Anomaly detection in communication networks using

wavelets
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Abstract: An algorithm is proposed for network anomaly detection based on the undecimated
discrete wavelet transform and Bayesian analysis. The proposed algorithm checks the wavelet
coefficients across resolution levels, and locates smooth and abrupt changes in variance and frequency
in the given time series, by using the wavelet coefficients at these levels. The unknown variance of the
wavelet coefficients is considered as a stochastic nuisance parameter. Marginalisation is then used to
remove this nuisance parameter by using three different priors: flat, Jeffreys” and the inverse Wishart
distribution (scalar case). The different versions of the proposed algorithm are evaluated using
synthetic data, and compared with autoregressive models and thresholding techniques. The proposed
algorithm is applied to monitor events in a Dial Internet Protocol service. The results show that the
proposed algorithm is able to identify the presence of abnormal network behaviours in advance of

reported network anomalies.

1 Introduction

Early network anomaly detection has become critical to
service providers in their commitment to maintain a given
service level agreement. Hence, there has been much inter-
est in studying adaptive event detection schemes with appli-
cation to communication networks. Studies on TCP/IP
network anomaly detection include a sequential generalised
likelihood ratio test using auto-regressive (AR) models
[1-3] and constant threshold schemes [4, 5]. Anomaly detec-
tion in Ethernet segments has also been studied [6], where
detection is achieved via a fault feature vector of known
faults. An approach has been proposed [7} that uses adap-
tive thresholds for proactive network/service anomaly
detection in transaction-oriented wide area networks. A
review of different reactive fault detection schemes for
alarm correlation has been prescnted elsewhere [8].

It is well known that to truly detect anomalies, systems
should consider the time-varying nature of the data, and
the detection thresholding techniques should be able to
adapt to the changing environment [6, 7, 9]. Episodes of
abnormal network behaviours are, in most cases, reflected
in statistical departures from the normal pattern [1-3, 7, 9].
Abnormal network behaviours can then be detected by
observing the statistical behaviours of target network met-
rics. They can be traced by correlating events among the
different network metrics being monitored.

Some approaches [1-4, 7] arc most suitable if the data
contain contributions at fixed resolution or scale in time
andfor frequency. Unfortunately, data from almost all
practical network processes are multi-scale in nature, due to
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events occurring at different points in time and frequency
[10]. The work reported in this paper investigates the viabil-
ity and usability of discrete wavelet transforms in this area.
Owing to the inherent multi-scale nature of wavelet trans-
forms, a wavelet-based analysis seems more appropriate for
data containing events whose behaviour changes over time
and frequency. Furthermore, since wavelels are able to
adjust their scale to the nature of the signal featurcs, subtle
changes (e.g. in variance, frequency or both) can be
detected at different resolution levels. Wavelet transforms
have found applications in areas such as signal denoising:
signal and image compression; signal estimation; partial
differential equations; seismic and geophysical signals; and
biomedical signals (see e.g. [11, 12]). However, (o the best
of our knowledge, therc has so far been no reported work
on network anomaly detection using wavelet transforms.
The proposed algorithm checks the wavelet coeflicients
across resolution levels, and locates smooth and abrupt
changes in variance and frequency in the given time scries
by using the wavelet coefficients at these levels. This
method has the advantage of adapting locally to the fea-
tures of the signal. By contrast, standard network anomaly
detectors [1-4, 7] analyse with a fixed scale.

In the proposed wavelet-based algorithm, we consider
the unknown variances of the wavelet coefficients as sto-
chastic nuisance parameters. Marginalisation 15 used to
eliminate these nuisance parameters from the wavelet
domain using three different priors: flat, Jeffreys’ and the
inverse Wishart distribution. (Note that marginalisation is
well known in estimation theory and has been applied to
detect additive abrupt state vector changes in a linear state-
space model, for example [14].) A survey of prior distribu-
tions is found elsewhere [13]. Fig. 1 illustrates the compo-
nents of the proposed wavelet-based network anomaly
detector.

2  Undecimated discrete wavelet transform

The wavelet transform of f{¢) € LXR) involves the compu-
tation of the inner products of the signal and a family of
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Phiajes = dyadic scquence. J = number of scales, Waif; = wavelet coefficients, L = length of sliding test window

wavelets; [? denotes the Hilbert space of square integrable
one-dimensional functions and R is the set of real numbers,
A family of wavelets y, (1), w, § € R is obtained by transla-
tion, #, and dilation, s, (also known as scale) operations of
the mother wavelet y{r} [15].

To construct the undecimated discrete wavelet transform
(UDWT), the scale s is discretised but not the translation
parameter w. The scale is sampled along the dyadic
sequence (2")1-61, where Z is the set of integer numbers, The
wavelet transform of f{) at the scale s = (), and at the
position ¢ has been defined [16] by the convolution product
Wyifln) = f* yy(t), J represents the number of scales or
resolutions levels and yw(z) = (/2 y(#2) is the dilation of
the basic wavelet by a factor of 2. Let Sy denote the
smoothing operator defined by Swf{#) = f* ¢i(1), where
di(t) = (1/2)@(1/Y). The larger the scale %, the more details
of f{f) arc removed by Sy. This means that, at cach scale %,
the UDWT of a discrete signal (Swf)ez = f; decomposes
Soif; into Sy+1f; and Wasif;:

Wosas fi = > guSas f(1 — k27)

keZ

and Soins fi = Y hySos f(i — k2) (1)
kez

where g; and fr; are the coefficients of the wavelet i and
scaling ¢ functions, respectively. Note that the conventional
discrete wavelet transform (CDWT) can detect abrupt
changes in a time series; however, it can introduce ambigu-
ities in the time domain duc to the decimation process that
needs to be applied at the output. In contrast to the
CDWT, the UDWT is translation-invariant in the sense
that it preserves regularity information at each point in
time for each scale, and it may be computed for an arbi-
trary length time series. This translation-invariant property
allows alignment of events in a multi-resolution analysis
with respect to the original time series. Further details of
these wavelet transforms and a comparison between these
transforms to locate transients events are found elsewhere

[15-18].

2.1 Scale choice

Since the scale choice depends on the wavelet itself, the
number of scales J is chosen according to the overall
energy displayed at each scale. For example, Fig. 2 shows
the frequency response magnitude of wavelet coefficients
W,if; using a quadratic spline wavelet. {The properties and
coefficients of this wavelet can be found elsewhere [16].)
From Fig. 2, it can be seen that the scales j = 1, 2 contain
the high-frequency components of the signal, whereas the
scales j = 3, 4 contain the low-frequency components of the
signal. Therefore, scales j = 1, 2 are selected to carry out
the work reported here since they contain most of the sig-
nal energy.
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3  Multi-scale statistical detection algorithm

3.1 Problem statement and assumptions

Let the time series of network measurements f; be modelled
by ;= 8+ ¢, ¢;~ N0, o7), [or i = 1, ..., N, where 6, repre-
sents the parameters of the signal model and o denotes
the unknown changing variance. Thus, the likelihood for
data /¥ = £}, f5, ..., fn, given the parameters & and of, is
denoted by p(f¥ | 8, o).

To determine whether a change has occurred at time /£,
the proposed algorithm uscs a sliding window approach.
This approach considers two windows; 2 test window and a
reference window, from which two models are derived.
These two models are then used for the detection algorithm
(see Section 3.3) to perform the sequential decision process.
In each time interval or window, the wavelet coefficients
are regarded as zero-mean Gaussian stationary process
{Wyf Xy ~ N(©, T2, for 1 = = J. where 77 represents the
unknown variance of wavelet coefficients at each scale. The
test window based on data Wyfy 41, ... Waify of length L
is compared to a growing reference window based on all
previous data Wyf,, Wafs, ..., Wify . or larger L, to
determine whether both models are generated by the same
or different distributions. Further details on sliding window
approaches can be found in [14, 19] and references therein.

Note that, by using eqn. 1, the model for wavelet coeffi-
cients {Wafi¥, ~ N(O, T3 has zero-mean because
E{WAif}y = &5 @ ELSafli — k)Y = W=, gx = 0, where i, is
the mean of network measurements. By using the fact that
a wavelet filter must sum to zero [17, 18}, ie. Z g, = 0, the
result follows. The wavelet coefficients Wif; were evaluated
using the auto-correlation function (ACF) of the different
network metrics described in Section 5. Exploring the time-
lagged properties of the wavelet coefficients, the correlo-
grams showed no significant time-serial dependencies in all
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network metrics being monitored. Fig. 3 shows the correlo-
gram of only one of the network metrics. All other network
metrics considered have a similar behaviour. Hence, for the
study reported In this paper, these wavelet coefficients are
assumed to be independently distributed random variables.
Consequently, the likelihood can be computed as a product
of the likelihoods before and after change. This means that
the likelihood of the change point having taken place at 4
= N — L (where L is the length of a sliding test window) is
given by

to N
= Hp (I’ng fllTle) H P (‘/VZJ fz‘sz,g) )
i=1 i=fp+1
for 1<ji<J (2)

Note that, since multi-scale decomposition of a signal is
equivalent to band-pass filtering, and modifications in the
process will mainly lead to variance changes after wavelet
decomposition, the approach studied in this paper is frec of
model selection parameters. Hence, the problem is reduced
to the estimation of unknown variances. The unknown var-
iances 'L’il for i = ) and 1"‘;—2 for fy < i = N are considered
nuisance parameters and are removed in the wavelet
domain, after integrating with respect to a prior distribu-
tion. The effect of the priors at ditferent resolution levels J
is addressed in Section 4.
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Each lag corresponds (o sampling period (sec Section 5 for detailed definition of net-
work metrics}

3.2 Choice of priors

Three different priors are analysed to determine the sensi-
tivity of the proposed algorithm: the flat prior, Jeffreys’
prior and the inverse Wishart distribution.

The flat or non-informative prior p(r}-) = x, where kis a
constant, has been widely suggested. The problem with
non-informative priors is that they often have improper
density functions, i.e. their integral is not finite. However,
their use is motivated by the fact that, in many cases, the
posterior distribution is still proper [13, 14, 20].

Another improper prior can be obtained by applying
Jeffreys’ rule, which allows us to find prior distributions
that are invariant under estimation. In the normal model
case, Jeffreys’ prior is p(t}) = ¥/}, 0 < 77 < oo Further
details on Jeffreys’ priors can be found elsewhere [13, 20].

Prior distributions with density functions similar {o the
likelihood function have also been suggested. When the
likelihood function belongs to an exponential family of
probability distributions, an acceptable criterion is 1o
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choose the prior to be conjugated to the likelihood function
so that the posterior distribution belongs to the exponential
family. Since the conjugate prior may have the kernel simi-
lar to the likelihood, it follows that the conjugate prior for
the normal model is the inverse gamma distribution, or the
inverse Wishart distribution in the scalar case [13, 14, 20].
The inverse Wishart distribution Wi'l(v, §) is given by

; Sv/2 2y —(v42)/2 _gja,?
P(Tf)=§u/2FT/2)(Tf) ™SR (3)

where I' is the gamma function defined by I'(v) =
Jg xte~%dx, v > 0. This distribution has mean E(z%) = SAv
—2) and variance Var(z}) = 2$%(v -4 (v- 2.

3.3 Proposed algorithm in wavelet domain

As the core of our derivations are the so-called ‘nuisance
parameters’, these nuisance parameters can be estimated or
marginalised. The usual likelihood-ratio testing procedure
involves computing the maximum likelihood estimates of
the unknown nuisance parameters. In contrast, the concept
of marginalisation is to assign a prior distribution to the
unknown nuisance parameter and eliminate it from the
analysis [14, 20]. This means that the likelihoods are mar-
ginal, in the sense that they are obtained after integrating
out the nuisance parameters. The unknown change points
are then estimated by comparing the posterior probabilities
computed using Bayes’ theorem [20]. The posterior proba-
bilities associated with the hypotheses can be written as

P(Hg[Was f;) o< (Wos fil Hy)p{H,),
i=1,...,N ¢=01, for 1<j<J (4

where o denotes a relationship of proportionality and Wyf;
represents the wavelet coefficients. The posterior probabil-
ity associated with Hj is obtained by using eqn. 4 and after
integrating with respect to a prior distribution of the nui-
sance parameter:

OO
P(HolWas £} o p(Ho) [ p(Was filto, THYp(r?)dr?,
8]

i=1,..,N, for 1<j<J (5)

where sz_ represents the unknown variance of wavelet coef-
ficients, #; is the unknown change point and p(rf-) is the
prior to be considered. The prior probabilities associated
with the hypotheses are p(H) = afor x € (0, 1) and p(H))
=1 - m where p(Hy) + p(H\) = 1. Therefore, the prior
probability of having a change point p(H,) can be incorpo-
rated into the wavelet-based statistical detection scheme.

The hypothesis to be tested is Hy : var{Wyfi} = ... =
var{ Waify}, and the alternative hypothesis is
var{Wufi} = ... = var{uf, b = var{Wyfy b = . =
var{ Wiify} for | =j = J. Since modifications in the process
will mainly lead to variance changes after wavelet decom-
position, the change points in the time series arc then esti-
mated from the posterior probabilities using the decision
function & = [log p(H, | Wafdlog p(H, | Wyf)] > 1, which
provides the basis for choosing between H, and H,.

To reduce the mathematical expressions, the following
notations are introduced:

1 N—L 1 N
_ I TAPNAY _ T £2
A1—§ Z(Ivmfa) :AQ—i_ Z (M/Zsz) H
i=1 i=N—L+41
1w
A=A +4, = 3 Z(Wy fi)?

1=1
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Note that 4, A, and A contain all the wavelet coefficients,
To obtain the posterior probability associated with the
hypothesis Hj, consider the inverse Wishart distribution as
prior, p(t3) ~ Wi'l(», S) given by eqn. 3, on the variance of
wavelet coefficients:

A
=

4

,P(H0|WQJ fi) = p(Hy) j‘(QﬁTf)foze

x p{r3)dr?, for 1<j<J (8)
oy pUHo)(2m) NP2
p(Hy[Wai ) = 29720 (1/2)
oo S
B _px2 ‘?’E :
x/(rf)f‘wg 7 (75) sy
Q

for 1<3<J (7
The integral is solved by using

o0

[ o~ D2 dy = [2920(u/2)] /5 (8)

o
to give
4 (H |I/V f) _ p(HO)SU/‘Z(Q?T)_N/zF((AT + ’U)/Q)
PO ) = 0T (0] 2)(A + §/2) (5402

for 1<5< T (9)

{Note that this result is easily obtained by using the change
of Vanable rule [20]; by setting A = l/x, the integral
becomes [§ AVI-1eS4243, = T(w2)(S/2p"2, where T denotes
the gamma function.) The second hypothesis verifies
whether a change has occurred on the variance of wavelet
coefﬁcients Recall that the unknown changing variances
are t7, for i < ¢ and r}-_z for t, < i = N. Based on the
assumptnons in Section 3.1 and using eqn. 2, the data can
be split into two integrals:

p(HL Wi fi)
ocp(Hl)f pWai Fry o Wy fv—ilio, 723)plr2)dr?,

2
3.1

X /}’)([’VZJ fv—p+1y - Was fvlto, Tiz)p(Tjg,z)dTizx

2
TJ,?

for 1<j<J (10)

where 7o = N = L is the unknown change point. Reconsid-
ering the inverse Wishart distribution as prior, p(r) ~
Wil(v, 8), the integrals can be solved in the same way as
eqgn. 6, to obtain

pUHL|Wys fi) =
p(H1)S¥(2m) " N2D((N = L +v)/2)
xT((L +v)/2)(Ay + §/2)~(L+v)/2
(/2T (w/2)(A] + S/2)(N—L4v)/2
for 1<7<J (11)
where v and S are the hyperparameters of the inverse
Wishart distribution (see eqn. 3) used for r}.

Now let us consider Jeffreys™ prior p(r}) = 1/1:}- on the
variance of wavelet coefficients for the hypothesis Hy:

(-]

. o\ N /S Vﬂr_Af :
p(HolWas £.) =p(Ho) ] (@r72)~N2 7 x p(r2)drd,
4]
for 1<j<J (12)
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The posterior probability associated with Hy is derived as
in eqn. 6, where the integrand is rewritten into the density
function of the inverse Wishart distribution [14];

p(Ho)(2m)~¥/2T(N/2)

p(Ho|Was fi) =

AJ\"/‘Q
00 -4
(ZA N/Z i
X
f N+2)/22N/z[\(\r/))
0

for 1<j<7J (13}

The integrand in eqn. 13 is recognised as the inverse
Wishart distribution, which integrates to 1. Therefore

p(Ho)(2r) N2D(N/2)

AN/2 ’

for 1<5<J (14)
The second hypothesis under Jeffreys’ prior on the variance
of wavelet coefficients can be derived using eqn. 1. The

integrals can be solved in the same way as eqn. 12, to
obtain

plH W, i) =

p(Hy)(2m) "0 (N

A(IN L)/zAéf/‘Q

L)/2)T(L/2)

Voi fi) =

for 1<j<J (15)

Finally, the postenor probabilities using a flat prior p(rz) =
1, on the variance of wavelet coefficients for both hvpothe~
ses, can be obtained in the same way as eqn. 12, Solving as
ineqn. 6 gives v= N —2 and S = 24. Thus, we obtain

S Ho W £1) = p(Ho)(2m) NPT ((NV - 2)/2)
AlN=2)/2

A

AYN-2/2
/ \T 7 dT21
(2 /zzf\ 2)/2F((A\u2)/2) ]
for 1<j<J (16)

Since the integrand is recognised as the inverse Wishart dis-
tribution, we obtain

p(H) (2m) V/2T{(N — 2)/2)
A(Ar 2)/2
for 1<j<J (17)

The second hypothesis under a flat prior, on the variance
of wavelet coefficients, can be derived using egn. 10, to
obtain

p(Hl Vi J2)

p(Hl)(QW)_N/QF(([V -L-— 2)/2) ((L — 2)/2)
- A(N L— 2)/2AL 2)/2 :

for 1<j<J (18)

Note that, since thc unknown changing variance has been
marginalised, eqns. 11, 15 and 18 are just a function of the
change point £, = N — L. To eliminate the gamma functions
I from eqns. 9, 11, 14, 15, 17 and 18, Stirling’s approxima-
tion formula can be used T{y + 1) = V(2m){v/e)" [20].

p(HotWai fi) =

4  Simulation results

In this Section, simulated data are generated by switching
auto-regressive (AR) filters with time-invariant parameters,
which are driven by a Gaussian white noise source [19]. A
second-order model is chosen to allow a small variation in
the AR parameters. This set of data series simulates differ-
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ent kinds of changes, such as abrupt and smooth changes
in the AR parameters. The boundaries of cach segment are
indicated by the values of the parameters, and the bound-
ary positions are obtained by switching the outputs of these
filiers, A segment is then characterised by a set of AR
parameters that remain fixed for a certain time interval.

=signal
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sample number
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Fig.4  Reulisation of AR(2) provess ane wavelet decomposition

« Realisation of AR(2) process with parameter vector changes from (0.9, 0.9} to
(-0.6. 0.6) at N = 300 and from (0.6, 0.6) to (~0.67. 0.67) at N = 500. It also
includes @ small ramp from N = 80 to N = §99

h Wavelet decomposition at scales / = 1 (306) and j = 2 (301 545 795 835) and
behaviour of decision function at scile j =2

Vertical lines indicate estimated change points; 7z = 0.00098, L = 75, Wishart prior

Fig. 4a illustrates a realisation of an AR (2) process. The
AR vector parameter changes from (=0.9, 0.9) to (0.6, 0.6)
at N = 300, and from {-0.6, 0.6) to (-0.67, 0.67) at N =
500. A ramp behaviour from N = 800 to N = 899 is also
mncluded, which simulates a return to normal operation
conditions after a smooth change in the signal.

In this example, the inverse Wishart distribution is used
as prior and the quadratic spline wavelet is used for the
wavelet decomposition. Fig. 45 shows that the proposed
algorithm is able to detect and locate the boundary of each
segment. This means that the algorithm detects the abrupt
changes at N = 306 with scale j = I and at N = 301 with j
= 2. Smooth changes are also detected at N = 545795885
with scale j = 2, where the vertical lines indicate the csti-
mated change points at each scale.

The decision function 8 > 1 for j = 2 (also shown in
Fig. 4b) illustrates the behaviour of the posterior probabili-
ties. The change points are estimated once the decision
function reaches a value greater than 1 for a certain
number of consecutive samples, ¢.g. there is a persistency in
the alarms prior to the fault condition. The sliding test win-
dow of length L. = 75 is chosen for all reported tests (sec
Section 4.1). In this example, a non-informative prior prob-
ability p(f,) is used and computed by = = 1/1024. Recall
that p(Hp) = mand p(H) = | —x.

Table 1 illustrates the estimated change points, which are
estimated by comparing the posterior probabilities com-
puted using Bayes’ theorem (see Section 3.3) of the pro-
posed wavelet-based network anomaly detector and the
generalised likelihood ratio (GLR) test using AR models
[1-3]. Different priors and wavelets are considered: a quad-
ratic spline wavelet, the least-asymmetric (LA) compactly
supported wavelets, Daubechies wavelets and the Haar
wavelet [17]. All the assessed priors produce similar
responses. Table 1 shows that the best performance is
achieved with the quadratic spline and the LA wavelets
under different priors settings. This is to be ¢xpected, since
the quadratic spline wavelet has linear phase and the LA
wavelet has almost lingar phase [17]. This characteristic
allows alignment of events with respect to the original time
serics afier wavelet decomposition [18]. On the other hand,
Daubechies orthonormal wavelets with 4 and 6 filter coeffi-
cients (i.e. D(4) and D(6)) do not have linear phase, and so
there is a misalignment between the original time series and
the wavelet coefficients. The Haar wavelet does not give

Table 1: Estimated change points fer proposed wavelet-based approach and GLR

test using AR models

Approaches Estimated change points
Wavelet Scale Wishart prior Flat prior Jeffreys’ prior
Proposed wavelet-based Spline i=1 306 306 310
approach j=2 301,545,795,885  303,559,796,871 304, 581,798,873
LA(8} f=1 - - -
j=2 311,566,807,882  238,313,566,805,880  311,566,305,380
Di4} i=1 318 315 315
j=2 304,804,879 305,804,879 307,803,878
Di6) =1 - - 330
i=2 311,808,883 309,806,881 311,806,881
Haar f=1 312 310 310
j=2 303,800,875 302,800,875 303,800,875
GLR test using AR models [1-3] Model order = 2
Threshold h=3.0 355

L=75
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good results for approximated smooth changes mainly
because it has only one vanishing moment [I5, 17]. Note
that the GLR test using AR models is unable to identify
the subtle change at N = 300 or thc ramp behavicur from
N =800 to N = 899 (see Table 1).

4.1 Choice of length L of sliding test window

In the proposed algorithm, the choice of the sliding test
window length . will affect the probability of detection, the
probability of false alarm, and therefore the delay for
detection. Using the previous simulation set-up, different
values of sliding test window of length L are assessed. The
inverse Wishart distribution is used as prior, and the quad-
ratic spline wavelet is used for the wavelet decomposition.
The GLR test using AR models uscs a threshold & = 3.0,
model order 2, and sliding window L = 75. These two
approaches are tested using Monte Carlo simulations. 100
realisations of the AR (2) process, described previously, are
cvaluated. In this analysis, true alarms are considered
within the interval of +25 samples around the true change
points.

Table 2 shows the detection rate (DR) and the false
alarm rate (FAR) of the assessed approaches. (The DR is
the number of correct matches divided by the total number
of known change points, and the FAR is the number of
false alarms divided by the total number of observations
[6].) According to the results in Table 2, a suitable sliding
test window length is L = 0.75M, where M denotes the
length of the shortest segment to be detected. The proposed
approach shows a higher DR than the GLR test using AR
models used previously [1-3]. This is because the GLR test
using AR models requires a long time interval to estimate
the parameters describing the process, with the unavoidable
long delay between the estimated values and true values.
Other performance comparisons have been presented [11]
where it is also shown that multi-scale approaches outper-
form auto-regressive approaches.

Table 2: Performance comparison between wavelet-based
approach at scale j= 2 and GLR test using AR models after
100 Monte Carlo simulations

Locations of

| 300 500 800 900
change points

STW DR DR DR DR FAR

Proposed L=50 0.600 0350 0.790 0.560 0.002
wavelet-based L=75 0770 0370 0900 0890 0.001
approach

L =100 0520 0260 0.650 0.090 0.001
L=125 0430 0210 0.500 0.000 0.001

GLRtestusing AR [=75 0.180 0150 0.090 0.050 0.001
models [1-3]

DR = detection rate; FAR = false alarm rate; STW = sliding test
window

From the simulations presented here, it is evident that
the adaptive threshold technique [7] and the static thresh-
olds proposed previously [4, 5] may not be able to detect
subtle changes in variance and frequency of the given sig-
nal. However, these approaches, as well as the GLR test
using AR models, are evaluated below.

5 Application to Dial IP network

In this Section, we consider real-world network data col-
lected every 10min over a period of six months from the
BT (British Telecommunications) Ignite’s Dial IP service (a
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wholesale service offered to ISPs (Internet service provid-
ers) and OLOs (other local operators)). Fig. 5a shows a
generic architecture of an ISP network. This network is
designed to provide a complete Internet service package for
usc by ISPs and other customers requiring dial access to
the Internet and to a host site containing the customer’s
application service 21, 22]. To test the proposed wavelet-
based algorithm, we selected measurements from August
1999 to January 2000 that appeared to represent abnormal-
ities in the expected traffic pattern. The abnormal periods
were confirmed with the IOC’s (Internet Operations Cen-
tre’s) log. (Note that BT QoS (quality of service) cannot be
inferred from the results reported in this paper.) The expla-
nation of the network metrics considered in this Section
can be found elsewhere [23]. The set of network metrics
involves a call establishment phase (Le. the Connect Time
and the Log Time), connection and data transfer (i.e. the
Domain Name Server (DNS) Lookup_Time, the Web_La-
tency and the Data_Time (time to download)).
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Fig.% Dial IP network

a Qutline of monitored network indicating Dial IP network service within a typical
ISP environment

UDP = user datagram protocol

PSTN = public switched telephone network

ISDN = mtegrated service digital network

NAS = network access server

1SP = [nternet service provider

RADIUS = remote access dial in user service {RFC 2138/2139)

b Quantile-quantile plot of the Weh_Latency metric afler wavelet decompasition

As deviations from the normal pattern are recognised as
the presence of network anomalies [1-3, 7, 9}, the first step
is to generate a template of normal behaviour. This
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template then serves as a reference for detecting network
anomalies from the normal behaviour of the current obser-
vations. The assumption of normal distribution is evaluated
by using the marginal distribution of the time series after
wavelet decomposition. The quantile distribution of the
target network metrics is compared to the quantiles of the
normal distribution using a quantile-quantile plot. Even
though Fig. 56 shows that the distribution of the Web La-
fency metric has a longer tail than the standard normal, we
use the standard distribution since we are intercsted in the
first and second moments only.

Table 3 shows three network anomalics in the Dial 1P
service under analysis. The Data Set No.l anomalies were
classified as an enhanced interior gateway routing protocol
(EIGRP) storm on the network, which did not cause any
noticeable QoS degradation. The anomaly in Data Set
No.2 was classified as an unconfirmed anomaly (ie. no
10C log was recorded).

Table 3; Network anomalies

Data set no. No. of faults Reported
1 2 20:15 on 27 August 1999
22:28 on 31 August 1999
2 1 04 November 1999
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Fig. 6a shows the results of the Data Set No.1, using the
inverse Wishart distribution as prior and the quadratic
spline wavelet for the wavelet decomposition. Fig. 6« illus-
trates the Web_Latency metric alarms used to correlate the
received I0C alarm logs. These alarms were generated at
scales j = | and j = 2. Note that, by monitoring the
Log Time metric (a network metric representing the
number of seconds taken to log into the system once con-
nected), the proposed algorithm raised an alarm at 17:45
on 27 August and at 20:45 on 31 August. This i3 an exam-
ple of how the algorithm is able to detect abnormal nei-
work behaviours in advance. (Taking into account the
possible transitions between the chosen network metrics
described elsewhere [23], a change observed in a particular
network metric may propagate into another network met-
ric.)

Fig. 6b shows the Data Set No.2. Although there was no
confirmed JOC log record related to this data set, the algo-
rithm was able to detect some abnormal network behav-
iowrs. The abnormal period (—— in Fig. 66) was also
identified by other monitored network metrics. To increase
the algorithm’s sensitivity, the sliding test window of length
L was tuned to track network short duration changes.
Scales j = 1 and j = 2 were used to identify the abnormal
behaviours,

Table 4 shows a summary of the faults detected, along
with the performance measures: DR and FAR, as used
previously {6]. A false alarm is normally declared when
there is no related 10C log record. In the case of Data Set
No.2, there was no confirmed IOC log record, and the
abnormal condition was traced as correlated events among
the different network metrics being monitored. An alarm is
considered to be a true alarm if this is within the interval of
60min before and 25min after the network anomaly [1, 3],
For all the algorithms presented in Table 4 (ie. static
thresholds [4, 5], the GLR test using AR models [1-3] and
adaptive threshold schemes [7]), only the results with the
best performance are reported after tuning up all their
parameters.

Table 4: Summary of faults detected

Data No. of Proactive
Approaches o alarmsin DR FAR

setno.  faults i

minutes
Wavelet-based 1 2 50 1 0.00155
network anornaly 17¢
detect
elector 2 1 50 1 000172

GLR test using AR 1 2 55 0.5 0.00155
models [1-3] _

2 1 — 0  0.00345
Adaptive thresholds 1 2 25° 05 0.01810
[7] —

2 1 60 1 0.01727
Static thresholds 1 2 — 0 0.01652
{4, 8] —

2 1 — 0 0.02072

@ detected after anomaly, — undetected anomaly
DR = detection rate; FAR = false alarm rate

Table 4 shows that the best performance is achieved by
the proposed wavelet-based network anomaly detector. For
example, regarding the FAR, the wavelct-based approach
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shows the lowest FAR, and it is able to detect all network
anomalies using neither thresholds nor AR modelling. In
contrast, static thresholds [4, 5] cannot detect the network
anomalies, and the GLR test using AR models [1-3] is only
able to identify one of the three network anomalies. The
adaptive threshold approach proposed elsewhere [7] is able
to identify two of the three network anomalies. However,
the design parameters, which should take into account the
time-varying nature of the data, are difficult to tune {e.g.
the magnitude of the event). Moreover, even with adaptive
thresholding techniques, subtle behaviour changes in vari-
ance and frequency in the network metric being monitored
may not be detected. Finally, note that static {4, 5] and
adaptive thresholding [7] techniques show the highest FAR
compared with the approach proposed here.

6 Conclusions

In this paper, we have presented an algorithm for detecting
network anomalies, based on the undecimated discrete
wavelet transform and Bayesian analysis. Since the analysis
is carried out at different resolution levels, the algorithm is
able to detect and locate subtle changes in variance and fre-
quency in the given time series, by using the wavelet coeffi-
cients at these levels. Furthermore, this algorithm requires
neither AR modelling nor thresholds to detect these
changes. The unknown variance of the wavelet cocflicients
was considered as a stochastic nuisance parameter. Margin-
alisation was used to elinunate this nuisance parameter
using informative and non-informative priors. Based on the
reported tests, the choice of prior on the posterior probabil-
ities has minimal effect on the estimated change points.
These results also show that the best performance was
obtained with the quadratic spline wavelet. This is to be
expected because the quadratic spline wavelet with compact
support has linear phase, and there is therefore an align-
ment between the original time series and the wavelet coef-
ficients.

The proposed aigorithm was also applied to monitor net-
work measurements from the BT Ignite’s Dial 1P service.
The results of the proposed algorithm show an improve-
ment over adaptive thresholding techniques and AR mod-
els, and the ability to generate early warnings with a low
false alarm rate. A suitable application of the proposed
wavelet-based network anomaly detector algorithm is in
the implementation of early warning procedures, to inform
an Internet operation centre before network anomalous
behaviour causes a loss of the service or degradation in
QoS. At present, the wavelet-based framework is being
extended to other types of network.
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