idea underlying this approach is depicted in
Fig. 1. Instead of following the classical approach of refining specifications semi-
automatically down to executable code, we propose that the software engineering
process begin with the development of a high-level specification in some CSP-
based formalism, on the top level and that the refinement chain be cut at a
level that still abstracts from implementation details. On the top level, either
a CSPM specification or a specification in an arbitrary CSP-based formalism
for which a transformation into CSPM exists, is required. It is then the pro-
grammer’s job to produce efficient and robust code 1 – symbolized by arrow (1).
Unlike code obtained using automatic code generators, our approach makes it
more feasible to create high-performance code that meets the application’s needs
in terms of memory and power consumption. This procedure induces a seman-
tic gap between the high-level specification and the final implementation, which
we bridge by generating another CSP model. This model is semi-automatically
1 Robust code is commonly understood to be not only free of bugs but also well

structured, human-readable and adhere to a given set of coding guidelines so that
the code is easy to maintain and extend.
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LLVM 
Compiler IR

Implementation 
(C++)

Low-level 
Model (CSPm)

High-level 
Specification 
(CSP-based) (4) (1)

(2)(3)

Fig. 1. Illustration of our verification methodology.

obtained from the LLVM IR, which is created during the compilation process
with an LLVM-based compiler, symbolized by arrows (3) and (2), respectively.
Fig. 1 also relates the generated CSPM model to the high-level specification by
arrow (4), which stands for a refinement proof. This is necessary to prove that
the implementation meets its specification. Steps (3) and (4) can be used to
investigate the implementation from different points of view. Especially if inde-
pendent aspects have to be met by the implementation, they should be explored
separately. This reduces the size of the low-level model, which is desirable for
analysis by refinement and model checking.

The low-level CSPM model contains not only processes, types and channels
that are generated from the LLVM IR of a program but also two predefined
parts which model platform- and domain-specific parts of the system under in-
vestigation. The platform-specific part comprises the environment model and
hardware details, while the domain-specific part encompasses aspects that are
common to a domain of applications, e.g. system startup and scheduling, which
are provided as foundation libraries that the program builds on. These two parts
are mostly manually modeled but are parameterized so that they can be reused
by all applications of the domain they have been designed for. Examples of such
parameters are typing information for the channels and the set of thread identi-
fiers. The third part is the application-specific one, which describes the behavior
of the threads of a multithreaded program with respect to a set of given vari-
able names, function calls and annotations 2. We are currently implementing an
LLVM tool that realizes the automated part of the synthesis process (arrow (3)).
This tool was used to create the low-level model of the scheduler of the BOSS
operating system pico-kernel, which we presented in [7].

3 Design of the Low-Level CSP Model

As discussed in the previous section, the low-level CSP model is divided into
three distinct parts. The domain- and platform-specific parts are manually mod-
2 Annotations can be realized using so-called ghost method and ghost variables. A

ghost method is a method that modifies ghost variables only, while a ghost variable
is a variable that is used for verification purposes only. Ghost code is commonly
compiled into the IR for verification purposes but is not part of the final binary.
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channel read1, write1, read2, write2, read3, read4, write3, write4 : {0,1}
V1 = let V1’(v) = read1!v -> V1’(v) [] write1?x -> V1’(x)

within read1?x -> V1 [] write1?x -> V1’(x)
V2 = V1[[read1 <- read2, write1 <- write2]]
V3 = V1[[read1 <- read3, write1 <- write3]]
V4 = V1[[read1 <- read4, write1 <- write4]]
WithHeap(P) = (P) [|{|read1, write1, ..|}|] (V1 ||| V2 ||| V3 ||| V4)

Fig. 2. CSPM model of the heap.

eled but are parameterized. The parameters and the application-specific part are
synthesized from the LLVM IR of the program under consideration. Since we aim
to use FDR2 for establishing the formal refinement relation between the spec-
ification and the low-level model, all models must be designed as efficiently as
possible. The FDR2 manual contains a couple of rules that have to be taken
into account when creating a CSPM model to achieve the best performance with
FDR2. Fig. 2 shows an efficient example of modeling a memory that stores four
bit fields, constructed of parallel processes (V 1, . . . ,V 4) that model a single
variable each. These four processes are structurally equal, so just one of them is
modeled manually (V 1), the others being derived from it by renaming 3. This
model of a memory is a process, which is synchronized with the application
specific part later on using the function (WhithHeap). We use this concept to
model the heap and the stacks of the threads. The process allows us to read an
arbitrary value from uninitialized memory cells.

Our approach makes strong use of abstraction to reduce the size of the re-
sulting low-level model in terms of reachable states. This includes abstracting
the ranges of data types and abstracting away regions of code that do not tran-
sitively influence any of a given set of variables to be included in the low-level
model. If, for example, concurrent accesses to a shared counter variable have to
be proved race-condition-free, it is sufficient to build the model from the accesses
to this shared counter and the locks protecting it.

The expressiveness of CSPM imposes a limiting factor to formalizing the
semantics of LLVM IR. We therefore restrict ourselves to modeling facilities
that are available in CSPM . Our approach currently supports functions, function
calls, conditional and unconditional branching as well as integer arithmetic. It
builds on a memory model that supports integers, arrays and uninitialized values.
Depending on the properties to be proved on the models, we also use the concept
of error codes to detect such sources of unwanted behavior or to signal situations
that were introduced by abstractions during synthesis of the model. An error
code is a fresh event a 6∈ Σ and is always used in the pattern a → STOP . In [8],
we use this concept to detect integer overflow that was introduced by abstraction
and did not indicate a real error in the low-level model. A method on the LLVM

3 One of the rules mentioned before is, for example, that renaming is to be used in
preference to the parameterizing of a process definition.
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IR level is translated into a CSPM function that returns sequential processes,
each modeling a single IR operation. These application-specific processes end
up in a domain-specific process modeling the continuation of the application,
possibly including a thread switch. Further details of the application-, domain-
and platform-specific models are given in [8].

4 Analyzing the Low-Level Model

The low-level CSP model can then be either proved (or disproved) to be a re-
finement of its specification using the refinement checker FDR2 or animated and
analyzed with the LTL model checker ProB. In [11, prop. 6], Leuschel et. al. state
that the satisfaction of LTL formulas, which are limited to properties on traces,
is preserved by failures refinement for finitely branching processes. Thus if one
manages to generate a low-level model from the implementation level descrip-
tion, which is finitely-branching and a failures refinement of its specification, an
LTL formula that has been proved to hold on the specification also holds on the
low-level model. In this section, we clarify some issues that arise in the context
of CSP refinement and LTL model checking of CSP specifications. ProB sup-
ports an LTL dialect that supports the formulation of properties on traces and
refusals of processes. In addition to the temporal operators G, F, X, U and the
logical connectives conjunction, disjunction and implication, ProB supports the
e operator for this purpose. The expression e(a) checks if the event a is enabled
in the current state, for example. Prop. 6 does not extend to these kind of LTL
properties, as demonstrated by the following example:

P = a → P u b → P Q = a → Q 2 b → Q

φ = G((e(a) ⇒ ¬ e(b)) ∧ (e(b) ⇒ ¬ e(a)))

Q is a failures refinement of P , φ holds on P but does not hold on Q . It follows
that only a subset of LTL supported by ProB can be used as long as satisfaction
of LTL formulas is needed. The proof of Prop. 6 neither refers to the situation
of two processes that are deadlock-free nor to specific sets of refusals except the
set of all events. Thus, the only interesting situation is the one of a deadlocking
state. Trace refinement with the additional requirement that the two processes
are deadlock-free does preserve satisfaction of LTL formulas. Since we do not
wish to limit ourselves to deadlock-free specifications, we define the notion of
LTL satisfaction preserving refinement which is trace refinement and whenever
a trace of the implementation cannot be extended further (it deadlocks), the
same trace of the specification cannot be extended in the specification either.
We plan to implement this kind of refinement as a variant of the existing trace
and failure refinement checking procedures of the FDR2 tool. Another option
that we are considering is switching from CSPM to CSP# and implementing
this refinement as an extension of the PAT [14] toolkit.



13

5 Conclusions and Future Work

In this paper, we presented a CSP-based methodology for verifying the imple-
mentations of concurrent systems. Verifying such a system requires both its
abstract CSP-based specification and the LLVM IR of its implementation. Our
methodology determines how significant parts of a low-level model can be synthe-
sized from the LLVM IR of the implementation and it requires that the low-level
model be a refinement of the specification. Our approach enables us to use state-
of-the-art CSP tools such as FDR2 and ProB for the automated verification of
concurrent programs written in a high-level programming language supported
by the LLVM system. In this respect, it is source-language independent.

Instead of outputting a CSPM script for animation, model and refinement
checking, we plan to output Isabelle/HOL code, e.g. for the CSP-Prover the-
ory [6]. Targeting an Isabelle/HOL theory would enable us to use a much more
powerful type system than that of CSPM . Additionally, it would eliminate the
need to justify the abstractions introduced when reducing the ranges of the types
so that model and refinement checking can be applied to the CSPM model. To
retain the automated nature of our approach, future work will also need to de-
velop abstractions to keep the low-level models of a reasonable size as our use
cases grow in code size.
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1 Introduction

In the analysis of realistic systems, one has to cope with different and heteroge-
neous dimensions that have to be modelled and ideally automatically verified.
Real-world systems, e.g., the European Train Control System (ETCS) [1], are
determined by process and communication aspects, by rich data structures, and
by real-time behaviour. In [2] the ETCS system is modelled using the combined
specification language CSP-OZ-DC (COD), which is designed to deal with these
system dimensions; a verification approach for COD against Duration Calculus
(DC) [3] formulae is provided. But unfortunately, realistic systems are most of-
ten too complex to be verifyable fully automatically. So, further decomposition
methods are necessary. [2] provides an intuitive manual decomposition that splits
the system and a global safety property according to an abstract behavioural
protocol. It divides the system runs into several phases (e.g., braking phase,
running phase, etc.) with local properties (defined as DC formulae) that hold
during these phases. Once the desired property’s correctness for such a protocol
is established, one only has to verify that the local properties are fulfilled by the
system model to guarantee correctness of the global property.

The aim of this conceptual work is to generalise this approach. We extend the
specification language CSP [4] by data constraints and undefined processes and
show that it is suited to specify those protocols. We introduce a sequent-style
calculus over this CSP extension that allows for establishing desired properties
under local real-time assumptions. All concrete specifications that are instantia-
tions of abstract protocols and for that the local assumptions are valid automat-
ically inherit the desired properties. With a simple proof rule (that we do not
present here) it is possible to show efficiently that a concrete specification is such
an instantiation. The correctness of the local assumptions can be shown using es-
tablished methods for the assumptions’ logic. This integration of an operational
language to describe protocols and a declarative (real-time) language to describe
local properties of a system to simplify verification of large systems distinguishes
our approach from standard refinement/implementation approaches, e.g., CSP
refinement [5] or data refinement for Z [6]. Hence, we call this combination of
abstract protocol and local assumptions Verification Architecture.

We summarise our contributions: (1) We provide a new conceptional ap-
proach on how to use design patterns, called Verification Architectures (VA),
? This work was partly supported by the German Research Council (DFG) under

grant SFB/TR 14 AVACS. See http://www.avacs.org for more information.

http://www.avacs.org
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as a decomposition technique to enable verification of large systems. (2) We in-
troduce a CSP dialect with data, undefined process parts, and local real-time
assumptions for the specification of VAs. (3) A new sequent-style calculus over
this CSP dialect allows for the verification of desired properties of those VAs.
(4) Using a train control system motivated by the ETCS similar to the example
from [2], we provide evidence that our method enables the automatic verification
of a system that is too large to be verified without decomposition techniques.

The paper is structured as follows. Section 2 explains our approach formally.
We introduce the CSP extension and, exemplary, some sequent calculus proof
rules in Sect. 3. Section 4 concludes with experimental results and related work.

2 General Approach

Let va(p) be an abstract behavioural protocol depending on a vector of para-
meters p. We will use CSP processes with data for the specification of those
protocols. Additionally, we consider assumptions asm1(p), . . . , asmn(p) over va
that also depend on the parameters – here the assumptions are dense real-time
properties that are given as DC formulae. Our aim is to show that a global safety
property safe(p) is valid for every possible model that is an instantiation of the
abstract protocol va with assumptions asm1(p), . . . , asmn(p).

To apply our approach, we have to show in a first step that the architecture
together with the assumptions is correct for all possible parameter valuations:

(∀ p • va(p) ∧
∧

i=1,...,n

asmi(p)) |= safe(p) (1)

This verification task to verify the correctness of the abstract parametric model
va is for realistic systems not necessarily easy (in general, it cannot be done
by model checking) and we will provide proof rules for the verification. But
once it is verified, this result is reusable as all instantiations of this architecture
inherit the correctness property automatically. We only have to show that it is
an instantiation of the abstract CSP protocol and that the local assumptions
asm1, . . . , asm3 are valid, which is due to their locality easier than to verify the
global property safe directly. To be more concrete, we consider an instantiation
codC (p0) of the abstract protocol va, where p0 represents an instantiation of
the parameters. As specification formalism, we use the parametric, combined
specification language CSP-OZ-DC (COD) [7,8,2], since it is in line with the
focused system class of complex, heterogeneous real-time systems. We now apply
the result of the architecture’s correctness from (1) to conclude the correctness
of the concrete model codC . Firstly, we have to show that every trace of codC
from the trace set [[codC ]], is also a trace of va, i.e., [[codC ]] ⊆ [[va]]. This relation
can be shown syntactically for a specific class of instantiations. Thus, it is easy to
verify. Secondly, we have to show that the assumptions are valid for the concrete
specification:

codC (p0) ⇒
∧

i=1,...,n

asmi(p0) (2)



16

This can be done by applying existing model checking techniques [2] for COD
and DC. With this, our approach yields that the desired safety property is valid
for the concrete model. We argue that this proposition is correct. From (1) we
can conclude (3), due to [[codC ]] ⊆ [[va]] it then follows (4), and with (2) we get
the desired property codC (p0) |= safe(p0).

va(p0) ∧
∧

i=1,...,n

asmi(p0) |= safe(p0). (3)

codC (p0) ∧
∧

i=1,...,n

asmi(p0) |= safe(p0) (4)

We summarise that if a correct Verification Architecture is given, we only
have to show that, firstly, a model is actually a concrete instantiation of the VAs
abstract protocol and, secondly, the model fulfils the architecture’s assumptions.
Then we can conclude the correctness of the entire model.

3 Sequent Calculus for CSP Processes with Data

In this section, we give a short idea of our CSP extension and its embedding into
the dynamic logic dCSP that allows for specifying and verifying VAs.

To be able to specify VAs, we need a high degree of freedom to handle general
patterns of parametric systems with data. To this end, we introduce an extension
to CSP with data constraints to define state changes and a new construct, so-
called undefined processes. Undefined processes are special processes that allow
the occurrence of arbitrary events except for events from a fixed alphabet and
arbitrary changes of variables except for variables from a fixed set. Undefined
processes can terminate and may be restricted by constraints from an arbitrary
logic (at least, if this logic has the same semantical domain as CSP with data).
On the level of CSP, these constraints are handled as black boxes that restrict
the possible behaviour of a process.

Definition 1. The syntax of CSP processes with data and undefined processes
over a set of events Events, variables Var, and formulae FormΣ is given by

P ::= Stop | Skip | (a • ϕ) → P | P1 2 P2 | P1 9 P2 | P1 ‖A P2 | P1
o
9 P2 | X

| (Proc\A,V •extF ) | (Proc∞\A,V •extF )

where a ∈ Events,A ⊆ Events, V ⊆ Var, ϕ ∈ FormΣ, and F is a constraint in
an external logic ext.

In this definition, a difference to the standard CSP definition is that we have
constrained occurrences of events a • ϕ. As formulae we consider many-sorted
first order formulae with predicates and function symbols from a signature
Σ = (Sort ,Func,Var ,Par) with primed and unprimed variables Var , parame-
ters Par , and functions Func with sorts from Sort . The intuition is that when
the event a occurs the state space is changed according to the constraint ϕ,



17

[a → Skip]�ϕ ∧ [a → Skip][P ]�ϕ

[a → P ]�ϕ
(5)

ψ
v0
v′ ⇒ δ

v0
v

[(a • ψ) → Skip]δ
(6)

ψ,F `ext [Proc\A,V ]δ δ ` δ
ψ ` [Proc\A,V •ext F ]δ

(7)

Fig. 1. Some example rules from the sequent calculus; the formulae ψv0
v denotes

the replacement of a variables v in ψ with fresh variables v0.

where unprimed variables in ϕ refer to the variable valuations before the occur-
rence of a and primed variables to the valuations after a. The intuition behind
an undefined process like (Proc\{a,b},{v} •DC F ) is that during the execution
of the process arbitrary behaviour is allowed provided that the DC formula F
is not violated. The events a and b are forbidden and the variable v cannot
be changed in this execution. An undefined process marked with the ∞ symbol
Proc∞ will never terminate.

We embedded CSP into dynamic logic [9] to reason about CSP processes with
data and undefined processes. The idea of this dynamic logic extension dCSP
is to use CSP processes with data and undefined processes instead of programs
within the box operator [ · ] and the diamond operator 〈 · 〉. The dynamic logic
operator [P ]�ϕ expresses that on all runs of the CSP process always ϕ holds,
whereas [P ]δ states that after every run δ is true. Analogously, 〈P〉3ϕ is used
to express that there is at least one run where eventually ϕ holds.

To prove validity of dCSP formulae, we define a set of verification rules in
a sequent-style proof calculus. Given finite sets of formulae ∆ and Γ , a se-
quent ∆ ` Γ is an abbreviation for the formula

∧
ϕ∈∆ ϕ ⇒

∨
ψ∈Γ ψ. Our se-

quent calculus consists of rule schemata of the shape Φ1`Ψ1 ··· Φn`Φn
Φ`Ψ that

can be instantiated with arbitrary contexts, i.e., for every ∆ and Γ the rule
∆,Φ1`Ψ1,Γ ··· ∆,Φn`Ψn ,Γ

∆,Φ`Ψ,Γ is part of the calculus. As usual, formulae above the
line are premises and the formula below the line the consequence: if the premises
(and possibly some side-conditions) are true then the consequence also holds.

Figure 1 gives some example proof rules. The rule in (5) reduces a CSP prefix
expression: to prove that �ϕ holds for a → P we have to show that during
execution of a �ϕ holds and that after the occurrence of a during every run of
P also �ϕ holds. The following rule (6) reduces a single occurrence of an event
a in a process a → Skip. The idea is to symbolically execute the data change as
defined in the constraint ψ of event a: after an execution of the data change in
ψ the post-state of a variable v given by v ′ need to coincide with the pre-state
of this variable in δ. Hence, to show that after every execution of a → Skip
the dCSP formula δ holds, we show that the constraint ψ, where every primed
variable v ′ is replaced by a fresh variable vo , implies δv0

v , i.e., δ, where every v
replaced by v0. Rule (7) demonstrates how undefined processes with assumptions
are handled. To show that on every run of a process (Proc\A,V •ext F ) the dCSP
formula δ is valid, we need to show that a new constraint δ is valid in the logic
of F and that in our sequent calculus, δ implies δ. If F is a DC formula then we
may show δ with existing proof methods for DC [2]. By this means, our approach
flexibly integrates arbitrary timed logics to formulate assumptions on undefined
processes.
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A = {check , fail, pass, extend},C = {RD,CT}

System c
= FAR o

9 check • ϕcheck →
(fail • ϕfail → REC

2 pass • ϕpass → System)

2 extend • ϕextend → System

FAR c
= Proc\A,C • FFAR

REC c
= Proc

∞
\A,C • FREC

ϕextend = sf ′ > sf

ϕcheck = Ξ(sf ) ∧ sf ≤ RD ∧ ok ′ = false

∨ Ξ(sf ) ∧ sf > RD ∧ ok ′ = true
ϕfail = Ξ(sf ) ∧ ok = false

ϕpass = Ξ(sf ) ∧ ok = true

FFAR = ¬3(dsf > RDea` < CT adsf ≤ 0e)

FREC = ¬3(dsf > 0eadsf ≤ 0e)

Fig. 2. VA for a small Train Control System

4 Conclusion

Experimental Results. To validate our approach, we verified an architecture for
the small example Train Control System in Fig. 2 motivated by the ETCS [1].
We were able to prove the desired safety property sf > RD ` [System]�sf > 0
using the presented sequent calculus. To apply rules like rule (7), we made use
of automatic DC verification methods [2,10]. In a second step, we proved the
correctness of a concrete instantiation of the VA from Fig. 2. This instantia-
tion were given as a COD model, for that direct verification was not possible
(timeout after 80h) due to its complexity with 19 real-valued variables, over 300
locations, and 17000 transitions. But as the model is an instantiation of the VA,
which can be syntactically checked with a simple refinement rule, we only needed
to verify the local DC formulae FFAR and FREC (Fig. 2) to conclude the safety
of the entire system. This was done automatically with the PEA toolkit [10] in
7h (FFAR) and 4m (FREC ), respectively.
Related work. Our work is inspired by [11], where a fixed DC design pattern
for cooperating traffic agents is introduced. Other approaches to combine CSP
with data and real-time are, e.g., [7] and [12]. The former, which we also make
use of in this work, is not appropriate for a proof-rule base approach because
of the more complex combination that integrates CSP, DC, and OZ [13] in an
object-oriented class structure. The latter likewise integrates CSP within Z con-
structs. Further combinations of CSP, OZ, and a real-time language are TCOZ
[14] and RT-Z [15]. There is a lot of work in compositional methods for real-
time systems: [16,17] introduce a sequent calculus to verify temporal properties
for hybrid systems; they also examine fragments of the ETCS as case study.
Compositional techniques for the verification of operationally specified real-time
systems like timed automata can be found, e.g., in [18,19]. A general view on
formalisation techniques for design patterns gives [20], but there, verification of
real-time systems is not considered. A related approach using design patterns
for a high-level real-time language is [21]: timed automata patterns for a fixed
set of timing constraints are given and formally linked to TCOZ.

This is work in progress: We defined CSP with data and undefined processes,
the embedding into dynamic logic, and a set of proof rules. Furthermore, the
refinement rule for the instantiation of VAs with concrete COD specifications is
proven correct. A proof for the correctness of the calculus is not finished yet. We
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have tool support [10] for checking local DC assumptions. Tool support for our
sequent calculus and the refinement rule is future work. But experiments with
examples from the railway domain and automatic verification of the most time-
consuming parts (checking DC assumptions) show the success of our method.
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1 Introduction

Problem Statement Increasingly, software systems are subjected to adapta-
tion at run-time due to changes in the operational environments and user require-
ments. Adaptation is classified into two broad categories: structural adaptation
and behavioral adaptation. While structural adaptation aims to adapt system
behavior by changing system’s architecture, the behavioral adaptation focuses
on modifying the functionalities of the computational entities.

There are several challenges to developing self-adaptive systems. Due to the
fact that self-adaptive systems are often complex systems with greater degree
of autonomy, it is more difficult to ensure that a self-adaptive system behaves
correctly. Hence, one of the main concerns to developing self-adaptive systems is
providing mechanisms to trust whether the system is operating correctly where
formal methods can play a key role. Formal verification of adaptive systems is
a young research area [1]. Existing formal methods for analysis of adaptive sys-
tems mostly use transition systems and petri nets which are at the low levels of
abstraction(see e.g. [2,3,4,5]). So, offering new models to develop self-adaptive
systems that provide us formal verification techniques with a high level of ab-
straction is of a great interest to us.

flexibility is another main concern to achieve adaptation in software systems.
Since, hard-coded mechanisms make tuning and adapting of long-run systems
complicated, so we need methods for developing adaptive systems that provide
a high degree of flexibility. Recently, the use of policies has been given attention
as a rich and abstract mechanism to achieve flexibility in the self-managing sys-
tems. Although, policies have been used as the adaptation logic for structural
adaptation(see e.g. [6,7]) however, fewer work employ policies as a mechanism
for behavioral adaptation of self-adaptive software systems. Moreover, struc-
tural adaptation has been given strong attention in the research community(see
[8]), but fewer approaches tackle behavioral adaptation. Thus, we require new
methods to develop systems that provide us behavioral adaptation as well as
structural adaptation.

Thesis Statement: The goal of this research is to propose a flexible model,
called PobSAM(Policy-based Self-Adaptive Model) [9], for developing, specifying
and verifying self-adaptive systems that uses policies as the principal paradigm to
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govern and adapt the system behavior. This model can support both behavioral
and structural adaptations. PobSAM has a formal foundation that employs an
integration of algebraic formalisms and actor-based models. The computational
(functional) model of PobSAM is based on actor-based models while an algebraic
approach is proposed to specify the policies of manager agents. In this work, we
will present verification techniques to analyze PobSAM models compositionally.
PobSAM can be used as a general model to develop self-adaptive systems. Hence,
we will also present an approach to monitor an adaptive software developed by
PobSAM at runtime and verify it against the desired properties.

2 Approach

In this research, we propose a flexible formal model called PobSAM, to develop,
specify and verify self-adaptive systems. PobSAM uses policies as the main mech-
anism to adapt and govern system behavior. This section introduces this model
in brief.

2.1 PobSAM Model

A PobSAM model is composed of a set of Self-Managed Modules(SMMs). An
SMM is a set of agents which can manage their behavior autonomously according
to the predefined policies. PobSAM supports interactions of an SMM with the
other SMMs in the model. To this aim, each SMM provides well-defined interfaces
for interaction with other SMMs. An SMM structure can be conceptualized as
the composition of three kinds of entities including:

Managed Actors. Managed Actors are computational actors which are dedi-
cated to the functional behavior of an SMM. The encapsulation of state and
computation, and the asynchronous communication make actors a natural way
to model distributed systems. Therefore, we use an actor-based model to spec-
ify the computational environment of a self-adaptive system. To this aim, an
extension of an actor-based language named Rebeca [10] is used.

Views. Views provide a view or an abstraction of the actors state for the
managers. A view variable could be the actual state variable, or a function
or a predicate applied to the state variables of actors. Views enable managers
not to be concerned about the internal behavior of actors and they provide an
abstraction of the actor’s state for the managers.

Autonomous Managers. Autonomous manager agents are responsible for manag-
ing module behavior according to the predefined policies. A manager can operate
in different configurations. Each configuration consists of two classes of policies:
governing policies and adaptation policies. The managers use governing policies
to direct the behavior of actors by sending messages to them. Adaptation policies
are used to switch between different configurations. The simple configuration C
is defined as C def= 〈P ,A〉 where P and A indicate the governing policy set and
the adaptation policy of C respectively.
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2.2 Policy Specification Language

In this section, we present an algebra to specify the governing and adaptation
policies.

Governing Policies Whenever a manager receives an event, it identifies all the
policies that are triggered by that event. For each of these policies, if the policy
condition evaluates to true, its action part is requested to execute by instructing
the relevant actors to perform actions through sending asynchronous messages.
We express governing policies using a simple algebra as follows, in which P and
Q indicate arbitrary policy sets:

P ,Q def= P ∪Q | P −Q | P ∩Q | {p} | ∅

A simple action policy p=[o,ε,ψ, α] consists of the priority o, event ε , optional
condition ψ and action α. Actions can be composite or simple. A simple ac-
tion is in form of r .`(υ) which denotes message `(υ) is sent to the actor r .
Composite actions are created by composing simple actions using sequential
composition(α; β), parallel composition(α ‖ β), non-deterministic choice(+)
and conditional choice ([ω?α : β]) operators as follows:

α, β
def= α; β | α ‖ β | α+ β | [ω?α : β] | r .`(υ)

Adaptation Policies Whenever an event requiring adaptation occurs, relevant
managers in different SMMs are informed. However, adaptation cannot be done
immediately and when the system reaches a safe state, the manager switches to
the new configuration. Therefore, we introduce a new mode of operation named
adaptation mode in which a manager agent runs before switching to the next
configuration. There are two kinds of adaptations called loose adaptation and
strict adaptation. Under loose adaptation, the manager enforces old policies
while in the strict adaptation mode all events will be ignored until the system
passes the adaptation mode and reaches a safe state. Adaptation policies are
defined using an algebraic language as follows:

A def= bDcδ,γ,λ,ϑ | A⊕A

Adaptation policies of a manager is defined as the composition of simple adapta-
tion policies by ⊕ operator. Composition of two policies means that those policies
are potential to be triggered. The simple adaptation policy bDcδ,γ,λ,ϑ, specifies
when the triggering condition δ holds and there is no other adaptation policy
with the higher priority, the manager evolves to the strict or loose adaptation
modes based on the value of λ. When the condition of applying adaptation γ
yields, adaptation is performed. D is an arbitrary configuration defined as follows
where [ω? D : E ] and D2E represent conditional and non-deterministic choices
respectively and C is a simple configuration:

D ,E def= [ω? D : E ] | D2E | C | 0
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2.3 Operational Semantics of PobSAM

The operational semantics of PobSAM is defined by the labeled transition sys-
tems. There are five classes of deduction rules in PobSAM including (1) the
policy enforcement rules which are defined for a manager in the enforcement
and loose adaptation modes to enforce governing policies, (2) the policy adapta-
tion rules defined for dynamic adaptation of the manager’s policies in the loose
and strict adaptation modes, (3) the rules that describe interactions between
managers and views, (4) the view rules which reflect the changes of actor’s state
to the views, and (5) the computation rules which model the functional layer of
a PobSAM model.

3 Ongoing Work

Thus far, we proposed a formal model to specify and develop self-adaptive sys-
tems. Given the PobSAM model of a system, we can perform different kinds of
analysis. We can check the correctness properties of the managers, the actors or
both together.

Managers Analysis As stated above, PobSAM has decoupled the adaptation
concerns from the functionality of the system. Thus, we can verify the managers
independently from the actors provided that we would have a labeled transition
system modeling views behavior. This can decrease the complexity of verification
task to a great extent. We can perform different types of analysis on the managers
which the two important types include:

– Policy analysis As policies direct and adapt the behavior of a policy-based
self-adaptive system, thus it is required to understand and control the over-
all effect of policies on the system behavior. In other words, policies often
interact with each other that can cause undesirable effects. To this aim, we
classify and detect different kinds of conflicts which may exist between poli-
cies. We provide different temporal specification patterns to detect conflicts
that enable us to automate conflict detection process[11].

– System stability checking Adaptation can cause instability in the system, i.e.
the adaptation by a manager may lead to another adaptation, which in turn
leads to another, and so on. If this cycle continues without reaching a stable
state, we say the system is in an unstable state. Verifying the stability of
the system is an important property that must be checked. In a PobSAM
model, we say a system is unstable when (1) there is a manager waiting
for a safe state to switch to the new configuration, but the condition of ap-
plying adaptation does not become true and the manager stays waiting in
the adaptation mode forever, or (2) there is a policy cycle among the adap-
tation policies, i.e. applying an adaptation policy causes triggering another
adaptation policy and this continues in a cycle. It is noteworthy to mention
that all the policy cycles are not unsuitable but some cycles may lead to the
oscillation of the system.
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Actors Analysis We are aimed at verification of the actors separately from the
managers. To this end, we need to model the messages coming from the managers
which are the consequence of enforcing governing policies. Rebeca allows us
to verify the actors compositionally, however, it assumes that all the coming
messages are present in all states. We believe that according to the definition of
policies, we can improve the Rebeca compositional verification approach.

Implementation of PobSAM We implemented the managers of a PobSAM model
in UPPAAL. Using UPPAAL, we can detect policy conflicts specified by LTL.
Moreover, we implemented PobSAM in Maude. Features provided by Maude
such as the strategy language and the reflective capabilities make it a suitable
option to implement PobSAM.

4 Conclusion and Future Plans

To date, we have presented a flexible modular model for developing and verify-
ing self-adaptive systems which has a formal foundation. PobSAM decouples the
adaptation logic of the system from its business logic described at an abstract
level using policies. The proposed model permits us to direct/adapt system be-
havior by enforcing/modifying policies without re-coding actors and managers;
thereby it leads to the increase of the system flexibility and scalability. Our future
plan includes extending PobSAM to support structural adaptation in addition
to compositional and run-time verification of PobSAM models.

Extension with structural adaptation PobSAM can support both behavioral and
structural adaptations and our future research will be concentrated on specifying
and verifying structural adaptations. Structural adaptation of a PobSAM models
is performed by removing/adding an SMM from/to the model or replacing an
SMM by another one dynamically. Furthermore, we can allow actors to joint
or leave an SMM dynamically. To this end, it is needed to extend adaptation
policies to specify structural adaptation as well as behavioral adaptation. This
work will be original in using both structural and behavioral adaptations which
are directed by an identical mechanism, i.e. adaptation policies.

Compositional verification of the PobSAM models Compositionality is a desir-
able facility to reduce the complexity of verification process by decomposing a
large system into more manageable pieces and proving the correctness of the
whole system from that of its immediate components. We can verify a PobSAM
model compositionally at four levels: (1) Compositional verification of the man-
agers and actors layers: At present, we can verify the managers independently
from the actors. (2) Compositional verification of the SMMs: Regarding the mod-
ular nature of the PobSAM models, we plan to present an approach to verify the
generic properties of a PobSAM model by checking the properties of an SMM
locally and compose the results to prove a property globally. (3) Compositional
verification of a manager: A manager can run in different configurations with
various goals. Thus, we attempt to verify a formal specification by dividing it
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into a set of properties that must be preserved by the configurations. (4) Incre-
mental verification of a manager: Thanks to the modularity of policies, we plan
to verify a manager in a specific configuration incrementally.
Run-time analysis Due to the dynamic nature of self-adaptive systems, tra-
ditional verification methods applied at the requirement analysis and design
stages of development must be enhanced with run-time assurance techniques [1].
Run-time verification is an attractive complement of static analysis. In this tech-
nique, software is monitored at run-time and an execution trace of the software
is generated. Then, the conformance of that trace is verified against the formal
specification. Runtime verification is of special interest to us as it enables us to
detect and resolve policy conflicts at runtime. Furthermore, it allows us to adapt
the system at run-time by choosing a suitable set of policies, which it may be
impossible to be done statically.
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Abstract. Software retains most of the know-how required for its de-
velopment. Because nowadays software can be easily cloned and spread
worldwide, the risk of intellectual property infringement on a global scale
is high. One of the most viable solutions to this problem is to endow
software with a watermark. Good watermarks are required not only to
state unambiguously the owner of a software, but also to be robust and
pervasive. In this work we base robustness and pervasiveness on trace
semantics. We point out loops as pervasive programming constructs and
we introduce loop transformations as the basic block of pervasive wa-
termarking schemes. We survey several loop transformations and clas-
sify them into three categories, according to their underlying principles.
Then we exploit these principles to build some pervasive watermarking
techniques. Robustness still remains a big and challenging open issue.

High quality software is the result of an intellectual effort. Plenty of users can
benefit from the result, but only if some producers make the effort. Producers –
not users – are entitled to choose a business model for software. Unfortunately
software products, or programs for short, have some features that issue several
challenges to this assumption.

1. It is extremely easy to clone programs and make thousands of illegal copies
out of one legally purchased program.

2. Because of a more and more interconnected global network, it is easier and
easier to exchange copies of a program.

3. Programs – unlike manufactured goods – mostly retain in themselves the
know-how required for their development.

4. Inspecting the content of a program can be simple, especially if the program
is expressed in widespread programming languages, like Java or .net.

5. It is easy to transform a program and embed (part of) it into another pro-
gram.

It is well understood that the interaction of these five points opens the door
to piracy and copyright infringement on a global scale. Yet it is not clear how
to tackle them. The first two points seem to be connected to the technological
infrastructure we exploit nowadays for storing and exchanging programs. The
third point is inherent to the very nature of software. The last point stems from
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the fourth one, assuming that one cannot take advantage of what they cannot
inspect. Therefore, to thwart piracy, we must try to make inspection unfeasible.

Encrypted program are difficult, if not impossible, to inspect. But they can
be executed only in decrypted form. At runtime encryption thereby fails in pro-
tecting programs. Conversely, obfuscated programs do not stop being executable.
In fact, obfuscation makes the control flow or the data structures of a program
harder to analyze, but it preserves both functionality and executability [3]. So
far, however, very few provable secure obfuscation schemes are known [10]. If a
copyright infringement is likely to take place, watermarking can be of help in
its detection. A watermark is additional information one embeds in a program
to prove ownership [2]. A comment with a copyright notice is a first example
of watermark. Unfortunately this kind of watermarks, being totally taken apart
from functionality, are easy to distort or remove. A strong connection should ex-
ist between a watermark and the functionality of a program, so that you cannot
damage one while preserving the other.

We can use sets of traces to detail the functionality of a program [4]. A
program P is a set of commands. Each command in P is noted `A`′ , where ` is a
label, A is an action and `′ is the label of the command to be executed next [5].
An action consists in testing or changing the value of some variables. As such
actual values are stored in environments, commands provide a way to move from
one environment to another. If pAq is a command and ρ is an environment, then
〈ρ, pAq〉 is a state. By writing two states 〈ρ, pAq〉〈ρ′, rA′s〉 in sequence, we assert
that A turns ρ into new environment ρ′ and r = q. A trace is a sequence of
states. Only so-called initial states can appear at the beginning of a trace. The
semantics of a program consists of all the traces starting with an initial state.

The fact that comments play no role in the determination of a trace accounts
for the weakness of comments-based watermarks. Good watermarks should be
pervasive. We claim here that the more a watermark is pervasive, the more should
be the states that are affected by the watermark embedding. Furthermore, good
watermarks should be robust. In our view, robustness is the inability of deriving
the original semantics from the watermarked program. We claim that there is
robustness if the watermark embedding entails a loss of information. Such infor-
mation is called the key. Because of the loss, when you try to characterize the
functionality of the watermarked program, you no longer get its semantics S,
but an over-approximation of its semantics, i.e., a set of traces T ⊃ S. Traces in
T\S are misleading, since they describe behaviors and properties that the water-
marked program actually has not. For this reason, they thwart the recognition
of the original functionality and, consequently, the detection of the watermark.
The information that tells good traces from misleading ones is carried by the
key. Also, the key enables the detection of the watermark within the good traces.
Of course, the key should be held only by the producer of the program. If one
tries to distort the watermark or remove it without knowing the key, they should
obtain a new program whose functionality is different from the functionality of
the original program.
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1 For-loops

A good pervasive watermarking scheme is the dynamic path-based one [1], which
takes advantage of branching constructs. Branching not only is ubiquitous in
non-trivial programs, but it strongly affects evolution of traces. Also looping
constructs can be of interest. A looping construct, or loop for short, consists of
a boolean condition, called the guard, and a set of commands, called the body.
The execution of a loop is arranged into iterations. An iteration consists of two
steps: first the guard is established to be satisfied; then the body is executed
once. The loop stops iterating as soon as the guard is not satisfied. A widely
held rule of thumb is that a program spends 90% of its execution time in only
10% of the code [8]. This critical 10% of the code frequently consists of loops [7].
We thereby expect 90% of the states of a trace to be determined by commands
involved in loops. On top of that, we also expect loop transformations to be the
basic blocks for the design of pervasive watermarking schemes.

In the field of compilers, loop transformations especially target for-loops. A
for-loop maintains a variable, called the index variable, that has a fixed initial-
ization, and increases by a fixed amount only at the end of each iteration. The
for-loop stops as soon as the variable goes beyond a fixed boundary. Formally, a
for-loop is a set of commands P = { aFb, bGc, cHd, dIb, bGe }, where G is the guard
testing the index variable against the boundary, H is the body, and F and I re-
spectively initializes and updates the index variable. An iteration of P is a trace
of the form 〈ρ1, bGc〉〈ρ2, cHd〉〈ρ3, dIb〉, where ρi with i ∈ N are environments and
bGc accounts for the satisfied guard. A full execution of P is a trace σ consisting
of a state with command aFb, a sequence of iterations and finally a state with
command bGe accounting for the unsatisfied guard:

〈ρ0, aFb〉〈ρ1, bGc〉〈ρ2, cHd〉〈ρ3, dIb〉
〈ρ4, bGc〉〈ρ5, cHd〉〈ρ6, dIb〉 (1)
· · ·
〈ρ7, bGc〉〈ρ8, cHd〉〈ρ9, dIb〉〈ρ10, bGe〉 .

The semantics of P is the set of all traces whose first state has command aFb.
It is straightforward to notice that by collecting all the commands along a trace
we get a program P ′ ⊆ P [5]. In particular, each iteration is abstracted to
{ bGc, cHd, dIb }; hence all iterations collapse to the same set of commands.

Each value assumed by the index variable identifies an iteration of the for-
loop. The set I of all such values is called iteration space and can be naturally
represented on a line. We have a loop nest if the body of a for-loop is itself a
for-loop. In such case we have two index variables and we identify iterations
by using two values, collected in two-dimensional index vectors. Here iteration
space I is the set of all index vectors and can be graphically represented as a
two-dimensional polyhedron. In I an ordering is defined that reflects the order
in which the iterations of the loop nest take place. We say that such ordering
describes a traversal of I .
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2 A Taxonomy for Loop Transformations

The notions of iteration space and traversal account for the ease of predicting
the behavior of a for-loop. This predictability is helpful in the design of trans-
formations, because it usually makes clear which requirements and consequences
a transformation has. It is no surprise, therefore, that more than ten for-loop
transformations are known [9]. We propose to classify them into three categories.

The first category includes transformations that perform a remapping of the
iteration space while preserving the total number of iterations. The simplest
member is perhaps loop reversal, that inverts the order in which the iterations of
the for-loop are performed. In the polyhedron representing the iteration space,
this corresponds to flip the traversal by applying a reflection with respect to the
center of the polyhedron. Among the transformations of this category, there are
also loop interchange, loop tiling and loop skewing.

The second category includes a pair of loop transformations that preserve
iteration spaces, but perturb bodies. In particular, loop fission takes two loops
with the same iteration space and derives a new loop by merging their bodies
together; loop distribution goes the other way round:{

aFb, bGc, cHd, dIb, bGp

pFq, qGr, rH
′
s, sIq, qGz

}
{ aFb, bGc, cHr, rH′d, dIb, bGz }

fission

distribution

The third category includes transformations that, by changing the labels of
some commands, partition the set of iterations into classes and allow only iter-
ations in the same class to collapse together. Consider for instance loop peeling,
which splits the first iteration out of the for-loop. Peeling turns (1) into:

〈ρ0, aFp〉〈ρ1, pGq〉〈ρ2, qHr〉〈ρ3, rIb〉
〈ρ4, bGc〉〈ρ5, cHd〉〈ρ6, dIb〉 (2)
· · ·
〈ρ7, bGc〉〈ρ8, cHd〉〈ρ9, dIb〉〈ρ10, bGe〉 .

As a consequence, the iterations are partitioned into two classes: one class with
the first iteration only and one class with all the others. If we abstract trace
(2), we obtain { aFp, pGq, qHr, rIb, bGc, cHd, dIb, bGe }, where pGq, qHr and rIb ac-
count for the first class of collapsing iterations and bGc, cHd and dIb account
for the second class. A more sophisticated collapsing pattern is provided by loop
unrolling which, by executing pairs of iterations sequentially, halves the total
number of iterations performed. As shown in [6], unrolling transforms (1) into:

〈ρ0, aFb〉〈ρ1, bGc〉〈ρ2, cHd〉〈ρ3, dIb′〉
〈ρ4, b′Gc′〉〈ρ5, c′Hd′〉〈ρ6, d′Ib〉 (3)
· · ·
〈ρ7, b′Gc′〉〈ρ8, c′Hd′〉〈ρ9, d′Ib〉〈ρ10, bGe〉 .
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Again, we have two collapsing classes: one collecting iterations with odd in-
dex vector, one collecting the others. By abstraction, we get unrolled for-loop
{ aFb, bGc, cHd, dIb′ , b′Gc′ , c′Hd′ , d′Ib, bGe }, where bGc, cHd and dIb′ account for
the first class of collapsing iterations and b′Gc′ , c′Hd′ and d′Ib account for the sec-
ond class. The body of the resulting loop is set of commands { cHd, dIb′ , b′Gc′ , c′Hd′ }.
Other members of the this category are index splitting and index merging.

3 Watermarking Schemes

The aim of our taxonomy is to point out the principles of loop transformations,
in view of their exploitation for sake of watermarking.

Consider for instance the principle of collapsing iterations. Before undergo-
ing a transformation t of the third category, a for-loop is a set of commands
that accounts implicitly for a whole set of iterations. From the previous section
we know that t partitions the set of iterations into several collapsing classes.
For each class, commands are provided that implicitly account for all and only
the iterations of that class. We notice however that such commands explicitly
account for the class itself, thus partially preventing the loss of information that
takes place before the transformation is applied, i.e., when all iterations collapse
together. It is clear that the more refined is the partition, the more information
is made explicit. Therefore t can be said to act as an extractor of information
and could be exploited to extract watermarks. In [6] for instance we propose a
watermarking scheme based on loop unrolling. The watermark is a value that is
held in a variable. The correct computation of such value starts at an odd iter-
ation and finishes at the next one, which is even. From the previous section we
know that loop unrolling is a transformation that explicits the class of odd iter-
ations and the class of even iterations. So the watermark can be easily retrieved
by analyzing the unrolled loop.

Another idea, still to be explored, is to use the loop transformations them-
selves to encode a watermark. Let P be a program with several for-loops and
σ = 1101 be a binary string representing the watermark to be embedded in P .
Let t0 and t1 be two loop transformations. We define the watermarked program
to be a program P ′ such that t1(t0(t1(t1(P ′)))) = P . For sake of reliability, we
make the following requirements:

– each time a ti with i ∈ { 0, 1 } is applied, there is only one for-loop that can
be the target of ti ;

– none of t0 and t1 is an involution or an idempotent operator;
– the composition of t0 and t1 is not commutative.

It seems appropriate to choose t0 from the first category and t1 from the second
category, so that they can affect distinct targets (t0 affects iteration spaces, while
t1 affects bodies). Moreover, both t0 and t1 are legal as long as they do not create
or disrupt dependencies between iterations [9]. Thus we could control the order
of application of both the transformations by introducing and removing fake
dependencies.
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It is not clear yet how the proposed schemes can be made robust. A major
drawback is that loop transformations were introduced to improve the perfor-
mance of loops [9]. They were not thought to be robust; indeed, because of the
benefits they can grant, there is usually no point in undoing them. As a part
of a watermarking scheme, however, they are aimed in the first place at the
robust embedding of information. This is likely to jeopardize performance. We
thereby need to assess the performace penalty induced by our schemes. On the
other side, robustness might come from a detailed comprehension of what loop
transformations do, how they cooperate and on which conditions they can be
undone. This is especially important since loop transformations themselves may
be used to distort watermarks and obstruct their correct extraction. A canonical
form of for-loop may be useful to tackle this problem.
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Abstract. Smart Card applications usually require reliability and secu-
rity to avoid incorrect operation or access violation in transactions and
corruption or undue access to stored information. A way to reach these
requirements is improving the quality of the development process of these
applications. BSmart is a method and a corresponding tool to support
the formal development of Java Card smart card applications, following
the B formal method, the application being translated from a concrete
refinement of its formal B abstract specification.

1 Introduction

A smart card is a resource constrained computer device able to store data and to
run small-sized software in a secure way. The smart card system is composed by
the card-side “server" application (the applet) and by a client application (the
host application) outside the card. These applications communicate exchanging
packets of data in a low level protocol, the host sending a request to an applet’s
service, which in turn sends back a response containing the results of the service
processing.

Smart card applications are present in our everyday life in a wide range of
sectors such as banking and finance, communication, Internet, public transport,
health care, etc. These applications usually manage confidential information,
such as bank account data, the medical history of a patient or user authentica-
tion data. Thus, to prevent undesirable behavior and to avoid security violations
it is helpful to adopt a rigorous software engineering process, methods and tools
during its development to ensure a final product in conformance with the spec-
ified requirements.

Java Card [1] is a version of the Java platform with a restricted API and
Virtual Machine optimized for smart cards and other memory and processor
constrained devices. Some Java features, such as dynamic class loading, threads,
strings, the types float and double, and multi-dimensional arrays are not present
in the current version of Java Card. However, the Java Card developer can benefit
from most of the Java features, such as portability, type-safe language, object
oriented development, and a wide range of available tools.

This PhD thesis proposes a method and its corresponding tool support,
named BSmart, which aims to improve the quality of the Java Card smart card
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applications through a development process that automates the generation of
the card-side Java Card application and a Java API for the host, based on the
refinement of its formal specification written in B [2] notation.

It is important to note that the B formalism has been chosen because of its
adequacy for the specification of API software, which is the core of a Java Card
application. B also has a well established tool support and successful histories
of adoption in industry scale [3] and academic [4] [5] projects.

Previous work [6] [7] introduced the foundations of the BSmart method. This
paper describes the general ideas of the method and the actual state of its tool
support in Sections 2 and 3. Some open issues to be tackled during the PhD
thesis are listed in Section 4 and final considerations are presented in Section 5.

2 The BSmart Method

The BSmart method aims to abstract the details of the Java Card smart card
system for the specifier as much as possible. Most of his/her work is focused in
specifying the functionality of the applet without the need to take into account
the specific aspects of the Java Card low level communication protocol as well as
the treatment of data processing (coding/decoding) between the host and card
applications.

In order to translate the B specification to its corresponding Java Card appli-
cation code, the method requires some refinement steps that progressively add
the requirements of the Java Card application framework, as explained in the
next subsection. As usual in the B method, other user defined refinements may
be needed to take the specification translatable to Java Card. All of these devel-
oped modules, before the translation phase, must be verified using B tools, which
include a type checker, a proof obligation generator and provers. The success of
the verification ensures the consistency of the specified properties and also that
the refinements are in accordance with the abstract properties.

An overview of the development process following the method is shown in
Figure 2. In this process, the specifier starts from an initial high level and non-
Java Card related B specification of the application (APP.mch, in the figure).
Two sequences of refinement/implementation of this specification are then ap-
plied, one for the card-side and other for the host-side development.

2.1 Card-side development

To develop the smart card implementation of the API we require at least a
refinement (APP FF.ref ), usually applied to make it closer to a Java Card code.
We achieve this making it full-function, i.e., weakening the preconditions of the
operations so that they only define typing of the parameters. The remaining
restrictive conditions are handled in its body through conditional substitutions,
whose non-validity leads to the throwing of an exception. This is performed
by modeling simple Java Card exception classes, such as ISOException. The
identifier code of each exception and any other constants or Java Card related
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Fig. 1. A view of the BSmart method development and its artifacts

information the refinement needs are included in a separated context machine,
named APP Context.mch.

Other refinements may be required, for example, to adapt the types of the
original specification to Java Card compatible types. This is the case when a
client host application sends data using the Java int type, whose implementation
is not mandatory in Java Card. Thus, one must represent an int as two short’s
or as an array of bytes to avoid loss of precision. Corresponding machines that
model these types are included as part of a library of reusable machines in the
tool support for the method (Section 3). The automation of the adaptation was
not yet added in the tool, but an approach to do this within the strict rules of
B refinement is described in [8].

The translation of the B implementations into Java Card code is the last
stage in the card-side development. The implementation is a special kind of
refinement containing only B constructs, in a subset of the notation called B0,
directly translatable to the target language. The main B0 implementation is that
for the applet, containing the services offered to the host, but other modules may
have to be generated, such as the implementation for the context machine.

2.2 Host-side development

The second line of development takes care of the implementation of the API on
the host side and is fully automatable. The generation of the API components
is performed from the original specification (APP.mch) since we only need to
know the expected services of the applet and the necessary data to process them,
information that can be obtained from the signature of each APP.mch operation.

For the host developer are generated two main classes, named APP Comm
and APP Proxy, the former is seen by the user host application and contains
high-level Java methods to call each applet service and to control the life-time
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of the applet. The service calls are dispatched to the Proxy class, which is re-
sponsible for coding the received data into a packet in the Java Card protocol
format and send it to the applet. This class also decodes the returned response,
sending it back to the to APP Comm class.

Using the generated API the user does not need to directly manipulate the
lower-level specificities of the Java Card protocol, increasing this way its pro-
ductivity and allowing us to freely change the API for communication and the
internal algorithms for data encoding/decoding without impact to the front-end
user developed host application (HostMain.java).

3 Tool Support for the BSmart Method

The BSmart tool [9] is an Eclipse plugin connecting several software components,
each responsible for implementing a different step of the BSmart method. Essen-
tial software for the B formal method is also included, such as a type checker, and
connection with external tools, such as Atelier B, for proof obligation generation
and verification. As noted before, we supply jointly with the tool a library of B
modules modeling essential classes of the Java Card API, types and useful data
structures, including its corresponding Java Card implementations. The devel-
opment of the library is still in progress and includes some prototypes that can
be reused by specifiers and Java Card developers with the advantage of being
fully verified using the B method.

The main components that provide support for the method are the BSmart
Modules Generator and the B to Java Card code translator. The former is re-
sponsible for generating the context machine and the full-function refinement
required by the method and the latter translates all the B implementation mod-
ules into Java Card programming code and also generates the API classes for the
host side client. The translator has been developed based on the Java translator
of JBtools [10].

4 Open Issues

In the following, we describe some open issues in the actual stage of the PhD
research that are interesting to be taken into consideration.

Verification of the translation The transformations involved in the auto-
matic generation of B required refinements are subject to correctness verification
through the use of B tools. These tools can check, for instance, syntax, typing,
invariant properties and refinement invariant and constraints. However, a criti-
cal verification that is not yet done is the verification of the translation of the
B implementation into the Java Card application. An approach could be the
translation of JML assertions in the generated code, as in the work of [11]
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Development of a real world case study We have been using only small
samples of smart card applications to test the method and its corresponding tool
support, as an application for public transportation payment. To better validate
the method and the tool, we need a more robust real world case study. A strong
candidate is the specification in B of the Mondex electronic purse, a case study
that is part of the Verified Software Initiative. In the Mondex system some
amount of monetary value is transferred from a source to a target smart card
purse in a non-atomic protocol. Each purse must be implemented in isolation,
without sharing properties through a global control. The Mondex system has
been formally specified in Event-B in Butler and Yadav [4] work and in other
work using several formalisms. We started to adapt this system specification to a
programming specification, extracting the card and host specifications, modeling
them according to the BSmart method.

Expansion of the tool library We have developed B machines to model some
classes of the Java Card API, Java and Java Card primitive types. We plan to
supply these verified B models to all classes of the Java Card API and to other
useful tasks for Java Card applications, such as manipulation of time and data
and currency conversions. Corresponding classes generated from these modules
can be reused by Java Card developers, this way contributing to the correctness
of the application as a whole. For the Java Card API specification, the work
of Meijer [5] and Larsson [12] could be a starting point, as well as its official
documentation.

Object oriented translation The B notation for the implementation module
has some constructions similar to an imperative language like C. For that rea-
son, the industrial tools for B, such as the Atelier B and the B-Toolkit, provide
translators to this language paradigm. The Rodin platform plugin UML-B [13],
presents solutions to overcome the B object orientation limitations, when trans-
lating from UML class diagrams into B. In our simple approach, a B implemen-
tation and sets are directly translated to a Java Card class. However, in some
cases, a non automated fine control of some aspects of the translation may be
required, for example, to control the access level of a variable or to apply modi-
fiers to a class or method. In that cases, we could complement the B source with
some annotations or configuration files to help the translator.

Optimization of the translation Since the requirements of memory storage
and processor power of a smart card are often critical, it is ideal to generate
the card-side code as optimized as possible. Some optimizations could be to
allocate all the memory an applet needs to persist in its constructor, to reduce,
when possible, the number of local variables, etc. Requet e Bossu [14] and Bert
et. al [15] work present a similar problem, addressing the translation from B
specifications to C programs with optimizations in the context of the BOM (B
with Optimized Memory) project.
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5 Conclusions

The BSmart method allows the development of a Java Card application in a
model driven development (MDD) process following the B method. The work
has started as a master degree research. We started to identify the common
aspects of a Java Card application, and to develop B specifications of some
simple applications. These case studies evolved to the BSmart method and the
first version of its tool support.

We can say that the development process of the master research is more sys-
tematic than rigorous. The doctoral work (currently in the second year) aims
to improve this results with a more robust approach. We are interested in pri-
oritize the verification process of the B to Java/Java Card translations (Host
API and card-side classes), and in exploring more sophisticated techniques to
generate the B models and the Java Card application final code, possibly using
some MDD tool, such as TXL [16]. Currently, this process is performed using
only internally developed algorithms. The use of other formalisms, such as JML
for runtime verification, is also under investigation. Finally, to better validate
the proposal and its tool support, we are studying how to adapt the Mondex
case study to the development with B, following the BSmart method.
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Abstract. This paper introduces an implementation relation stiocoD

for symbolic timed automata, which generalises the well-known ioco im-
plementation relation to systems with data and real-time behaviour. We
choose a purely symbolic approach to define this relation, which is based
on similar work of Frantzen et al. for Symbolic Transition Systems.

1 Introduction

Formal methods have been applied successfully in the field of conformance test-
ing over the last decade. A well-known representative is the ioco framework [8],
where the correct behaviour of an implementation under test is specified using
a formal model (a labelled transition system (LTS) with input and output ac-
tions), and which allows for the automatic derivation of test-suites from this
specification. Test-cases cast their verdicts following a formal correctness crite-
rion: the implementation relation ioco. The ioco relation describes unambigu-
ously when an implementation (which, due to the testing-hypothesis, must be
representable as an LTS) conforms to a specification.

The ioco theory has been extended in several directions. Recently, Frantzen
et al. [5] have developed an approach to deal with data input and output to
and from the implementation, respectively. Data is treated symbolically, which
avoids the usual problems of state-space explosion and infinite branching that
occur when data is represented explicitly in an ordinary LTS. Specification and
implementation are modelled here as Symbolic Transition Systems (STS), which
are LTS extended with a notion of data and data-dependent control flow based
on first order logic. In the context of this theory, the implementation relation
sioco has been developed, which is defined solely within the FO-Logic framework
on STS level.

Also several approaches to timed ioco-based testing have been developed [6,3,2,4],
mostly on the basis of timed automata. Different notions of conformance have
been defined on the basis of timed LTS(TLTS). A detailed comparison of the
different notions of conformance is given by Schmaltz et al. [7].

In this paper we take first steps towards a testing theory which combines
time and data. Our main contribution is the definition of a conformance relation
stiocoD for Symbolic Timed Automata (STA). STA are a straightforward com-
bination of STS and TA, but which allow data inputs to influence the real-time
behaviour. The semantics of STA is given in terms of TLTS. stiocoD is an



40

extension of sioco for STA, and can be shown to coincide with tioco on the
semantical, TLTS level.

Our approach is to transform an STA into an STS-like formalism, by encod-
ing the timing aspects within the FO-framework. The resulting structure is called
Delayed Symbolic Transition Systems (DSTS). We then follow the approach of
Frantzen [5] with some essential modifications to define stiocoD.

Overview. In Section 2 we introduce STA and their semantics. In Section 3 we
describe the translation of STA to DSTS, and the DSTS semantics in terms of
TLTS. Afterwards, in Section 4 we define an implementation relation stiocoD

for DSTSs.

2 Symbolic Timed Automaton

Symbolic timed automata (STA) are a combination of Symbolic Transition Sys-
tems and Timed Automata. We denote with B(C) the usual set of clock con-
straints over a set of clocks C (cf. [1]). The set B(C ∪ V) is the set of clock-
constraints over clock set C, where upper or lower bounds can be variables from
a set of integer variables V. We assume a certain First-Order-Structure (usually
with the an universe of integers), and denote with F(V ar) the set of FO-Formulas
over variable set V ar. T(V ar) denotes a set of terms over V ar.

Definition 1 (Symbolic Timed Automata). A symbolic timed automaton
is a tuple A = (L, l0,V, I,G,C, Inv ,→) where L is a set of locations, l0 is the
initial location, C is a set of clock variables, Inv : L → B(C) assigns invariants
(clock constraints of the form x < c or x ≤ c) to locations, V is a set of location
variables, I is a set of interaction variables, G is a set of action gates, where GI
is a set of input and GU the set of output gates with GI ∩ GU = ∅, and finally
→⊆ L× GI ∪ GU × F(V ar)×T(V ar)V ×B(C∪V)× 2C ×L is a set of switches,
where V ar = V ∪ I.

We write l g〈i〉,ϕ,ρ,θ,λ−−−−−−−−−−→ l ′ for (l , g〈i〉, ϕ, ρ, θ, λ, l ′) ∈→. ?g〈i〉 is an input
gate, binding incoming data to variable i , and !g〈i〉 is an output, sending datum
i . A switch can only fire if its data guard ϕ ∈ F(V ar), and the clock constraint
θ ∈ B(C∪V) is fulfilled. ϕ imposes not only constraints on the current valuation
of location variables, but also on the values that can be received or sent over
the corresponding gate. θ is a clock constraint where bounds on clocks and clock
differences can be location variables. This is the only interaction of data and
time that we allow. ρ describes the updates of location variables. In particular,
interaction variables can be assigned to location variables. λ is a set of clocks
which is reset to 0 upon firing the switch. Invariants Inv(l) determine, as in
timed automata, the conditions which allow staying in a location.

Note that STA without clocks, invariants, and the θ and λ components on
switches, are just ordinary STS, as defined in [5].
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3 DSTS

In this section we introduce Delayed Symbolic Transition Systems (DSTS),
which help us to reuse Frantzens theory for STSs to define stiocoD (see Fi-
gure ??). A DSTS is in essence a reformulation of an STA, where the real-time
aspects are encoded in FO logic. We then adjust Frantzens approach for our
purposes, to obtain stiocoD. It can be shown that stiocoD coincides on TLTS
level with tioco.

Fig. 1. Semantic hierarchy for STA

3.1 Delayed Symbolic Transition Systems

Our approach to define an implementation relation for STS is to encode the
time-related concepts in FO logic, and obtain thus an STS. The resulting de-
layed STS (DSTS) is defined over a two-sorted FO-Logic, where U denotes the
universe for data (usually integers) and Ut the time domain (usually reals). The

step from STA to DSTS is straightforward. Assume a switch l
g,ϕ,ρ,θ,λ−−−−−−→ l ′.

Clock constraint θ is translated into an FO-Formula and combined with data
constraints ϕ. Clock reset λ is translated into a term mapping λFO : C → C∪{0}
with λFO(c) = 0 if c ∈ λ, and λFO(c) = c, otherwise. λFO is then combined
with the update mapping ρ. Invariant Inv(l) is transformed into FO-Formula
κ ∈ F(C). We introduce term mapping π : C 7→ T(C ∪ T) as π(c) 7→ c + d ,
where d ∈ T is a delay variable. For each location l in the STA we introduce
two locations ľ , l̂ in the DSTS. The transition ľ δ,κ,π−−−→ l̂ describes then the
sojourn conditions of location l . The firing of the original switch is described by

a DSTS-switch l̂
g,ϕ∧θFO ,ρ∪λFO−−−−−−−−−−→ ľ ′. More concisely,

l
g,ϕ,ρ,θ,λ−−−−−−→ l ′

ľ δ,κ,π−−−→ l̂
g,ϕ∧θFO ,ρ∧λFO−−−−−−−−−−→ ľ ′

The semantics of an initialised DSTS is given by a TLTS.
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Definition 2 (Semantics). Let A = (L, l0,V, I,G,C, Inv ,→) be an STA, and
S = D(A) its corresponding DSTS. Its interpretation JSKι in the context of an
initialisation ι ∈ UV and ζ0 = [C 7→ 0] is defined as the TLTS JSKι = (L× UV × UC

t , (l0, ι, ζ0), Σ,→),
where

– Σ =
⋃

g∈G({g} × U) ∪
⋃
δ∈D Ut

– →⊆ (L × UV × UC
t ) × Σ × (L × UV × UC

t )is defined by the least set of the
following rules:

Delay:
ľ δ,κ,%−−−→ l̂ d ∈ Ut ζ ′ = ζ + d ζ |= κ ∧ ζ ′ |= κ

(̌l , ϑ, ζ) d−→ (̌l , ϑ, ζ ′)

Action:
l̂

g〈i〉,ϕ,ρ−−−−−→ ľ ′ δ,κ,%−−−→ l̂ ′ ς ∈ U{i} ζ ∪ ϑ ∪ ς |= ϕ ∧ κ[ρ]

(̌l , ϑ, ζ)
(g,ς(i))−−−−−→ (̌l ′, ϑ′, ζ ′)

with ϑ′ = ((ϑ ∪ ς)ev ◦ ρ)V ζ ′ = ((ζ)ev ◦ λ)C

4 Towards stiocoD

We give DSTS a symbolic trace semantics, which is a prerequisite to define
the implementation relation stiocoD. In order to do so, we introduce history
interaction/delay variables which keep track of the possible input- and output-
data that a DSTS might send and receive during execution, and of the sojourn
times in the locations, respectively. For the set of interaction variables I , we
introduce sets In for all n ∈ N such that i ∈ I iff in ∈ In . Moreover, we
introduce sets Tn for all n ∈ N with d ∈ T iff dn ∈ Tn . We have thus a bijective
mapping rn between all In ∪ Tn and I ∪ T.

Using the history variables, we are able to generalise the switch relation→ of
a DSTS to traces of gates. These generalised transitions l σ,ϕ,ρ

===⇒ l ′ describe how a
location l ′ can be reached via a series of delays and interactions over gates. This
symbolics semantic for DSTS is the key concept of our framework. We explain
the symbolic semantics by means of the example in Figure 2. There will be no
formal definition since this would go beyond the scope of this paper.

Fig. 2.

In Figure 2 we start with delaying δ〈d〉 in ľ0. For this the constraint
κ1[%1] = x + d ≤ 20 has to be satisfied. Note that the clock x has to satisfy
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the clock constraint after delaying, as the clock constraint is an invariant in the
original STA. We then reach l̂0, after increasing all clocks with d . Since d is
kept symbolic we have to remember the update mapping %1 we have made and
the attainment constraint κ1[%1] (where κ1[%1] stands for the substitution of the
free variables in κ1 with %1) that must be satisfied for reaching l̂0. We rename
the delay d to history delay variable d1 by using bijection r1. For our generalised
transition we then get ľ0

σ, ϕ1, ρ1=====⇒ l̂0 with σ = δ, ϕ1 := x+d1 ≤ 20 = κ1([r1]◦[%1])
and ρ1 := y 7→ y+d1∧x 7→ x +d1 = [r1]◦%1. Next we take the transitions ?req〈i〉
from l̂0 to ľ1 for which the attainment constraint ψ has to be satisfied and π is an
update mapping. Additionally, for reaching ľ1, the constraint κ2[π][ρ1] from the
next delay transition (the invariant for 1 of the original STA) has to be satisfied
after updating the clock with [π][ρ1]. So we get (ψ[r2])[ρ] = i2 ≤ 4∧ x +d1 ≤ 20,
(κ2[π])[ρ] = 0 ≤ 20 and ρ2 := [ρ1] ◦ [r2] ◦π = q 7→ i2 ∧ x 7→ 0∧ y 7→ y + d1 as our
new update mapping. For the generalised transition from ľ0 to ľ1 we combine
all constraints and update mappings and get ľ0

σ2,ϕ2,ρ2=====⇒ ľ1, where σ2 := σ1·?req ,
ϕ2 := ϕ1 ∧ (ψ[r2])[ρ] ∧ (κ[π][r2])[ρ], and ρ2 := [ρ1] ◦ [r2] ◦ π.

Applying the same rules as before to the switch ľ1
δ〈d〉,κ2%2−−−−−−→ l̂1, we obtain the

generalised transition ľ0
σ2·δ〈d〉, ϕ2∧(κ2[%2][r3])[ρ2], [ρ2]◦[r2]◦%2==========================⇒ l̂1.

Delayed Symbolic states are tuples (l , ϕ, ρ), where ϕ is the collection of con-
straints and ρ is the concatenation of update mappings from the generalised tran-
sition 0̌

σ,ϕ,ρ
===⇒ l . For the DSTS in Figure 2, (̂l0, x ≤ 20, y 7→ y +d1 ∧ x 7→ x +d1)

is one delayed symbolic state. We write (̌l0,>, id) for the initial delayed symbolic
state with > being a tautology and id maps all variables to themselves.

In some cases it is necessary to have a constraint on interaction variables
and delays occurring in a trace σ. We call such traces delayed symbolic extended
traces. A delayed symbolic extended trace (σ, χ) consists of a trace σ ∈ (G∪D)∗

and of a additional constraint χ for history variables of σ.
The set of delayed symbolic states that can be reached after a delayed sym-

bolic extended trace (σ, χ) is defined as follows :

(̌l0,>, id)afterD(σ, χ) , {(l ′, ϕ ∧ χ, ρ) | l σ,ϕ,ρ
===⇒ l ′}

An implementation conforms to a specification if all outputs and delays of
the implementation are mimicked by the specification. Therefore, we define the
outD-set of a symbolic state (l , ϕ, ρ), which includes all output actions and
delays that can be made from (l , ϕ, ρ).

Definition 3 (outD).

outD((̂l , ϕ, ρ)) , {(g , ϕ, ψ[ρ] ∧ κ[π][ρ]) | ∃ ľ , π : l̂ g,ψ,π−−−−→ ľ ′ δ,κ,%−−−−→ l̂ ′ ∧ g ∈ GU }

outD((̌l , ϕ, ρ)) , {(δ, ϕ, κ[%][ρ]) | ∃ l̂ , π : ľ δ,κ,%−−−−→ l̂ ∧ δ ∈ D)}

An output action (g , ϕ, ψ[ρ]∧κ[π][ρ]) or a delay (δ, ϕ, κ[%][ρ]) can be observed
if the attainment constraint ϕ of the delayed symbolic state and the attainment
constraint ψ for the actual transition are satisfied.
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Fig. 3. Example 1

Example 1. Consider outD((̌l0,>, id)afterD(σ, χ)) with σ = δ?req and χ =
d1 ≤ 6 ∧ i ≤ 7 in Figure 3. Then is (̌l1, ϕ, ρ) the delayed symbolic state reached
with (̌l0,>, id)afterD(σ, χ) with ϕ = x + d1 ≤ 10∧ i1 ≥ 4∧ x + d1 ≤ 20∧ i1 ≤ 6
and ρ = [y 7→ y + d ∧ x 7→ x + d ] ◦ (q 7→ i1 ∧ x 7→ 0). To observe some delay
d2 after ľ1 the constraint y + d2 ≤ 30 has to be fulfilled. We already know that
y 7→ d1 so we get d1 + d2 ≤ 30 and outD(̌l1, ϕ, ρ) is (δ〈d2〉, ϕ, d1 + d2 ≤ 30).

Finally, we adapt the definition of sioco from Frantzen to DSTS in order to
define our new implementation relation stiocoD.

Definition 4. Let S = (LS, lS,VS, I,T,G,D,CS,→S) be an initialised specifi-
cation, P = (LP, lP,VP, I,T,G,D,CP,→P) be an input enabled implementation,
with Vp∩Vs = ∅ and Fs be a set of delayed symbolic extended traces of S. An im-
plementation P is stiocoD conform to a specification
S, written as P stiocoD S, if the following holds:

∀(σ, χ) ∈ Fs ∀(g ∈ GU ∨ g ∈ D) :

[CP 7→ 0] ∪ [CS 7→ 0] ∪ (ιp)Vp ∪ (ιs)Vs |= ∀̄
I∪bI∪T∪bT(φD(lp , g , σ) ∧ χ→ φD(ls , g , σ))

where φD(l , g , σ) =
∨
{ϕ ∧ ψ | (g , ϕ, ψ) ∈ outD((̌l0,>, id)afterD(σ,>))}

In the case that P stiocoD S, the definition of stiocoD implies that if the
constraint ϕ ∧ ψ ∧ χ is satisfiable by a certain valuation for a delay or out-
put (g , ϕ, ψ) ∈ outD((ľP,>, id)afterD(σ,>)), then there must be a constraint
ϕ′ ∧ ψ′ for a (g , ϕ′, ψ′) ∈ outD((ľS,>, id)afterD(σ,>)) which is also satisfiable
by the same valuation. This can be visualised by considering the following ab-
stract example. Let g ∈ GU be output observed from the implementation after
a trace σ. We then have (g , ϕ, ψ) ∈ outD((ľP,>, id)afterD(σ,>)). This output
can be observed if ϕ∧ψ is satisfiable by a valuation of variables and delays. We
then know that φD(lP, g , σ) is also satisfiable. If the valuation also satisfies the
constraint χ, given by the specification, the first part of the implication is true.
This then requires that φD(lS, g , σ) is also satisfiable by the same valuation,
which implies that there is a constraint ϕ′∧ψ′ satisfiable by the same valuation.
This means that there must be a (g , ϕ′, ψ′) ∈ outD((ľS,>, id)afterD(σ,>)).

We can show that the implementation relation siocoD for DSTS coincides
with tioco for TLTS.
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5 Conclusion

We have presented a testing theory for timed and symbolic testing includ-
ing the implementation relation stiocoD. This theory is sound and correct
with respect to its semantics and can be the basis for future research consid-
ering the automatic generation of test cases. Still, our theory does not consider
τ -transitions and allows only a certain way of interaction between time and
data. This and the investigation on efficient implementation might also be part
of future research.

Acknowledgement. I thank Dr. H. Bohnenkamp and Prof. J.-P. Katoen from
RWTH Aachen University and Dr. J. Schmaltz from Radboud University.
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Abstract. Hybrid systems originate from control theory where the be-
havior of a discrete controller is observed in its environment. In many
cases it is not sufficient to test the control programs alone but also the
interactions with their environments. For instance, conclusions over sta-
bility or long-term behavior can only be drawn when having a closed-loop
view on the system.
The challenge of testing Hybrid Systems is to deal with infinite state
spaces of continuous model variables that arise during exploration. By
applying predicate abstraction techniques this issue can be countered.
This work presents Qualitative Reasoning, which is an Artificial Intel-
ligence technique for common sense reasoning, as a means to abstract
continuous behavior to transition systems. Hence, we get a discrete be-
havior of the hybrid system which we use as model for subsequent test
case generation.

1 Introduction

Discrete systems that have continuous interaction with their environment are
called hybrid systems. Most embedded systems, e.g. a weather station sensing
temperature etc. or a fuel injection controller, are of this kind. When such sys-
tems are safety critical, difficult to access, or far away like Mars rovers, it is very
important to test them thoroughly. Because of the system complexity of real
world applications it is virtually impossible to derive enough test cases by hand
in order to meet certain testing coverage metrics. We apply blackbox testing in
order to generate test cases due to test purposes or coverage criteria.

Blackbox testing requires a description of the input/output behavior of the
implementation under test in some formal notation. We use qualitative models
as specification language to describe the continuous behavior of hybrid systems.
Qualitative Reasoning, an Artificial Intelligence technique for common sense rea-
soning, can infer behavior from qualitative models by simulation. The models
consist of constraints, called Qualitative Differential Equations (QDEs), which
are an abstract representation of Ordinary Differential Equations (ODEs). Given
a model and an initial state, simulation engines like QSIM [1] produces a tran-
sition system (TS) which contains all possible behaviors that may evolve over
? Research herein was funded by the EU project ICT-216679, Model-based Generation

of Tests for Dependable Embedded Systems (MOGENTES).
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time. We use the TS as test model where each state in the TS valuates all
model variables. Hence, the test model has an Labeled Transition System (LTS)
semantics for which several testing approaches exist.

A behavior is defined as a trace in the LTS, i.e. a sequence of observable
events, starting with an initial event. The set of events is called alphabet. Due
to different abstraction levels the implementation and specification usually do
not share the same alphabet. Hence, there must exist a data refinement relation
which translates between these alphabets. The translation can be done offline
during test case generation. Here, the test cases are directly executable at the
implementation level by e.g. linking the test case to the executable. The trans-
lation can also be applied online during test case execution via a test adapter.
In our work we use a test adapter to execute abstract test cases.

In order to give valid verdicts about test executions, testing assumptions have
to be made. One assumption is that the implementation can be represented with
the same formalism as the specification. This assumption has to be proved with
the data refinement relation. Several proof techniques to show data refinement
are presented in [2]. A further assumption is the uniformity hypothesis [3] which
states that it is sufficient to choose one input from an equivalence class since
the implementation will show the same behavior for all inputs from this class.
This assumption is applied in the execution of qualitative test cases [4], where
we refine abstract inputs to concrete inputs.

In our first work [5] we describe the mathematical relationship between ODEs
and QDEs on a small example and generate test sequences by reachability analy-
sis on the simulation output. In [6,7] we deal with test case generation based
on test purposes and the minimization of test cases due to observable events.
The work in [8] introduces coverage criteria for qualitative models and describes
coverage-based test case generation. We implemented a prototype test case gen-
erator, called QRPathfinder, which generates controllable test cases according to
our newly introduced conformance relation qrioconf [4]. In [4] we describe how
hybrid systems can be tested with qualitative models and, in a first step, show
how test case execution works for a continuous system.

The remainder of this paper is organized as follows: In section 2 we give a
brief overview on Qualitative Reasoning. Section 3 deals with the generation
of qualitative test cases and their execution. In section 4 we discuss other ap-
proaches for testing hybrid systems and relate them to our work. We conclude
in section 5 and mention some open issues for future work.

2 Qualitative Reasoning

When modeling using QR, one abstracts the domain of continuous, real valued
variables of a system to the domain of points and intervals. A point, called
landmark, is a boundary between intervals. In QR the model variables are called
quantities q ∈ Q and the domain of a quantity, consisting of landmarks and
intervals, is denoted as quantity space (QSq). For instance, when we consider
the temperature of water from a qualitative point of view, we can map the
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temperature to the domain: below 0◦C water is frozen, at 0◦C it melts, above
0◦C it is liquid, and around 100◦C, depending on the pressure it starts boiling.
Above 100◦C it changes to steam. Hence, the quantity space consists of three
intervals and two landmarks, i.e. 0◦C and 100◦C.

Time is abstracted to a sequence of temporally ordered states of behavior
where each state binds all quantities to values. The value of a quantity is a
pair consisting of an abstract value qVal ∈ QSq from its quantity space and the
direction of change δ. The direction of change δ =df {−, 0,+} is an abstraction
of the first derivation ∂

∂t where δ is either decreasing, steady, or increasing. The
behavior of a QR model changes from one state to the next if one of the quantities
alters its value, i.e. there is a change of qVal or δ.

Qualitative models, consisting of a set of QDEs, are constraint satisfaction
problems (CSPs). In a worst case scenario, i.e. an unconstrained system, the size
of the transition system is simply the whole state space: ×q∈Q | δ | · | QSq |.

3 Testing with QR Models

Test Case Generation We described in [6,7] the test case generation methodology
based on qualitative models. In a first step the test engineer builds the model and
validates it by evaluating the simulation result. When testing with test purposes
the engineer formulates a scenario of interest in some notation, in our case as
regular expression over symbolic labels. Each label expresses a property over the
set of quantities. Then the simulation result, denoted as QR transition system
(QR TS), is labeled with the property symbols. Each transition in the resulting
LTS contains the labels which are satisfied in the following state. The labeling
results in a Kripke structure from which we compute the synchronous product
with the deterministic finite automaton (DFA) that is equivalent to the regular
expression stating the test purpose. The product TS is a slice of the specification
containing the behavior of interest.

Next, we minimize the product TS due to disjoint input quantities LI and
output quantities LU that are relevant for testing. The remaining quantities are
hidden and their evolution cause internal (τ) transitions. We refer to the set
of observable quantities as L =df LI ∪ LU . During weak-bisimulation minimiza-
tion the resulting TS may get non-deterministic which, in a subsequent step,
is converted via standard subset construction into a deterministic TS, called
Complete Test Graph (CTG). Note that the determinization has no influence
on the observable behavior and hence on the conformance relation. From this
CTG we extract controllable test cases according to our qrioconf relation, see
Definition 1.

Definition 1.

i qrioconf s =df ∀σ ∈ Traces(s) ↓ LI :
out (i after σ) ⊆ out (s after σ)
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Here i denotes the implementation, s is the specification, Traces(s) is the set
of sequences of states in the specification starting from the initial state, σ is an
input trace (i.e. a trace projected on LI ), after determines the set of states
after σ in i and s respectively, and out valuates the output quantities of a set
of states.

The conformance relation states that for all input traces in the specification
the following must hold: The outputs of the implementation after the input
trace have to be a subset of the outputs of the specification after the same trace.
Figure 1 shows three QR transition systems where we use integers as qualitative
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Fig. 1. Conformance between QR transition systems: I1 qrioconf S and I2
����qrioconf S

values. In the following we refer to the values of inputs and outputs within a
state in a vectorized form, [i1, . . . , in ]T and [o1, . . . , om ]T respectively. The states
s0 of I1 and I2 are qrioconf to S since I1 after 〈[1]〉 = I2 after 〈[1]〉 = {s0}
and the outputs out (s0) = {[1, 1]T} are allowed in S after the same input
trace 〈[1]〉. The outputs in I1 after the input traces 〈[1], [1]〉 and 〈[1], [2]〉 are
both allowed in the specification S . For the third input trace 〈[1], [3]〉 the last
input i1 = 3 is not specified in S . Due to implementation freedom the behavior
following unspecified inputs is not considered by the conformance relation. For
I2 we get I2 after 〈[1], [2]〉 = {s1, s2}. However, the outputs out ({s1, s2}) of
I2 are not a subset of out (S after 〈[1], [2]〉). Hence I2 is not qrioconf S .

Test Case Execution In [4] we describe the execution of qualitative test cases
and demonstrate it on a small water tank example. The tank is filled from the
top and it has one outlet on a certain height and another one at the bottom.
The system has four different modes, i.e. the water level is above or below the
upper outlet and the lower outlet may be open or closed. The aim is to test, if
a concrete instance of the water tank conforms to the specification model. We
used a Matlab Simulink model of the tank as implementation under test. Since
the specification is on a more abstract level than the implementation we have
to deal with data refinement during testing. Therefor we apply U-Simulation,
described in [2], where we refine abstract inputs from the specification to the
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implementation level and then abstract the observed outputs from the imple-
mentation back to the specification level. Hence, during testing we map between
continuous functions and qualitative traces. Figure 2 depicts the execution of a
test case where there is some inflow into the tank and the lower outlet is open. In
the test case inflow is an input and level is an output. One can observe, that the
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Fig. 2. Execution of a Test Case.

qualitative input trace is refined to a piecewise linear function. The definition of
the slope of the input is part of the specification as well as other timing informa-
tion like the sampling interval or timeouts. While applying input samples to the
implementation the observed output samples undergo qualitative abstraction.
The resulting qualitative values must be allowed by the specification which is
the case for the correct tank instance. In the wrong tank instance, called Mutant,
two modes of the system are exchanged, i.e. when the valve at the bottom is in
opened position it is closed actually. Figure 2 shows that the test case discovers
the mutant by giving a fail verdict.

4 Related Research

We apply similar techniques for test case generation with test purposes as the
tool TGV [9], a test case generator from labeled transition systems.
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The work in [10] presents symbolic test case generation for time-discrete
input-output hybrid systems (TDIOHS) specifications. In contrast to our work
such specifications already contain the numerical solutions of the continuous
behaviors of the system. They developed a constraint solver for handling non-
linear CSPs with real-valued variables based on interval analysis techniques.

The authors in [11] propose a test case generation algorithm for continuous
and hybrid systems that relies on Rapidly-exploring Random Trees (RRTs). They
can handle high-dimensional search spaces and generate test cases due to certain
coverage criteria.

The main difference to existing abstraction techniques for hybrid systems
is that we solve abstract equations (QDEs) rather than concrete, real-valued
equations (ODEs). In the latter case polyhedral constraints are used to enclose
regions of possibly infinite states within which the real solution is located. QR
provides a more abstract view on a system where constraints are not defined
over real values but over the finite domain of landmarks and intervals.

5 Conclusion and Future Work

In our previous work we elaborated the possibility the apply qualitative models
for testing continuous systems. We showed how to generate controllable test
cases with test purposes [6,7] and according to coverage criteria [8]. Because
of qualitative abstraction the degree of nondeterminism can lead to big state
spaces. Online testing, where the state space is explored on-the-fly, will be an
interesting subject for future work.

Furthermore we developed abstraction and refinement techniques in order
to execute qualitative test cases. The approach has been demonstrated with a
prototype tool. As a next step we will adapt some hybrid formalism where we
replace the description of continuous behavior with qualitative behavior.
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Abstract. The main theme of this research is to study and develop
techniques for the modeling of software controlled safety critical sys-
tems. In this work, we formally specify different entities, phenomena and
their inter-relationships, and specially non functional properties related
to land transportation systems with refinement based approach at do-
main level. We also introduce a stepwise validation process to maintain
seamlessness between environment and its captured models. We apply
our results on two safety critical case studies.

1 Introduction

Having good understanding of an application domain is a crucial prerequisite to
develop software within that domain. The understanding of a domain is referred
to as a domain model. A domain model is a conceptual model of a system which
describes various entities, phenomena and their inter-relationships, along with
their important static and dynamic properties of the domain. The domain model
may be expressed in the form of requirements, specifications, or architectural
references.

According to [1], if domain models and requirements of software are not for-
mally expressed, software correctness can not be meaningfully achieved. Safety
is also one of the major factors which can not be overlooked while designing com-
plex and critical systems. The development of correct and safe systems can be
difficult and error prone with traditional software development methods. How-
ever, use of formal methods, in order to ensure their correctness and to structure
their development from domain modeling to implementation, can significantly
help system development.

Formal languages are notoriously difficult to read for the non-initiated. Fur-
thermore, well-written specifications often introduce abstract objects and opera-
tions that have no intuitive concrete counterpart. Hence, validation has to wait.
? This work has been partially supported by the ANR (National Research Agency)
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This implies that the development of the model requires an uncomfortable level
of trust.

The pivotal concept of formal methods such as B [2] is the notion of refine-
ment and its relation to correctness. The assessment of the correctness of a piece
of code, its verification, is no more a unique big process step but it is broken
down into small pieces along with the whole development process. The proof of
correctness is the sum of the proofs of small assertions (invariant preservation,
well-formedness, existence of abstraction function, etc.) associated to each refine-
ment. Likewise, the technique of animation could be used with each refinement
step to break its validation into smaller assessments.

Introduction of validation into refinement based processes yields two advan-
tages: First, early detection of problems in the models (say, misunderstanding
about a certain behavior) should be easier and inexpensive to correct. Second,
users can be involved into the development right from the start.

In this work, we focus on animation technique which is the “execution” of a
specification as a mean to validate it. Thanks to the development of tools, like
Brama [3], it is possible to animate specifications in B or Event-B [4] before they
reach an implementation stage. However, there are restrictions on the kind of
specifications that can be animated. Non-constructive definitions, infinite sets,
or complex quantified logic expressions are among the list of restrictions.

We devise a technique to animate abstract specifications by systematic trans-
formations. The product of the transformations is a specification which may be
non provable, but which is guaranteed to have the same behavior as the formally
correct initial specification. This goal is achieved through the design of a set of
transformation heuristics whose correction is rigourously asserted and a rigorous
process.

The main aim of the research is two fold: first, formal modeling of data,
behaviors, protocols, interaction between elements, and non-functional proper-
ties of transportation domain and second, to incorporate a stepwise validation
technique into the overall modeling process.

The presentation of the paper is organized as follows: Next section presents
the language and tool we use: Event-B and Brama. Then we present a stepwise
specification and validation process for domain modeling. Two case-studies are
described thereafter to show how we have implemented our approaches. Finally,
we conclude that what should now be completed to have a technique that could
be used as standard practice and our future research endeavors.

2 Tools

This section introduces the tools which we use for specification and validation.

2.1 Event-B

Event-B is a formal method for system-level modeling and analysis of large reac-
tive and distributed systems. Main features of Event-B are the use of set theory
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and first order logic for modeling systems, the use of refinement to represent
systems at different levels of abstraction and the use of mathematical proof to
verify consistency between refinement levels. Event-B is provided with tool sup-
port in the form of an Eclipse-based IDE called RODIN1 which is a platform for
writing and proving Event-B specifications.

2.2 Brama

Brama is an animator for Event-B specifications. It is an Eclipse based plug-
in for the RODIN platform which can be used in two complementary modes.
Either Brama can be manually controlled from within the RODIN or it can also
be connected to a Flash graphical animation through a communication server;
it then acts as the engine which controls the graphical effects.

3 Stepwise specification and validation

In order to verify complex systems against their requirements, the breakdown of
overall system into different levels of abstraction is highly recommended. This
can be achieved by their stepwise development. To specify our domain models
we follow the same principle. We start from abstract requirements, we gradually
refine them to achieve concrete and fine grained description of the model, and
verify each refinement step against the specification constructed in the previous
refinement.

We use two different notions of refinement to specify our models: horizontal
refinement and vertical refinement. In horizontal refinement the details are added
to the model while remaining at the same level of abstraction. However in vertical
refinements we add the description to the model while making a leap to the next
abstraction level.

Once a domain model has been specified and verified, an important question
arises: does it accurately capture the environment? While proof tools guarantee
the consistency of the specification, they are of little help to check if it is the
true representation of the environment. Like the verification of the model can
be broken down into smaller proofs associated with each refinement step, we use
the technique of animation at each refinement step to break its validation into
smaller assessments.

Animation of specification is not that straightforward because it heavily de-
pends upon tools. Any limitation of the tool will be a restriction on the class of
animatable specifications. To validate a specification which does not belong to
this class, we need to “bring it in.” We do this by applying transformation rules
which are designed to keep the behavior unaltered, possibly at the expense of
other properties.

1 http://sourceforge.net/projects/rodin-b-sharp/
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Fig. 1. The heuristic pattern

Experimenting with Brama on two Event-
B safety critical systems–a formal domain
model of land transportation [5] and a sit-
uated multi-agent platooning system [6]–we
have dressed up a typology of five general
cases:

1 Brama forbids finite clauses in axioms
2 Brama interprets quantifications as iter-

ations
3 Brama cannot compute dynamic func-

tional bindings in substitutions
4 Brama does not compute analytically de-

fined functions
5 Brama has limited communication with

its external graphical environment

This lead us to design 10 transformation heuristics [7] expressed following
the pattern shown by figure 1.

Fig. 2. The validation process

We designed the heuristics to preserve the
behavior of the specification, not its formal
properties. In particular, the transformed
specification may not be provable. The cor-
rectness of the transformation is then a cru-
cial issue.

Since heuristics cannot be “proven” within
B formal logic system, we relied on the math-
ematical tradition of rigorous arguments. For
this to work, we need a basic assumption: the
initial specification text must have been for-
mally verified. Most of the arguments given
in the Justification clause of heuristic rely
on this hypothesis.

A verified specification must be the start-
ing point of the validation process. The ap-
plication of the heuristics will “downgrade” it
to a non provable specification. Running the
animation may uncover some mistakes. These
entail the modification of the initial specifi-
cation, which then must be verified, and
transformed again for proceeding with the
validation. This is summed-up in figure 2.

4 Case studies

This section describes two case studies which were the incentive for this work.
Both specifications concern the domain of land transport systems. They are
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Fig. 3. Levels of abstraction of transport domain model

part of cooperative projects. TACOS is an effort to integrate components and
non functional properties into formal requirement specifications. In particular,
safety critical properties must be assessed and formalized. CRISTAL is a joint
project with the industrial goal of designing urban mobility systems based on
autonomous vehicles. As these systems interact with humans and operate on
public space, the certification issue is a major problem.

4.1 TACOS

The specification in this case study is about the modeling of the land-transportation
domain. In the model, we want to express properties that any system working
within the domain is expected to meet and maintain.

In this specification effort, the focus is on the formal definition of concepts,
constraints and properties, rather than on the implementation of a particular
system. Refinement is then used to introduce new notions; the proof obligations
serve to guarantee the consistency of the model. Our devised stepwise validation
technique was used for the validation of the model whose details can be found
in [8].

The current specification consists of 8 refinements (3 horizontal and 5 verti-
cal). It is organized into five abstraction levels which are summarized by figure 3.
A detailed description of the model can be found in [5].

This specification exhibits several properties which call for validation, namely:

– complex data which constraint behaviors (following a route),
– protocols and iterations (travel as sequence of stages, hub crossing protocol),

and
– non deterministic interaction between elements (autonomous vehicles).
– several non-functional properties, such as collision avoidance, timing, etc.
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4.2 CRISTAL

The second case study deals with a specification of platooning. Platooning is a
mode of moving where vehicles are synchronized and follow one another closely.
A platoon can be seen as a road-train where cars are linked by software instead
of hardware. A local Event-B specification of the model has been written [6] as
an effort to make it amenable to the formal techniques required by certification.

The specification consists of five machines (one abstract and four vertical
refinements). Contrary to the previous case study, the structure of the develop-
ment of this case study can be interpreted as a sequence of refinements toward
an implementation. Each refinement decomposes some events to make explicit a
part of the general computation.

We mainly use this case study to experiment our devised transformation
heuristics for its validation. The underlying rationale was to observe the anima-
tion of a model based on kinematic laws specified by heavy use of functions and
also to compare the results of the validation by animation with the results of
validation by simulations that had been previously made.

5 Conclusion and future work

Using a modeling language which is not conceived particularly for domain engi-
neering was a challenging task. Though we stumbled upon some shortcomings in
Event-B (for example, lack of temporal constraints, lack of notion of sequences,
etc.) yet, the general philosophy has been well suited to our purpose. The notions
of events and non determinism allow us easy modeling of independent vehicles
without any assumption other than their common property: they move. The
strong safety constraints we have considered are also easily modeled. Modeling
of other non functional properties, such as, collision avoidance, timing, etc. also
did not pose great difficulties. All was done through standard refinement tech-
niques. We are thus encouraged to proceed further with enrichment of current
domain models specially with inclusion of more non functional properties, such
as, oscillation, hooking/unhooking, etc.

While arguing about the relationship between refinement based modeling
and its stepwise validation, we discovered that not every refinement step is ani-
matable. This is consistent with using animation as a kind of quality-assurance
activity during development. We believe that one animation per abstraction
level is sufficient. In fact, the first refinement of a level may often have a non-
determinism too wide to allow for meaningful animation (concept introduction),
but subsequent refinements get the definitions of the new concept precise enough
to allow animation.

The list of heuristics is not closed yet. In future this is expected to grow as we
model and validate new properties of the domain. Manual application of these
heuristics to specification is tedious, cumbersome and may be error prone if not
applied carefully. Therefore we are planning to write a plug-in/tool which can
apply these transformations automatically to specifications.
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Abstract. In the system software development life-cycle, the first phase
corresponds to the requirements engineering. It is followed by the spec-
ification phase and then, the development stage. The Event-B method
has shown that it was very relevant for the last two phases. So, we aim
at introducing requirements analysis into the Event-B method. Thus, it
will be possible to prove the requirements model and to establish formal
links between this model and the specification of a system.
Keywords. Requirements engineering, KAOS method, Event-B method.

1 Introduction

With most of formal methods, an initial mathematical model can be refined
in multiple steps, until the final refinement contains enough details for an im-
plementation. Most of the time, the initial model is derived from the descrip-
tion, obtained by the requirements analysis. Consequently, the major remaining
weakness in the development chain is the gap between textual or semi-formal
requirements and the initial formal specification. There is little research on rec-
onciling the requirements phase with the formal specification phase. In fact, the
validation of this initial formal specification is very difficult due to the inabil-
ity to understand formal models (for customers) and to link them with initial
requirements (for designers). Our objective is to combine the requirements and
the specification phases by using KAOS and the Event-B method. On one hand,
KAOS is a goal-oriented methodology for requirements engineering which allows
analysts to build requirements models and to derive requirements documents.
On the other hand, Event-B is a model-based formal method which provides
language, techniques and tools to support the analysis and design of systems,
from the specification to the implementation stages. Existing work [5,6,8] that
combine KAOS with formal methods generate a formal specification model from
a KAOS requirements model. Contrary to these methods that take only a sub-
set of the KAOS models into account, our long-term objective is to express the
whole KAOS requirements model with Event-B, in order to formally reasoning

? The work in this paper is partially supported by the TACOS project ANR-06-SETI-
017 founded by the french ANR (National Research Agency).
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about it. The key idea is to stay at the same abstraction level as KAOS. In this
paper, we begin by considering the first stage of KAOS requirements analysis,
namely the goals modeling. This paper continues our previous works [7] by ad-
dressing the Event-B formalization of KAOS patterns with additional studies,
results and proofs. The Event-B formalization of the other KAOS models is a
work in progress.

The remainder of the paper is organized as follows. Section 2 overviews the
KAOS and the Event-B methods that are employed in the proposed approach.
Section 3 details our proposed approach that consists in expressing a KAOS goal
model with Event-B. Section 4 illustrates the approach by presenting the Event-
B formalization of the Exclusive-OR goal refinement pattern. Finally, Section 5
discusses related work and concludes with an outline of future work.

2 Background

In this section, we briefly introduce KAOS and Event-B.

2.1 KAOS method

KAOS (Knowledge Acquisition in autOmated Specification) [4] is a goal-based
requirements engineering method. KAOS requires the building of a data model in
UML-like notation. A goal defines an objective the system should meet, usually
through the cooperation of multiple agents such as devices or humans. KAOS is
composed of several sub-models related through inter-model consistency rules:
(i) the central model is the goal model which describes the goals of the system
and its environment; (ii) the object model defines the objects (agents ,entity...) of
interest in the application domain; (iii) the agent responsibility model takes care
of assigning goals to agents in a realisable way; (iv) the operation model details
the operation an agent has to perform to reach the goals he is responsible for.

Goals are organized in a hierarchy obtained from the AND/OR refinement
of higher level goals into lower-level goals. Higher-level goals are strategic and
coarse-grained while lower-level goals are technical and fine-grained (more oper-
ational in nature). KAOS provides a catalog of “Goal Patterns” that generalize
the most common goal configurations: (i) Achieve Goals desire goals achieve-
ment some time in the future; (ii) Maintain Goals express that goals must hold
at all times in the future; (iii) Cease Goals disallow goals achievement some time
in the future; (iv) Avoid Goals ensure that goals must not hold at all times in
the future. KAOS also provides a criterion for stopping the refinement process.
If a goal can be assigned to the sole responsibility of an individual agent, there
is no need for further goal refinement to occur. Operational goals (goals that
are assigned to agents) are the leaves of a goal graph. Each leaf can be either a
requirement (if it is assigned to an agent of the system) or an expectation (if it
is assigned to an agent in the environment).
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2.2 Event-B method

Event-B [2,3] is a formal method for modeling discrete systems by refinement.
It is the successor of the B Method [1]. An Event-B model can be described in
terms of two basic constructs: (i) the context which contains the static part of
a model such as carrier sets, constants, axioms and theorems; (ii) the machine
which contains the dynamic part such as variables, invariants, theorems, events
and variants. During the refinement, events are refined to take new variables into
account. This is performed by strengthening their guards and adding substitu-
tions on the new variables. New events that only assign the new variables may
also be introduced. Proof obligations (POs) are generated to ensure the consis-
tency of the abstract model and the correctness of the refinement. Event-B is
supported by several tools, currently in the form a platform called Rodin1.

3 The proposed approach

3.1 Motivation

Contrary to other requirements methods such as i* [9], KAOS is promising in
that it can be extended with an extra step of formality which can fill in the gap
between requirements and the later phases of development. Hence, we aim to ex-
plore this advantage by expressing KAOS requirements model with the Event-B
language. The choice of Event-B is due to its similarity and complementarity
with KAOS. Firstly, Event-B is based on set mathematics with the ability to use
standard first-order predicate logic facilitating the integration with the KAOS
requirements model that is based on first-order temporal logic. Secondly, both
Event-B and KAOS have the notion of refinement (constructive approach). Fi-
nally, KAOS and Event-B (conversely to the classical B) have the ability to
model both the system and its environment.

Since goals play an important role in requirements engineering process and
provide a bridge linking stakeholder requests to system specification, the pro-
posed approach comes down to automatically derive Event-B representation from
KAOS goal model rather than from KAOS requirements model as a whole. How-
ever, it is not possible to verify that both models are equivalent. The Event-B
expression of the KAOS goal model allows us to give it a precise semantics.

3.2 Formalization of KAOS Achieve Goals

To achieve our objective, we formalize with Event-B the KAOS refinement pat-
terns that analysts use to generate a KAOS goal hierarchy. In this paper, we
focus on the most frequently used "Goal Patterns" : the Achieve goals. For-
malization of the other categories of goal patterns is a work in progress. The
assertions in Achieve goals are of the following form: G-Guard ⇒ �G-PostCond ,

1 http://rodin-b-sharp.sourceforge.net
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where G-Guard and G-PostCond are predicates. Symbol ⇒ denotes the classi-
cal logical implication. Symbol � (the open diamond) represents the temporal
operator "eventually" which ensures that a predicate must occur "at some time
in the future". Hence, such assertions state that from a state in which G-Guard
holds, we can reach sooner or later another state in which G-PostCond holds.

If we refer to the concepts of guard and postcondition that exist in Event-B,
a KAOS goal can be considered as a postcondition of the system, since it means
that a property must be established. The crux of our formalization is to express
each KAOS goal as a B event, where the action represents the achievement of the
goal. Then, we will use the Event-B refinement relation and additional custom-
built proof obligations to derive all the subgoals of the system by means of B
events. One may wonder whether the formalization of KAOS target predicates
(i.e. the predicate after the diamond symbol) as B postconditions is adequate,
since the execution of B events is not mandatory. At this very high level of
abstraction, there is only one event for representing the parent goal. In accor-
dance with the Event-B semantics, if the guard of the event is true, then the
event necessarily occurs. For the new events built by refinement and associated
to the subgoals, we guarantee by construction that no events prevent the post-
conditions to be established. For that, we have proposed an Event-B semantics
for each KAOS refinement pattern by constructing set-theoretic mathematical
models. Based on the classical set of inference rules from Event-B [2], we have
identified the systematic proof obligations for each KAOS goal refinement pat-
tern. To better illustrate the approach, the next section presents the Event-B
refinement semantics related to the Exclusive-OR goal refinement pattern.

4 The Exclusive-OR goal refinement pattern

4.1 Description of the KAOS pattern

An Achieve goal G of the form (G-Guard) ⇒ �(G-PostCond) is Exclusive-OR
refined into two sub-goals G1 and G2 if only one (not both) of its sub-goals is
achieved. A typical Exclusive-OR is shown in Figure 1 (with just two sub-goals).

4.2 Formal semantics of the pattern

4.2.1 Formal definition As explained in the last section, each level i (i ∈
[0..n]) is represented in the hierarchy of the KAOS goal graph as an Event-B
model Mi that refines the model Mi−1 related to the level i − 1. Moreover, we
represent each goal as a B event where the guard is the transcription of G-
Guard from the KAOS goal expression, and the then part is the translation
into Event-B of G-PostCond (see Figure 2).

Based on the definition of the Exclusive-OR refinement, we propose to refine
the abstract event EvG as follows:

(EvG1 XOR EvG2) Refines EvG
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Fig. 1. Exclusive-OR goal refinement pattern

EvG1 ∆=
when G1-Guard

EvG ∆= then G1-PostCond
when G-Guard end
then G-PostCond EvG2 ∆=
end when G2-Guard

then G2-PostCond
end

(a) Abstract Model M0 (b) Refinement Model M1

Fig. 2. Overview of the Event-B representation of the KAOS goal model
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4.2.2 Proof obligations identification Based on the notions of "trace com-
parisons" and "forward simulation" [3,10], we are going to give systematic rules
defining exactly what we have to prove for this pattern in order to ensure that
each concrete event (EvG1, EvG2) indeed refines its abstraction EvG. In fact,
we have to prove seven different lemmas:

– The feasibility refinement must be verified for each concrete event.

I (v) , J (v ,w) , G1-Guard(w) ` ∃w ′ . G1-PostCond(w ,w ′) (PO1)

I (v) , J (v ,w) , G2-Guard(w) ` ∃w ′ . G2-PostCond(w ,w ′) (PO2)

– The guard strengthening ensures that each concrete guard is stronger than
the abstract one. In other words, it is not possible to have the concrete
version enabled whereas the abstract one would not. The term “stronger”
means that the concrete guard implies the abstract guard.

G1-Guard ⇒ G-Guard (PO3)
G2-Guard ⇒ G-Guard (PO4)

– The correct refinement ensures that each concrete event transforms the con-
crete variables in a way which does not contradict the abstract event.

G1-PostCond ⇒ G-PostCond (PO5)
G2-PostCond ⇒ G-PostCond (PO6)

– We can execute just one event (either EvG1 or EvG2) but not both. This
is done by an exclusive disjunction between the different concrete guards.

G1-Guard ⊗G2-Guard (PO7)

4.3 Synthesis

The Event-B refinement semantics of the Exclusive-OR goal refinement pattern
requires to prove six proof obligations ((PO1)...(PO6)) that could easily be
discharged by the current version of the Rodin automatic theorem prover. In
fact, this Event-B refinement semantics is exactly the same one proposed by
Rodin if we consider that each event refines the abstract event EvG. To express
the "exclusive" characteristic of the KAOS refinement, we add a seventh proof
obligation ((PO7)) in the form of an Event-B theorem.

5 Conclusion and related work

Our proposed approach aims at establishing a bridge between the non-formal
(KAOS) and the formal worlds as narrow and concise as possible. In the sequel,
we outline some approaches that have tried to bridge the gap between KAOS
requirements model and formal methods.
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A practical solution for traceability between KAOS requirements and B has
been proposed by [8]. It presents a goal-oriented approach to elaborate a per-
tinent model and turn it into a high quality abstract B machines. The authors
of [6] provide means for transforming the security requirements model built with
KAOS to an only one abstract B model which can be later refined. The GOPCSD
(Goal-oriented Process Control System Design) tool [5] is an adaptation of the
KAOS method that serves to analyze the KAOS requirements and generate B
formal specifications.

Nevertheless, the reconciliation presented by all of these works remains par-
tial because they don’t consider all the parts of the KAOS goal model but only
the requirements (operational goals). Consequently, the formal model do not
include any information about the non-operational goals and the type of goal
refinement. In this paper, we have explored how to cope with this problem using
a constructive approach (driven by goals) showing that it is possible to express
KAOS goal models with a formal method like Event-B by staying at the same
abstraction level. We show also that extending KAOS with more formality in
a development framework like Event-B allows requirements to be traced at the
various steps of development. Moreover, the main contribution of our approach
is that it balances the tradeoff between complexity of rigid formality (Event-B
method) and expressiveness of semi-formal approaches (KAOS). So, what we
present can be very useful in practice to (i) systematically verify that all KAOS
requirements are represented in the Event-B model; (ii) systematically verify
that each element in the Event-B model has a purpose in KAOS.

However, a number of future research steps are ongoing. Further work will
consist in applying the approach on a number of case studies in order to sup-
port non-functional goals. This would address issues of conflict between these
goals, which does not exist between functional goals. Moreover, we would like
to establish the correspondence between the obtained Event-B representation of
KAOS goal models and the later phases of development. At tool level, we plan
to develop a connector between KAOS toolset and the RODIN open platform.
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