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Abstract

The prevalent approach to image-based localization is
matching interest points detected in the query image to
a sparse 3D point cloud representing the known world.
The obtained correspondences are then used to recover
a precise camera pose. The state-of-the-art in this field
often ignores the availability of a set of 2D descriptors
per 3D point, for example by representing each 3D point
by only its centroid. In this paper we demonstrate
that these sets contain useful information that can be
exploited by formulating matching as a discriminative
classification problem. Since memory demands and
computational complexity are crucial in such a setup, we
base our algorithm on the efficient and effective random
fern principle. We propose an extension which projects
features to fern-specific embedding spaces, which yields
improved matching rates in short runtime. Experiments
first show that our novel formulation provides improved
matching performance in comparison to the standard
nearest neighbor approach and that we outperform related
randomization methods in our localization scenario.

1. Introduction
Image-based localization deals with the problem of how

to precisely recover the 3D camera pose from a query
image within a known 3D world. The prevalent approach
in this field is to localize the query with respect to a 3D
point cloud obtained by any Structure-from-Motion (SfM)
pipeline. This has a wide range of applications such as
the localization of user community photos [12, 15, 19] or
the continuous localization in videos as used in augmented
reality [1] or autonomous robotics applications [16].

The current state-of-the-art in image-based localization
can mainly be divided into two different approaches: (a)
image retrieval techniques (IR) and (b) brute-force nearest
neighbor matching methods (BF). IR based methods first
identify a subset of images of the database that are most
similar to the query image, using effective techniques

such as the vocabulary tree [17]. Afterwards, only 3D
points visible within the first ranked images are considered
for matching, which significantly reduces the number of
matching candidates and consequently the runtime. On
the positive side, such an approach scales well with the
size of the 3D model. On the negative side, localization
performance mainly depends on the availability of fairly
similar images in the dataset, an assumption that is not
necessarily valid for localization from community photos.

The BF localization strategy, which bypasses the image
retrieval step by matching directly between the query
features and the entire point cloud, consistently leads to
improved localization quality, as is e. g. demonstrated by
Sattler et al. [19]. In such a setup, matching speed and
memory requirements are severely dependent on the overall
number of descriptors assigned to the 3D points, since all
the descriptors are considered for matching. In order to
reduce the complexity the descriptors are summarized into
the centroid per 3D point and a visual vocabulary strategy
is again used for the nearest neighbor search.

In this paper, we follow this most promising strategy
of brute-force 2D-to-3D matching and focus on scenarios
where a rough position is provided by an external sensor
like GPS. This allows to constrain the search space,
which as a consequence reduces the number of 3D point
candidates that have to be considered in matching. We
present a method which (a) has a runtime independent of
the actual 3D point cloud size and a manageable memory
profile, (b) exploits all the information available from the
3D reconstruction and (c) provides accurate localization
performance. We formulate the required matching as a
discriminative classification problem and propose a novel
random ensemble method designed for the requirements in
such a scenario.

In general classification has some advantages for
image-based localization in comparison to the standard
nearest neighbor based localization. First, matching
based on a classifier makes the runtime independent of
the actual point cloud size, which allows to exactly
predict the runtime to find correspondences, whereas
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in the BF approach runtime depends on the number
of 3D points. Second, classification based matching
exploits the set of 2D descriptors available per 3D point
in a discriminative manner, which improves matching
performance, as we also demonstrate in the experiments.
Third, our classifier implicitly defines a probabilistic
ranking of all correspondence hypotheses by analyzing
the returned posterior probabilities. This ranking can
be exploited in the subsequent hypothesize-and-verify
framework. As shown in PROSAC [4], a reasonable ranking
of the correspondence hypotheses significantly improves
the runtime and sometimes even model fitting performance.
Fourth, our method has a reasonable memory profile since
we do not have to keep all point cloud descriptors in
memory. Finally, our proposed approach is an anytime
algorithm. Hence it is possible to stop it after only some
of the base classifiers are evaluated, since a single base
classifier is already sufficient to provide a first guess of the
valid correspondences.

Note that our localization setting poses specific
requirements on the classifier. First, we have to handle a
large number of classes (number of 3D points in the sparse
point cloud). Second, the number of training samples might
differ a lot, since some 3D points might be represented by
only a small (at least two) 2D descriptors, whereas others
might have up to hundreds of samples. In general, the
number of available training samples is in comparison to
other fields quite low. Finally, computation time is also
a limiting factor, since we want to apply the method in
real-time fields like robotics or augmented reality.

For this reason, we base our approach on the random
ferns classifier [18], which already has shown to be quite
efficient and effective in other vision domains such as
tracking, semantic segmentation and image classification.
Nevertheless, as we show in the experiments a standard
random fern classifier does not provide sufficient quality in
our scenario, since it is not able to handle the small number
of available training samples. In general, it is known that
random ensemble methods only unfold their full potential if
having access to a sufficient number of training samples [5].

In this paper, we propose an extension which considers
discriminative embeddings. The core idea is to apply a
supervised dimensionality reduction method in order to
map randomly selected feature dimensions into a subspace,
where optimal splits can be easily derived. Due to the
subspace projections, we get a flat assignment structure,
which ensures low computation time in both training
(no evaluation of any split criteria) and testing, with an
only slightly increased memory profile (for saving the
projection matrices). Our embedded fern has several
important properties: (a) it offers the same advantages as
related randomization methods, such as inherent multi-class
classification, possible handling of high-dimensional input

data, robustness to label noise and high efficiency,
(b) intuitive integration of a supervised dimensionality
reduction method in a flat assignment scenario in order
to improve the splits and (c) consequently improved
classification results in image-based localization scenarios.

2. Related Work
We first discuss the state-of-the-art in both of our

contribution fields: random ensemble based classification
and image-based localization.

Random Ensemble Methods Random ensemble
methods such as the popular random forest have proven
to be an indispensable tool in computer vision, mainly
because of their inherent multi-class capability, efficiency
and competitive performance. Random forests consist of an
ensemble of decision trees, where each tree splits the feature
space in a hierarchical manner and class assignments are
probabilistically inferred based on counting the number of
class occurrences in the leaf nodes. Our method addresses a
novel way to define the required splits. Such split variants,
as well as the corresponding evaluation criteria were
addressed in several recent research papers.

Gall et al. [7] considered vectors pointing from local
object parts to the corresponding centroid for improving
the splits in a random forest setting. They adapted the
information gain criterion by either minimizing the class
label uncertainty or the variability of the corresponding
center votes per node. State-of-the-art results in object
localization tasks were shown. Zhang et al. [24] address
the issue of how to combine features obtained by diverging
modalities into a random forest classifier. They used a
mutual information criterion in order to select the best
splits in each node. As specific application, photos were
matched to sketches, which lead to promising results in this
challenging field. Leistner et al. [13] extended the random
forest framework in order to learn from weakly labeled
videos. They adapted the node split criterion by adding a
pair splitting error measure, analyzing patch pairs as labeled
training data. The authors then showed improvements in
applications such as object detection and tracking. Yao et
al. [23] adapted a random forest for the task of fine-grained
image categorization. In contrast to conventional decision
trees, they used strong classifiers (support vector machines)
at each node and combined information at different levels of
the tree in order to build powerful trees, while maintaining
low correlation between them.

Image-Based Classification As outlined in the
introduction, brute-force 2D-to-3D [19] and image retrieval
based [12] methods are considered to be state-of-the-art
in the field of image-based localization. Recently some
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further extensions were proposed, mostly addressing
complexity issues of these methods.

Li et al. [15] explicitly address the problem of localizing
images within extremely large 3D point clouds of up to 70
million 3D points, focusing on scenarios with completely
unknown position. The authors follow the direct 2D-to-3D
matching approach [14, 19] and as contribution propose an
improvement of the applied RANSAC scheme, by sampling
the random hypotheses considering co-occurrence priors.
Furthermore, they also analyze the possible performance
gain by additionally applying an inverse matching from the
3D point cloud to 2D query features. Lim et al. [16] address
large-scale problems by reducing the matching effort based
on an initial clustering of the 3D point cloud into location
classes. During localization the most likely class is selected
and standard brute-force 2D-to-3D matching is applied
for the constrained point cloud. The authors demonstrate
accurate localization performance for micro aerial vehicles,
achieving real-time performance by using Kalman filter
based feature tracking.

Another branch of research focuses on improving
efficiency by defining reasonable search strategies in order
to identify the set of valid correspondences. An active
search strategy was proposed in [20], where only a fraction
of points has to be considered in order to infer the camera
pose. The core idea is to define a priority queue for point
matching, which exploits both appearance and co-visibility
cues. Such a fast guided search was also proposed in [3],
where a conditional probability of visibility is combined
with a distance measure in order to prioritize specific
points. In [2, 9] also discriminative learning is used
in a localization scenario. However, both works aim
at improving the similarity scores between Bag-of-Words
image representations, whereas we use discriminative
learning for finding 2D-to-3D matches between descriptors.

3. Localization as a Classification Problem
As a starting point, we assume that we have

access to a sparse 3D point model, obtained by
any Structure-From-Motion (SfM) pipeline such as
Bundler [21]. Given a query image Q, the goal of
image-based localization is to identify the precise 6-DoF
camera pose in relation to the provided sparse 3D point
cloud. The main steps of such an approach are: (1) feature
extraction inQ, (2) establishing 2D-to-3D correspondences
through feature matching and (3) estimating the camera
pose by robustly solving an absolute pose problem in a
hypothesize-and-verify loop.

We follow the principle of brute-force 2D-to-3D
matching as proposed by Sattler et al. [19]. Our core idea is
to replace the approximate nearest neighbor assignment by
a discriminative classification step, essentially addressing
step 2 of the aforementioned pipeline.

Our given sparse 3D point model consists of M 3D
points P j . For each 3D point P j we have additionally
given a list of descriptors Dj

i ∈ RD containing the feature
descriptions of all the image points that were used to
triangulate P j . Note that some of the 3D points can
have up to hundreds of associated feature descriptors, and
that the points with the largest number of corresponding
descriptions are presumably the most informative for
localization, e. g. a point on a tower that can be seen
from many viewpoints. Our goal is to match the N
features Qi ∈ RD, detected in the query image Q, to
the M 3D points P j . State-of-the-art in direct 2D-to-3D
matching [19] reduces the list of descriptors per 3D point to
a single one, and afterwards applies an approximate nearest
neighbor match. In contrast, we aim to use all the available
information by formulating matching as a classification
problem. This allows to use all descriptors for training,
since we do not have to keep the training samples after
training the classifier. The basic idea is that each 3D point
is represented by a unique class label (1 . . .M ), and that
the corresponding descriptors are used as labeled training
data for discriminative classification. Note that in this way,
we exploit all descriptors in a discriminative setting (in
contrast to a nearest neighbor assignment), which yields an
improved set of correspondences.

After training we pass all the query descriptors Qi to the
classifier and obtain a 1 × M vector of class-conditional
probabilities representing certainty information about
hypothesized correspondences to the 3D points. In order to
remove unreliable assignments, we perform an additional
verification step, conceptionally related to the widely
applied ratio test in nearest neighbor (NN) matching. In
NN matching a valid correspondence is only established
if the distance ratio between the two nearest neighbors is
smaller than a fixed threshold ε. Such an approach requires
access to all descriptors during camera pose estimation.
In contrast, our classification approach does not need to
save the descriptors, since we fix the correspondence if the
distance ratio between the highest and the second highest
class-conditional probability is below ε.

For classification, we introduce an extension of the
random fern principle exploiting all available descriptors in
a discriminative manner, while maintaining almost the same
runtime and memory profile, in the next section.

4. Embedded Random Ferns
Our novel classifier is based on the random fern [18]. We

first outline the basic principle of random ferns, and then
introduce our novel embedding variant.

Random Ferns A random fern addresses efficiency and
memory issues of a random forest by a flat leaf node
assignment instead of building a hierarchical structure. This
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flat assignment strategy leads to a runtime improvement
and decreased memory demands while mostly maintaining
classification accuracy. Similar to random forest the fern
consists of an ensemble of base classifiers. In each
base classifier the feature space is uniquely split into
L = 2S bins, by making S binary decisions. The class
occurrences per bin are counted during training, which
defines class-specific probabilities. The base classifier
decisions are then combined in a semi-naive Bayesian
manner.

The goal of training is to define the S split parameters
and to estimate the class conditional probabilities
P (Fm = l|ci) for each bin l of the ferns Fm and
classes ci. We simplify our notation as

pl,ci = P (Fm = l | ci) , (1)

where l denotes one of the L = 2S bins of the fern Fm

and pl,ci is the probability that bin l votes for class ci.
Therefore, we can write all class conditional probabilities in
an F ×L×C (number of ferns× number of bins× number
of classes) matrix F , with the convention that

∑
pl,ci = 1.

During training the probabilities are estimated by simply
counting the number of labeled data-points entering the
corresponding bin by

pl,ci =
Nl,ci

Nci

, (2)

where Nl,ci is the number of labeled training samples of
class ci that evaluates to fern bin l, and Nci is the total
number of samples for class ci.

Once the fern matrix F is estimated from the training
data, a novel test data point is simply passed to all ferns Fm

and the probabilities of the corresponding bins l, that the test
point evaluates to, are combined in a semi-naive Bayesian
manner leading to an assignment to a class c∗ by

c∗ = argmax
i

P (x | ci) =
∏F

m=1
pl,ci . (3)

Embedded Ferns We build our method on the random
fern principle. We assume that we have been given a set of
N data points {x1,x2, . . .xN}, in a D-dimensional feature
space, i. e., xi ∈ RD. Stacking the data points together
yields our N ×D training data matrix X ∈ RN×D, where
a single element xid stands for the d-th feature of the i-th
data point.

Similarly to conventional random ferns, we aim at
assigning a test data point to one of the L = 2S bins per
fern, by defining S binary splits for each fern. Therefore,
our goal is to find a mapping of the D-dimensional data
points to an S-dimensional binary assignment vector bm ∈
{0, 1}S for the m-th fern, which uniquely separates the
feature space and allows us to assign each data point to

one of the L = 2S bins. This assignment has the goal of
optimally discriminating between the classes.

In our matrix notation, conventional ferns obtain the
binary assignment vector bm by randomly choosing feature
IDs and analyzing the corresponding data point entries by

bm = Xm > 0 , Xm = {xid | i ∈ {1, ..., N} , d ∈ Gm}
(4)

where Gm = (rm1 , r
m
2 , . . . , r

m
S ) is a set of S randomly

chosen feature IDs.
Our core idea is to select a larger number B > S of

features and afterwards project the B features of the data
points to the final S-dimensional space. For each fern we
randomly select a fixed number of features B ≤ D but
B > S, which reduces the input training matrix X to a fern
specific N ×B input matrix Xm = {xid | ∀ i and d ∈ Gm}
for the m-th fern, where Gm this time is a set ofB randomly
chosen feature IDs. We further define the binary assignment
vector bm as a linear combination by

bm = (Xm Wm + om) > 0 , (5)

where Wm is a B × S projection matrix and om is a S × 1
offset vector. The most straight forward way to define the
projection matrix Wm is to choose it in a random manner,
which yields a classifier frequently referred to as oblique
forests [10] within the scope of decision trees. However,
this would neglect the available training data labels, which
can be exploited to find an improved projection. For this
reason, we identify one projection matrix per fern which
optimally discriminates the different classes from each
other.

The core idea of our method is to use a supervised
dimensionality reduction method in order to capture the
structure of the training dataset Xm (consisting of the
randomly selected features), and to identify optimal binary
split parameters (Wm,om). In order to do this, we propose
to use Canonical Correlation Analysis (CCA) [11], a robust
subspace method which effectively identifies a common
latent space from two different views. In this way, we
correlate the provided features and the corresponding label
space, which constitutes the basis for finding optimal binary
splits.

Assuming that each data point xi has associated the
corresponding label yi ∈ {1, 2 . . . C}, we can build
a dataset label matrix Y ∈ {0, 1}N×C , where the
corresponding entry yil is 1 if data-point i belongs to class
c and 0 otherwise. Canonical Correlation Analysis (CCA)
tries to find two sets of basis vectors wx and wy , so that the
correlation between the projections Xm wx and Ym wy of
the variables on these basis vectors is mutually maximized.
The correlation coefficient ρ, which is formally defined as

ρ =
wT

xXYTwy√
(wT

xXXTwx)
(
wT

y YYTwy

) , (6)
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Figure 1: Illustration of our method for a single base classifier. Input data matrix X is reduced to a fern-specific matrix
Xm by randomly selecting a feature dimension set Gm. This matrix is then used together with the provided label matrix in
Canonical Correlation Analysis (CCA) which provides a new embedding space defined by Wm. This projection enables the
assignment of each training sample to a bin (using om), as well as the calculation of the class-conditional probabilities pl,ci .
During testing the same feature dimensions are selected, and the learned projection is applied to assign the sample to a bin
(binary vector bm). Finally all base classifier probabilities are combined in a semi-naive Bayesian manner.

is maximized. The coefficient ρ is invariant to scaling of the
basis vectors and therefore CCA can also be formulated as

max
wx,wy

wxXYTwy

subject to
wxXXTwy = 1 ,
wxYYTwy = 1 .

(7)

To find the basis vectors that maximize the correlation
coefficient ρ, one has to solve a generalized eigenvalue
problem. We use a regularized version of the eigenvalue
problem to prevent overfitting by solving

XYT
(
YYT + ryI

)−1
YXTwx = λx

(
XXT + rxI

)
wx

(8)
where ry and rx are the two regularization parameters
and I is the identity matrix. As recently shown in [22],
regularization of Y by ry does not affect the projection of
X, therefore we set ry = 0. According to [22], we fixed rx
to 10−6 in all our experiments.

We consider the S leading eigenvectors obtained from
the solution of the generalized eigenvalue problem defined
in Equation 8 as our B × S projection matrix Wm,
which allows to project any new data point into this novel
embedding space. We define the split values independently
at each dimension, by simply thresholding the projected
values at the median of the training data values, yielding
the offset vector om. In this way, we finally obtain the
required S × 1 binary vector bm by applying Equation 5,
which uniquely assigns data points to one of the 2S bins.

Figure 1 illustrates our embedded fern concept for a single
fern.

By repeating the previously described steps we obtain
a set of random ferns defined by their projection matrices
and the offset vectors (Wm , om). Please note that
for obtaining our projection matrices, the reduced feature
matrix Xm differs for each fern, while the label matrix
Y is the same for all CCA steps. Hence, in contrast to
conventional random ferns, we only inject randomness by
selecting the feature dimensions for each fern, since the
mapping is then estimated in a deterministic manner per
fern.

The final mappings to the binary vectors bm are then
used to define the class conditional probabilities pl,ci by
counting the number of class members that evaluate to
the corresponding bins. During testing the data points
are mapped to the different projection spaces per fern
using (Wm , om) in Equation 5, which provides the
class conditional probabilities and the final classification
results by combining the fern probabilities in a semi-naive
Bayesian manner as described in Equation 3.

Comparison to Fern and Forest Obviously our proposed
approach shares many similarities with random forests
and ferns. All three methods follow the same principle:
(a) using randomness to separate the feature space into a
number of L = 2S bins per forest (fern), (b) counting
the number of labeled training data examples reaching
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the different bins in order to define class conditional
probabilities and (c) building an ensemble of these
classifiers in order to make the final decision.

Since all of its tests are selected randomly, the
random fern has the lowest computational complexity of
O (N log L) for training. The training for random forests
is much slower by comparison, since in order to obtain
reasonable results many node test candidates have to be
evaluated by for example an information gain measure,
which leads to a complexity of O (KN L). The training
of CCA ferns is slower than that of random ferns, since
we have to additionally solve the generalized eigenvalue
problem for CCA. However, only a single CCA calculation
is required for each fern and no information gain tests have
to be done, which makes the training of CCA ferns much
faster than that of random forests. The testing is efficient
for all three methods, having a complexity of O (log L)
for conventional forests and ferns and a slightly higher
complexity of O (B log L) for our CCA ferns, since we
have to additionally project the data points. However,
since B can be chosen much smaller than the feature
dimensionality (see experiments), our method requires only
slightly more computation time during testing.

Considering the memory profile, we have to save for
each fern the B × S projection matrix Wm and the S × 1
vector bm. In addition, we have to save F × L × C
log probability values. The maximum number of non-zero
values in the probability table equals F ×N (if each sample
falls in a different bin). However, in practice the probability
table is much sparser (as also shown in the experiments).
Hence, in general we have a smaller memory profile than
standard brute-force matching methods, that have to keep
all training samples for testing.

5. Experiments
Experiments demonstrate the principle usefulness of

discriminative classification for localization and the
improved performance of our proposed embedded ferns.
We first evaluate in Section 5.1 the obtainable classification
performance in the scenario of image-based localization on
two widely used datasets (Dubrovnik and Rome) comparing
our results to a conventional nearest neighbor approach
and to related randomization methods. In Section 5.2
we analyze the influence of the main parameters on
performance.

5.1. Comparison to Related Methods

We formulate a classification task in the scope of
image-based localization for our experimental evaluation.
We assume that we have given a 3D reconstruction
of the area we are interested in, obtained by any
structure-from-motion pipeline. Hence, we have given all
camera poses, the 3D coordinates of the sparse point cloud,

(a) Dubrovnik (b) Rome

Figure 2: Statistics for image-based localization datasets.
Bar plot shows the percentage of overall 3D points (y-axis)
that have the corresponding number of 2D points (x-axis).
Red line shows the cumulative sum over the percentage.

a list of all image points that were used for triangulating the
3D points and all corresponding descriptors.

We use the two most popular datasets in the field of
image-based localization Dubrovnik and Rome [14] for
evaluation. Both datasets consist of photos taken from
Flickr and the sparse 3D point models were obtained by
Bundler [21]. Dubrovnik consists of approximately 6K
images, 2M points and 10M descriptors, whereas Rome
approximately consists of 15K images, 4M points and 21M
descriptors. In both datasets we identify potentially visible
sets [1] from the sparse 3D point clouds, which divide them
into several smaller view cells. The potentially visible sets
determine the subset of 3D points and the corresponding
descriptors that have to be considered within the current
view cell. We do this according to our intended scenario,
where we approximately know the current location using
for example GPS.

Since we exploit all available 2D descriptors per 3D
point for discriminative feature-to-point matching, the
overall distribution of the number of descriptors per point
is of interest. Figure 2 shows histograms for the two
datasets considered. As can be seen, the distributions
are quite similar. On average we have 5 descriptors
per 3D point and 20% of the 3D points have more than
five 2D representations. Hence, for many 3D points
large sets of descriptors are available, and our classifier
tries to use all available information in a discriminative
manner. Especially in an image-based localization task,
the 3D points with the largest number of corresponding
2D descriptors are the landmark points (like a tower) that
are most important for localization. As a consequence,
improving matching quality for these points is especially
important.

We first demonstrate that analyzing all available 2D
descriptors in a discriminative manner allows to improve
matching performance. We evaluate the performance when
using our proposed classifier to identify the feature-to-point
matches in comparison to a standard nearest neighbor
matching approach. We stick to a K-fold cross validation
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Dubrovnik Rome

Nearest Neighbor 96.06± 1.22% 95.53± 1.10%

Random Fern 92.65± 1.73% 88.12± 1.72%

Random Forest 96.31± 1.57% 89.18± 1.31%

Proposed 98.97± 0.89% 97.64± 0.76%

Table 1: Comparison of obtainable matching performance
using different approaches. Mean classification accuracies
and standard deviations for 5-fold cross validation
experiment per potentially visible set are shown.

(with K = 5) for each visible set. This means that we
train our classifiers on the available data from K − 1 folds,
where we removed all 2D descriptors seen in the remaining
fold. The ground truth labels correspond to the IDs of the
3D points. During testing we then try to find the correct
feature-to-point correspondences using all features of the
remaining fold. In such a way, we do have ground truth
labels for each query image feature, i. e. we are aware of the
corresponding 3D point it should classify to. This process
is repeated for all K folds and we evaluate the average
classification accuracy, which correlates to the expected
feature-to-point matching performance.

We compare our approach to a conventional
approximated nearest neighbor search and to the related
randomization methods random ferns and random forests
using Matlab implementations. The nearest neighbors are
identified using KD-trees. For the randomization methods
we use publicly available reference implementations from
the toolbox of Piotr Dollar [6]. We use the same number
of base classifiers F = 50 for all methods. The random
fern uses 10 binary decisions per base classifier. The
trees in the random forest are all fully grown and we fix
the number of evaluated node tests to

√
D [8]. For our

proposed classifier we fix S to 16 and B to 25. We also
implemented our method in Matlab and code is available at
http://vh.icg.tugraz.at.

Table 1 shows the average classification accuracies
and standard deviations on both datasets. As can be
seen by additionally considering the available information
in a discriminative setting, we are able to outperform
a standard nearest-neighbor approach and conventional
random ensemble approaches in this scenario. We
additionally analyze the runtime and the memory profile
required for identifying the correspondences. The runtimes
for the classifiers are constant and independent of the
number of 3D points, where our approach requires on
average 1.04 times longer than the fern (due to the mapping)
and the random forest is slightly slower (1.30 times).
The runtime of the nearest neighbor approach depends on
number of 3D points, starting to being slower if we have

a more than a few hundred 3D points in our database.
Considering memory profile, our approach requires F ×
C×2S bytes for saving the probability tables. However, the
tables are extremely sparse, where on average only 1.17%
of the bins are non-zero leading to a constant and reasonable
memory profile.

Query images not used for the 3D reconstruction
can now be localized by evaluating the obtained
correspondences using a perspective-n-point (PnP)
algorithm in a hypothesize-and-verify framework such as
PROSAC [4]. In such a way we are able to estimate an
accurate camera pose for each query image. Unfortunately,
the increased matching performance does not directly
map to an improved localization quality on these datasets,
however our approach has implicitly several advantages
to a standard BF approach like (a) consistent runtime
independent of point cloud size, (b) small memory profile
since we do not have to save the training data, (c) implicit
probabilistic ranking of correspondences, (d) anytime
capability, since we can stop after evaluating only a
subset of the base classifiers and (e) improved matching
performance as shown in the experiments due to exploiting
all available information.

5.2. Parameter Evaluation

As second experiment we aim at analyzing the influence
of parameters on performance. We have three different
parameters to fix: the number of base classifiers (ferns)
F , the number of features per fern B and the number of
bins per fern L = 2S . We use the same datasets as
aforementioned but only select a subset (5 per dataset) of
the potentially visible sets for evaluation due to runtime
issues. It is well known that increasing the number of
base classifiers F improves recognition performance until
some kind of saturation is achieved. Similar behavior can
be observed from our method where the saturation point is
approximately achieved when using 50 base classifiers.

We further analyze dependencies between the depth S
and the number of feature dimensions B that are used to
find the Canonical Correlation Analysis (CCA) projection.
Figure 3 illustrates the influences on our datasets, adapting
the depth of our embedded fern from 6 to 16, and the
number of considered feature dimensions from 10 to 50.
As expected, to maintain the randomization principle is
important to select only a subset of feature dimensions for
each base classifier (∼ 20). Similar as for standard random
forests, the number of binary splits has to be adapted to the
amount of training samples to avoid overfitting. Since in
our scenario a large number of training samples is available,
larger numbers lead to the best results.
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(a) Dubrovnik (b) Rome

Figure 3: Parameter influence on classification results for
two different datasets. On y-axis: the number of binary
splits (from 6 to 16). On x-axis: the number of randomly
selected feature dimensions (from 10 to 50).

6. Conclusion
In this paper we analyzed the applicability of

discriminative classifiers for image-based localization.
We demonstrated that such a formulation has several
advantages to a standard nearest neighbor assignment
approach like a runtime independent of the point cloud
size, a constant memory profile, where we do not have
to save the point cloud descriptors, and an improved
matching performance by using all available information in
a discriminative manner. Because of the specific demands
in such a localization scenario, standard classifiers are not
well suited. For this reason, we additionally proposed an
extension of the classical random fern principle, adding
a discriminative embedding step per base classifier which
directly yields flat assignments to bins. Experiments
show that our method yields higher classification rates in
comparison to random ferns and forests in an image-based
localization scenario.
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