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Abstract

Estimates of precipilaticn are often required (o model hydrologic and ceologic processes, A variety of methods can be found in the
literature for modeling the occurrence and distribution of daily precipitation amounts. Here we test their applicability against
empirical data (or the H. J. Andrews Experimental Forest in Oregon. A stochastic medel for generating daily precipitation was
developed nsing a two state Markov chain model for occwrrence of precipitation. Five different theoretical distributions for the
precipitation amount were compared. using data from the Andrews Experimental Forest in the Western Cascades of Oregon. O
the distributions examined (exponential, calibrated Weibull. calibrated beta-P, and two 2-purameter gamma distributions). the
culibrated Weibull distribution and two parameler gamma distribution appear to be better for simulating daily precipitation amounts,
Such models can be used to generate precipitation input to process-based deterministic hydrologic models uscful for simulating

hydrolegic and ecolegic responses o cumulative watershad effects.

Introduction

Stochastic models for generating daily precipita-
tion are frequently used in a variety of hydrologic,
ecologic, geomorphic, and water resources stud-
ies. These models rely on assumptions about the
probability distribution of rainfall for a particu-
lar landscape. Such models are useful for extending
meteorologic and hydrologic records beyond the
timeframe of empirically measured values, fill-
ing in missing data at long-term measurement sites,
and synthesizing records for unmeasured water-
sheds. The output from stochastic precipttation
models can be used, in turn, as input to hydro-
logic and ecologic models that predict soil mois-
ture, runoff, or the availability of water for plants.

Here we describe developing 4 model for gen-
eraling precipitation data as input to process-based
deterministic hydrologic models at the H. J.
Andrews Experimental Forest (HTAEF). The For-
est. which is located in the western Cascades of
Oregon, and 1s u Long Term Ecological Research
(LTER) site funded by the National Science Foun-
dation (NSF). A major topic of research at the
HIAEF is the refationship among hydrologic,
ecologic, and geemorphic processes, While pre-
cipitation and other climate data has been recorded
Tor more than 50 years at the Andrews, models to
simulate precipitation are needed to extend that
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record over century or longer timescales associ-
ated with forest sucession, disturbance, and other
ecological processes,

A variety of models can be found in the
literature for simulating daily precipitation
{Todorovic and Woolhiser, 1974; Smith and
Schreiber, 1974; Chin, 1977, Buishand, 1978;
Roldan and Woolhiser, 1982; Richardson and
Wright, 1984). Due to the complex nature of rainfall
processes, any rainfall model involves simplified
assumptions of the process. For most practical
problems, the model that best describes the pre-
cipitation distribution and amounts is preferred
{Richardson, 1982}. Our purpose here is to test a
variety of models with different underlying as-
sumptions against the actual data in order to se-
lect the best model or models to use for the HIAEE,
We expect that the models that work best for the
HIAEF will also be most appropriate for other
watersheds in the western Cascades with similar
precipitation regimes.

Muadels for generating daily rainfall scquences
typically use a separate process for the rainfall
occurrence (wet-dry event) and another process
for the rainfall amounts on wet days (Todorovic
and Woolhiser, 1974, Buishand, 1978; Richardson,
1082). Several approaches have been used for
describing the occurrence of rainfall and the




distribution of rainfall amounts given the occur-
rence of rain {Buishand, 1978; Roldan and
Woolhiser, 1982; Woolhiser and Roldan, 1982:
Richardson, 1982). For the rainfall occurrence,
the Markov chain and the alternating renewal pro-
cess (ARP) have been generally used [or model-
ing wet- dry day sequences. In particular, the
Markov chain model is used extensively for daily
precipitation (Gabriel and Newmar, 1962; Haan
et al.. 1976; Smith and Schreiber, 1974; Roldan
and Woolhiser, 1982: Richardson and Wright,
1984}, Buishand (1978), and Roldan and Woolhiser
(1982) reported advantages of using the Markov
chain medel over the ARP model. They reported
that the generation of synthetic sequences is sim-
pler for a Markov chain and its parameters can
be cbtained more easily than for the ARP model.

The most common approach for describing
the distribution of rainlall amounts on days with
rain is to ignore the serial autocorrelation and con-
sider that rainfall amounts are scrially indepen-
dent and to fit some theoretical distribution to the
precipitation amounts (Todorovic and Woolhiser,
1974, 1975; Woolhiser ct al., 1973; Smith and
Schreiber, 1974; Richardson, 1982). Various prob-
ability density functions ranging from single pa-
rameter to multiple parameters have been pro-
posed to describe the distribution of rainfall
amounts (Todorovic and Woolhiser, 1974, 1975;
Smith and Schreiber, 1974: Richardson, 1982;
Woolhiser and Roldan, 1982; Pickering et al..
1988). Woolhiser and Roldan (1982) compared
the chain-dependent (1.e. precipitation amounts
are independent but the distribution depends on
the state of the previous day) and independent
exponential, gamina. and three parameters mixed
expoenential distributions and showed that the in-
dependent mixed exponential was the best for five
U.S, stations, It should be noted that the single
parameter models are more appealing for their
simplicity and ease of paramcterization. However,
there is no general consensus on the performance
or applicability of a specific model; choice of an
appropriate model depends on the underlying dis-
tribution for the observed data. This suggests a
need of examining different distributions and
building a precipitation model for a site,

In this study, a first-order Markov chain with
two states, wet or dry, was used for simulating
the occurrence of precipitation. A continuous dis-
tribution function was used to model the amount
of precipitation given that a day is wet. To ac-

complish this, {ive probubility distributions for
the precipitation amount (the cxponential, cali-
brated Weibull, calibrated beta-P, and 2-param-
eter gamma distribution with two different esti-
mators) werce compared. using data from the HJ
Andrews Experimental Forest in the Western
Cascades of Oregon. The performance of these
models in simulating daily and monthly precipi-
tation at the Andrews Forest is presented.

The Models

Cccourrence Process

Occurrence of precipitation is described by a two
state Markov chain (day is wet or dry) of first
order; that is. the probability of precipitation on
a given day depends solely on whether or not pre-
cipitation eccurred on the previous day. This ap-
proach has been used successfully and studied
extensively to generate rainfall {Bailey, 1964; Haan,
1977: Richardson, 1981; Roldan and Woolhiser,
1982). The transition matrix is defined by:

Poa Py (1

P wd p L
where pd- Ddw» Pwd- Pww- @re the conditional
probabilities of a dry day following a dry day, a
wet day following a dry day, a dry day following
a wet day and a wet day following a wet day,
respectively. A day with total rainfall of 0.0254
centimeters (0.01 inch) or more was considered
awet day. Sin.ce Pdd + Pdw=!and pyq+Pyu=1
P is fully defined given pgy,, and py,y.. The oc-
currence is determined by comparing a generated
random number with the elements of the prob-
ability transition matrix. If the previous day is
dry. then a generated random number less than
Py TePresents rain on the current day: and if the
previous day is wet. a generated random number
less than pyy., means the current day is also wet,
Otherwise, the current day is a dry day.

Precipitation Amounts

Rainfall amounts arc considered serially indepen-
dent. Five different models of the distribution of
daily rainfall amounts arc used and compared.
Seasonal variations of precipitation are determined
by assuming that the model parameters are con-
stant within a month and different between months,

Stochastic Models for Generating Daily Precipitation 319




Single paramerer models

The exponential distribution is probably the most
widely used single parameter model of daily pre-
cipitation amounts for its simplicity, invertibility
and relatively good fit (Todorovic and Woolhiser,
1974: Richardson, 1981; Pickering et al., 1988).
The cumulative distribution function of the ex-
ponential is given by

x
F(x)-1l-e * (2)

Where x is the daily precipitation, F(x)is the prob-
ability of events less than x, and A=E(X) is ex-
pectation of daily precipitation.

Single parameter probability distributions have
also been derived by calibrating multi-parameter
distributions (Pickering et al., 1988; Selker and
Haith, 1990). Pickering et al. (1988) derived a
single parameter model by calibrating a special
case of the beta-P distribution model. Tn its mest
general form, beta-P is a three parameter model.
The cumulative distribution function of the cali-
brated beta-P model of Pickering et al. (1988) is
given by:

F(x)-l-(bg—’;)'m (3)

A member of the Weibull family of distributions
was given by Rodriguez (1977} as:

r(L%)x
N —1c
F{x)-1-e A (4
where ¢ is a constant and T'(.) denotes complete
gamma function.

The calibrated Weibull distribution was pre-
sented by Sclker and Haith (1990) based on the
above equation. With ¢=0.75, as the optimized
value for the data from Eastern USA, they de-
rived the probability distribution for wet day given
by:

- Xy0.75
(1.191 }\)

F(x)-l-e (5)

In this study, we calibrated this model using
Andrews Forest data to obtain optimized values
of the parameters. which is discussed in the next
section,

Multi-parameter models

Multi-parameter distributions such as the 2-pa-
rameter gamma, the 3-parameter gamma, the 3-
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parameter mixed exponential, and others have been
used (Mielke and Johnson, 1974). Multi-param-
eter models are generally considered to describe
the distribution of precipitation amounts better
than the one-parameter exponential distribution
because of the greater tlexibility obtained with
the large number of parameters. The choice of
madel depends on the parsimony of parameters
and ease of estimating parameters. Richardson
(1982) suggested that unless the mixed exponen-
tial distribution has a clear advantage over the 2-
parameter gamma distribution, the gamma dis-
tribution sheuld be the appropriate choice of models
for most applications.

The 2-parameter gamma distribution is used
here with the general form of the probability density
function given by:

X

a1l B
fx)-2_& (6
BT (o) )

where o and [ are constants in garmma distribu-
tion. The gamma distribution is used with two
different methods of parameter estimation, One
method uses moment estimators {Devore, 1987),
given by:

E(X)=0p (7a)

Vix)-0p? {(7b)

where E(.) denotes the expectation and V(.) the
variance of the data. The other method uses maxi-
mum likelihood estimators, with:

of-E {X) (8a)
Yaln (E(X) }-E(1n (X)) (8b)

where Y is a intermediate value to be used in the
following calculations,

There are a number of numerical schemes for
determining the maximum likelihood estimators
for the 2-parameter gamma ( Thom, 1958; Green-
wood and Durand, 1960; Mielke and Johnson,
1974; Choi and Wette, 1969). The numerical so-
lution suggested by Choi and Wette (1969) was
used in this study, which approximates the solu-
tion by Newton-Raphson iteration using the fol-
lowing equations:
log{a, )-%ilo, ,)-Y (9a)

i_l}!’ (ai-l)

i1

o0y ,-




o

1 1
RV, 2 ) 9b
Flo) Y o 4 ai_l i(i+C¥) o)
RSN |
(o). Y —— (9¢)

i-0 (1«0)?

where y=Euler’s Constant=0.57722157 and ¥’ is
Digamma function.

The above infinite sumimations are approxi-
mated using an arbitrary 1077 criterion. If the dii-
ference between calculated value at time 1 and
time i-1 is less than the criterion. then the value
at time 1 is used. Since this numerical solution is
always convergent with any initial value such that
O<a, <o=(Choi and Wette, 1969). an arbitrary num-
ber is given as a starting value in the computa-
tional estimation.

Experimental Design

The precipitation data of climatological station
at Watershed #2 from H. J. Andrews Experimen-
tal Forest was used to calibrate and test the mod-
els since it has the longest observation history.
The HIAEF is a mountain watershed of 6400 ha.
Climate of the HIAEF is wet and fairly mild in
the winter and warm and dry in summer, with

Chi Square

more than two-thirds of the precipitation falling
between November through March (Bierlmaier
and McKee, 1989). Climatological information
has been collected at the HIAEF since 1951. Daily
precipitation data from 1952 1o 1992 was used in
this analysis. Although precipitation can occur as
rain or snow, this paper does not differentiate among
these forms and only considers the liquid water
equivalent.

For the calibrated Weibull distribution, a set
of new parameter values for the HIAEF were
obtained using a least Chi-square criteria, Simu-
lations were made with a range of parameter (¢)
values between 0.5 and 1.5, with a step value of
(.01, and the Chi square values were computed.
The purameter value which gave the least Chi
square was selected as an optimized value (Fig-
ure 1), The following equation tor the calibrated
Weibull distribution was then used in this study:

-(1.052%)0-9
F(x)-1l-e (10

In this study seasonal variations in the daily
precipitation processes are assumed o be con-
stant within a month and vary between months,
Parameters arc calculated based on monthly data;
twelve sets of parameters for the five distribution

1600
1400

1200 — o

600 |- .

0.5 0.7 0.8 1.1 1.3 1.5

Power

Figure |. Calibration for constant ¢ in general Weibull equation based on Chi Square. Nete minimum Chi square 1s al .90
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models were therefore oblained. Although there
are complex techniques, such as finile Fourier
series, to model scasonal variations (Roldan and
Woolhiser, 1982), the simple technique used in
this paper is reported 1o give fairly good results
of distributions for wet days (Richardson, 1981).
A summary of model parameters based on the 4§
years of data is given in Table 1. The above pre-
cipitation models were then run for 41 years with
five distributions of precipitation amounts. Daily
amounts were summed to obtain monthly and
annuval precipitation amounts.

A Chi Square test was used to test and quan-
lify the goodness-of-fit of the above models. For
daily and monthly analyses, data were categorized
into 51 bin cells. It was made sure that each bin
cell possessed at least 5 occurrences. A Chi-square
tested whether the two data sets came from the
sume population by:

o (OBSERVED -SIMULATED,)®

11
i.1 OBSERVED +5IMULATED, th

X%

where SIMULATED and OBSERVED are num-
ber of events in a combined bin i; n is the total
number of bins constructed.

Since each term in a Chi-square sumn is sup-
posed to approximalte the square of a normally
distributed quantity with unit variance, the vari-
ance of the difference of two normal quantities is

TABLE 1. Parameters ol H. J. Andrews Precipitation Model.

the sum of their individual variances. not the av-
erage. So the denominator of the above Chi-square
was modified from the regular equation (Press
et. al., 1992).

The prebabilities of the observed data and the
simulated data belonging to same distribution were
calculated using the equation:

2
P(-’Zi,-’g_-)
Probe (12)
n
P(E)

where I'(...) denotes incomplete gamma function.
Abetter model should give lower Chi-square values
and high probability values. Table 2 shows the
results of the Chi-square test used for daily and
monthly data.

Results and Discussion

The analysis of 41 ycars of observed precipita-
tion data from the HIAEF shows that about 556
of days were dry days (precipitation less than 0.01
inch}). The distribution of relative frequencies of
daily rainfall amounts, as shown in Figure 2. has
areversed J-shaped exponential distribution with
the smaller amounts occurring more {requently
than the larger amounts. Percentage of days with
precipitation was highest from October though
March (about 60%), with the wet day average

Prob. Prob. Prob. ¥ o for B lor

Daily of of of for for Maximum  Maximum

Mean Variance  Dry o Wet to Wet Moment Moment  Likelihood  Likelihood

Month {cm) {em) Wet Wet Day  Estimator Estimator  Estmator  Estimator
1 1.791 1514 0.327 0816 .64 0.833 (2.8406 0914 0.771
2 1.575 1.17] 0,345 0.783 0.616 0.835 0.743 0.901 0.688
3 1.339 0.683 0.336 (2793 0.619 1.032 0.511 1.027 0.513
4 093 0.465 0.319 0.741 0.552 0.744 .496 0.959 0.385
5 0.838 0.282 0.223 0.680 0.410 0.982 (.336 1.069 0.308
6 0.709 0.279 0.168 0.599 0.295 0.709 (394 0.98% 0.283
7 0.488 0.137 0.064 0.406 0.107 (.684 (.281 1.034 0.186
8 0.729 0.208 0.074 0.584 0.150 1.002 (:.286 1.109 0.259
9 1.046 0.505 0.125 0.607 0.241 (0.854 0.483 0.946 0.436
10 1.420 0.973 0.199 0.682 0.385 0.814 (3.6806 0.874 0.639
Il 1.892 1.580 0.367 0.781 0.626 (1892 0.835 0.954 0.781
12 1.918 1715 0.36% 0.78% 0.634 (.844 0,894 0.900 0.839

322 Duan. Sikka, and Grant




TABLE 2. Chi-square Test Result.

Chi-Square value

Probahility of belonging to same distribution

Degrees Gamma  Gamma Gamma  Gumima
of Moments  Maximum Moments Maximum
Month Freedom Exponential Weibull Beta-P Estimator Likelihood  Exponental Weibull  Beta-P  Esumator Likelihood
Daily Precipitation Amounts
1 41 46 2331 38.84 19.81 38.47 0.27 0.99 0.57 1 0.3%
2 37 49.79 3485 4435 31.25 34.08 0.08 0.57 0.19 0.73 0.61
3 28 367 2594 43 3685 36.66 0.13 0.42 0.03 0.12 0.13
4 26 33.62 48.34 282 39.64 35.59 0.14 0 0.06 0.04 0.1
5 24 29 17.63 258 2535 3381 0.22 (.82 0.36 (138 0.09
6 20 28.6 19.3 2681 20.87 254 0.1 0.5 0.14 0.4 0.1
7 13 13.9 1316 1481 11.05 15.64 0.38 0.44 0.32 0.61 0.27
8 17 17.75 1301 2047 1775 18.88 0.4 0.74 0.23 0.4 0.34
9 21 38.29 2503 2838 2741 3412 0.01 0.25 .12 0.15 0.04
10 31 43.19 2675  36.08  28.18 3293 0.07 0.68 0.24 .61 0.37
11 5l 41.77 45.08 3323 37.95 287 0.82 0.71 0.97 0.91 1
12 51 37.08 37.65 3251 3148 37.54 0.92 092 0.42 0.99 (.92
mean 34.69 2776 336 27.33 30.99 0.3 0.59 0.3 0.53 0.38
Frequency (%)
10 [
8 2
6 a
4 H
0 ”II““II“I..-... e ! 1
0 5 10 15 20

Daily Precipitation (cm})

Figure 2. Observed daily precipitation distribution at HJA.

amount of precipitation being larger {about 0.8
inch) than that in the months from April 1o Sep-
tember (less than 0.5 inch), as shown in Figure
3. The variance of daily precipitation was also
higher in the wet season (October through March).

The conditional probabilities of wet day pre-
cipitation {Figure 3b) demonstrate the persistence
of daily precipitation events. In the wet season, a
wet day is more likely to be followed by a wet

Stochastic Models for Generating Daily Precipitation

day, while in the dry season (April through Sep-
tember), the probability of a dry day following a
dry is much higher than a wet day following a
dry day. The first- order Markov chain model simu-
lated 8,231 dry days (about 55.0% of total days),
which is very close to the actually observed 8,255
dry days (about 55. 1% of total days). A compari-
son of the observed and simulated wet spell fre-
quency distribution is shown in Figure 4. This
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Figure 3. Model parameters for H. J. Andrews Experimental Forest.
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Figure 4. Markov chain performance. The true probability of a dry day observed is 53.1% and for simulated is 33.0%.

shows g close comparison of the occurrence of
simulated wet days with the observed data.

Daily precipitation distributions of observed
and model simulated data with ditferent models
are shown in Figure 5a. The results generated by
all models closely approximate the observed data.
The monthly distribution of precipitation amounts
obtained by summing the daily precipitation
amounts generated with each model is also shown
(Figure 5b). Visually, for daily and monthly pre-
cipitation amounts, all the above models gener-
ally represent the observed data well.

To comparce model performance, the summary
of Chi-square testresults 1s given in Table 2. Model
performance in lerms of Chi-square probabilities
of different models for daily and monthly pre-
cipitation amounts s shown in Figure 6. For
simulation of daily amounts, the two parameter
gamma and calibrated Weibull (with higher mean
probability of about (.52 and lower Chi-square
of about 29) appear better than exponential and
Beta-P distributions. However, none of the above
models was good at simulating daily amounts in
March and April. It appears that the models tend
to break down during the transition from a wet to
a dry season. This may be due to the changes in

Stochastic Models for Generating Daily Precipitation

the underlying process of precipitation mecha-
nism during the transition period. For simulating
monthly amounts, all the above models in gen-
eral appear to perform well. The 2-parameter
gamma, with moments estimator showed better
results than the maximum likelihood estimator.

The distribution of daily maximwm precipi-
tation obtained from cach model are compared
with the observed data in Figure 7. The gamma
with maximum likelihood estimator and exponen-
tial appear closer to the observed data. These re-
sults suggest that the two parameter camma with
moment estimator and calibrated Weibull should
be acceptable for generating daily rainfall data
for general hydrologic, ccologic, and water yield
studies at the HIAEF. However, the single param-
eter calibrated Weibull distribution is casy to ap-
ply and equally good. The gamma distribution
with maximum likelihood estimator may be pre-
ferred for conducting hydrologic studies that are
sensitive o daily extreme precipitation amounts.

Our results are based on the data from the
HJAEF. These results may be applicable to other
areas in the western Cascades of Oregon which
have similar climate. A further study is in progress
to conduct this analysis for a number of
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Figure 5. Comparison of observed daily and monthly amounts with models. a), Cumulative frequency for daily amount: b).

cumularive frequency for monthly amount.

precipitation sites in the western Oregon, and
examine the general applicability of these results
to regional studies.

Conclusion

A daily precipitation model has been presented
for generating daily precipitation for the H. J.
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Andrews Experimental Forest, based on a two-
state Markov chain governing the occurrence and
a theoretical distribution governing the amounts
of precipitation. The exponential, calibrated
Weibull, calibrated Beta-P, and two 2-parameters
gamma distributions are compared in generating
precipitation amounts. The Markov chain model
performed well at simulating daily precipitation
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Figure 6. Model performance. a). Comparison of behavior of all 3 models combined by month: b). total probability by model for

all months combined. Note mean and one standard deviation plotted.
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Figure 7. Comparison shows that gamma with maximum likelihood cstimator and exponential appear beller in generating daily

extreme precipilalion.

occurrences. The results also suggest that the cali-
brated Weibull is appropriate for generating daily
precipitation amounts for its simplicity, goodness-
of-fit and reversibility. The 2-paramecters gamma
may be preferred if the accuracy of daily amounts
as well as daily extreme values are also impor-
tant in a given study.
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