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ABSTRACT

In this thesis, several count models that deal with the problem of excess zeroes (overdisper-

sion) in Long Term Ecological Research (LTER) plots on the Washington and Oregon coast are

described and evaluated. The models are to be used within the Pacific Northwest Coast Variant

of the Forest Vegetation Simulator (Stage, 1973), and generally follow the two-stage structure of

the Regeneration Establishment Model (Ferguson and Carlson, 1993; Ferguson and Crookston,

1991). The probability of any regeneration occurring on a given plot is initially estimated using

logistic regression. Then, in the second stage of analysis, the conditional distribution of stocked

plots (those with at least one seedling) is assumed to be distributed according to a Weibull

density with parameters predicted from plot conditions.

Missing values in abiotic predictors integral to the Regeneration Establishment Model and

lack of management history made direct calibration of the existing model implausible, and

several new two-stage models were constructed instead. The results were inconclusive. In most

cases, there was not a clear linear relationship between the estimated Weibull parameters and

plot (or stand) characteristics. Inconsistencies in the fitting data increased the complexity and

difficulty of the modelling efforts.

As an alternative approach, a finite mixture regression model was considered. In the finite

mixture model, the parameters of the two-stage system are estimated simultaneously in a gen-

eralized non-linear model. A simple Zero-Inflated Negative Binomial (Lambert, 1992) model

was fit to the same data. The results were similar to those of the two-stage approach. Lastly,

several recommendations for future regeneration sampling and modelling efforts are made.



v

TABLE OF CONTENTS

Page

AUTHORIZATION TO SUBMIT

THESIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

PART I: GENERAL CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . xi

1.0 Forest Regeneration Models in the Literature . . . . . . . . . . . . . . . . . 1

2.0 Fitting Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.0.1 TV010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.0.2 SMCNW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.0.3 TP73 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.0.4 TV038 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Inconsistencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Definition of Response Variable . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Mortality Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Missing Values in Key Predictors . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Possible Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Excluding Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Practical Constraints on Model Form . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Initial Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Detection of Potential Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.1 Outliers in the Y direction . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.2 Outliers in the X direction . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.3 Influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13



vi

3.0 Predicting the Probability of Stocking . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Model Form and Fitting Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.0 Modelling the Conditional Distribution of Stocked Plots . . . . . . . . . . 16

4.1 Necessary Adaptations for Pacific Northwest Coast Variant . . . . . . . . . . . . 16

4.1.1 Grouping of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Fitting Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

PART II: TWO-STAGE MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.0 Structure 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1 Description and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2 Probability of Stocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.3 Conditional Distribution of Stocked Plots . . . . . . . . . . . . . . . . . . . . . . 22

5.3.1 Shape Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.3.2 Scale Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.0 Structure 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.1 Description and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2 Probability of Stocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.3 Conditional Distribution of Stocked Plots . . . . . . . . . . . . . . . . . . . . . . 31

6.3.1 Shape Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.3.2 Scale parameter, Model 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.3.3 Scale Parameter, Model 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



vii

7.0 Structure 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.1 Description and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.1.1 Change in data structure: a newly defined and standardized response . . 41

7.1.2 Change in Model Form: a Mixed-Effects Logistic Regression . . . . . . . . 42

7.1.3 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.2 Probability of Stocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.3 Conditional Distribution of Stocked Plots . . . . . . . . . . . . . . . . . . . . . . 45

7.3.1 Shape parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.3.2 Scale parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.4 Anova Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

PART III: SIMULTANEOUS FITTING . . . . . . . . . . . . . . . . . . . . . . . . 52

7.5 Finite Mixture Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.6 Zero-Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.7 Zero-Inflated Models in the Literature . . . . . . . . . . . . . . . . . . . . . . . . 54

7.8 A Zero-Inflated Negative Binomial Regeneration Model . . . . . . . . . . . . . . 56

7.8.1 Problems and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.0 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8.1 Further Exploration of an Important Linearity Assumption . . . . . . . . . . . . 60

8.2 Relationship between tree size and stand density . . . . . . . . . . . . . . . . . . 64

8.3 Importance of missing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.4 Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.5 Other Models Considered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.6 Models That Could Be Considered . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.7 Recommendations For Future Regeneration Modelling Studies . . . . . . . . . . . 69

8.8 Penalized Quasi-Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

APPENDIX I: Variable names and definitions (tree file) . . . . . . . . . . . . . . 73

APPENDIX II: Additional variable names and definitions (fitting data) . . . . 75



viii

LIST OF FIGURES

Figure No. Page

2.1 Variation in plot remeasurement time . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Variation in minimum diameter threshold and remeasurement time . . . . . . . . 8

4.1 Observed and expected counts of regeneration assuming Poisson and negative

binomial distributed response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1 Histogram of mean annual regeneration counts per hectare (stocked plots), Struc-

ture 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Example scatterplot matrix used in shape parameter prediction, Structure 1 . . . 25

5.3 Residual plots for model predicting shape parameter, Structure 1 . . . . . . . . . 27

5.4 Residual plots for model predicting scale parameter, Structure 1 . . . . . . . . . 29

6.1 Histogram of mean annual regeneration counts per hectare (stocked plots), Struc-

ture 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.2 Example scatterplot matrix used in shape parameter prediction, Structure 2 . . . 34

6.3 Residual plots for model predicting the shape parameter, Structure 2 . . . . . . . 36

6.4 Residual plots for Model 1 predicting scale parameter, Structure 2 . . . . . . . . 38

6.5 Residual plots for Model 2 predicting scale parameter, Structure 2 . . . . . . . . 40

7.1 Count histogram of mean annual regeneration per hectare (stocked plots), Struc-

ture 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.2 Residual plots for model predicting shape parameter, Structure 3 . . . . . . . . . 46

7.3 Residual plots for model predicting scale parameter, Structure 3 . . . . . . . . . 48

8.1 Transformations of R and qmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.2 Linear relationship of log(R) and log(qmd) . . . . . . . . . . . . . . . . . . . . . . 62

8.3 Fitted probabilities of stocking by habitat type . . . . . . . . . . . . . . . . . . . 63

8.4 Relationship of Total Basal Area Per Hectare and Quadratic Mean Diameter . . 65



ix

LIST OF TABLES

Table No. Page

2.1 Number of unique plots from each data source . . . . . . . . . . . . . . . . . . . 3

2.2 Number of observations at each threshold diameter . . . . . . . . . . . . . . . . . 6

2.3 Missing values in abiotic predictors . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.1 Analysis of Deviance, Structure 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2 Coefficients for logistic model, Structure 1 . . . . . . . . . . . . . . . . . . . . . . 22

5.3 Stands excluded 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.4 Analysis of Variance table for model predicting shape parameter, Structure 1 . . 26

5.5 Coefficients for model predicting shape parameter, Structure 1 . . . . . . . . . . 26

5.6 Analysis of Variance table for model predicting scale parameter, Structure 1 . . . 27

5.7 Coefficients for model predicting scale parameter, Structure 1 . . . . . . . . . . . 28

6.1 Analysis of Deviance, Structure 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2 Coefficients for logistic model, Structure 2 . . . . . . . . . . . . . . . . . . . . . . 31

6.3 Stands excluded from second stage of analysis, Structure 2 . . . . . . . . . . . . . 33

6.4 Coefficients for model predicting shape parameter, Structure 2 . . . . . . . . . . 35

6.5 Analysis of Variance table for model predicting shape parameter, Structure 2 . . 35

6.6 Coefficients for Model 1 predicting scale parameter, Structure 2 . . . . . . . . . . 37

6.7 Analysis of Variance table for Model 1 predicting scale parameter, Structure 2 . 38

6.8 Analysis of Variance table for Model 2 predicting scale parameter, Structure 2 . 39

6.9 Coefficients for Model 2 predicting scale parameter, Structure 2 . . . . . . . . . . 39

7.1 Fixed-effects coefficients for logistic model predicting probability of stocking,

Structure 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.2 Coefficients for model predicting shape parameter, Structure 3 . . . . . . . . . . 45

7.3 Analysis of Variance table for model predicting shape parameter, Structure 3 . . 46

7.4 Coefficients for model predicting scale parameter, Structure 3 . . . . . . . . . . . 49

7.5 Analysis of Variance table for model predicting scale parameter, Structure 3 . . . 49



x

7.6 Observed deciles used to establish quadratic mean diameter classes . . . . . . . . 50

7.7 Analysis of Variance model, Structure 3 . . . . . . . . . . . . . . . . . . . . . . . 51

7.8 ZINB parameter estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.9 ZINB correlation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.1 Comparison of generalized linear mixed-effects model coefficients using different

estimation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



xi

PART I: GENERAL CONSIDERATIONS
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1.0 Forest Regeneration Models in the Literature

Regeneration establishment depends on potentially very complex interactions among many

contributing factors (Rogers and Johnson, 1998), which may not be explained by the usual

suite of variables measured in conventional, yield-oriented forest inventories (Price et al., 2001).

In addition, the process often presents difficulties to modellers due to inconsistent sampling

protocols across studies (Shifley et al., 1993).

Several regeneration establishment models have been developed for hardwood forest types in

the Eastern and Central United States. Dey (1991) modelled oak regeneration in the Missouri

(U.S.A.) Ozarks using individual tree survival models for prediction. Botkin et al. (1970)

wrote JABOWA and JABOWA II to simulate oak regeneration using stochastic functions.

SIMSEED (Rogers and Johnson, 1993) is also based on stochastic functions, but is unique

in that it simulates fluctuations in the magnitude of regeneration frequencies over cycles of

various lengths (Rogers and Johnson, 1993). Ribbens et al. (1994) calibrated existing seedling

recruitment functions in oak and mixed northern hardwood forests by relating species-specific

seedling distributions with overstory spatial structure using a likelihood-based approach. A

simple overview of these establishment models in the literature was provided by Rogers and

Johnson (1998).

Price et al. (2001) provided a much more detailed survey of how regeneration is treated in

the gap model literature, and critiqued the suitability of these models (including JABOWA II,

SIMSEED, FORET, FORSKA, 4C, and others) for modelling the effects of climate change on

recruitment. They observed that “the formulation of regeneration processes [in gap models] has

changed very little in the last 15 yr.” (Price et al., 2001, p. 478)

They identified three primary shortcomings of these for simulating processes such as, for

example, species migration and species composition changes due to warmer temperatures asso-

ciated with changes in climate. These were as follows:

1. The treatment of regeneration as a single lumped process, rather than as the combined

effect of the component physical and biological processes which comprise it.

2. A common assumption that site conditions are homogenous.

3. A general lack of consideration of the effects of herbivores on regeneration processes.

Of these three items, the authors give most attention to the first. They stress that sim-

ple formulations of, for example, regeneration density predictions, ignore the suite of complex



2

ecophysiological processes governing seed production, seed dispersal, seed germination, vegeta-

tive reproduction (sprouting), seedling establishment, and seedling growth (Price et al., 2001).

Each of these processes may be affected in unique ways by climate change. They also high-

lighted problems associated with modelling landscape–level effects associated with regeneration

(species migration) with distance–independent approaches that tend to be limited to within–

gap processes. An obvious problem, for example, is that seed dispersal between gaps is not well

accounted for, but is clearly important for simulating potential changes in species range due to

warmer temperatures (Price et al., 2001).

Adding to the difficulty involved in generating landscape-scale recruitment models (due to

the biological phenomenon being quite complex) is the problem that definitions of regeneration

are highly variable due to variation in sampling designs (Shifley et al., 1993). In particular, the

minimum diameter threshold at which a tree may be counted, or measured for various charac-

teristics (and assumed to be regeneration) is inconsistent. Databases used in the construction

of regeneration models often come from re-measured continuous forest inventory plots, and as a

result the amount of time passing between plot visits may also vary. For examples, see Shifley

et al. (1993) and Schweiger and Sterba (1997).

Shifley et al. (1993) proposed a method for predicting regeneration from the variable min-

imum diameter thresholds themselves, which also accounted for variable plot remeasurement

times. Their method assumed a maximum possible limit on ingrowth, calculated as difference

between the maximum possible crown competition factor (CCF) and the current calculated

CCF for a stand. The maximum CCF was a function of minimum diameter threshold.

Ferguson and Carlson (1993) and Ferguson et al. (1986) predicted ingrowth within FVS as

a two-stage hurdle model based on the approach of Hamilton (1974). Ferguson and Johnson

(1998), Schweiger and Sterba (1997) and many others have modified the two-stage approach in

order to develop regional models similar in structure to the North Idaho variant of Version 2 of

the Regeneration Establishment Model for new data sets.

Moeur and Stage (1995) introduced most similar neighbor (MSN) inference as a general mul-

tivariate alternative to traditional regression-based modelling strategies in forestry. Ek et al.

(1997) further developed this concept and implemented an imputation-based tabular regener-

ation model for post-harvest stands in Minnesota1. Recently, software has been developed by

the U.S. Forest Service to implement MSN imputation for various stand attributes (Crook-

ston, 2002), and this approach has been applied in regeneration prediction within PrognosisBC

(Froese et al., 2003).

1The tables were constructed from the Forest Inventory and Analysis (FIA) plot database.
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2.0 Fitting Data

The data were compiled from four sources. These sources, and their corresponding reference

codes, are the Stand Management Cooperative Northwest (SMCNW), the H.J. Andrews Ex-

perimental Forest Long Term Ecological Research program (TV010), a separate study at H.J.

Andrews Experimental Forest investigating biomass dynamics following logging (TP73), and a

small study analyzing the growth and development of mixed coniferous and red alder (Alnus

rubra) stands (TV038). The number of plots from each source are represented in Table 2.1.

Plots were all fixed-area (no variable-radius), but the plot sizes were inconsistent.

Table 2.1 Number
of unique plots from
each data source

Source Plots

SMCNW 161
TP73 193
TV010 884
TV038 5

The following sections contain descriptions of each of the four data sources.

2.0.1 TV010

This study is the largest source of data (greater than 63 percent). These data are from

the HJ Andrews Long Term Ecological Research plot network (LTER). The LTER permanent

plots are situated in several national forests (Willamette, Siuslaw, Deschutes, Mt. Hood, Gifford

Pinchot, and Olympic) and national parks (Mt Rainier, and Olympic) in western Washington

and Oregon. Most plots were established in one of two general time periods. The first group

was established by the Forest Service between 1910 and 1948, with the objective of quantifying

growth and yield of commercially important species. A motivating goal was to accurately

estimate timber volume lost to mortality over time.

The second wave of plot establishment occurred during the period from 1970 to 1989, and

was part of the Coniferous Forest Biome (CFB) project. This was administered by the Interna-

tional Biological Program (IBP), and was funded primarily by the National Science Foundation.

The CFB project was short-term, and monitoring of these plots came under the auspices of the
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LTER network after the conclusion of sampling through IBP. Motivating interests for the estab-

lishment of these plots were broad, and included the study of stand composition and structure,

and population and ecosystem dynamics.

Due to the long time period over which plots in the LTER network became established, and

to variation in the administration of plot monitoring and study objectives, the sampling designs

employed in the laying out of LTER plots are inconsistent. They can generally be classified in

one of the following three ways:

“They are contiguous rectangles subjectively placed within an area of homogeneous

forest, circular plots subjectively placed within an area of homogeneous forest, or

circular plots systematically located on long transects to cover an entire watershed,

ridge or reserve. Rectangular study areas are mostly 1.0 ha or 0.4 ha in size, but

range from 0.25 ha to 4.7 ha. Circular plots are 0.1 ha.” (Acker et al., 1998)

Minimum diameter at breast height (DBH) measured in the LTER plots was - apparently in all

cases - 5 cm . Plots were measured every 5 or 6 years. In some cases, mortality was recorded

annually.

2.0.2 SMCNW

The Stand Management Cooperative Northwest data are from the Levels of Growing Stock

(LOGS) study, a collaborative effort between federal, state, and industrial organizations. The

LOGS project began in 1962. The plan was developed by Weyerhaeuser Company, with help

from the Pacific Northwest Research Station of the Forest Service. The objective was to ex-

amine the effect of varying levels of residual growing stock on volume production under eight

(repeated) thinning regimes in young Douglas-fir (Pseudotsuga menziesii) stands. 27 square

0.08094 ha plots were sampled in each of nine installations at various locations in western

Oregon, Washington and British Columbia . Each of the nine installations is a repeated mea-

sures completely random split-plot design with three replications of eight different thinnings

(treatments), and three untreated control plots.

2.0.3 TP73

These data are from a study of plant biomass dynamics following logging and site preparation

(burning) in Watersheds I and II of the HJ Andrews Experimental Forest. Parallel transects

were placed along slope contours, with 0.025 ha circular plots every 30.5 m. 132 plots in

Watershed I; 61 plots in Watershed II. All trees at least 1.37 m in height (dbh) were measured.

There is thus no minimum diameter, per se.
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2.0.4 TV038

Data from this source represent a long-term study comparing the growth and development

of red alder with that of conifers, primarily Douglas-fir. Beginning in 1941, plots were sampled

every 5 years until 1956, and then at irregular intervals through 1996. Stand names include

CH11, CH15, CH17, CH22, and CH23. Plot layout: two 0.4047 ha plots and two 0.20235 ha

plots. One was placed in each of the following stand types: 1) Alder-conifer mixture, unthinned

(stands CH11 and CH15); pure conifer, thinned (CH17); pure alder, thinned (CH22); and pure

alder, unthinned (CH23). Diameters were measured in 2.54 cm classes, with the minimum being

the 5.08 cm to 7.62 cm class.

The data were cleaned and compiled as a single tree file by Robert J. Pabst, Research

Assistant in the Department of Forest Resources at Oregon State University. Repeated mea-

surements were then grouped by plot, and trees with status=2 (ingrowth) were counted by

plot and year. Counts of regeneration at time t + 1 were paired with plot measurements from

the previous (temporal) sampling (t) for prediction. Two variables related to mortality counts

contain information from observations occurring over the preceding measurement period (time

t− 1).

2.1 Inconsistencies

Due to the inconsistency in the four sampling designs described in the previous chapter, and

to changes in sampling designs within studies over time, a great deal of exploratory analysis was

required in order to ascertain whether variables were defined consistently throughout. Some of

the problems encountered are identified in the following sections.

2.1.1 Definition of Response Variable

The common definition of forest regeneration is the number of trees of a known diameter

at breast height (or in some cases, root-collar) entering a plot since the previous sampling time

(Shifley et al., 1993).

This definition assumes a consistent minimum diameter threshold1 throughout the data. In

the fitting data, MDT varies between 0 cm and 5 cm. The number of observations represented

in each MDT class are shown in Table 2.2.

In addition to MDT, plot remeasurement time was also inconsistent, both between and

within studies. Although the median number of years between plot visits was 5, and the mean
1It is possible for the MDT to be zero.
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Table 2.2 Number of obser-
vations at each threshold diam-
eter

MDT (cm) Observations

0 768
0.254 40
1.27 12
3.81 854
4.064 96
5 3232

5.46, there was a non-ignorable amount of variation in the plot remeasurement time. Figure 2.1

shows box-and-whiskers plots for each study, with box widths proportional to the number of

observations represented by each. The long horizontal line shows the complete data median (5

years).

Although the medians of all studies are contained within the overall inter-quartile range

(IQR) of [5,. . . ,6] years, it is important to note that the medians of two of the four largest

studies, DFGY and TP73, are 4 and 6 years, respectively. Because of the high rates of change

of early-age regeneration counts over time, the effects of one and two years’ inconsistency in

remeasurement time should not be underestimated. The overall mean regeneration rates for

plots with 4, 5, and 6 years between plot visits are 6.4, 3.9, and 2.2 respectively.

The potential difficulty presented by the combined variation in remeasurement time and

MDT is depicted in Figure 2.2, which shows the growth curve of a theoretical (slow-growing)

tree. Vertical lines on the plot represent years in which the plot was sampled, and horizontal

lines correspond to the observed MDT’s in the fitting data. Any intersection of horizontal and

vertical lines represents a slightly different definition of the response variable.

2.1.2 Mortality Counts

Initial construction of the summary regeneration data set was done by distinguishing each

unique sampling year in the tree file for a given plot, and then (separately) summing each tree

defined as regeneration by the variable status. These two subsets were then merged, resulting

in an n by k matrix2, in which n = the sum of the total number of sampling years for each plot,

and k = the number of predictor variables. The count of trees with status = 2 (trees defined

as regeneration) was the response variable of interest.
2A data frame, in the statistical computing package, R (R Development Core Team, 2004).
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Initial exploratory data analysis and model fitting revealed that a pattern of inconsistency

existed with four variables: tph, qmd, totbamha and rd. There was no observed regeneration

(all counts were 0) in years with missing values for these variables. Mortality checks conducted

annually in the HJ Andrews Experimental Forest (OHJA) included in that component of the

data had been sorted and treated as years in which all variables on a given plot had been

measured3.

2.1.3 Missing Values in Key Predictors

The PNW coast fitting data have large numbers of missing values in three abiotic variables

that have traditionally been treated as integral predictors of regeneration. These are slope,

aspect and elevation. Table 2.3 shows the total number of observations for each study, and the

total number of values missing for each of these variables.

Table 2.3 Missing values in abiotic predictors

Study Slope Aspect Elevation Observations

DFGY 7 7 4 694
HSGY 0 0 0 824
LTER 0 326 0 326
MRRS 0 64 0 240
OHJA 0 39 0 1084
RADF 0 0 0 35
TP73 0 0 768 768
W21A 0 0 0 26
W21B 0 0 0 38
W38A 0 0 0 24
W38B 0 0 0 12
WC10 168 168 0 168
WC4 216 216 216 216
WP17 8 8 0 8
WP18 96 0 0 96
WP20 0 0 0 30
WP50 170 170 170 170
WP6 159 0 0 159
WP6A 40 40 0 40
WP7 0 0 0 44

3This coding error was identified with help from Rob Pabst.
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2.2 Possible Solutions

In the previous section, several problems associated with the fitting data were presented.

These can be split into two general groups, as follows:

• Those having to do with the response variable.

• Those having to do with predictors.

The first group contains variable minimum diameter threshold and remeasurement time,

and is problematic primarily because it results in violation of the assumption of independent

error terms. Solutions to these problems have to do with model form, and will be dealt with in

subsequent chapters.

The second group results from some predictors simply not having been measured in one

study or another, and it is this group that is the focus of this chapter. Three potential methods

for dealing with missing predictors are considered, and the best method is chosen.

2.2.1 Excluding Observations

One solution to the problem of observations missing values in one or more variables is simply

to exclude these rows from model fitting. This method has been employed extensively in forest

modelling, such that it might well be considered the status quo. However, excluding partial

observations eliminates otherwise useful data and can introduce bias.

Were it possible to assume that slope, aspect, and elevation values were missing com-

pletely at random (MCAR) or even missing at random (Harrell, 2001), then excluding observa-

tions in which one or more of these were not available would have little effect on overall model

bias.

The MAR assumption would be a poor one, however. It is evident from Table 2.3 that the

missingness of these variables consistently resulted from the sampling design and protocol of

studies representing large, distinct components of the overall data. Thus, excluding observa-

tions with missing values would likely result in model bias as variation in other, non-missing,

predictors present in the excluded studies would be misrepresented.

Like mortality, forest regeneration is a rare phenomenon. Counts of ingrowth on plots

occur sporadically over large temporal scales, and these counts tend to be small. Zero counts

occur frequently. For this reason, losing data due to missing values in one or two predictors is

particularly undesirable, and the costs and benefits of any decision to do so should be considered

in detail.
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It was decided early on in this project that simple exclusion of observations with missing

values should be employed only when absolutely necessary. An example would be a plot or

stand for which there was irreconcilable measurement, transcription or conversion error for the

minimum diameter threshold of the response variable. Preliminary modelling efforts conducted

with observations containing missing values in slope, avAspect or elev suggested that the

loss of observations due to missing abiotic predictors was wasteful as these predictors were not

important in initial predictive models constructed.

2.3 Practical Constraints on Model Form

The model building process was largely guided by the intended application. The model must

be able to make predictions based on data input into the Pacific Northwest Coast variant of

the Forest Vegetation Simulator, and it must return predictions on temporal and spatial scales

appropriate to that application.

The general, ideological approach to model building was as follows:

1. Fit the best predictive model given the data, regardless of final application.

2. Consider practical constraints of having that model function within final application

framework.

• Does FVS include important predictors?

• How can the model predict on a ten year scale?

• What threshold indicators (in FVS) will initiate the regeneration model?

• What upper boundary indicators can be used to constrain prediction to biologically

realistic levels of regeneration?

3. Assess costs of making these changes to original model, and present them as cautionary

information to user.

2.4 Initial Framework

Ferguson’s Regeneration Establishment Model (Ferguson and Carlson, 1993; Ferguson and

Crookston, 1991) predicted regeneration as a two-stage or hurdle model, following the methods

described by Hamilton (1974). The form was as follows:
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1. Use logistic regression to predict the probability of a plot being stocked with at least one

seedling.

2. Conditional on the plot being stocked with at least one seedling, model the distribution

of counts on stocked plots assuming a two-parameter Weibull distribution.

Ferguson’s two-stage approach is sensible given the inherent nature of the response variable.

Ingrowth occurs infrequently, so it is common for forest regeneration data to contain large

numbers of plots with zero counts. These extra zeroes result in situations in which the data are

substantially over-dispersed relative to a given distribution that might otherwise be a logical

candidate for the non-zero data.

The two-stage approach is sound, and has useful inferential benefits for the biological phe-

nomenon of interest. In particular, it allows for distinction between inference related to why,

when, how, and where regeneration takes place (the first stage, or hurdle), and how the distri-

bution of regeneration varies with other predictors (second stage).

2.5 Detection of Potential Outliers

The methods employed in the detection of potential outliers for a given regression component

of the final (complete) model followed those suggested by Neter et al. (1996). Neter et al. classify

extreme observations as Y outliers, X outliers or X and Y outliers.

2.5.1 Outliers in the Y direction

In order to identify Y outliers, plots of studentized residuals and studentized deleted residuals

were examined. Studentized residuals are error terms divided by their standard deviations, or

ri =
ei

s{ei}
(2-1)

Deleted residuals are the differences between observed values of y, and the values of y predicted

by a model that is fit without each point included , or

di = Yi − Ŷi (2-2)

where Ŷi is predicted by a model fit without Yi included in estimation. The studentized deleted

residual, denoted ti, is then

ti =
di

s{di}
(2-3)
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2.5.2 Outliers in the X direction

In order to identify potential X outliers, leverage values were employed. The diagonal

elements, hii of a model fit are “a measure of the distance between the X values for the ith

case and the means of the X values for all n cases.” (Neter et al., 1996). Neter et al. (1996)

recommend examining in detail any observations for which the leverage is greater than twice

the mean leverage, h̄. Because the sum of all individual hi’s is equal to the number of model

parameters (0 ≤ hii ≤ 1), the mean leverage statistic, h̄, is equal to p/n:

h̄ii =

n∑
i=1

hii

n
=

p

n
(2-4)

and leverage values greater than 2p/n indicate suspect X values.

2.5.3 Influence

The preceding paragraphs were concerned only with identifying potential X and Y outliers.

What is truly of interest is determining the magnitude of the effect that these observations have

on a regression model (Neter et al., 1996). Cook’s Distance was used to determine the influence

of observations initially screened as outliers.

Cook’s Distance, Di takes into account the effect of ignoring a given observation on all

predicted values:

Di =

n∑
j=1

(Ŷi − Ŷj(i))
2

pMSE
(2-5)

By default, R calculates Cook’s Distance for most component families of models (e.g., linear,

Generalized Linear, etc.) utilized in this study, and this was the primary statistic used to

determine the influence of outliers. Di was assumed to approximate an F distribution with n

and n− p degrees of freedom, and observations for which Di came close to the 50th percentile

of Fn, n−p were considered influential (Neter et al., 1996).
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3.0 Predicting the Probability of Stocking

Ferguson used simple logistic regression to predict the probability of a given plot being

stocked with at least one seedling.

3.1 Model Form and Fitting Techniques

Initial prediction of the probability of a plot being stocked with at least one seedling generally

followed this example. Probabilities were predicted in a generalized linear model (GLM) context,

using iteratively weighted least-squares (IWLS).

The simple binary logistic model with only fixed-effects and no interaction terms is shown

in Equation 3-1.

Pr(Y = 1|X) =
1

1 + e−Xβ
(3-1)

where X is a vector of predictor variables and β is a vector of coefficients.

The exponential family member was the binomial distribution, and the link function was

the canonical link (logit). The logit link function is shown in Equation 3-2:

ηi = log

[
πi

1− πi

]
= log

[
µi

1− µi

]
(3-2)

The logistic model retains the assumption of independent error terms. However, given that

the canonical link function was used, they are assumed to be binomially distributed.

The inclusion or exclusion of model terms was based on the following assumptions:

1. A conceptual model of the biological and physical processes leading to forest regeneration

should preclude and guide the initial inclusion of terms.

2. Given that the large volume of fitting data tends to result in models with proportionally

large numbers of degrees of freedom, statistical significance alone is not reason enough to

include (or retain) predictors.

3. Taking 1 and 2 into account, inclusion of terms was based on a demonstrated reduction

of model deviance relative to the null deviance (and taking into account the variation in

the number of degrees of freedom for largely different model forms).
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4. Term-wise transformations of each potential predictor were checked, in order to isolate

potentially parabolic, logistic, or otherwise non-linear relationships between response and

predictor.

5. In all cases, graphical methods were employed in order to seek out otherwise non-obvious

(but important) relationships between the response and predictor, and within and between

predictors (Harrell, 2001).

6. In the event that there is reason to believe error terms may not meet the assumption of

independence, correctly specifying their structure must preclude inference.

7. All else being equal, a simple model is assumed to be preferable over a complex one.

All models were fit using the statistical computer program R (R Development Core Team,

2004). Analysis of Deviance was used to test the significance of terms within a given model.

The deviance, D, of two models with p and t parameters, respectively, assuming the latter is

nested within the former, is approximately χ2 distributed with p−t degrees of freedom (Lindsey,

1997). Competing model comparison was thus performed in R with a χ2 test argument included

in the call to the anova.glm function. All terms of fit.0 were contained in fit.1 if step-wise

comparison was proceeding forward, and the opposite if comparison was conducted backwards.

As a similar, likelihood-based metric of within-model term contribution, Akaike’s Information

Criterion (AIC) was considered. The stepAIC function in R’s MASS library (Venables and Ripley,

1994) was used to compute the AIC for all generalized linear models.
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4.0 Modelling the Conditional Distribution of Stocked Plots

Ferguson and Carlson modelled the conditional distribution of stocked plots assuming a

two-parameter Weibull density. They asserted that the distribution of trees (per stocked plot)

is of greater utility than simple prediction of the mean. This is because a simple arithmetic

mean would largely underpredict response classes with the highest probabilities of occurrence

(plots with only one or a few ingrowth trees), and these are of primary interest.

The Weibull probability density function, shown in Equation 4-1, is a simplified form of the

three-parameter Weibull with the location parameter assumed to be equal to 0.

f(X) =
β

η

(
X

η

)β−1

e
−(X

η
)β

(4-1)

where η is the scale parameter, and β is the shape (or slope) parameter.

Ferguson and Carlson split the data into 96 groupings, and – assuming there were at least

25 plots within each group – estimated unique values of η and β for each. They also calculated

the mean values of potential plot-level predictors within each grouping. Then, simple linear

models were used to predict the Weibull parameters from mean site characteristics within each

grouping. In this way, a nice framework by which to predict stocking within FVS was developed.

The 96 categories resulted from clustering all combinations of the following divisions:

• 4 habitat type series: Pseudotsuga menziesii, Abies grandis, Thuja and Tsuga, and Abies

lasiocarpa.

• 4 Aspect classes: north +/− 45 degrees, east, south, and west.

• 3 Years-since-disturbance classes: 2-7 years, 8-12 years, and 13-20.

• 2 Temporal spruce budworm (Choristoneura fumifera (Clemens)) outbreak classes: 0-2

years, and 8-12 years.

4.1 Necessary Adaptations for Pacific Northwest Coast Variant

In keeping with the status quo, the Weibull was regarded as a good starting point for pre-

dicting the distribution of stocked plots. Given the large sample size and the discrete response

variable, other potential model forms are the Poisson and Negative Binomial. Based on the

large variance to mean ratio evident in the data, the Negative Binomial was considered to be

the most appropriate model.
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The utility of these probability distributions – the Poisson and the Negative Binomial, in

particular – was initially explored, though the Weibull provided the best fit to the complete

data. Early on, it became evident that it was necessary to make several simplifications of the

existing (e.g., North Idaho) ingrowth model. These included the following:

• Alternative grouping of data by forest characteristics (within which parameter prediction

took place).

• Elimination of the treatment of ingrowth as advanced, subsequent, or excess regeneration.

Each of these changes is discussed in further detail in the following sections.

4.1.1 Grouping of Data

Due to the very different structure of the fitting data from that used by Ferguson and Carlson

in building the North Idaho regeneration model, it was obviously necessary to develop alterna-

tive criteria for subsetting plot characteristics into groups. For example, there was no record of

spruce budworm defoliation in the PNW fitting data, nor was there a well-represented record of

disturbance history. Moreover, as mentioned in Chapter 1, a noticeably large proportion (20.8

%) of the avAspect variable were missing.

4.2 Fitting Techniques

Initial model choice was based on Chi-squared goodness-of-fit tests for several reasonable

candidate models. The counts of each unique number of ingrowth trees occurring on (non-

zero count) plots were tabulated. The expected response of each count’s occurrence under the

assumptions of Poisson, negative binomial, and Weibull distributions was calculated, and the

sum of squared residuals (observed - expected) were divided by the expected value for each cell

(or level). The sum of these deviances was compared with the critical value for a χ2 distribution

with k − 1 degrees of freedom, where k was the number of unique regeneration counts.

Parameters for each distribution were estimated using maximum likelihood. In the case

of the Poisson distribution, the mle is the sample mean. The negative binomial and Weibull

likelihoods were maximized using Ripley’s fitdistr function (Venables and Ripley, 1994),

which in turn calls optim. The maximum likelihood estimates for the size (n) and µ (mean)

parameters of negative binomial approximation to the complete, non-stocked data were 0.76

(s.d. = 0.02) and 8.47, (s.d. = 0.22) respectively. The maximum likelihood estimates for

the shape and scale parameters of the Weibull distribution were 0.77 (s.d.= 0.01) and 6.95

(s.d.=0.21), respectively.
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The number of counts having expected frequencies less than 5 for the Poisson model was

74. These were grouped (separately) for the Poisson, negative binomial, and Weibull models in

order to meet that criterion of the χ2 test. The fit of the Poisson was quite poor, and that of

the Weibull was better than the negative binomial.

The expected numbers of regeneration trees occurring at each observed level of stocking were

predicted, conditional on the assumption of Poisson, negative binomial, and Weibull distributed

response. Figure 4.1 shows the observed counts at each level, and the predicted counts for each

model. Although the Poisson and negative binomial are discrete distributions, lines connecting

predicted (discrete) values have been added to aid ease of distinction in areas where values

predicted by the models overlap severely in the upper tails.

It is reasonable to assume that the same clustering of the response variable within data

source, study, stand and plot that was addressed in predicting the probability of stocking

should also be accounted for in modelling the distribution of stocked plots. The assumption of

independent counts across these various grouping levels would be weak.

In order to account for the variability in the sampling designs, the methods of Ferguson

and Carlson (1993) were altered slightly. Where they split the stocked plot data into smaller

components according to habitat type, aspect and years-since-disturbance classes, and spruce

budworm defoliation history, we estimated unique Weibull parameters for each stand in the

data.

Initially, the plot was considered the most desirable candidate splitting variable, in that it

would capture the highest degree of variation in potential covariates. An effort was made to

estimate unique Weibull parameters for the regeneration counts occurring on individual plots

in time. However, this approach was found to be undesirable because the number of elements

(plot-years) in each grouping tended to be very small, such that the quality of parameter

estimation was poor. The standard errors of the ML estimates were approximately as large as

the estimates themselves.
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PART II: TWO-STAGE MODELS

The following 3 chapters describe alternative two-stage approaches that were tried for model

building. Within each section, the important model assumptions are described, the best fitting

model is presented - though in some cases there may be more than one - and the quality of the

best fitting model is assessed through numerical metrics and graphical diagnostics. In order to

limit confusion regarding the comparison of different models (e.g., y ∼ β0 +β1x1 ) and different

ways of organizing the data used in fitting these, I will use the convention that the former are

referred to as models and the latter as structures.

As with several other areas in the analysis, a few alternative solutions were examined here

in order to resolve violations of model assumptions stemming from heterogeneity in the survey

designs from which the fitting data were compiled.

In particular, two potential solutions to the problem of variable minimum diameters were

examined, as was an alternative definition of the response variable. The fitting data in each

chapter is referred to as a Structure, and are enumerated as follows:

• Exclude all trees1 with less than a constant minimum diameter threshold, and fit the best

two-stage model given the criterion listed in the previous sections.

• Leave trees of all diameters in the analysis. Include the term minEst (estimated minimum

diameter threshold) as a covariate, and fit the best model based on the criterion listed in

the previous section.

• Redefine which trees are considered regeneration based on a new set of criteria, and model

the standardized mean response for a given plot, rather than the simple count.

There was a somewhat chronological, evolutionary basis for the sequence of the structures2.

Although Structure 3 is, in principle, the most highly developed approach, the earlier attempts

are presented as distinct, credible efforts. The analyses have been re-visited several times in the

writing of this thesis. As would be expected, the different data structures resulted in different

amounts of variation being explained by individual covariates.

1Not plots.
2An evolutionary basis that was not independent of the author’s increasing familiarity with the complexity of

the data, nor of his education in basic statistical concepts.
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Table 5.1 Analysis of Deviance, Structure 1

DF Deviance Resid.DF Resid.Dev F Pr(>F)

NULL 5001 6409
log.qmd 1 21 5000 6389 21 5.4e-06
hab 3 544 4997 5845 181 < 2e-16
log.year 1 135 4996 5710 135 < 2e-16

5.0 Structure 1

5.1 Description and Assumptions

Initial analysis was conducted under the assumption that trees initially defined as forest

regeneration in the complete tree file were classified correctly. Trees with the variable status

equal to 2 were used to build predictive count models. The number of trees defined in this way

were tabulated for each year of measurement on each individual plot. All trees with diameters

less than the largest minimum diameter threshold (MDT) were excluded from analysis.

The plots were treated as independent sampling units selected from a population of possible

plots, each of which had an equal and independent probability of being selected.

The best two-stage model of the general form described in the previous chapter was con-

structed.

For the logistic regression predicting the probability of stocking with only trees greater than

5.0 cm in diameter included in the analysis the important predictors were the log of quadratic

mean diameter, habitat type, and the log of the measurement year. The results are shown in

the analysis of deviance in Table 5.1.

5.2 Probability of Stocking

Important predictors of the probability of any regeneration stocking for Structure 1 were the

log of quadratic mean diameter (qmd), habitat type hab and the log of the mean year (year) of

sampling. The coefficients for this model are shown in Table 5.2, and their relative importance

in reducing model deviance is shown in Table 5.1.
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Table 5.2 Coefficients for logistic model, Struc-
ture 1

Estimate SE z Pr(> |z|)

(Intercept) -384 35 -11 < 2e-16
log.qmd -0.095 0.038 -2.5 0.012
habPISI 2.6 0.14 19 < 2e-16
habPSME 1.6 0.22 7.6 4.2e-14
habTSHE 1.9 0.12 16 < 2e-16
log.year 50 4.6 11 < 2e-16

5.3 Conditional Distribution of Stocked Plots

In the second stage of analysis, Weibull distribution parameters (2) were estimated for each

of 91 stands (of the 120 total possible) in the data. Then, linear regression models were con-

structed to predict the Weibull parameters (separately) from the means of potential covariates.

Stands excluded from this analysis, either due to not being stocked or because of insufficient

data, are shown in Table 5.3.

5.3.1 Shape Parameter

Several models predicting the shape parameter were evaluated. No Multiple-R2 value was

greater than 0.13. This model had only the intercept and the Picea sitchensis habitat type

included. No other terms were significant. A scatterplot matrix of the shape parameter and

the log of the shape parameter against all possible predictors revealed no obvious relationships,

although clear correlations exist between covariates. The scatterplot matrix of a few possible

surrogates for competition effects (basal area, relative density, quadratic mean diameter, and

total number of trees) is shown in Figure 5.2.

Scatterplot matrices were used to explore various bivariate relationships. They were used as

a tool to visually identify potential relationships (e.g., linear, quadratic, logarithmic) between

the response variable – in this case the Weibull shape parameter – and potential predictors. They

were also used to visually identify relationships between covariates. For example, Figure 5.2

shows that the total basal area per hectare represented by a given plot (totbamha) appears to

share a fairly positive linear relationship with Curtis’ relative density index (rd), as we would

expect. This suggest a multi-collinearity problem if both variables were to be included in a

model. A complete matrix of all predictors was too large to include in this document, but

revealed no stronger relationships between B (or logB) and any covariate.
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Annual future regeneration count (stems per hectare)
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Figure 5.1 Histogram of mean annual regeneration counts per hectare (stocked plots), Struc-
ture 1
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Table 5.3 Stands excluded from sec-
ond stage of analysis, Structure 1

No regeneration Insufficient data

CH06
CH09

CH41
CH42

GP02
RS28S
RS32L

RS32S
SI04
SI05

SI06
SI07
SI08
SI09
SI10
SI20

TA01
TB13L

TB13S
TO11L

W21A
W21B
W38B
WC10
WC4
WI05
WP17
WP20
WP6A



25

Scatter Plot Matrix
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Figure 5.2 Example scatterplot matrix used in shape parameter prediction, Structure 1
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An ANOVA table for this model is shown in Table 5.4.

Table 5.4 Analysis of Variance table for
model predicting shape parameter, Structure
1

DF SS MS F Pr(> F)

habPISI 1 11 11 13 0.00047
Residuals 89 76 0.85

The coefficients for this model are shown in Table 5.5. Inclusion of terms other than the

intercept and the Picea sitchensis habitat type would be arbitrary.

Table 5.5 Coefficients for model predicting
shape parameter, Structure 1

Estimate SE t Pr(>|t|)

(Intercept) 2 0.11 18 < 2e-16
habPISI -0.81 0.22 -3.6 0.00047

5.3.2 Scale Parameter

Prediction of the Weibull scale parameter was initially performed via a Box-Cox transfor-

mation of the response variable due to extreme non-normality (based on a Normal QQ-plot of

residuals) and heteroscedasticity of the residuals (plotted against fitted values). The value of

λ̂ minimizing the model (negative) log-likelihood was -0.01. Because 0 was contained in the

confidence interval on λ̂, the log transform was used instead. The final model chosen is shown

in Equation 5-1. This model, with the log of Ĉ predicted from the log of quadratic mean diam-

eter, had a multiple R2 of 0.24 and a RMSE1 of 8.21. The total number of trees in each plot

(variable ntrees) was highly significant when included as a covariate and increased the amount

of variation explained by the model by almost 100 %. This term was unacceptable because it

is not standardized to the per-hectare level. The corresponding per-hectare covariate, trees per

hectare (tph), was not significant.

log(ĉ) = β0 + β1 log qmd (5-1)

An ANOVA table for this model is shown in Table 5.6.
1Based on the untransformed predicted values.
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Figure 5.3 Residual plots for model predicting shape parameter, Structure 1

Table 5.6 Analysis of Variance table for
model predicting scale parameter, Structure
1

DF SS MS F Pr(> F)

log.qmd 1 37 37 28 9.8e-07
Residuals 89 120 1.3



28

The coefficients for this model are shown in Table 5.7.

Table 5.7 Coefficients for model predicting scale
parameter, Structure 1

Estimate SE t Pr(>|t|)

(Intercept) 2.4 0.33 7.3 9.4e-11
log.qmd -0.035 0.0066 -5.3 9.8e-07

Residual plots for this model are shown in Figure 5.4.
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Figure 5.4 Residual plots for model predicting scale parameter, Structure 1
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6.0 Structure 2

6.1 Description and Assumptions

In this structure, all trees initially defined as regeneration were included in analysis, re-

gardless of minimum diameter threshold. The minimum diameter thresholds for each stand

(and in some cases, each plot) were estimated using primarily visual methods. Regeneration

trees1 were extracted from the large tree file, and their diameters at breast height (dbh) were

plotted separately by stand or plot2.

For each of these plots, estimates of the minimum diameter at which trees were measured

were made by plotting a simple horizontal line at the minimum observed value of dbh, and

visually judging that this line was not the result of possible measurement, recording, or tabula-

tion error. These plots were generally quite easy to interpret due the large volume of data. For

example, a large dense band of points at 5.0–5.5 cm in many cases (and no points below this

band) suggested beyond reasonable doubt that the MDT for the stand in question was 5.0 cm.

Each of the 5 levels of the minEst variable estimated by this method correspond to common

whole number MDT values in either metric or American Standard units.

6.2 Probability of Stocking

For the binomial GLM with all trees included regardless of minimum diameter threshold,

the log of quadratic mean diameter, habitat type, and the log of measurement year were the

key predictors. All were significant with p-values less than 2.2e− 11. The results are shown in

the Analysis of Deviance table in Figure 6.1. The minimum diameter threshold term (minEst)

was significant.

Table 6.1 Analysis of Deviance, Structure 2

Df Deviance Resid. Df Resid. Dev F Pr(>F)

NULL 5001 6850
log.qmd 1 292 5000 6558 292 < 2e-16
hab 3 709 4997 5849 236 < 2e-16
log.year 1 161 4996 5688 161 < 2e-16
minEst 1 45 4995 5643 45 2.3e-11

1With variable status= 2.
2For stands in which earlier information made clear that MDT within the stand was known to be inconsistent

(Pabst, Pers. Comm.)
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The coefficients for this model are shown in Table 6.2.

Table 6.2 Coefficients for logistic model, Struc-
ture 2

Estimate SE z Pr(> |z|)

(Intercept) -476 36 -13 < 2e-16
log.qmd -1.7 0.1 -16 < 2e-16
habPISI 2.9 0.14 21 < 2e-16
habPSME 1.4 0.2 6.7 1.8e-11
habTSHE 2.2 0.11 20 < 2e-16
log.year 63 4.7 13 < 2e-16
minEst 0.29 0.044 6.6 3.6e-11

A count histogram of plots having at least one regeneration tree per hectare before the

subsequent plot remeasurement is shown in Figure 6.1.

6.3 Conditional Distribution of Stocked Plots

25 stands were not included in the analysis. 16 of these had no observed regeneration

counts at any time. 9 stands – CH41, CH42, RS28S, RS28L, SI06, TA01, TB13S, TO11L and

WC10 – were excluded due to insufficient data necessary for maximization of the log-likelihood

function in parameter estimation. Additionally, the standard errors of estimated parameters

were compared with the estimates themselves for high coefficient of variation. It was not

necessary to exclude any stands based on this criteria.

Scatterplot matrices of the shape and scale parameters (and the log transformations of these)

with 14 candidate predictors were examined for potential linear relationships. Although obvi-

ous correlations were evident among predictors, relationships between Weibull parameters and

covariates were weak to non-existent. An example scatterplot of the Weibull shape parameter,

the log of the shape parameter, and 5 possible predictors is shown in Figure 6.2.

Several linear models predicting the parameters, the log of the parameters, and Box-Cox

transformations of the parameters were explored.

6.3.1 Shape Parameter

The best model predicting the Weibull shape parameter was a simple linear regression of

the Box-Cox transformed shape parameter predicted from quadratic mean diameter and the

Picea sitchensis habitat type, with no interaction term:
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Figure 6.1 Histogram of mean annual regeneration counts per hectare (stocked plots), Struc-
ture 2
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Table 6.3 Stands excluded from sec-
ond stage of analysis, Structure 2

No regeneration Insufficient data

CH06
CH09

CH41
CH42

GP02
RS28S

RS32S
RS32L

SI04
SI05

SI06
SI07
SI08
SI09
SI10
SI20

TA01
TB13L

TB13S
TO11L

W21A
WC10

WI05
WP17
WP20
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Figure 6.2 Example scatterplot matrix used in shape parameter prediction, Structure 2
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b̂λ = β0+β1qmd + β2habPISI (6-1)

where b̂ is the mle estimate of the Weibull shape parameter, λ is the optimized value of

the Box-Cox transformation of bij , β0, β1 and β2 are coefficients, and qmd and habPISI are

quadratic mean diameter and habitat type (either PISI series or not), respectively.

The coefficients for this model (and their standard errors) are shown in Table 6.4.

Table 6.4 Coefficients for model predicting shape
parameter, Structure 2

Estimate SE t Pr(>|t|)

(Intercept) 0.99 0.037 27 < 2e-16
qmd -0.0037 0.00075 -5 2.5e-06
habPISI 0.18 0.034 5.4 6.3e-07

The Box-Cox transformation of the shape parameter was used because plots of the residuals

for this model against the fitted values revealed a high degree of heteroscedasticity, thereby

violating the linear regression assumption of constant residual variance. The Box-Cox transfor-

mation substantially improved the residual against fitted plot, as is evident in Figure 6.3.

An ANOVA showing the relative importance of predictors in reducing the mean-squared

error for this model is shown in Table 6.5.

Table 6.5 Analysis of Variance table for
model predicting shape parameter, Structure
2

DF SS MS F Pr(> F)

qmd 1 0.36 0.36 18 5.1e-05
habPISI 1 0.57 0.57 29 6.3e-07
Residuals 92 1.8 0.02

6.3.2 Scale parameter, Model 1

Models predicting the Weibull scale parameter were generally better than models predicting

the shape parameter. However, determining the relative importance of predictors – and thus

the best model – was difficult due to their being highly correlated with one another.
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Figure 6.3 Residual plots for model predicting the shape parameter, Structure 2
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An initial model was constructed with the log of quadratic mean diameter, the year of

sampling, the total number of trees in the stand or plot, and the Picea sitchensis and Tsuga

heterophylla habitat type series:

ĉ = β0 + β1 ∗ log(qmd) + β2 ∗ mean.year + β3 ∗ ntrees (6-2)

where ĉ is the mle estimate of the Weibull scale parameter, β0, β1, β2 and β3 are coefficients

or vectors of coefficients, and all other variables are as previously defined. This model had a

Multiple-R2 of 0.6458. The RMSE for the model was 12.73, indicating high expected average

variation in scale parameter predictions.

More importantly, residual plots for the model showed substantial violations of linear re-

gression assumptions. The residual vs. fitted values plot in Figure 6.4 shows extreme het-

eroscedasticity, signifying failure of the constant residual variance assumption. The Normal

QQ plot is not straight, providing evidence that the assumption of Gaussian-distributed error

terms is not justified. Plots of individual predictors against C (Not shown here) suggested that

the fundamental assumption of a linear relationship between X and Y was weak, at best.

The coefficients for this model (and their standard errors) are shown in Table 6.6.

Table 6.6 Coefficients for Model 1 predicting
scale parameter, Structure 2

Estimate SE t Pr(>|t|)

(Intercept) -1146 190 -6 3.4e-08
log.qmd -34 2.8 -12 < 2e-16
mean.year 0.64 0.098 6.6 3.1e-09
habPISI 14 4.8 2.8 0.0058
habTSHE 19 4.4 4.5 2.4e-05
ntrees -0.03 0.0064 -4.6 1.4e-05

An ANOVA showing the relative importance of predictors in reducing the mean-squared

error for this model is shown in Table 6.7

6.3.3 Scale Parameter, Model 2

In an effort to resolve violations of the assumed Normality and constant variance of error

terms, an alternative model predicting the Weibull scale parameter for Structure 2 was consid-

ered. A Box-Cox transformation of the response variable was performed, and the same model

discussed in the previous section was fit, with the response (C) raised to the optimal value of λ̂.
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Figure 6.4 Residual plots for Model 1 predicting scale parameter, Structure 2

Table 6.7 Analysis of Variance table for Model 1
predicting scale parameter, Structure 2

DF SS MS F Pr(> F)

log.qmd 1 14689 14689 91 3.2e-15
mean.year 1 5254 5254 32 1.6e-07
habPISI 1 222 222 1.4 0.24
habTSHE 1 2731 2731 17 9.0e-05
ntrees 1 3417 3417 21 1.4e-05
Residuals 89 14431 162
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The resulting model had substantially more homoskedastic error terms 3, as is shown in

Figure 6.5. However, the quantiles of the errors were still noticeably non-Normal. The relative

importance of the predictors was altered. Because the estimate of λ̂ was close to zero (0.2), the

log transform of the response was used:

log(c) = β0 + β1 ∗ log(qmd) + β2 ∗ habPISI + β3 ∗ ntrees (6-3)

The average year of sampling (mean.year), the Tsuga heterophylla habitat type (habTSHE)

and the Picea sitchensis habitat type were no longer significant. Although ntrees was signif-

icant, this variable depends very strongly on plot size, which is inconsistent throughout the

data. Because the significance of the term was most likely an artifact of the data and not the

biological process, and because the estimated coefficient for this term was very small (less than

0.01), the term was not included.

Table 6.8 Analysis of Variance table for
Model 2 predicting scale parameter, Structure
2

DF SS MS F Pr(> F)

log.qmd 1 85 85 63 4.1e-12
Residuals 93 125 1.3

The RMSE for this model – calculated by taking the exponent of the predicted values –

was slightly lower than that for the model without the transformed response, and the model

is preferable due to the improved residual distribution. The RMSE for this model was 15.47,

as compared with 12.73 (on 89 degrees of freedom) for the non-transformed response model.

Model coefficients and their standard errors are shown in Table 6.9.

Table 6.9 Coefficients for Model 2 predicting
scale parameter, Structure 2

Estimate SE t Pr(>|t|)

(Intercept) 6.9 0.75 9.2 9.9e-15
log.qmd -1.6 0.2 -8 4.1e-12

3Plotted against fitted values.
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Figure 6.5 Residual plots for Model 2 predicting scale parameter, Structure 2
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7.0 Structure 3

7.1 Description and Assumptions

In the analysis discussed in this chapter, changes to the fitting data structure and model

form were made. The rules by which trees were determined to be regeneration were changed

and the first stage of the prediction model was treated in a mixed-effects modelling paradigm.

7.1.1 Change in data structure: a newly defined and standardized response

In this structure, it was assumed that the grouping of plots of variable size and remeasure-

ment time as independent samples violated fundamental axioms of probability and, stemming

from this, a basic assumption of linear regression. A plot 1 hectare in size is more likely to have

regeneration than a 0.10 hectare plot, and a plot visited 20 years after the previous sampling

has a higher probability of regeneration occurring than a plot visited only 3 years later.

The data were again arranged such that the total number of trees defined as forest regen-

eration at the subsequent measurement (variable name num.regen) were aligned horizontally

(in rows) with potential predictors measured at the previous plot visit. Only one predictor,

the number of years between sampling visits (variable time), contained information from the

subsequent visit. Observed covariates for the final year of measurement of a given plot were

not included in analysis, because these years had no corresponding response variable. (Future

regeneration not having occurred yet).

As an alternative to grouping plots of variable size and remeasurement time as independent

samples, it was assumed that standardizing the predicted future regeneration, denoted R, for

all plots would reduce the likely correlations that existed between adjacent responses (yi). To

account for the variations in plot size and remeasurement time, the mean annual count of future

annual regeneration per hectare for an individual visit to a given plot was modelled:

R =
10
na

n∑
i=1

m∑
j=1

yij (7-1)

where R is the annual ingrowth per hectare for a plot visit, a is the plot area in hectares, m

is the total number of ingrowth trees observed, n is the number of years between plot samplings,

and yij is the jth regeneration tree counted in the ith year.

The 10 year interval was chosen over annual predicted regeneration as a programming con-

venience because the Forest Vegetation Simulator functions primarily in 10 and 20 year loops.
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In order to extract the maximum possible information from the large tree file, a program

was written to extract all trees greater than or equal to 5.0 cm dbh, regardless of how large

they were when they were first recorded.

This is different from simply excluding all diameters below 5.0 cm (as in Structure 1) because

some proportion of these trees surpass the 5.0 cm threshold at a later time that is contained in

the overall sampling period for the plot recorded in the large tree file. For this reason, simply

deleting records based on their initial inclusion criterion is wasteful (in the sense that it results

in a loss of useable information).

For this reason, the initial definition of regeneration (variable status = 2) was ignored, and

a new set of characteristics by which to define regeneration was constructed. Trees considered

regeneration had all of the following characteristics:

• Trees not measured in the first year of sampling for any plot.

• Trees whose dbh was greater than or equal to 5.0 cm.

• Trees whose dbh at the previous plot visit was less than 5.0 cm.

7.1.2 Change in Model Form: a Mixed-Effects Logistic Regression

Although the preceding definition of the response variable is a large step in the direction

of standardization, defining regeneration counts in this way does not resolve the tendency for

multiple measurements made on a given plot to be more similar than measurements made on

separate plots. Similarly, measurements on plots made within a given stand or study tend to

have more in common than measurements made on plots from separate stands or studies.

For this reason, treatment of the sampling unit - the variable plot - as a random effect,

seemed desirable. Pinheiro and Bates (2000), Shabenberger and Pierce (2002), Robinson and

Ek (2000) and others have suggested mixed effects models for situations in which there is a

necessary hierarchical structure to the data.

7.1.3 Model Description

For the first stage model predicting the probability of stocking, a mixed effects logistic

regression model was fit using penalized quasi-likelihood (PQL). PQL is an approximate infer-

ential method used in generalized linear mixed models (GLMM) to simplify what are often very

intensive computational requirements. PQL assumes a Normally distributed random effect in

the linear predictors. The algorithm used to construct PQL estimates is similar to that used

for iteratively re-weighted least-squares (IWLS), and was conceived of as an approximation to
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true maximum likelihood estimation through numerical integration. (Breslow, 2003; Venables

and Ripley, 1994).

The response variable was indicator of any future annual future regeneration per hectare

for a given plot (mean.regen.acre.year). The variable plot was treated as a random effect,

and a separate intercept was estimated for the logistic regression lines corresponding to each

observed level of this predictor. The hierarchical structure of the data was assumed to have

3 levels of nesting, with stand nested in studyID and studyID nested within dataCode. An

autocorrelation model of the same nesting structure was added. The decision to include this

model component was based on the following criteria:

• An initial conceptual justification for the possibility that autocorrelated error terms still

presented a potential violation of (all fixed effects) model assumptions.

• A significant test of the ratios of the likelihoods of the data given equations excluding and

including (respectively) the autocorrelation model.

7.2 Probability of Stocking

The most important predictor in the first stage model was the log of quadratic mean di-

ameter (log.qmd). Remeasurement time (time), trees per hectare tph and estimated minimum

diameter threshold (minEst) were initially included in the model but were later removed either

due to the statistical or practical insignificance of their effects. The estimated intercept and

log.qmd coefficient are shown in Table 7.1.

Table 7.1 Fixed-effects coefficients for lo-
gistic model predicting probability of stock-
ing, Structure 3

Value SE DF t Pr....t.

5.9 0.61 4881 9.7 < 2.22e-16
-1.9 0.15 4881 -13 < 2.22e-16

A count histogram of plots having at least one regeneration tree per hectare before the

subsequent plot remeasurement is shown in Figure 7.1.
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Figure 7.1 Count histogram of mean annual regeneration per hectare (stocked plots), Struc-
ture 3
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7.3 Conditional Distribution of Stocked Plots

In the second stage, the conditional distribution of stocked plots were again modelled under

the distributional assumption of a two-parameter Weibull. Plots with 0 counts of regeneration

were excluded from analysis. Weibull scale and shape parameters were estimated for each of 95

stands (variable stand) using maximum likelihood estimation, as were the means of all possible

observed predictors.

7.3.1 Shape parameter

Important predictors of the Weibull shape parameter in Structure 3 were the log of quadratic

mean diameter (qmd) and the Picea sitchensis habitat type (habPISI). A Box-Cox transforma-

tion of the response was used, with λ̂ = −0.64. The final model contained an intercept and

coefficients for main effects only (no interaction term). This model is shown in Equation 7-2.

b̂λ = β0 + β1qmd + β2habPISI (7-2)

The coefficients for this model are shown in Table 7.2.

Table 7.2 Coefficients for model predicting
shape parameter, Structure 3

Estimate SE t Pr(>|t|)

(Intercept) 1.6 0.13 13 < 2e-16
log.qmd -0.24 0.035 -6.8 8.2e-10
habPISI 0.29 0.05 5.9 5.7e-08

Residual plots for this model are shown in Figure 7.2, The assumption of constant variance

of the error terms is not well justified. There are several points on the range x = [0.5, . . . , 0.9]

that are noticeably closer to the fit line than exist in the higher range of x = [0.9, . . . , 1.1] (a

fan shape). The Normal QQ-plot shows that the error terms are heavier-tailed than would be

expected were they normally distributed.

The relative importance of predictors in explaining the variation in B is shown in the ANOVA

in Table 7.3.
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Figure 7.2 Residual plots for model predicting shape parameter, Structure 3

Table 7.3 Analysis of Variance table for
model predicting shape parameter, Structure
3

DF SS MS F Pr(> F)

log.qmd 1 1.6 1.6 38 1.8e-08
habPISI 1 1.5 1.5 35 5.7e-08
Residuals 98 4.2 0.043
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7.3.2 Scale parameter

Several models predicting the scale parameter were evaluated. Initially, C was predicted

directly, and a fairly complex model with 6 parameters (intercept, and coefficients for qmd,

mean.year, ntrees, origin, and qmd:totbamha) was constructed. This model is shown in

Equation 7-3.

ĉ = β0 + β1qmd + β2mean.year + β3ntrees + β4origin + β5qmd*totbamha (7-3)

Although all terms in this model were significant at least the 0.05 level, residual plots for

the model were very poor. Moreover, plots of individual predictors against C suggested that the

basic assumption of a linear relationship between predictor and response was ill-founded.

In order to normalize and reduce heteroscedasticity of the residuals, a Box-Cox transforma-

tion of the response variable was implemented. The straightness of the Normal QQ-plot was

improved noticeably, and the plot of residuals against fitted values was acceptably homoskedas-

tic. However, after transforming the response variable, the relative importance of several terms

(totbamha, mean.year, origin, qmd:totbamha) in explaining the variation in C became negli-

gibly small. In addition, the optimal value of the Box-Cox transformation, λ̂, minimizing the

negative log-likelihood of y was extremely close to zero (λ̂ = −0.1). For these reasons, the

simple log transformation of y was considered to be sufficient.

The final, simplified model chosen is shown in Equation 7-4. Important predictors of C in

the final model chosen for Structure 3 were the log of quadratic mean diameter (qmd) and the

Picea sitchensis habitat type (habPISI). The model form was as follows:

log(ĉ) = β0 + β1qmd + β2habPISI (7-4)

This model had an RMSE1 of 107.32. Residual plots for the final model are shown in

Figure 7.3.

The coefficients for this model predicting the Weibull scale parameter are shown in Table 7.4.

The relative importance of predictors in explaining the variation in C is shown in the ANOVA

in Table 7.5.

1Calculated after untransforming (taking the exponent) of the predicted values.
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Figure 7.3 Residual plots for model predicting scale parameter, Structure 3



49

Table 7.4 Coefficients for model predicting
scale parameter, Structure 3

Estimate SE t Pr(>|t|)

(Intercept) 9.8 0.69 14 < 2e-16
log.qmd -1.8 0.19 -9.7 6.9e-16
habPISI 0.7 0.26 2.7 0.0091

Table 7.5 Analysis of Variance table for
model predicting scale parameter, Structure 3

DF SS MS F Pr(> F)

log.qmd 1 108 108 88 2.4e-15
habPISI 1 8.6 8.6 7.1 0.0091
Residuals 98 119 1.2
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7.4 Anova Model

In order to determine whether any of the relatively complex models constructed in this and

the preceding two chapters had noticeably improved predictive power over a simple, tabular,

mean response model, a simple analysis of variance (ANOVA) regeneration model was consid-

ered. In this framework, all predictors were nominal (factor) variables, and the usual linear

regression assumption restrictions were relaxed. Rather, the response was assumed to be the

simple arithmetic mean for a given factor - or interaction of factors - level.

Continuous predictors were made into class variables by establishing 10 divisions based on

observed deciles. In the case of quadratic mean diameter (qmd), for example, the observed

deciles are shown in Table 7.6.

Table 7.6 Observed
deciles used to establish
quadratic mean diameter
classes

Decile Value

1 1 7.98991
2 2 13.61509
3 3 22.77030
4 4 34.37591
5 5 42.90312
6 6 48.78177
7 7 54.77401
8 8 59.82723
9 9 67.16616
10 10 113.11009

Any observations with values of quadratic mean diameter less than the first decile were

in qmd Class 1, any values between the first and second decile were in Class 2, and so forth.

The same procedure was used with trees per hectare, total basal area, total number of stems,

and total number of mortality in the preceding measurement interval. Because they have

consistently been the most important predictors, habitat type and quadratic mean diameter

class were included in all models. Then, each of the other constructed class variables was

included, as was its interaction. Two other factors, origin (plant or natural), and coastal

proximity2 were also included.
2A definition of this variable is in the appendix.
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The best model, based on a relevant reduction in root mean-squared error, is the simple

ANOVA including habitat type and quadratic mean diameter class, with no interaction term:

R = β0 + β1hab + β2qmdClass (7-5)

Each of the four habitat types and each of ten quadratic mean diameter classes were highly

significant with p-values less than 2e-16.

Quadratic mean diameter was substantially more important in explaining the variation in

the observed mean regeneration per hectare. The relative explanatory power of the two are

shown in Table 7.7.

Table 7.7 Analysis of Variance model, Structure 3

DF SS MS F Pr(> F)

hab 3 377573 125858 105 <2e-16
qmdClass 9 5896491 655166 545 <2e-16
Residuals 4989 5999732 1203

The lower 5 qmd classes explain the majority of model variation, suggesting that a model

with quadratic mean diameter divided into less classes would result in similar predictions.

One positive characteristic of the ANOVA model as compared with the regression-based

approaches discussed in earlier sections, is that the assumption of a linear relationship between

predictor and response is relaxed. The cell means for the observed levels of X and Y are of

interest, and not the relationship between these levels.
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PART III: SIMULTANEOUS FITTING

In recent years, the popularity of Zero-Inflated Poisson regression has increased as an al-

ternative to the two-stage approach to modelling count data that was utilized in the previous

chapters.

7.5 Finite Mixture Regression

The zero-inflated model is a special case of what are more generally called Finite Mixture

Regression (FMR) count models. This family assumes that a random variable, yi, was drawn

from a mixture of C populations. Each population exists in some proportion, πj , in a su-

perpopulation. Cameron and Trivedi (1998) explain that the superpopulation is “an additive

mixture of C distinct populations in proportions π1, . . . , πC ,” where
∑C

j=1 πj = 1 and πj ≥ 0.

They provide the following equation for the mixture density:

f(yi | Θ) =
C−1∑
j=1

πjfj(yi | θj) + πCfC(yi | θC) (7-6)

The first term on the right-hand side of Equation 7-6 is the individual mixing probability, πj

times the density of the component population, fj(yi | θj) (Cameron and Trivedi, 1998). The

mixing probability in the second term, πC , is equal to 1− πj and fC(yi | θC) is the alternative

density function. Because the πj ’s (and πC ’s) are unknown, these must be estimated along with

other unknown parameters. It is conventional to parameterize the model via the logit function,

such that πj = exp(λj)/(1 + exp(λj)). λj is then modelled as a function of observed predictors

(Cameron and Trivedi, 1998).

Although it is possible to assume component populations with different distributions, it is

most common to assume they are the same.

7.6 Zero-Inflation

Zero-Inflated Poisson (ZIP) and Zero-Inflated Negative Binomial (ZINB) models are a spe-

cial case of Finite Mixture Regression, in which two component densities are not assumed to

be the same. Rather, some of the component populations are presumed to come from a point

mass or degenerate distribution defined only at zero.

Lambert (1992) described the Zero-Inflated Poisson distribution, which assumes a mixture

of the Poisson and zero categories of random variables. Because the steps involved in deriving
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the ZIP and ZINB likelihood functions are quite similar, only the ZIP will be considered in

the following explanation. In the simplest ZIP parameterization, the mixture and Poisson

parameters depend on different covariate vectors. The random variables Y = (Y1, . . . , Yn) have

the properties that

Yi ∼ 0 with probability pi

Yi ∼ Poisson(λi) with probability 1− pi

and

Yi = 0 with probability pi + (1− pi)e−λi (7-7)

Yi = x with probability (1− pi)e−λiλx
i /x!, (7-8)

for x = 1, . . . , n.

The mixture (binomial) parameter, p = p1, . . . , pn, and the Poisson parameter, λ = λ1, . . . , λn

are not modelled directly. Rather, the logit and log links of the parameters (respectively) are

employed. These are the canonical link functions for binomial and Poisson generalized linear

models (GLM’s) (Lindsey, 1997). The parameters are related to distinct covariate matrices B

and G and their corresponding coefficient vectors, β and γ in the following way:

logit(p) = log
(

p
1− p

)
= Gγ

log(λ) = Bβ

The likelihood function for the ZIP model is constructed from equations 7-7 and 7-8. First,

the link functions are solved for p and λ:

log
(

p
1− p

)
= Gγ

p/(1− p) = eGγ

p = eGγ − peGγ

p + peGγ = eGγ

p =
eGγ

1 + eGγ
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and

log(λ) = Bβ

λ = eBβ

Then, substituting these into the combined density function, we get the likelihood (Lambert,

1992; Qin et al., 2003):

l(β, γ; y) =
∏
yi=0

{pi + (1 + pi) exp(−λi)}
∏
yi>0

{(1− pi) exp(−λi)λ
yi
i /yi!}

=
∏
yi=0

{ exp(Giγ)
1 + exp(Giγ)

+
1

1 + exp(Giγ)
exp(− exp(Biβ))}

∏
yi>0

{ 1
1 + exp(Giγ)

exp(− exp(Biβ))[exp(Biβ)]yi/yi!} (7-9)

=
∏
yi=0

1
1 + exp(Giγ)

{exp(Gγ) + exp(− exp(Biβ))}

∏
yi>0

1
1 + exp(Giγ)

{exp(− exp(Biβ))[exp(Biβ)]yi/yi!} (7-10)

= {
n∏

i=1

1
1 + exp(Giγ)

}
∏
yi=0

{exp(Giγ) + exp(− exp(Biβ))}

∏
yi>0

{exp(− exp(Biβ))[exp(Biβ)]yi/yi!} (7-11)

The log of this function simplifies to the log-likelihood shown in Equation 7-12.

L((β, γ; y) =
∑
yi=0

log(exp(Giγ)) + exp(− exp(Biβ)) +
∑
yi>0

(yiBiβ − exp(Biβ))

−
n∑

i=1

log(1 + exp(Giγ))−
∑
yi>0

log(yi!) (7-12)

7.7 Zero-Inflated Models in the Literature

There are many examples of Zero-Inflated Poisson models in the literature. Their lineage

can be traced back to the Finite Mixture modelling literature, of which the earliest reference

by most accounts is Pearson (1894). Pearson’s treatment of measurements made on crabs as
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a mixture of two normally distributed random variables (representing two species) was early

evidence in support of evolutionary theory.

The ZIP acronym is a catch-all that has been employed to mean different things in different

situations. This can become confusing when a fundamental description of the fitting structure

is not described early on in a paper, but the term ZIP is used as though it could refer to only

one model parameterization. This is in part due to the fact that several parameterizations and

several special cases are available in ZIP regression. For example, a simplified likelihood and

slightly different fitting methods are possible when both the mixture parameter (p) and the

Poisson parameter (λ) are predicted from the same covariate matrices (Hall, 2000; Lambert,

1992). On the other hand, p and λ may depend on entirely different predictors, in which case

the likelihood is slightly more complex.

Lambert’s parameterization of the ZIP was fit using the EM algorithm (Lambert, 1992).

Hall (2000) developed Zero-Inflated Binomial (ZIB) regression models and ZIP and ZIB models

incorporating both fixed and random effects in order to model the control of silverleaf white-

flies on poinsettia plants via subirrigated pesticide applications. In the same paper, Hall also

suggested a hierarchical structure in which to view Lambert’s printed wiring board data, such

that mixed-effects were appropriate for analysis. He demonstrated that his mixed-effects ZIP

model provided a better fit than Lambert’s all fixed-effects approach.

Cheung (2002) wrote an elegant paper on the utility of one of Lambert’s original model con-

structions in the analysis of an infant growth and development study. The count response was

the number of blocks in block towers built by toddlers, and the mixture parameter represented

the probability of stacking a critical number of blocks used as a traditional test of developed

abilities.

The models described by Hall were fit in a fashion very similar to those developed by

Lambert, using the EM algorithm. Yau and Lee (2001), however, suggested an alternative

parameterization of the mixed-effects ZIP model that could be fit using the Newton-Raphson

algorithm. Their example was a study analyzing the success of Workplace Risk Assessment

Teams (WRATS) in reducing injuries among hospital workers.

In describing attempts at modelling the abundance of Leadbetter’s Possum, Welsh et al.

(1996) provided an excellent summary of the (often confusing) differences between some of the

standard conditional and mixture approaches to modelling over-dispersed data.
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7.8 A Zero-Inflated Negative Binomial Regeneration Model

Several models involving either the simultaneously fit ZIP or ZINB were examined. These

were fit to the complete mean-response greater than 5.0 cm regeneration data defined and

described as Structure 3. In all cases, the ZINB models were better. The non-linear algorithms

used to estimate mixture and location parameters for these failed to converge for the majority

of the ZIP variants.

Standardized regeneration rates were rounded in order to fit these discrete models.

Convergence was successful for several of the ZINB models, and the quality of the fit of

one of the simplest of these was quite good. In order to clarify description of this model, I

will refer back to the earlier section (9.2) of this chapter titled Zero-Inflation. In that section,

a parameterization of the ZIP model was described in which the Poisson parameter, λ, and

mixture parameter, p, depend on unique vectors of covariates. However, a few other possible

parameterizations of the model exist as well. It is possible, for example, for both p and λ to

depend on the same vector of covariates. It is also possible for either λ or p to depend on a

vector of covariates, and for the other parameter to be estimated empirically as an unknown.

The model discussed in the following paragraph is of the latter form; only the location

parameter varies as a function of covariates. Moreover, where there were only two parameters

in the ZIP model previously discussed (λ and p), there is one additional parameter in the

ZINB. This is because the Poisson parameter, λ, represents - by definition - both the mean and

variance of the random variable. The Negative Binomial distribution has two parameters, one

estimating the location of the center of the data, and the other the shape (or variance).

This simple ZINB regression model with covariates predicting the location parameter (but

not the mixture parameter) as a linear function of the log of quadratic mean diameter and

habitat type had an AIC of 9994.4. This was a very minor improvement over the ZINB with

the first term (log.qmd) included (AIC=10249.59 )

Several more complex models with separate covariate vectors predicting the mixture param-

eter were attempted, as well as models with both the mixture and location parameter estimated

as a function of the same covariates. Some of these converged, though most did not. For those

that did, the estimated standard error of the mixture parameter was very large. The parameter

estimates (and their standard errors) for the simple model with log.qmd as the sole predictor

are shown in Table 7.8.

Some simple relationships in a correlation matrix of the parameter estimates from the ZINB

model are quite informative. It is reassuring, for example, that the same strongly negative

relationship between the log of quadratic mean diameter and mean annual regeneration per
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Table 7.8 ZINB parameter esti-
mates and standard errors

Parameter Estimate SE

1 Location 7.12 0.1090
2 log.qmd −1.61 0.0391
3 Mixture 0.73 0.1860
4 Shape −1.09 0.1100

hectare that was observed in the two-stage models is evident in a simultaneously-fit version. It

appears in the matrix shown in Table 7.9 that the shape and mixture parameters themselves

are very highly correlated.

Table 7.9 ZINB correlation matrix

Location log.qmd Mixture Shape

Location 1 -0.85 0.15 -0.13
log.qmd -0.85 1 -0.58 0.55
Mixture 0.15 -0.58 1 -0.94
Shape -0.13 0.55 -0.94 1

7.8.1 Problems and discussion

Although the model predicts better, in some respects, than several of the two-stage attempts,

there are fundamental assumption violations preventing acceptance of it on this basis. Most

importantly among these is the violation of independence of the error terms. Variation in these

data is highly dependent on grouped structures (e.g. dataCode, studyID, etc), as was discussed

in the justification for Structure 3. Although the ZINB is attractive and elegant in its simplicity,

the same strong theoretical basis for the incorporation of both fixed and random effects exists

in the latter two-stage models also exists for their simultaneously-fit counterparts.

As discussed briefly in the literature review at the beginning of this section, Yau and Lee

(2001) and Hall (2000) have formulated Zero-Inflated model variants incorporating a random

intercept3 estimated within groups. Although the potential for this model to be the optimal

solution to this modelling project exists, it is above and beyond the current abilities of this

author to derive and program that model.
3But not, to my knowledge, a random slope.
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One potential reason for the failure of the models with covariates predicting the mixture

parameter is the apparently high correlation between the mixture and shape parameters. Lind-

sey (In Pers. Comm) has stated that the ZIP and ZINB likelihood surfaces become quite flat

when redundant parameters are included, and convergence of the optimization routing therefore

becomes difficult. Given that the shape and mixture parameters appear highly correlated, us-

ing overlapping covariates as separate predictors of these would assumably result in redundant

over-parameterization.

It should be noted that literature pertaining to the appropriate residual diagnostics to be

used in ZIP- and ZINB-regression is virtually non-existent (Lindsey, Pers. Comm.).
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8.0 Discussion

Three general data Structures, 2 approaches to fitting bimodal models, 3 possible response

variables and a suite of families of regression models (linear, linear mixed-effects, non-linear,

generalized linear, generalized linear mixed effects, generalized non-linear) have been utilized

for the basic analyses comprising the body of work completed for this thesis. I have made

a concerted effort to be careful about letting the relative importance of any predictor under

one combination result in the inclusion of that predictor in another combination. I have tried,

rather, to use what I have learned from the earlier modelling efforts, for example the simple

logistic regressions predicting the probability of stocking for Structures 1 and 2, merely as

reconnaissance data guiding the initial choice of potential terms to be included in later models.

In no instance was a term included in any model based solely on its relative importance in

another1.

Both in models discussed in this thesis and in additional attempts that were not formally

presented here, no predictor was consistently as important in explaining the variation in re-

generation counts (by whichever definition) as quadratic mean diameter (qmd). In Part 1, the

relationship between qmd and the probability of stocking was negative, as was the relationship

between qmd and both the shape and scale parameters in second-stage models. In Part 2, qmd

was an important predictor of the mixture parameter in the ZINB model evaluated, and the

same negative relationship was observed.

This negative relationship is in contrast to the results of Schweiger and Sterba (1997),

who found that, with all species grouped together, “An increasing quadratic mean diameter

distinctly increases the probability of regeneration occurrence.” (Schweiger and Sterba, 1997,

p. 113) in primarily Picea abies stands in Austria. In the same paper, however, the authors

presented a plot of the probability of Picea regeneration against quadratic mean diameter for 3

levels of crown competition factor (ccf) (Schweiger and Sterba, 1997, p. 114) which shows the

probability of stocking reaching a maxima at approximately QMD = 46 cm. After this point,

the probability of Picea stocking begins to decrease with qmd.

Because the distribution of qmd is spread further into the higher quantiles in the fitting data

for the analysis presented in this thesis (due to the age of the LSOG coastal stands), it may

be that the negative relationship observed here is the weighted sum of the effects, i.e. above

and below, some unknown apex, and the former is taking precedent. Although in this analysis
1Although, of course, there are very good arguments for including terms in models based on biological or

theoretical importance regardless of their performance in significance tests
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I have essentially assumed (negative) linearity between the probability of stocking and qmd, it

is likely that the relationship varies locally.

Conceptually, it is reasonable to assume that there is some level of qmd below which regen-

eration counts increase with stand density, and beyond which competition among mature trees

reduce light, moisture and nutrient availability for ingrowth2.

8.1 Further Exploration of an Important Linearity Assumption

An important assumption of linear regression that may often be overlooked is that a linear

relationship actually exists between X and Y . For this reason, plots of all 4 predictor/response

combinations of the relationship between the (standardized) regeneration rates, the log of these

rates, quadratic mean diameter, and the log of quadratic mean diameter were examined. These

are shown in Figure 8.1, and indicate that the relationship between the log of R (R is the

mean future regeneration count per hectare) and the log of qmd comes closest to approximating

linearity. In further modelling efforts, the log-transformed data (in both the X and Y plane)

should be considered in parameter prediction. It is important to note that the log-log model has

the functional form shown in Equation 8-1, and that error terms in this structure are therefore

assumed to be multiplicative. However, because the model itself is fit in the log-scale, errors

are additive on that scale and the Central Limit Theorem justifies the normally distributed

residual assumption.

yi = β0x
β1ei
i (8-1)

The effect of the large number of excess zeroes on the log data relationship is evident

in Figure 8.2, which shows fits of the log of R regressed on log.qmd for both the complete

and conditionally stocked (non-zero) response. The complete data regression line is somewhat

theoretical, as the log of 0 is −∞. As a weak approximation, the log of (R + .0001) was

substituted as the response.

After quadratic mean diameter, the most important predictor in several modelling attempts

was habitat type (hab).

The predicted probabilities of stocking varied substantially between habitat types for Struc-

tures 1, 2 and 3, as is shown in Figure 8.3. The median estimated probability is highest for the

Picea sitchensis series and is followed by Tsuga heterophylla in the best models for all 3 data

structures.
2The effects of large disturbances and gap creation not-withstanding
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Figure 8.1 Transformations of R and qmd
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Figure 8.3 Fitted probabilities of stocking by habitat type
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8.2 Relationship between tree size and stand density

A good model is one that abstracts the biological process that we are interested in enough

to avoid over-fitting, but not so much as to be too general. The balance varies with the process

or relationship of interest, with spatial and temporal scale, and as a function of the model’s

intended use.

Several of the models discussed in this thesis tend toward being overly abstract, due largely

in part to excessive attention having been paid to the modelling techniques being employed

rather than to the biological processes themselves and to their expected behavior. That said, it

appears that at least one allometric relationship has made itself evident: there is a reasonably

strong linear relationship between the log of the average tree basal area (QMD) and the log of

average future regeneration.

A negative relationship between the size of trees and the size of regeneration counts is

intuitive in LSOG stands. However, a model based solely on this relationship does not take

into account the potentially inverse effects of density on competition for growing space. For

this reason, it is useful to look at the relationship between the size of trees and their relative

density in further detail.

The coefficients for the qmd term in the logistic stage of the two-stage models were small,

but slightly negative. It is important to note that this corresponds to an increase in the log-odds

of the probability of stocking. In other words, the probability of any regeneration occurring

increases with increasing quadratic mean diameter. This component of the two-state system

agrees with the model presented by Schweiger and Sterba (1997). It is the the conditional

distribution of regeneration stocking that is negatively related to average basal area (qmd).

Due to the age of the majority of stands in the data, the relationship between tree size

and density is positively related. This relationship is evident in the plot of total basal area

per hectare (m2/ha) against quadratic mean diameter (cm) for the complete data shown in

Figure 8.4. In least-squares regression models utilized for exploratory purposes, the log of

qmd explained more variation in regeneration than the log of total basal area, and both were

negatively sloped.

Although it was initially believed to be the opposite, the range of diameters represented in

the data used for this study is considerably larger than that used in at least the validation of

the model presented by Schweiger and Sterba (1997). The ranges of qmd that they report for

their three validation stands are qmd1 ⊆ [21.8, . . . , 44.6], qmd1 ⊆ [29.3, . . . , 48.7], and qmd3 ⊆
[8.9, . . . , 38.1]. The range of qmd represented in the fitting data used in the present study is

qmdPNW ⊆ [1.53, . . . , 113.1], with a mean of 40.19 and third quartile of 57.83. The proportion
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of the x-axis in the unscaled plot of regeneration against qmd (upper left hand corner) in

Figure 8.1 represented by the range of data in the Austrian study is quite small, and it is clear

that analysis of only that component would lead to very different conclusions. The authors

did not report summary statistics of the covariate as used in fitting their model. Personal

communications with the corresponding author (Dr. Huber Sterba) further clarified that the

conditional distribution of stocked plots had not been modelled3.

8.3 Importance of missing values

In order to reconsider the potential importance of abiotic predictors that were excluded

early on in the analysis, missing elevation values were obtained from digital elevation maps for

all but 12 observations in the fitting data4. Elevation and squared elevation were included as

covariates in the final two-stage models described in Structure 3. Neither term was significant

in the mixed-effects logistic regression model predicting the probability of stocking, nor in the

linear regression models predicting the conditional distribution of regeneration established on

stocked plots.

Imputation is a term generally used to describe the replacement of missing values in data

by one of several means. In simple imputation, one may replace missing values with a given

(constant) statistic of interest, such as the sample mean, or with nearest-neighbor or moving

average algorithms. In more advanced Multiple Imputation (MI) models, Bayesian methods

are used to predict missing values from other predictors and from the response variable as

well (Harrell, 2001). Then, the uncertainty associated with these predictions is included in

the overall error estimated for the original regression model of interest, fit to the observed and

imputed complete data.

Harrell (2001) outlined several general guidelines for the use of MI in a variety of miss-

ing data scenarios. These were based on situations in which the missing portion of the data

under consideration is classified as either missing completely at random (MCAR), missing at

random (MAR), or informative missing (IM). MCAR values are missing elements that occur

according to random chance. Harrell cites, for example, a missing response in a laboratory

experiment “Because of a dropped test tube (if it was not dropped because of knowledge of any

measurements).” (Harrell, 2001)
3Only the conditional probability of any Picea regeneration was modelled.
4It was not possible to obtain DEM data for these observations because the geographic coordinates (latitude

and longitude) were also missing.



67

MAR data are elements similar to those previously described as MCAR, but the description

is qualified, as follows: MAR elements of a given predictor must occur for levels of another

predictor - or levels of other predictors - that are present in the data (Harrell, 2001).

It may be possible to argue that the remaining missing values in slope and aspect variables

are MAR, and thus utilize MI methods in order to include these variables as covariates in

predictive models. However, the terms utilized in an MI model used to predict missing values

should be a superset of the final regression model of interest (Harrell, personal comm.). Harrell’s

R software for MI is not presently equipped to handle interaction terms in which both terms

contain missing values. The MI models run into problems when the interaction term - for

example, the interaction of the cosine of slope with aspect - with missing values must be

predicted from the component variables which have a similarly structured missingness. The

Regeneration Establishment Model contains several interactions and transformations of either

slope, aspect, or both, which further complicates the problem.

A more practical solution to imputing the remaining missing slope and aspect values would

be to estimate them as was done with elevation, using digital elevation maps. However, the low

resolution of the geographic coordinates available for plots - often only latitude and longitude

at the stand level - makes it unlikely that the added information would improve the models

considered.

8.4 Outliers

Frequently in the two-stage analysis, the choice of whether or not to exclude outliers was

difficult due to the generally poor quality of the linearity assumed to exist between predictor

and response. A common phenomenon was that in considering the removal of a small number

of potential outliers (e.g. 2) identified via Cook’s Distance, the resulting effect would be to alter

the slope of the regression line (indicating high leverage values), which would in turn result in

other observations or small clusters being identified in the new model under consideration. The

same procedure was repeated several times in some cases. This general lack of robustness in the

models was - at the risk of observing the obvious - a result of the simple lack of a strong linear

relationship. An example is the second linear regression model predicting the Weibull scale

parameter in Structure 2, which has 3 observations (rows 76, 93 and 95) identified as outliers

by Cook’s distance statistic. The removal of these 3 observations and subsequent re-fitting of

the model results in 3 new outliers being identified by the Cook statistic (rows 17, 70 and 78).
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8.5 Other Models Considered

The difficulties arising from the inconsistent structure of the data and the two-stage (hurdle)

modelling approach used throughout Part 2 suggest a wide array of possible combinations of

component models that might justifiably be used to satisfy one or another group of assumptions.

Although they have not been explicitly discussed in this document, the following approaches to

explaining the variation in either the count or mean regeneration response in at least 1 of the

3 structures discussed were at one time or another considered and attempted in limited detail:

• Building predictive models from the Structure 1 data with all observations having missing

values in abiotic predictors excluded from analysis.

• Building predictive models with data in the second-stage analysis grouped by important

predictors5, rather than by structural variables (stand, plot, etc.).

• Building predictive models from design matrices (theoretical Structure 4) constructed by

randomly selecting individual observations from each plot.

• Building predictive models from (theoretical Structure 5) design matrices constructed

by fitting and predicting reverse diameter-growth models to all regeneration trees (orig-

inal definition, Structure 1) in order to tabulate their expected year of plot-entry as the

response variable of interest.

• Using linear mixed-effects models to predict the conditional distribution of stocked plots.

• Building excess-zero and excess-1 models (three-stages, rather than two) in the form of

two sequentially fit logistic regressions, followed by a conditional distribution of non-zero

and non-1 regeneration counts.

8.6 Models That Could Be Considered

Stemming from the list of model frameworks mentioned in the previous section, it is perhaps

worthwhile to note a small group of additional possible combinations that were not attempted

due to lack of time, but would certainly be interesting to explore in the future. These are

presented in the following list:

• Construct tables of the mean regeneration response conditional on the relevant predictors

of interest. Fit probability distributions to the present and future mean response, R, and

predict the magnitude of change in these parameters.
5Primarily quadratic mean diameter and habitat type.
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• Construct diameter-distribution tables for all trees (whether regeneration or not) in the

fitting data. Predict regeneration in an imputation context, where the predicted (e.g., 10

year) future diameter-distribution of trees is compared against the stand-level results of

the next FVS cycle of interest.

• Following from the previous possibility, it might be useful to consider a more simplified

- or simply different - basic interaction structure for component sub-routines in FVS. In

survival regression, it is assumed that the probability of survival is equal to 1− the prob-

ability of mortality. In FVS, ingrowth and mortality function more or less independently.

What we are really interested in are the complex seedling survival processes. Begin with

the maximum number that could be added to a tree file, and then build better mortality

models.

8.7 Recommendations For Future Regeneration Modelling Studies

The largest source of data for this thesis was the Long Term Ecological Research (LTER)

component.

Although this portion of the data represents the greatest range of total measurement time

over which sampling took place, it also presents some of the greatest problems in terms of

analysis. This is because, despite the value implicit in having data collected over a large

temporal scale, the original study designs, based upon the information available in the literature,

do not hold up well against the basic standards of contemporary sampling design.

An inherent assumption in most experimental design theory is an element of randomness

in selection of the sampling unit. As far as can be determined from the available literature, a

large portion of the plots in the LTER network were located “subjectively”, suggesting strong

potential for bias of some sort on the part of the individual responsible for choosing their

locations. Design is inseparable from analysis in statistical modelling, and this is an instance

where the latter is being severely compromised by the former.

I believe that there is no substitute in science for sound experimental design. I recommend

that a more modern, more efficient, and more consistently implemented sampling design for the

LTER network be conceived. Conclusions drawn from studies associated with inappropriate

designs are - and should be - subject to severe scrutiny. The design of the network has made

the analysis for this project quite difficult.

If an objective of future sampling efforts in the LTER network is to better understand forest

regeneration characteristics, then the following recommendations are of critical import:
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1. Incorporate regeneration plots into the sampling protocol, measuring root-collar, diameter

and species of all seedlings.

2. Assure that the aforementioned protocol measures trees less than 4.5 feet (dbh) in height.

3. If it is not possible to achieve recommendation number 2, then try to assure that there

is no minimum diameter measured at breast height. Rather, measure all small-diameter

trees, regardless of how small, and define simple guidelines to deal with problems such as

how to determine diameter at breast height when the terminal leader or needles stemming

from the terminal leader occur at that position.

4. Sample coarse woody debris (CWD).

5. Measure crown length and width.

It has been shown that predicting diameter from height is easier than predicting height from

diameter for small trees. Because height and diameter are primary predictors driving individual

tree models like FVS, it follows that having sampling protocols leading to the best estimates of

these fundamental random variables is of interest.

The efforts of Shifley et al. (1993) and others to account for variation in sampling design

post facto not withstanding, the best solution is to alter the sampling design itself. If it is

thought that height-to-width prediction is more accurate than width-to-height prediction for

small trees, then why persist in the measurement of width in an effort to estimate heights?

The shrub layer in LSOG forests is extremely dense. Santiago (2000) and Harmon and

Franklin (1989) have found that nurse logs are important sites for regeneration on montane

cloud and LSOG forests (respectively).

Gove et al. (2002) and St̊ahl et al. (2002) have suggested methods for relaskope sampling of

coarse woody material (CWM), and Ducey et al. (2002) presented methods for efficient sampling

of snags. It is highly recommended that CWM sampling be added to the LTER protocol, in

order to account for the important effects of nurse logs as regeneration microsites in LSOG

stands.

8.8 Penalized Quasi-Likelihood

The Penalized Quasi-Likelihood (PQL) method used to estimate the parameters of the Gen-

eralized Linear (binomial) Mixed Model (GLMM) used to predict the probability of stocking

in Structure 3 has been the subject of much interest in statistics over the last decade. Bres-

low (2003) provided an excellent summary of the technique, and compared the performance of
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the estimation methods used in the PQL approximation6 in a few different statistical packages

(GLIMMIX, MLwiN) with alternative methods such as Laplacian approximation and Gauss-

Hermite quadrature (used in SAS PROC NLMIXED). All of these refer to how the marginal

likelihood function in the lme component of GLMM models is integrated. In simulations,

Breslow (2003) found that in general the PQL methods performed well in the estimation of

coefficients, but underestimated their variance components (their within-cluster variance com-

ponents, in particular) severely. This was especially true for small cluster sizes, e.g. < 40.

The method for fitting GLMM’s that generally appears to be most widely accepted in the

statistics community is the Gauss-Hermite Quadrature approximation to the marginal likelihood

used in SAS PROC NLMIXED. Interestingly, Breslow (2003) found that a 6th-order Laplace

approximation to the likelihood function was “at least as accurate” (Breslow, 2003, p. 14) as

the Gauss-Hermite Quadrature approach, even when 20 quadrature points were used.

In order to further examine the quality of parameter estimates calculated using Venable and

Ripley’s approach to PQL (glmmPQL()), I compared coefficient and standard error estimates for

a simple GLMM as fit using glmmPQL GLMM in R. Although parameter estimates were generally

quite similar for the two methods, estimates of their standard errors initially appeared to

vary substantially between PQL estimates returned by glmmPQL and GLMM. However, the large

variation initially observed appears to have been the result of an error in the previous version

of the GLMM function. Current versions of the function result in reasonably close estimates of

coefficient standard errors. The coefficients and estimated standard errors for a simple model

with a random intercept estimated for each studyID nested in dataCode and one fixed effect

(log.qmd) using the fitting data from Structure 3 is shown in Table 8.1. It appears that there

is little variation in the estimates and standard errors returned by the methods, other than the

obiously substantial bug in the earlier version of GLMM.

Table 8.1 Comparison of generalized linear mixed-effects model co-
efficients using different estimation methods

Function Value SE DF z Pr (>|z|)

glmmPQL 4.3 0.51 4981 8.5 2.000e− 16
GLMM( old Laplace) 4.3 8.1 4981 0.53 5.943e− 01
GLMM (new PQL) 4.3 0.52 4981 8.3 2.000e− 16
GLMM (new Laplace) 4.3 0.52 4981 8.3 2.000e− 17

6There are several different estimation techniques referred to as PQL. These are not the same.
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8.9 Conclusions

1. The data are not Zero-Inflated Poisson distributed.

2. The Zero-Inflated Poisson regression model is not more useful than the two-stage ap-

proach.

3. Both the two-stage Weibull and the Zero-Inflated Negative Binomial regression models

are useful in understanding the process.

4. The probability of any future regeneration occurring varies negatively with quadratic

mean diameter, and negatively with total basal area. However, the effect is small.

5. Quadratic mean diameter is the most important predictor of the conditional distribution

of stocked plots.

6. The conditional distribution of stocked plots varies negatively with increasing quadratic

mean diameter, and the relationship is approximately linear if the log transformation of

both predictor and response is used.

7. Not taking into account the observed allometric relationship between regeneration and

quadratic mean diameter, the simple ANOVA model violated model assumptions to the

least degree – becuase it does not assume any linear relation between predictor and re-

sponse – and was thought to be the best model.
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APPENDIX I: Variable names and definitions (tree file)

1. DataCode Data set code

2. StudyID Study identification code

3. Stand Stand identification code

4. Plot Plot number

5. Tag Tree tag number

6. Year Year of measurement

7. Xcoord X-coordinate location of tree

8. Ycoord Y-coordinate location of tree

9. Species Tree species

10. DBH Tree dbh (cm)

11. Bam Tree basal area (m2/ha)

12. Cclass Tree canopy class

13. Vigor Tree vigor code

14. Crratio Tree crown ratio

15. Status Tree status code

16. Age Tree age

17. Height Tree height (m)

18. Mcrbase Measured height (m) to base of live crown

19. Ccrbase Calculated height (m) to base of live crown (from height, crown ratio)

20. Mclngth Measured crown length (m)

21. Cclngth Calculated crown length (m)

22. Expf Plot expansion factor for tree in stand or plot

23. Bamha Tree basal area per hectare (m2/ha)
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24. Totbamha Total basal area per hectare (m2) in stand or plot

25. Qmd Quadratic mean diameter (cm) in stand or plot

26. Rd Curtis’ relative density in stand or plot

27. Slope Slope (degrees) of stand or plot

28. Stndarea Stand area (ha)

29. Plotarea Plot area (ha)

30. Cnstmin Constant minimum diameter in stand or plot (Y/N)

31. Elev Elevation (m) of stand or plot

32. AvAspect Average aspect (degrees) of stand or plot

33. Lat Latitude (degrees) of stand or plot

34. Long Longitude (degrees) of stand or plot

35. Habtype Primary habitat type of stand or plot

36. Sitespp Species used for site index

37. Si Site index (not available)

38. Establyr Year of stand (not study) establishment

39. Origin Stand origin (N=natural, P=planted)

40. Trmt Silvicultural treatment (0=unthinned, 1=PCT, 2=CT, 3=PCT+CT)

41. Thinyr1 Year of first thinning

42. Thinyr2 Year of second thinning

43. Thinyr3 Year of third thinning

44. Thinyr4 Year of fourth thinning

45. Thinyr5 Year of fifth thinning

46. Thinyr6 Year of sixth thinning
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APPENDIX II: Additional variable names and definitions (fitting data)

1. any.regen Any trees with status=2 in stand or plot at following sampling (1=Y, 0=N)

2. num.regen Number of trees with status = 2 (or as defined in Section 7.1) in stand or plot

at subsequent sampling

3. numSpreg Number of species of trees with status = 2 (or as defined in Section 7.1) in

stand or plot at subsequent sampling

4. mean.year Average year (between sampling)

5. all.regen.plot Total number of regeneration trees observed on a plot, all sampling years

6. mean.regen.ha.year Mean annual future regeneration per hectare before subsequent sam-

pling

7. log.mean Natural log of mean.regen.ha.year

8. any.mort Any trees with status = 6 in stand or plot at current sampling (1=Y, 0=N)

9. num.mort Number of trees with status = 6 in stand or plot at current sampling

10. coast Coastal proximity (1/0). The following stands have value=1: OL01, OL02, OL03,

OL04, HR01, HR02, HR03, HR04, HS01, HS02, HS03, WP17, CH01, CH03, CH04, CH06,

CH07, CH08, CH09, CH10, CH13, CH14, CH15, CH16, CH17, CH22, CH23, CH41, CH42,

NCNA, SI04, SI05, SI06, SI07, SI08, SI09, SI10, WP7, WP50

11. time Number of years between present and subsequent plot sampling

12. ysd Number of years since most recent thinning, or since stand establishment

13. minEst Estimated mininum diameter threshold (MDT) measured

14. log.qmd Natural log of quadratic mean diameter in stand or plot

15. qmdClass Value (1:10) assigned to plot based on observed deciles of qmd as described in

Section 7.4

16. log.ba Natural log of total basal area per hectare (m2/ha) in stand or plot

17. ba2 Square of total basal area per hectare (m2) in stand or plot



BIBLIOGRAPHY 76

BIBLIOGRAPHY

Steven A. Acker, W. Arthur McKee, Mark E. Harmon, and Jerry F. Franklin. Long–Term

Research on Forest Dynamics in the Pacific Northwest: a Network of Permanent Forest

Plots, volume 21 of Man and the Biosphere Series; Forest Biodiversity in North, Central and

South America and the Caribbean. The Parthenon Publishing Group, Pearl River, New York,

1998.

D. B. Botkin, J. F. Janak, and J. R. Wallis. A simulator for northeastern forest growth: A

contribution of the hubbard brook ecosystem study and ibm research. Research Report 3140,

IBM, 1970.

Norman Breslow. Whither pql. UW Biostatistics Working Paper Series 192, University of

Washington, 2003.

A. Colin Cameron and Pravin K. Trivedi. Regression analysis of count data. Cambridge Uni-

versity Press, 1998.

Yin Bin Cheung. Zero-inflated models for regression analysis of count data: a study of growth

and development. Statistics in Medicine, 21:1461–1469, 2002.

Nicholas L. Crookston. User’s guide to the most similar neighbor imputation program: Version

2. General Technical Report 96, USDA Forest Service Rocky Mountain Research Station,

September 2002.

D. C. Dey. A comprehensive Ozark regenerator. PhD thesis, University of Missouri, Columbia,

1991.

Mark J. Ducey, Greg J. Jordan, Jeffrey H. Gove, and Harry T. Valentine. A practical modi-

fication of horizontal line sampling for snag and cavity tree inventory. Canadian Journal of

Forest Research, 32:1217–1224, 2002.

Alan R. Ek, Andrew P. Robinson, Phillip J. Radtke, and David W. Walters. Development

and testing of regeneration imputation models for forests in minnesota. Forest Ecology and

Management, 94:129–140, 1997.

Dennis E. Ferguson and Clinton E. Carlson. Predicting regeneration establishment with the

prognosis model. Research Paper INT–467, USDA Forest Service, August 1993.

Dennis E. Ferguson and Nicholas L. Crookston. User’s guide to version 2 of the regeneration

establishment model: Part of the prognosis model. General Technical Report INT–279, USDA

Forest Service, May 1991.



BIBLIOGRAPHY 77

Dennis E. Ferguson and Ralph R. Johnson. Developing variants for the regeneration establish-

ment model. In Alan R. Ek, Stephen R. Shifley, and Thomas E. Burk, editors, Forest growth

modelling and prediction: Proceedings of the IUFRO conference. USDA Forest Service, 1998.

Dennis E. Ferguson, Albert R. Stage, and Raymond J. Boyd. Predicting regeneration in the

grand fir-hemlock ecosystem of the northern Rocky Mountains. 32(1), 1986.

K.L. Froese, V. Lemay, P. Marshall, and A.A. Zumrawi. Regeneration imputation models for

prognosis bc, idfdm2 subzone variant, invermere forest district. Technical Report R02–07,

Forestry Innovation Investment, 2003.

Jeffrey H. Gove, Mark J. Ducey, and Harry T. Valentine. Multistage point relascope and

randomized branch sampling for downed coarse woody debris estimation. Forest Ecology and

Management, 155:153–162, 2002.

Daniel B. Hall. Zero-inflated poisson and binomial regression with random effects: A case study.

Biometrics, 56:1030–1039, 2000.

D. A. Hamilton. Event probabilities estimated by regression. Research Paper INT–152, USDA

Forest Service, 1974.

M. E. Harmon and J. F. Franklin. Tree seedlings on logs in Picea–Tsuga forests of oregon and

washington. Ecology, 70:48–59, 1989.

Frank E. Harrell. Regression modeling strategies: with applications to linear models, logistic

regression, and survival analysis. Springer-Verlag New York, Inc., 2001.

Diane Lambert. Zero-inflated poisson regression, with an application to defects in manufactur-

ing. Technometrics, 34(1):1–14, 1992.

James K. Lindsey. Applying Generalized Linear Models. Springer-Verlag New York, Inc., 1997.

Melinda Moeur and Albert R. Stage. Most similar neighbor: an improved sampling inference

procedure for natural resource planning. Forest Science Monographs, 41(2):337–359, 1995.

John Neter, Michael H. Kutner, Christopher J. Nachesteim, and William Wasserman. Applied

Linear Statistical Models. The McGraw-Hill Companies, Inc., 3 edition, 1996.

Karl Pearson. Contributions to the mathematical theory of evolution. Philosophical Transac-

tions of the Royal Society A, 185:71–110, 1894.

Jose C. Pinheiro and Douglas M. Bates. Mixed-Effects Models in S and S-PLUS. Springer-Verlag

New York, Inc., 2000.



BIBLIOGRAPHY 78

David T. Price, Niklaus E Zimmermann, Peter J Van Der Meer, Manfred J. Lexer, Paul Leadley,

Irma T. M. Jorritsma, Jorg Schaber, Donald F. Clark, Petra Lasch, Steve McNulty, Jianguo

Wu, and Benjamin Smith. Regeneration in gap models: priority issues for studying forest

responses to climate change. Climate Change, 51:474–508, 2001.

Xiao Qin, John N. Ivan, and Nalini Ravishanker. Selecting exposure measures in crash rate

prediction for two-lane highway segments. Accident Analysis and Prevention, 938:1–9, 2003.

R Development Core Team. R: A language and environment for statistical computing. R Foun-

dation for Statistical Computing, Vienna, Austria, 2004. URL http://www.R-project.org.

ISBN 3-900051-00-3.

Eric Ribbens, John A. Silander Jr., and Stephen W. Pacala. Seedling recruitment in forests:

calibrating models to predict patterns of tree seedling dispersion. Ecology, 75(6):1794–1806,

1994.

Andrew P. Robinson and Alan R. Ek. The consequences of hierarchy for modeling in forest

ecosystems. Canadian Journal of Forest Research, 30:1837–1846, 2000.

R. Rogers and P. S. Johnson. Describing population dynamics of northern red oak. In Sympo-

sium on Environmental Constraints and Oaks: Ecological and Physiological Aspects, Nancy,

France, 1993. Centre National de Formation Forestiere.

Robert Rogers and Paul S. Johnson. Approaches to modeling natural regeneration in oak-

dominated forests. Forest Ecology and Management, 106:45–54, 1998.

Louis S. Santiago. Use of coarse woody debris by the plant community of a hawaiian montane

cloud forest. BIOTROPICA, 32(4a):633–641, 2000.

J. Schweiger and H. Sterba. A model describing natural regeneration recruitment of norway

spruce (picea abies(l.) karst.) in austria. Forest Ecology and Management, 97:107–118, 1997.

Oliver Shabenberger and Francis J. Pierce. Contemporary Statistical Models for the Plant and

Soil Sciences. CRC Press, 2002.

Stephen R. Shifley, Alan R. Ek, and Thomas E. Burk. A generalized methodology for estimating

forest ingrowth at multiple threshold diameters. Forest Science Monographs, 39(4):776–798,

1993.

Albert R. Stage. Prognosis model for stand development. Research Paper INT–137, USDA

Forest Service, 1973.



BIBLIOGRAPHY 79
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