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Preface

The Conference on Uncertainty in Artificial Intelligence (UAT) is the premier international conference on research
related to representation, inference, learning and decision making in the presence of uncertainty within the field
of Artificial Intelligence. This volume contains the schedule and abstracts of all papers that were accepted for
the 31st UAI Conference, held in Amsterdam, The Netherlands, from July 12 to 16, 2015. Papers appearing in
this volume were subjected to a rigorous review process. 291 papers were submitted to the conference (excluding
papers that were withdrawn or rejected outright because of potential double submission) and each was peer-
reviewed by 3 or more reviewers with the supervision of one Senior Program Committee member. A total of 99
papers were accepted, 28 for oral presentation and 71 for poster presentation, for an acceptance rate of 34%. We
are very grateful to the program committee and senior program committee members for their diligent efforts.
We are confident that the proceedings, like past UAI conference proceedings, will become an important archival
reference for the field.

We are pleased to announce that the Microsoft Best Paper Award is awarded to Vaishak Belle, Guy Van
Den Broeck, and Andrea Passerini for their paper “Hashing-based approximate probabilistic inference in hybrid
domains”. The Facebook Best Student Paper Award is awarded to Bo Liu (co-authored with Ji Liu, Moham-
mad Ghavamzadeh, Sridhar Mahadevan, and Marek Petrik) for their paper “Finite-sample analysis of proximal
gradient TD algorithms”. The Google Best Student Paper Award is awarded to Wen Sun (co-authored with J.
Andrew Bagnell) for their paper “Online Bellman residual algorithms with predictive error guarantees”.

In addition to the presentation of technical papers, we are very pleased to have four distinguished invited
speakers at UAI 2015: Peter Bithlmann (ETH Ziirich), David MacKay (Cambridge University), David Silver
(Google DeepMind), and, as Banquet Speaker, Raphael Slawinski (Mount Royal University). The UAI 2015
tutorials program, chaired by Silja Renooij, consists of four tutorials: “Optimal algorithms for learning Bayesian
network structures” by Changhe Yuan, James Cussens, and Brandon Malone, “Computational complexity of
Bayesian networks” by Johan Kwisthout and Cassio De Campos, “Belief functions for the working scientist”
by Thierry Denoeux and Fabio Cuzzolin, and “Non-parametric causal models” by Robin Evans and Thomas
Richardson.

UAI 2015 also hosts three workshops, coordinated by workshops chair Irina Rish: “12th Annual Bayesian
Applications Workshop” (John Mark Agosta and Rommel Novaes Carvalho), “StarAl — Statistical Relational
AT” (Mathias Niepert, Guy Van den Broeck, Siraam Natarajan, and David Poole) and “Advances in Causal
Inference” (Ricardo Silva, Tom Claassen, Robin Evans, Jonas Peters, and Ilya Shpitser).

Marina Meila and Tom Heskes (Program Co-Chairs)
Jin Tian (General Chair)
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Bayesian Optimal Control of Smoothly Parameterized Systems

Yasin Abbasi-Yadkori
Queensland University of Technology

Abstract

We study Bayesian optimal control of a general
class of smoothly parameterized Markov deci-
sion problems (MDPs). We propose a lazy ver-
sion of the so-called posterior sampling method,
a method that goes back to Thompson and Strens,
more recently studied by Osband, Russo and van
Roy. While Osband et al. derived a bound on
the (Bayesian) regret of this method for undis-
counted total cost episodic, finite state and ac-
tion problems, we consider the continuing, av-
erage cost setting with no cardinality restric-
tions on the state or action spaces. While in
the episodic setting, it is natural to switch to a
new policy at the episode-ends, in the continu-
ing average cost framework we must introduce
switching points explicitly and in a principled
fashion, or the regret could grow linearly. Our
lazy method introduces these switching points
based on monitoring the uncertainty left about
the unknown parameter. To develop a suitable
and easy-to-compute uncertainty measure, we in-
troduce a new “average local smoothness” con-
dition, which is shown to be satisfied in com-
mon examples. Under this, and some additional
mild conditions, we derive rate-optimal bounds
on the regret of our algorithm. Our general ap-
proach allows us to use a single algorithm and
a single analysis for a wide range of problems,
such as finite MDPs or linear quadratic regula-
tion, both being instances of smoothly parame-
terized MDPs. The effectiveness of our method
is illustrated by means of a simulated example.

1 INTRODUCTION

The topic of this paper is Bayesian optimal control, where
the problem is to design a policy that achieves optimal per-
formance on the average over control problem instances

Csaba Szepesvari
University of Alberta

that are randomly sampled from a given distribution. This
problem naturally arises when the goal is to design a con-
troller for mass-produced systems, where production is im-
perfect but the errors follow a regular pattern and the goal
is to maintain a good average performance over the con-
trolled systems, rather than to achieve good performance
even for the system with the largest errors.

In a Bayesian setting, the optimal policy (which exists
under appropriate regularity conditions) is history depen-
dent. Given the knowledge of the prior, the transition dy-
namics and costs, the problem in a Bayesian setting is to
find an efficient way to calculate the actions that the opti-
mal policy would take given some history. This problem
was studied for finite state and action spaces by Asmuth
et al. (2009) and Kolter and Ng (2009). Both works pro-
pose specific computationally efficient algorithms, which
are shown to be e-Bayes-optimal with probability 1 — §
with the exception of O(poly(1/€)) many steps, where for
both algorithms € and d are both part of the input. While
Kolter and Ng (2009) suggest to add an exploration bonus
to the rewards while using the mean estimates for the tran-
sition probabilities and considers a finite horizon setting,
Asmuth et al. (2009) consider discounted total rewards and
a variant of posterior sampling, originally due to Thompson
(1933) and first adapted to reinforcement learning by Strens
(2000). More recently, the algorithm of Strens (2000) was
revisited by Osband et al. (2013) in the context of episodic,
finite MDPs. An attractive feature of posterior sampling is
that it requires neither the target accuracy e, nor the failure
probability ¢ as its inputs. Rather, the guarantee presented
by Osband et al. (2013) is that the algorithm’s (Bayesian)
regret, i.e., the excess cost due to not following the opti-
mal policy, is bounded by O(v/T)! both with high proba-
bility and in expectation. The reader interested in further
algorithms for Bayesian reinforcement learning (including
algorithms for infinite state spaces) may consult the papers
of Araya-Lopez et al. (2012), Vlassis et al. (2012) and Guez
et al. (2013), which together give an excellent overview of
the literature.

l5() hides poly-logarithmic factors.



The starting point of our paper is the work of Osband et al.
(2013). In particular, just like Osband et al. (2013), we
build on the posterior sampling algorithm of Strens (2000),
which itself was derived from an algorithm of Thompson
(1933) developed for the so-called bandit setting. Unlike
Osband et al. (2013) and Strens (2000), we allow the state-
action space to be infinite (subject to some regularity condi-
tions discussed later) and we consider the infinite horizon,
continuing, average-cost setting. As far as we known, ours
is the first work deriving (Bayesian) regret bounds for any
algorithms of this generality. The major assumption that
we make is that the Markov dynamics is smoothly param-
eterized in some unknown parameters with known (local)
“smoothness” map such that the posterior concentrates in
the metric derived from this map. It is shown that this as-
sumption is met in some common examples, such as finite
MDPs, and also in linearly parameterized systems, which
encompass, systems with linear dynamics.

Following a proposal of Strens (2000) who also considered
the non-episodic setting, the algorithm works in phases: At
the beginning of each phase, a policy is computed based
on solving the optimal control problem for a random pa-
rameter vector drawn from the posterior over the parameter
vectors. The algorithm keeps the policy until the param-
eter uncertainty is reduced by a substantial margin, when
a new phase begins and the process is repeated. The idea
of ending a phase when uncertainty is reduced by a signif-
icant margin goes back at least to the work of Jaksch et al.
(2010).

While in the case of episodic problems the issue of how
long a policy should be kept does not arise, in a contin-
uing problem with no episodic structure, if policies are
changed too often, performance will suffer (see, e.g., Ex-
ample 1 of Guez et al. (2014)). To address this challenge,
for non-episodic problems, Strens (2000) suggested that the
lengths of phases should be adjusted to the “planning hori-
zon” (Strens, 2000), which however, is ill-defined for the
average cost setting that we consider in this paper. A major
contribution of this work is that we show how the smooth-
ness map can be used to derive the length of the phases.

In a recent and independent work, Osband and Van Roy
(2014) propose and analyze a similar algorithm for episodic
problems. Also, Gopalan and Mannor (2015) show a fre-
quentist analysis of Thompson sampling for finite MDP
problems.

The continuing setting is very common in practice; this
setting is the most natural for controlled mechanical sys-
tems (e.g., CD/DVD drive control, control of manufactur-
ing robots), or for process optimization (e.g., controlling a
queuing system, resource management), where “resets” are
rare or unnatural.

Under some additional technical conditions, we sklow that
the expected (Bayesian) regret of our algorithm is O(\/T +

1), where T is the number of time steps and X7 is con-
trolled by the precision with which the optimal control
problems are solved, thus providing an explicit bound on
the cost of using imprecise calculations. In summary, the
main result of the paper shows that near-optimal Bayesian
optimal control is possible for a wide range of problems as
long as we can efficiently sample from the parameter pos-
teriors, the length of phases for how long the same policy
is followed is carefully controlled and if we can efficiently
solve the arising classical optimal control problems. Due
to the lack of space, the proofs of some of our claims are
given in the supplementary material.

We emphasize two contributions: (1) the invention of a
class of systems which unifies many previous approaches,
and permits an elegant proof. (2) the introduction of a Con-
centrating Posterior assumption which significantly short-
ens our proof compared to previous proofs and improves
the bound, as we avoid the use of measure concentration
arguments which were always used previously.

2 PROBLEM SETTING

We consider problems when the transition dynamics is pa-
rameterized with a matrix ©, € R™*"™, which is randomly
chosen at time O (before the interaction with the learner
starts) from a known prior Py with support S C R™*",
Let P, denote the posterior of ©, at time ¢ based on
T1,0G1,...,0;-1,%;. Let X C R™ be the state space and
A C R? be the action space, xy € X be the state at time ¢
and a; € A be the action at time ¢, which is chosen based
on ri,das,...,a;—1,%. It is assumed that xq is sampled
from a fixed distribution (although, it should become clear
later that this assumption is not necessary). For M > 0
positive semidefinite, define ||@||?u =0T Mo ,» Where
[|-||, denotes the spectral norm of matrices (later we will
drop the subindex 2). The set of positive semidefinite
m X m matrices will be denoted by S*(m). Our main
assumption concerning the transition law is as follows:

Assumption Al (Smoothly Parameterized Dynamics)
The next state satisfies 411 = f(x¢, at, Ox, 2141), where
zt41 ~ UJ0, 1] is independent of the past and ©,. Further,
there exists a (known) map M : X x A — ST (m) such that
forany ©,0" € S,ify = f(x,a,0,2),y = f(z,a,0’,2)
with 2 ~ U[0, 1], then E [[ly — /[ < © — &' 1(s.0-
The first part of the assumption just states that given ©., the
dynamics is Markovian with state x;, while the second part
demands that small changes in the parameter lead to small
changes in the next state. The assumption that the map M
is “known” makes it possible to use M in the design of our
algorithms.

Our next assumption connects the concentration of the pos-
terior with M:



Assumption A2 (Concentrating Posterior) Let F, =
o(x1,a1,...,a;—1,2) be the o-algebra generated by ob-
servations up to time ¢, V; = V + Zt L 1 M(zs,as), where
V' is an m x m positive definite matrlx Then, there exists
a positive constant C' such that for any ¢ > 1, for some Fi-
measurable random variable @t, letting ©} ~ P; it holds

that max{ [||@; - eM , [He* - @tnvt}} <C.

The idea here is that (:)t is an estimate of ©, based on past
information available at time ¢, such as a maximum apos-
teriori (MAP) estimate (note that this estimate will not be
needed by our algorithm). Since V; is increasing at a lin-
ear rate, the assumption requires that 0, converges to ©
at an O(1/\/t) rate. When © = ©,, this means that O,
should converge to O, at this rate, which is indeed what
we expect. When © = O/, again, we expect this to be true
since O is expected to be in the O(1/+/t) vicinity of O,.
Note how this assumption connects M with the behavior
of the posterior. One novelty of our analysis, as compared
to that of Osband et al. (2013), is that while Osband et al.
relies on measure-concentration, we require only the above
(weaker) “variance concentration”. We will show explicit
examples where this variance term is easy to control using a
direct calculation. Since we avoid measure-concentration,
our analysis has the potential to give much tighter regret
bounds for the Bayesian setting than available previously,
though the study of this remains for future work. The ex-
amples we deal with include finite MDPs (where the state
is represented by unit vectors) and systems with linear dy-
namics (i.e., when x;y1 = Az; + Bay + wq1, Where
w1 ~ Pw(-|Tt,at)), amongst others. Explicit expres-
sions for the map M will be given in Section 6 for these
systems. In general, for systems with additive noise, find-
ing M essentially reduces to finding a suitable local lin-
earization of the system’s dynamics.

The problem we study is to design a controller (also known
as a policy) that at every time step ¢, based on past states
Z1,...,x; and actions aq,...,a;—1, selects an action a;
so as to minimize the expected long-run average loss
E [limsup,,_,., = 31, €(z4, a;)]. We consider any noise
distribution and any loss function ¢ as long as a bounded-
ness assumption on the variance and a smoothness assump-
tion on the value function are satisfied (see Assumptions A2
and A3-ii below). It is important to note that we allow £ to
be a nonlinear function of the last state-action pair, i.e., the
framework allows one to go significantly beyond the scope
of linear quadratic control as many nonlinear control prob-
lems can be transformed into a linear form (but with a non-
linear loss function) using the so-called dynamic feedback
linearization techniques (Isidori, 1995).

To measure the performance of an
we use the (expected) regret Rry:

E S5 (e a) - J(0.))].

algorithm,
Ry =

Here, (w4,a4)E, de-

notes the state-action trajectory and J(O.) is the average
loss of the optimal policy given (random) parameter
O.. The slower the regret grows, the closer is the per-
formance to that of an optimal policy. If the growth
rate of Rr is sublinear (R = o(T)), the average loss
per time step will converge to the optimal average loss
as T' gets large and in this sense we can say that the
algorithm is asymptotically-optimal. =~ Our main result
shows that, under some conditions, the construction of
such asymptotically-optimal policies can be reduced
to the ability of efficiently sampling from the posterior
of ©, and being able to solve classical (non-Bayesian)
optimal-control problems. Furthermore, our main result
also implies that Ry = O(V/T).

3 THE LAzy PSRL ALGORITHM

Our algorithm is an instance of the posterior sampling re-
inforcement learning (PSRL) (Osband et al., 2013). As ex-
plained beforehand, this algorithm is based on the work on
Thompson (1933) and was proposed by Strens (2000). To
emphasize that the algorithm keeps the current policy for a
while, we call it LAZY PSRL. Our contribution is to sug-
gest a specific schedule for updating the policy. The pseu-
docode of the algorithm is shown in Figure 1.

Recall that P, denotes the prior distribution of the pa-
rameter matrix ©,. Let P; denote the posterior of O, at
time ¢ based on x1,a1,...,a;_1,x; and 7w < t the last
round when the algorithm chose a new policy. Further, let

V—I—Zf ! 1 M (x5, as), where V' is some fixed, m x m
posmve deﬁmte matrix. Let G be a constant that controls
the replanning frequency. Then, at time ¢, Lazy PSRL sets
©, = O;_1 unless det(V;) > G det(V,) in which case it
chooses ét from the posterior P;: ét ~ P,. The action
taken at time step ¢ is a near-optimal action for the system
whose transition dynamics is specified by ©;. We assume
that a subroutine, 7*, taking the current state x; and the
parameter O, is available to calculate such an action. The
inexact nature of calculating a near-optimal action will also
be taken in our analysis.

4 RESULTS FOR BOUNDED STATE-
AND FEATURE-SPACES

In this section, we study problems with a bounded state
space. In particular, the number of states might be infinite,
but we assume that the norm of the state vector is bounded
by a constant. Before stating our main result, we state some
extra assumptions.

Our first extra assumption concerns the existence of “reg-
ular” solutions to the average cost optimality equations
(ACOEs), an assumption which is usually thought to be
mild in the context of average-cost problems:



Inputs: Py, the prior distribution of O, V, G.
Vst <V, Vo < V.
fort <« 1,2,... do
if det(V;) > G det(V,y) then
Sample ét ~ P;.
Viast + V4.
else _
@t — @t—l'
end if _
Calculate near-optimal action a; < 7*(z¢, ©y).
Execute action a; and observe the new state ;1.
Update Pt with (.Tt7 ag, l't+1) to obtain Pt+1.
Update Vi1 < Vi + M (x4, at).
end for

Figure 1: Lazy PSRL for smoothly parameterized control
problems

Assumption A3 (Existence of Regular ACOE Solutions)
The following hold:

(1) There exists H > 0 such that for any © € S, there
exist a scalar J(©) and a function h(-,0) : X —
[0, H] that satisfy the average cost optimality equa-
tion (ACOE): for any z € X,

J(©) + h(z,0) = (D)

géiﬁ {é(a:,a)—k/h(y, O)p(dy |z, a, @)} )

where p(-|z, a, ©) is the next-state distribution given
state x, action a and parameter ©.

(ii) There exists B > 0 such that for all © € S, and for
allz,2’ € X, |h(z,0) — h(z',0)| < Bz — 2|

With a slight abuse of the concepts, we will call the quantity
J(©) the average loss of the optimal policy, while function
h(-,©) will be called the value function (for the system
with parameter ©). The review paper by Arapostathis et al.
(1993) gives a number of sufficient (and sometimes nec-
essary) conditions that guarantee that a solution to ACOE
exists. Lipschitz continuity usually follows from that of the
transition dynamics and the losses.

Let us now discuss the condition that i should have a
bounded range. A uniform lower bound on h follows, for
example if the immediate cost function ¢ is lower bounded.
Then, if the state space is bounded, uniform boundedness
of the functions h(-, ©) follows from their uniform Lips-
chitzness:

Proposition 1. Assume that the value function h(-,©) is
bounded from below (inf, h(z,©) > —oo) and is B-
Lipschitz.  Then, if the diameter of the state space is

bounded by X (i.e., sup, ,cy |v —2'|| < X) then there
exists a solution W' (-, ©) to (1) such that the range of h is
included in [0, BX].

Finally, we assume that the map M : X x A — S*(m) is
bounded:

Assumption A4 (Boundedness) There exist ® > 0 such
that for all z € X and a € A, trace(M (z,a)) < d2.

This assumption may be strong. In the next section we dis-
cuss an extension of the result of this section to the case
when this assumption is not met.

The main theorem of this section bounds the regret of Lazy
PSRL under the assumptions mentioned so far. In this re-
sult, we allow 7* to return a o;-suboptimal action, where
o > 0. By this, we mean that the action a; satisfies

Uy ar) + / Wy, ©)p(dylze, ar, ) < @

mi}41 {ﬁ(mt,a) + /h(y, O,)p(dylzs, a, ét)} +o¢.

ac

One can control the suboptimality error in terms of the error
of an approximate solution to the Bellman equation and the
error of the subroutine that finds an action that minimizes
the obtained approximate action values.

Theorem 2. Assume that AI-A4 hold for some values of
C,B,X,® > 0. Consider Lazy PSRL where in time step
t, the action chosen is oi-suboptimal. Then, for any time

T, the regret of Lazy PSRL satisfies R = 6 (\/T ) + X7,

where Yp = Zthl E [0+] and the constant hidden by O(-)
depends on'V,C, B, X, G and ®.

In particular, the theorem implies that Lazy PSRL is
asymptotically optimal as long as Zthl E[o¢] = o(T') and
it is O(e)-optimal if E [0;] < e. The fact that the regret
is bounded by the sum of suboptimality factors in solving
Bellman equation is not trivial. Indeed, as actions have long
term effects and we have a closed-loop system, one might
suspect that the regret could blow up as a function of these
errors. In this respect, the significance of our theorem is
that the learner need not worry too much about each plan-
ning subproblem as the overall effect is only additive.

Due to lack of space, the proof, which combines the proof
techniques of Osband et al. (2013) with that of Abbasi-
Yadkori and Szepesvari (2011) in a novel fashion, is pre-
sented in the appendix.

S FORCEFULLY STABILIZED SYSTEMS

For some applications, such as robotics, where the state can
grow unbounded, the boundedness assumption (Assump-
tion A4) is rather problematic. For such systems, it is com-
mon to use a stabilizing controller 7,1, that is automati-
cally turned on and is kept on as long as the state vector is



“large”. The stabilizing controller, however, is usually ex-
pensive (uses lots of energy), as it is designed to be robust
so that it is guaranteed to drive back the state to the safe
region for all possible systems under consideration. Hence
a good controller should avoid relying on the stabilizing
controller.

In this section, we will replace Assumption A4 with an as-
sumption that a stabilizing controller is available. We will
use this controller to override the actions coming from our
algorithm as soon as the state leaves the (bounded) safe
region R C R™ until it returns to it. The corresponding
pseudocodeis shown in Figure 2.

Inputs: Py, the prior distribution of ©,, V, the safe
region R C R"™.
Initialize Lazy PSRL with Py and V, x;.
fort=1,2,... do
if z; € R then
Get action a; from Lazy PSRL
else
Get action a; from 7,1,
end if
Execute action a; and observe the new state ;1.
Feed a; and x4, to Lazy PSRL.
end for

Figure 2: Stabilized Lazy PSRL

We assume that the stabilizing controller is effective in the
following sense:

Assumption A5 (Effective Stabilizing Controller) There
exists ® > 0 such that the following holds: Pick any
x € R,a € Aand let 2,a}, x5, al,... be the sequence
of state-action pairs obtained when from time step two the
Markovian stabilizing controller 7,1, is applied to the con-
trolled system whose dynamics is given by © € S: 2} = x,
ap = a, ahyy ~ pUlahalO), ayy ~ man(le)).
Then, E [trace(M (z},a}))] < ®2 for any t > 1, where
M : X x A — S*(m) is the map of Assumption Al un-
derlying {p(‘|z,a, ©)}.

The assumption is reasonable as it only requires that the
trace of M (z}, a}) is bounded in expectation. Thus, large
spikes, that no controller may prevent, can exist as long as
they happen with a sufficiently low probability.

The next theorem shows that Stabilized Lazy PSRL is near
Bayes-optimal for the system p’ obtained from p by over-
writing the action a by the action 7rgtap, () if « is outside of
the safe region R C R™:

p(dylz, a,©),
p(dy|xa ﬂ-stab('r)a @),

ifx € R;
otherwise .

p'(dylz,a,0) = {

Theorem 3. Consider a parameterized system with the
transition probability kernel family {p(:|z,a, ©)}ocs and
let Tgtap : X — A be a deterministic Markovian controller.
Let the smooth parameterization Assumption Al hold
for {p(-|z,a,©)}, the ACOE solution regularity Assump-
tion A3 hold for {p'(-|x, a, ©)}. Consider running the Sta-
bilized Lazy PSRL algorithm of Figure 2 on p(-|z,a,©.)
and let the concentration Assumption A2 hold along the
trajectory obtained. Then, if in addition Assumption A5
holds then the regret of Stabilized Lazy PSRL against the
Bayesian optimal controller of {p'(+|x, a, ©)}e with prior

Py and immediate cost { satisfies R = O <\/T ) + X7,

where X = Zle E[1{xz: € R} 04| and o is the subop-
timality of the action computed by Lazy PSRL at time step
t.

If the optimal controller 7* for p does not excite the con-
dition that turns on the stabilizing controller, then this con-
troller is also optimal for p’. In this case, Stabilized Lazy
PSRL will have the same regret against 7* than what it has
against the optimal controller of p’ and the theorem implies
that it will achieve sublinear regret in the original system,
as long as X7 is sublinear.

6 EXAMPLES

The purpose of this section is to illustrate the results ob-
tained. In particular, we will consider applying the results
to finite MDPs and linearly parameterized controlled sys-
tems and show that for these cases all the assumptions can
be satisfied and Lazy PSRL can achieve a low expected re-
gret. We believe that our results will be applicable to many
more settings, such as hybrid discrete-continuous systems
where the discrete states control which continuous dynam-
ics is used.

6.1 Finite MDPs

Consider an MDP problem with finite state and action
spaces. Let the state space be X = {1,2,...,n} and
the action space be A = {1,2,...,d}. We represent the
state variable by an n-dimensional binary vector x; that
has only one non-zero element at the current state and will
write the dynamics in the form z; 1 = O, (z¢, ar) + 1y,
where ©, will collect the transition matrices into a single
big matrix and 7, is a “Markov noise”. The feature map,
¢ : X x A — R™ and the parameter matrix are defined as
follows: for1 < k < nd,

I
ol
0, =

(2, ) 1, ifk=(a—1)n+ux;
T,a) = .
ok 0, otherwise,

o



Let s € [n] be a state and a € [d] be an action. The sth
row of matrix @&a) is a distribution over the state space
that shows the transition probabilities when we take ac-
tion a in state s. Thus, any row of @5:” sums to one and

E [zi41]me, ) = O] @(x4, a).

An appropriate prior for each row is a Dirichlet dis-

tribution. Let «y,...,qa, be positive numbers and let
V' = diag(aq,...,an). Then V = diag(V’',..., V') €
R™@*7d is our “smoother”. Let the prior for the sth

row of @Sfl) be the Dirichlet distribution with parameters
(o1, ...,00): (Py)s,, = D(oq,...,ap). Attime ¢, the
posterior has the form

(Pt)s,: = D(al + Ct(57aa 1)5 sy Qp + Ct(S, a, n))7
where ¢;(s,a, s’) is the number of observed transitions to
state s’ after taking action a in state s during the first ¢
time steps. Matrix V; is a diagonal matrix with diagonal

elements depending only on the number of times a state-
action pair is observed. In particular,

s = Z (ay +ci(s,a,8)).

s’/

(V;f)n(afl)Jrs,n(afl)Jr

Vector (:)t,(:,sf) is an nd-dimensional vector and its ele-
ments show the empirical frequency of transition to state
s’ from different state-action pairs. The mean of distribu-
tion (P)s,. is the vector Oy (5,(4—1)+s,:) Where

ag + (s, a,s)

ZS” (OZSI/ —|— Ct(S, a, S//)> ’

@t,(n(a—l)-i-s,s’) =

We now show that matrix-valued map M can be chosen to
be M(z,a) = (v/2/2)I:

Proposition 4. The above choice makes Assumptions Al
and A2 satisfied.

Proof. Let us first show that Assumption Al holds. Be-
cause E [y|z,a] = O p(z,a), E[y|z,a] = O T(x,a).
and y and 3’ have only one non-zero element,

Elly—yll=V2P(y#y)=vV2(1-P(y=1y)
= V2 (1-00,.0).900.)
_ V2 H@(;c )~ Oaa). H
where the last step holds because each row of © and ©’
sum to one.

Let us now prove that Assumption A2 holds: Let N =
(O, — 07, Qsue = ag + ci(s,a,8) and @s, =
Zs/ As.a,s" = W,(7l(a—1)+s,n(a—1)+s)- Let ||HF denote the

Frobenius norm. We have that

2 2
st =] < i

Z‘/t (n(a—1)+s,n(a— 1)+9)Z ft‘|
_ZOZSGZE{ s’,n(a—1)+s

Because each row of ©, has a Dirichlet distribu-
tion and rows of ©; are means of these distributions,

2
E |:N€’,n(n,—1)+s
sponding Dirichlet variable. Thus,

.

s’ ,n(a—1)+

=E

]—}] .

.7-}} is simply the variance of the corre-

as,a,s’)

|:’NV1/2H ‘ft] ZZ asaasas 1OéjLaa )
§n d.

O

An immediate corollary of this is that Lazy PSRL will en-
joy low regret in finite MDPs:

Corollary 5. Consider Lazy PSRL applied to a finite MDP
with n states, d actions with M as above, and a Dirich-
let prior as specified above. Assume that the set S sys-
tem parameters under which Assumption A3 is satisfied is
a measurable set with positive Lebesgue measure. Sup-
pose that at time step t, the action chosen is os-suboptimal.
Then, for any time T, the regret of Lazy PSRL satisfies

Rp=0 (ﬁ) 5.

Proof. The boundedness condition (Assumption A4) triv-
ially holds, Assumption A3 holds by assumption, while
Proposition 4 shows that the remaining two assumptions
of Theorem 2 are satisfied. O

6.2 Linearly Parametrized Problems with Gaussian
Noise

Next, we consider linearly parametrized problems with
Gaussian noise:

zi1 = O] p(w4, ar) + wit (3)

where wyy; is a zero-mean normal random variable. The
nonlinear dynamics shown in (3) shares similarities to,
but allows significantly greater generality than the Lin-
ear Quadratic (LQ) problem considered by Abbasi-Yadkori
and Szepesvari (2011). In particular, in the LQ problem,
0] = (A.,B.) and o(zy,a,)" = (x/ ,a]). (How-
ever, Abbasi-Yadkori and Szepesvari (2011) assume only
that the noise is subgaussian.)

Next, we describe a conjugate prior under the assump-
tion that the noise is Gaussian with a known covari-
ance matrix. Without loss of generality, we assume that



E [wH_lel | ]-'t] = I. A conjugate prior is appealing as
the posterior has a compact representation that allows for
computationally efficient sampling methods. Assume that
the columns of matrix ©, are independently sampled from
the following prior: for: =1...n,

Po (@*7(;7“) X exp (@I’(:’i)V@*,(HZ‘)) 1 {@*7(;71) S S}

and S is the set of system parameters under which Assump-
tion A3 is satisfied, which is assumed to be a measurable
set with positive Lebesgue measure. Then, by Bayes’ rule,
the posterior for column i of ©,, P; (,,(.;)), is propor-
tional to

o(05(0-0.0=800.0) Vil®nc0-Buc0))q Lo, € SY.

We now show an appropriate choice for M (which should
not be surprising):

Proposition 6. With the choice M(x,a) =
o(z,a)p(z,a)", Assumptions Al and A2 are satis-

fied.

Note that this choice is essentially the same as in Proposi-
tion 4.

Proof. Let us first show that Assumption Al holds. Be-
cause y = O " p(z, a) +w, y =0 Tp(z,a) +w, we have
ly—y/° =6 —e ||¢(I ) ()T » Which shows that this
assumption is indeed satisfied with the said choice of M.

Let us now prove that Assumption A2 holds: Let A be a
random variable with probability distribution function

P()\) x exp <; ()\ — @t,(:7i))—l— Vi ()\ — @t,(:,i))> .

. T
Notice that (Af Gt,(:,i)) VY? = Z ~ N(0,I) has
the standard normal distribution. Hence P (|Z;| > a) <

e="/2 Thus, since P (|| Z]| > @) < me=®"/Cm) we
have

1/2
H z)_et(z)) ‘/t/

:/ (||Z||2 > e) < om3.
0

=E|[|2)* | 7]

2

Thus,

e [Jio- e | ]

IA

e |[e. 80w | 7]

H ((9*7(;@) - @)t’(:)i))T Vt1/2

2

<

E
m3

IN

n

This shows that Assumption A2 is satisfied, thus finishing
the proof. O

An immediate corollary of this is that Lazy PSRL will en-
joy low regret when applied to linearly parametrized prob-
lems with Gaussian noise. We assume an effective stabiliz-
ing controller is available. This is necessary, as the noise
may make the state arbitrarily large.

Corollary 7. Consider Stabilized Lazy PSRL applied to a
linearly parametrized problem with Gaussian noise with M
as in Proposition 6. Let the underlying MDP satisfy As-
sumption A3. Suppose in time step t, the action chosen is
o-suboptimal. Then, for any time T, the regret of Stabi-

lized Lazy PSRL satisfies Rr = O (\/T) + X7

Proof. The claim follows immediately from Proposition 6
and Theorem 3. O

7 EXPERIMENTS

In this section we illustrate the behavior of LAZY PSRL on
a queueing and a web server control application.

7.1 Queuing Control Application

The queueing problem is described in (de Farias and Van
Roy, 2003). The queue has a buffer size of 99. For time
t,let z; € {0,1,...,99} be the state. The action a; is the
departure probability or service rate and is chosen from the
set {0.1625,0.325,0.4875,0.65}. Let p be the (unknown)
arrival rate. The dynamics is defined as follows

z; — 1 with probability a; ;
Tep1 = 24+ 1 with probability p;

Ty otherwise .

From state z; = 0, transitions to states 1 and O happen with
probabilities p and 1 — p. From state x; = 99, transitions
to states 98 and 99 happen with probabilities a; and 1 — a.
The loss function is £(z¢, a;) = x? + 500p>.

7.1.1 Numerical Results

The purpose of this experiment is to show how the LAZY
PSRL algorithm can take advantage of the problem struc-
ture to obtain better performance. We compare the LAZY
PSRL algorithm with UCRL (Jaksch et al., 2010). For
the LAZY PSRL algorithm, we use the Beta distribution
Beta(1, 1) as the prior for the unknown parameter p (the
conditions of our theorem can be seen to be satisfied along
the lines of the previous section with M (z,a) = const).
The constant GG in Figure 1 is chosen to be G = 2. The
UCRL algorithm is an optimistic algorithm that maintains
a confidence interval around each transition probability



P(a'|z, a) and, in each round, finds the transition dynamics
and the corresponding policy that attains the smallest aver-
age loss. Specifically, the algorithm solves the optimization
problem P = argminp J(P), where J(P) is the average
loss of the optimal policy when the system dynamics is P.
Then, the algorithm plays the optimal controller given the
parameter P. As we show next, the LAzy PSRL algorithm
achieves lower average cost.

The time horizon in these experiments is 7' = 1,000. We
repeat each experiment 10 times and report the mean and
the standard deviation of the observations. Figure 3 shows
average cost vs. number of rounds. Details of the imple-
mentation of the UCRL algorithm are in (Jaksch et al.,
2010).

Figure 3 show the average cost of the algorithms. The
LAzy PSRL algorithm outperforms the UCRL algorithm.
We explain this observation by noting that the UCRL al-
gorithm is learning components of the transition dynamics
independently (400 components in total), while the LAZY
PSRL algorithm takes advantage of the problem structure
to speed up the learning.

7.2 Web Server Control Application

In this section we illustrate the behavior of LAZY PSRL on
a simple LQR control problem. We choose an LQR control
problem because it is a continuous state-action problem.
Equally important is that this allowed us to compare the
performance of LAzZY PSRL to a competing method, the
OFULQ algorithm of Abbasi-Yadkori (2012). The exper-
iments go beyond the scope of the theory, as we did not
use a stabilizing controller, though the control problem it-
self is such that the zero-dynamics (i.e., the dynamics under
zero control) is stable, making it less likely that a stabiliz-
ing controller would be necessary for the method to work.
In the next section we describe the control problem, which
will be followed by the description of our results.

The problem is taken from Section 7.8.1 of the book by
Hellerstein et al. (2004) (this example is also used in Sec-
tion 3.4 of the book by Astrém and Murray (2008)). An
Apache HTTP web server processes the incoming connec-
tions that arrive on a queue. Each connection is assigned
to an available process. A process drops the connection if
no requests have been received in the last KEEPALIVE sec-
onds. At any given time, there are at most MAXCLIENTS
active processes. The values of the KEEPALIVE and MAX-
CLIENTS parameters, denoted by ay, and a,,. respectively,
are chosen by a control algorithm. Increasing a,,. and ay,
results in faster and longer services to the connections, but
also increases the CPU and memory usage of the server.
The state of the server is determined by the average pro-
cessor load xp, and the relative memory usage Zpem.
An operating point of interest of the system is given by
Tepu = 0.58,akq = 118, Tmem = 0.55, apme = 600. A

linear model around the operating point is assumed, result-
ing in a model of the form

xfpu(t +1) _ A A x?pu(t)
Tpem (t +1) Az Az ) \@hen (1)
4 Bi11 Bis aﬁa(t) i wl(t + 1)
Bgl Bgl aﬁc(t) ’U)g(t + 1) ’

where (w1 (t+1),wa(t+1)); is an i.i.d. sequence of Gaus-
sian random variables, with a diagonal covariance matrix
E [w(t+1)Tw(t + 1)] = o*I. Note that these state and
action variables are in fact the deviations from the operat-

ing point. We test o = 0.1 and o0 = 1.0 in our experiments.
The matrices A, B, @, R are included in the appendix.

7.2.1 Numerical Results

We compare the LAzy PSRL algorithm with
OFULQ (Abbasi-Yadkori, 2012). For the LAzYy
PSRL algorithm, we use the standard normal distribution
as the prior. The OFULQ algorithm is an optimistic
algorithm that maintains a confidence ellipsoid D around
the unknown parameter and, in each round, finds the
parameter and the corresponding policy that attains the
smallest average loss. Specifically, the algorithm solves
the optimization problem

(A, B) = argmin .J(A, B), 4)
(A,B)eD

where J(A, B) is the average loss of the optimal policy
when the system dynamics is (A, B). Then, the algorithm
plays the optimal controller given the parameter (ﬁ, E)
The objective function .J is not convex and thus, solving the
optimistic optimization can be very time consuming. As
we show next, the LAZY PSRL algorithm can have lower
regret while avoiding the high computational costs of the
OFULQ algorithm.

The time horizon in these experiments is 7' = 1,000. We
repeat each experiment 10 times and report the mean and
the standard deviation of the observations. Figure 4 shows
regret vs. computation time. The horizontal axis shows the
amount of time (in seconds) that the algorithm spends to
process ' = 1,000 rounds. We change the computation
time by changing constant G in Figure 1, i.e. by chang-
ing how frequent an algorithm updates its policy.> De-
tails of the implementation of the OFULQ algorithm are
in (Abbasi-Yadkori, 2012).

The first two subfigures of Figure 4 show the regret of
the algorithms when the standard deviation of the noise
is 0 = 0.1. The regret of the LAzZY PSRL algorithm
is slightly worse than what we get for the OFULQ algo-
rithm in this case. The LAZY PSRL algorithm outperforms

2For example, in Figure 4-(d), the average number of policy
changes are (33.4,45.2,88,127.1). In Figure 4-(c) the average
number of policy changes are (5.6, 14.3,30.8,73.2,140.2,163).
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Figure 4: Regret for a web server control problem.

the OFULQ algorithm when the noise variance is larger
(next two subfigures). We explain this observation by not-
ing that a larger noise variance implies larger confidence
ellipsoids, which results in more difficult optimistic opti-

mization problems (4). Finally, we performed experiments
with different prior distributions. Figure 4-(e) shows regret
of the LAzY PSRL algorithm when we change the prior.
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Abstract

Reducing uncertainty is an important problem
in many applications such as risk and reliabi-
lity analysis, system design, etc. In this paper,
we study the problem of optimally querying ex-
perts to reduce interval uncertainty. Surprisingly,
this problem has received little attention in the
past, while similar issues in preference elicita-
tion or social choice theory have witnessed a ri-
sing interest. We propose and discuss some so-
lutions to determine optimal questions in a myo-
pic way (one-at-a-time), and study the computa-
tional aspects of these solutions both in general
and for some specific functions of practical in-
terest. Finally, we illustrate the application of the
approach in reliability analysis problems.

1 INTRODUCTION

When data on some quantity or model of interest is sparse
or non-existing, elicitation, i.e., the process of extracting
human judgement through questions, is often a valuable
and sometimes the unique source of additional knowledge.
There is a substantial literature dating back to the six-
ties on elicitation and is mainly related to probability en-
coding (Winkler, 1969; Spetzler and Stael von Holstein,
1975) and preference elicitation (Keeney et al., 1979). Eli-
citation is used in a broad range of fields including risk
assessment (Cooke, 1991), reliability analysis, preference
model elicitation (Viappiani and Kroer, 2013; Guerin et al.,
2013), etc. to support assessment and decision making.

A critical part of the elicitation is then how to choose the
questions to ask. Those need to be simple (i.e., do not re-
quire high cognitive effort) and in terms and format ex-
perts are familiar with. Furthermore, when the elicitation is
conducted to reach some objective, for instance bringing an
answer to a question, selecting the best alternative in a set,
or estimating some quantity with a desired level precision,
the process of information acquisition need to be optimal
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for the elicitation to be effective and the least possible time
or effort consuming.

How to choose sequences of optimal questions, or even the
notion of optimal queries, has received surprisingly little
attention when the aim is to reduce our uncertainty over
some quantities. Indeed, the great majority of techniques
to do so prescribe generic questions, without considering
the consequences of answers on some final goal (Aspinall
and Cooke, 2013) (the work of Curtis and Wood (Curtis
and Wood, 2004), settled in a probabilistic context, is an
exception). This contrasts with other fields such as prefe-
rence elicitation of social choice theory, with works da-
ting back two decades ago (Boutilier et al., 1997; Wang
and Boutilier, 2003; Boutilier et al., 2006) and still thriving
today (Viappiani and Kroer, 2013; Benabbou et al., 2014;
Boutilier et al., 2013).

The goal of this paper is to explore similar ideas when the
goal is to reduce interval uncertainty by asking successive
simple questions to the experts. We want to develop que-
rying strategies that are adaptive and optimal, i.e., that se-
lect at each stage of the elicitation the best questions based
on the answers to the previous ones. In this paper, we focus
on so-called myopic (Wang and Boutilier, 2003; Chajewska
and Koller, 2000) strategies, where optimal questions are
selected one-at-a-time.

The remainder of the paper is organized as follows. In Sec-
tion 2, we formalize the sequential elicitation model for
the problem of interval uncertainty reduction in the general
case. Within this same section (Section 2.3), we describe
different query selection strategies, and analyse their com-
putational costs in the general case, which is an important
aspect to consider in adaptive procedures. Section 3 then
discusses the case of specific yet important (in practice)
type of functions, namely monotonic and multi linear func-
tions. In the last section, we illustrate how the approach can
be used in reliability analysis.



2 GENERAL FRAMEWORK

2.1 PROBLEM STATEMENT

Let ® be a function mapping a set of n logically inde-
pendent inputs (21, ..., ), each of them being defined on
X;,toanoutputyinY :

®

X = Xi:l..‘nXi — Y

X = (21, xn) = Px)=y.

In this paper, we are interested in the situation where x; is
a precise but ill-known value, whose uncertainty is descri-
bed by an interval X; = [X,, X;] C R of the real line.
Such kind of uncertainty, where the true value is exact, is
sometimes called epistemic (by opposition to aleatory). A
natural way to quantify the amount of uncertainty in X; is
by its width

Ux,(z:i) = Ux, = Xi — Xi.

We also require the function ® to be continuous, so that the
response y corresponding to the initial state of knowledge
on the inputs lies in the bounded interval :

Y = @(X) = [mip ®(x), mag b(x)] = [V, 7]

(D

Example 1. Consider the function ®(x1, 2, x3) = T12T2—
xox3 with X1 = Xo = X3 = [0, 1], then we have

Z: (I)(X17y27y3) = _17?: (b(ylaYQaX?)) =1

The problem we are considering is the following : we want
to reduce our uncertainty Uy = Y — Y by asking ques-
tion to experts, to attain some objectives. For instance, we
may want to reduce the uncertainty under some threshold
Uy < sq or simply reduce the most Uy in a given num-
ber of questions. As expert elicitation is time-consuming
and cognitively demanding for the expert, and economi-
cally expensive for the decision maker, we want to ask as
few questions as possible, or to be the most effective pos-
sible on those questions we ask. In other words, we want
the querying strategy to be optimal. This is what we deve-
lop in the next sections.

2.2 QUERIES AND ANSWERS

In expert elicitation in general, and when the elicitation is
made of many successive questions, it is important to use
simple questions that not require high cognitive effort (for
understanding and answering) for the expert to be efficient
throughout the interview. Possible simple queries formats
include local bound queries (“z; < « 7”), pairwise compa-
rison judgements (“z; < x;” ?), etc. (Braziunas and Bouti-
lier, 2007).
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In our method, we use questions of the type
“r, < a7, with « € X,;. We denote such
a query () and the set of possible queries
Q={Q%ie N={1,2,..,n},a € X;}.

In the particular case of local bound queries, the set of pos-
sible answers A is binary : A = {Yes, No}. We recall
that, for simplicity and for conciseness, we assume that the
expert is an oracle, so the “I don’t know” answer is not
considered here !. Note that the ideas presented in the paper
could easily be applied to other sets of questions/answers
Q, A, yet binary questions are the simplest and the most
natural to ask to experts.

When a question Q¢ is asked and answer A € A is given,
X remains unchanged for every j # 4, while X is updated
to X;(QF, A) as follows :

XiN[—oo,a] if A=Yes

Xi(@F A) = @
X;NJa,—oc] if A= No

which satisfies X;(Q$, 4) C X, and X;(Q%,A) = X;

for every j # i. Consequently, the output uncertainty set is
updated from Y into Y (Q%, A) :

A)

Y( ;'17 q)(X—iXXi( ?7‘4))7 (3)

where X_; = x;+;X; denotes the Cartesian product of
all unchanged intervals. As forany Q € Qand A € A
we have Y (Q, A) C Y by simple interval inclusion, the
following relation always holds :

Uy = Uy(q,a) )

therefore ensuring an uncertainty reduction.

Example 2. In Example 1, assume we ask the question
QY5 and receive the answer Y es, then

X1(Q1?,Yes) =1[0,0.5]
?( (1).57Y65) = q)(ylay%ig) = 0.5.

2.3 QUERY SELECTION STRATEGIES

A query selection strategy corresponds to define and
choose optimal questions. There are two main ways to do
so : myopically, where questions are selected and asked one
at a time, successively, and sequentially, where the set of
successive questions is selected globally. Here, we retain
the myopic approach for the following reasons : it is often
simpler to solve, sometimes allowing for analytical exact
solutions, and does not require to specify the number of as-
ked questions in advance, a particularly interesting feature
in iterative and interactive querying process.

1. Should the expert return “I don’t know” to Qf, then a
simple strategy is to remove Q5 (and possibly questions with si-
milar values of «) from the question set Q and then select the
optimal one among the remaining ones.



The selection process of the myopic approach consists in
solving the following optimization problem at each itera-
tion :
* = arg min U 5
Q g min Uy (@), (5)
where Uy (@) is the uncertainty reduction induced by query
Q. However, as the answer 4 that will be given to @ is
unknown, we face a typical problem of decision making
under uncertainty.

In our case, the decision is a couple (i,«) € N x X, the
uncertain event is the answer to the question, and the out-
come we want to maximize is the uncertainty reduction in
the output Y. Re-writing the decision problem using nota-
tions of our query selection problem leads to the following
characterization of the optimal queries :

Q*

(6)

(7*, ™) = argmin min

U o
iEN acx,; Y (@)

which is a two stage optimization problem. First, we deter-
mine the optimal local bound value for each input ¢, and
calculate the uncertainty reduction induced by that local
query. Then, we select the entity ¢* that leads to the highest
uncertainty reduction in y.

Algorithm : Iterative elicitation for uncertainty reduc-
tion
Inputs : X;(i € N), sg
while Uy >= sg do
foriin N do
Compute a* = arg minqe x, Uy (@)
Compute Uy o+
end for
1" = argmin;en UY(Q?*)
Ask query : “x;x <= a*?’
Obtain answer
Update X;+
Compute Uy
end while

In the following, we describe the computations involved in
the first optimization step (the computation of Uy (g«)) for
a given ¢ € N for different decision criteria.

2.3.1 Maximin strategy

The maximin strategy corresponds to a pessimistic view,
where the value Uy (o) corresponds to the answer that
yields the lowest uncertainty reduction :

M —
UY(ZQL?) = maXaeA Uy(Q?,A)

atMm — arg minani maX(Uy(Qg,No)y UY(Q?,Yes))

We can show that solving the optimization problem to get
the optimizing o* is equivalent to finding the intersection
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of the two functions Uy(Q?’yes), Uy(inm’No) of .. The fol-

lowing propositions indicates that a general and efficient

method to find the solution is to use a dichotomy search on

the space [X;, X;]

Proposition 1. Functions Uy(Q?’yes) and Uy(Q?VNO)

measuring the uncertainty level on Y induced by a positive

and a negative answer to () and defined on X; are

— increasing and decreasing in «, respectively, and

— intersect at least once at M; C X; (M; is a single point
or an interval).

Proof. We have that

min
X_ix[Xy,0]

max

[0)) _
—iX [&7(1] (X)

(x) (N

Uy (Qe,yes) = «

To show that Uy(Q?’yeS) is increasing in o, we need to
show that Uy (@ yes) < Uy(Q{a Yes) for o < (. This re-
sult follows from X _; x [X;, o] C X_; x [X;, f].

The same reasoning can be applied to

max__ P(x) —
Xfi X [a,Xi]

min__ ?(x)
Xfi X [a,Xi]

Uy (e ,No) = 3

1o show that Uy (e No) is decreasing in c.

To demonstrate the second part of the proposition, simply
observe that :

max Uy (@, yes) = UY(Q?i,Yes) = Uy,
max Uy @z.No) = Uy (g% o) = Uy

where Uy is the uncertainty before the question. As both
functions have the same maximum, are continuous (since
® is), and are respectively increasing and decreasing in o,
they have at least one point of intersection.

When M; is an interval [M,, M;], we simply take the
middle point aMm — Mﬂrﬁi/z. In some situations, it
may also happen that the intersection occurs on the bounds
of X; for all ¢, which means that the proposed optimal ques-
tion is likely to be uninformative, unless the expert answer
reduces the interval [X;, X;] to a point, which is unlikely.
When such a scenario occurs, we use a different strategy
that defines optimality as the highest reduction of uncer-
tainty, no more on Y, but on X;. This heuristic is equiva-
lent, when X;s are intervals, to choosing the largest interval

1" = arg max; Ux, and to pick the mid of this interval, i.e.,
P
5 .

O(*,Mm —

In Section 3, we will show that for specific functions, there
are more efficient ways than a naive dichotomic search to
determine oM™,

2.3.2 Maximax strategy

While the maximin strategy is pessimistic, the maximax
strategy is optimistic and takes as value Uy (g«) the ans-
wer that yields the highest uncertainty reduction :



Uyige) = minaca Uy (q,a)

oMM

It is straightforward from Proposition 1 that the local bound
optimization step leads to an optimal value a*™M that
coincides either with the upper or lower bound of X;. The
maximax strategy is therefore not interesting in our pro-
blem, as it will lead to questions that are most likely to
receive a useless answer. We will therefore not retain this
approach in this paper.

2.3.3 Hurwicz’ strategy

Hurwicz’s strategy evaluates the value of a question @ by
a convex combination between the maximin and maximax
strategies. It therefore allows to go from a pessimistic to an
optimistic point of view and reads :

H m
Uy Gy = PURE) + (1= DU,

Y@~

H(p) = = arg min,cx, (p min (Uy(Qa ves): Uy (qe, NO))+Thzs means that we have : miny; Uy(Qa =UB

(1 = p) max (Uy (@2 ves) Uy (Q=,No)))-

Here, p € [0, 1] is an optimism coefficient, and we retrieve
the maximax and maximin strategies when p = 1 and p =
0, respectively. Note that we can use the fact that for any
a < M, (o > M;), we have Uy (ge No) >= Uy (Q2,ves)
(Uy(QﬁNo) <= Uy(Q;x’yes)) to rewrite the above equa-
tions into :

L = minye[x inf Mi](PUY(Q?»YES) +(1
R= minae[sup Mz',yi](pUY(Q?’No) + (1
H(r) = min(L, R).

2.3.4 Bayesian strategy

Up to now, we have not considered any a priori information
about the likelihood of answering Yes or No. However, this
can lead to consider very unlikely answers, such as answe-
ring Yes to Q%’ (as is the case in the maximax strategy).
One alternative is then the Bayesian strategy, where we as-
sume the existence of a probability distribution P over the
set of answers A, this probability modelling our subjec-
tive beliefs about the likelihood of getting the different ans-
wers. We then evaluate a query () by the expected reduction
Ep(Uy(q,a)) of uncertainty on y induced by the possible
answers :

UB(Qa)—EP(UY Q%A ) = 2 aea P(A)Uy (qe 4)

a*B = arg mingex, (P(Yes\Qf‘)Uy(Q?7yes)+
P(NO\Q?)UY(Qg,No))~

When the available evidence suggests that a quantity x; lies
in an interval X, it is common to follow Laplace’s indif-
ference principle and quantify uncertainty by assuming a

= arg minaexi Hlin(Uy(Q?,No), UY(Q?,Y@S))-

-p) Uy(Q?’NO)) Also, while Proposition 1 means that o
— p)Uy (@2, ves)) ned by a dichotomic search, this cannot be done in general

uniform probability distribution over that set. Under this as-
sumption, the probability of the positive and negative ans-
wers to a question ' are proportional to the width of the
sub-interval of X; they lead to :

a—X.
PY N=PX, <z; < -
(VeslQf) = P, S v S @) = 50

and
. Xi-a
P(No|Q*)=Pla<z; < X;) = ———.
(NVol@) = Pla s i < X = =

These probabilities can then be modified according to the
information we have (for instance, if we have reasons to
think that the true value is closer to X ;).

Remark 1. Note that when Uy(nyyes) = Uy & No) =
Uy (@e), then Ep(Uy (o, 4)) = Uy (qe), whatever the va-
lues of P. This means, among other things, that the function

U{,B(Q?) has value U QoM = y(g?*,Mm), since the

minimax is obtained at the intersection M; of Uy Qo v cs)
and Uy(Qq No)-

<
(QQ*B) >

gMm .. =miny, UM Qe hence the expected uncer-

Y (Q2 Y (
tain(tq)gz reduc)tlon with a Bayesian strategy is at least as high
as the one obtained by the maximin strategy. However, in
contrast with this latter, the Bayesian strategy does not of-
fer guarantees about the uncertainty reduction, in the sense
that the actual reduction may be lower than the expected
one.

“Mm can be obtai-

for the Bayesian strategy, which therefore requires heavier
computations.

Example 3. Consider the function ®(z1, x2,3) = 122—
Toxs + To with X1 = X3 = [0.1,1] and Xo = [07 1].
Figure 1 shows the various strategies for Q5. We can see
that the maximin, the Laplacian and Hurwicz’s strategies
recommend respectively oM™ = 3/4 o8B = 1/2, and
otH(3) = 0. Another remark is that Uy (Qg ves) and
Uy(ngNo) are both linear. We will see in the next section
that this is true for multi linear functions in general.

3 QUERYING ON SPECIFIC
FUNCTIONS

Here, we study what becomes of the previous strategies
when applying them to specific functions. Indeed, fin-
ding an optimal strategy requires computing Uy Qs yes)
Uy(Q?’ Noy and their intersections, which comes down to
finding bounds of ® over various domains (see Egs. (7)-
(8)). It is therefore important to identify those sub-cases
for which computations can be simplified. More precisely,
we look at monotonic functions and multi linear functions,
that are both of practical interest.
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FIGURE 1 - Optimal recommendations of different query
selection strategies.

3.1 MONOTONIC FUNCTIONS

Several application in diverse areas use monotonic func-
tions, such as reliability analysis (Marichal, 2014), multi-
criteria decision making (Grabisch and Labreuche, 2008),
etc.

When considering such functions, either increasing or de-
creasing in each variable x;, computations are greatly faci-
litated, as

Uy = (X1, X7) - ®(X[, X7),

where I denotes the set of variables in which ® is increa-
sing, and I its complement.

Moreover, when & is locally monotonic > with respect to
each argument ¢, its upper and lower bounds are reached
on the vertices of the hypercube x;—;_,X;. Again, this
may allow to reduce the computations involved in the cal-
culation of Uy-.

3.2 MULTI LINEAR FUNCTIONS

A Multi-linear function over variables x1,...,x, is a po-
lynomial form that can be written as
(w1, xn) = Y da [[ 9)

ACN €A

with d4 € R some real-valued coefficients. Such func-
tions play an important role in many Al applications.
As any pseudo-Boolean function can be rewritten in this
form (Hammer and Rudeanu, 1968), they concern all
problems where pseudo-Boolean functions have a role,
such as cooperative game theory (Owen, 1972), multi-
criteria decision-making (Grabisch and Labreuche, 2003),
combinatorial optimization (Yannakakis, 1991), reliability
theory (Bhattacharjya and Deleris, 2012; Marichal, 2014),
etc. Multi linear functions also play an important role in

2. ¢ is locally monotone in x; if, all other variables being
fixed, it is either decreasing or increasing in ;. Function ¢ of
Example 1 is locally monotone in 2, as it is either increasing or
decreasing in x2 once x; and x3 are fixed.
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inferences of Bayesian networks or related models (Dar-
wiche, 2003; de Campos and Cozman, 2004).

From a computational point of view, having ® multi-linear
presents different advantages. First, as ¢ is locally mono-
tonic in each variable (fixing every variable values but one
in Eq. (9) gives a linear function, which is either increasing
or decreasing), we know that its upper and lower bounds
are reached on vertices of x;—; ,X;. Second, provided
0 ¢ X, the maximin strategy will lead to a unique value
a*Mm due to the fact that Uy (g yes)> Uy(qa,no) Will
be strictly increasing and decreasing, respectively (since
bounds of Eq. (9) will be strictly monotone functions).

3.3 MULTI LINEAR MONOTONIC FUNCTIONS

Combining monotonicity and multi linear properties pro-
vide very interesting properties to compute our optimal
strategies, and are still useful in several applications, such
as reliability analysis that we use as a case study in the
next section. The first property relates to the shape of
Uy (@2 ves) and Uy Qe No)

Proposition 2. If ® is a multi linear function monotonic
in each variable, then for every i € N, Uy (qo yes) and
Uy (e, No) are linear in c.

Proof. If ® is monotonic in each variable, then in the
first term of Eq. (7), the maximum is reached on the up-
per bounds of each X, i.e., on Yj forall j € N_; and
X, = «, while the lower bound is reached on X j for
all j € N (independent of ). The function ® being li-
near in x;, max ®(x) is therefore linear in o, and so is
Uy (@2 ves)- The same reasoning applies to Eq. (8).

This has several consequences on the computations of stra-
tegies :

— The maximin strategy recommends a unique query
bound M; in X, as Uy(Q?7yes) and UY(Q,‘L.“,NO) inter-
section will be a unique point;;

Computing Uy (@e ves) and Uy (s no) Will require
only three computations, as they are linear (requiring
each two evaluations) and as they have the same maxi-
mal value. Computing M; then comes down to evaluate
the intersection point of two lines ;

Hurwicz’s solution will be reached either at the end-
points of the interval X; or will coincide with the maxi-
min solution. The result follows from the fact that the
convex combination of linear functions (Uy(Q? Yes) and
UY(Q?7 No)) 18 also linear, and is therefore monotonic in
Q.

Furthermore, we have the following property regarding the
Bayesian strategy :

Proposition 3. If ® is a multi linear function monotonic
in each variable, the Bayesian strategy adopting a uniform
distribution over X; has a unique minimum « in the inter-
ior of X;



Proof. (sketch) Function Ug(Q,_y) is convex since it is the

sum of the product of two linear functions of «, there-
fore it is quadratic and convex. In addition, it satisfies :
Uus . B

Y(Q7 %) Y(QF?)
Since it can not be a constant function (the scenario
Uy(Q;x’yes) = Uy(anyNO) for every a € X; does not oc-
cur for multi linear functions), its global minimum exists,
is unique, and is reached inside the interval X;.

4 APPLICATION IN RELIABILITY
ANALYSIS

When systems are complex or newly designed, full system
dependability data are often too expensive and/or difficult
to obtain, making it impossible to directly estimate quanti-
ties of interest. The common approach to improve the esti-
mation of such quantities is to focus on enhancing the state
of knowledge at the component-level, where information
is more likely to be available either via measurements or
expert elicitation.

In this section, we illustrate how our elicitation model can
be used to refine the state of knowledge at the component
level in order to estimate the reliability of a system. We
begin by recalling some basic elements related to systems
reliability and briefly describe the mathematical proper-
ties of the system function. Then, we describe and discuss
the results of the proposed elicitation procedure on simple
yet common system architectures, to finish by a real-world
example involving railway safety systems.

4.1 PRELIMINARIES ON RELIABILITY
ESTIMATION

Consider a network S with n components indexed in N =
{1,2,...,n}. We describe a static problem, i.e., we do not
refer to time explicitly when describing the system beha-
vior. Every component ¢ is either operating or failing and
its state is represented by a boolean variable e; that asso-
ciates 0 and 1 to the failed, working state, respectively. The
system state is completely determined by the joint state
of its components through the structure function &g — a
boolean function. For the majority of systems, forming the
class of semi-coherent systems, the structure function sa-
tisfies these three conditions :

— &, non-decreasing in each e;

- 9,(0,0,..,0)=0

- o,(1,1,..,1) =1

In reality, the state of component can not be determined
exactly, and the usual framework is to assume that is a ran-
dom variable. The probability that the component is func-
tioning is called the elementary reliability :

p; = Pr(e; =1).
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When the components are independent, i.e., when their
state variables are stochastically independent, the reliabi-
lity of the system :

R = Pr(®s(ey,...en) = 1),
can be determined from the reliability of its components
via the reliability function ® :

R = (I)(pla"'apn); (10)

which is the multi linear extension of ®, (Marichal, 2014)
and so writes :

O(p1,spn) = Y da [] i

ACN  i€A

where coefficients d 4 are the Mobius transform of the mass
function associated with the structure function?. In prac-
tice, the exact expression of the reliability function can
be directly generated using the inclusion-exclusion for-
mula (Lin et al., 1976) based on determining the minimal
path set (i.e., the minimal set of components that must be
in working state that guarantees the functioning of the sys-
tem) and cut sets (the minimal set of components such that
if all of them fail, the system is guaranteed to fail whatever
the value of the others components).

Therefore, when facing a new system with ill-known pro-
babilities, we have a multi linear function ¢ with interval-
valued variables p;, to which we can apply our previous
findings.

4.2 CLASSICAL STRUCTURES

We first consider a bridge structure with 5 non redundant
components. The reliability block diagram — a graphical
depiction of the functional relationship between compo-
nents — of this structure is given below :

FIGURE 2 — Reliability block diagram of a series parallel
system.

3. The Mobius transform of the mass function associated to
d, is given by :

da

> ()l ().

BCA



The system reliability is given by :

R = pip2 + paps + p1p3ps + pap3ps

—P1P2P3P4 — P1P2P3P5 — P1P2P4P5 — P1P3P4P5

—P2D3P4Ps + P1P2P3P4APs5-

We assume the initial state of knowledge to be the follo-
wing : py € P = [0.5,0.92], p» € P, = [0.2,0.9],
ps € P3 = [0.5, 0.9], ps € Py = [0.4, 0.8], and p; €
Ps = [0.4,0.85]. The system reliability ranges in the inter-
val [0.3,0.97], so its initial uncertainty is 0.67.

We use the elicitation procedure to refine the state of know-
ledge over p; (i € {1,...,5}) via a sequence of queries on
the elemental reliabilities. The objective is to reduce the
system reliability uncertainty up to 0.05 (i.e., so = 0.05),
after which we stop asking questions.

To evaluate the efficiency of our procedure, we compare its
performance to two basic strategies :

1. a random strategy that compares at each stage the re-
liability of component ¢, selected at random in NV, with
some random « € P;. For the results to be significant,
the performance of the strategy at each iteration is ave-
raged over a high number (herein 1000) of runs.

a baseline strategy that asks at each stage about the
most uncertain component, and the query bound is
the midpoint of the largest interval (this strategy was
referred to as the “halve largest Gap Strategy” in
the context of preference elicitation (Boutilier et al.,
2006)) :

QBasel'ine = (Z ) : 2 t

where :

t" = argmax Uy,.
i€EN

—e—Basel i ne
——Bayesi an
—+—Random

—&—Maxinin

o 5 4 & 6. 10 12 1
# query
FIGURE 3 — Upg reduction using different selection strate-
gies.

We implemented the elicitation procedure described in Sec-
tion 2.3 assuming the true values to be the following :

18

p; = 0.6, p5 = 0.7, p5 = 0.65, p; = 0.7, pf = 0.78.
Figure 3 shows the performance in terms of uncertainty re-
duction in R of our four strategies. The Bayesian slightly
outperforms the baseline and the maximin strategies, but
remains comparable to them, while all of them do much
better than the random elicitation. In general, it takes twice
the number of queries to the random strategy to reach the
results of the other strategies (e.g., to divide uncertainty by
half, it requires 10 questions for the random strategy, and
about 5 for the others).

However, the performances of the Bayesian, maximin and
baseline strategies highly depend on the initial situations.
Figure 4 compares our previous experiment with another
situation where the initial state of knowledge is very poor,
i.e., a situation of near ignorance where P; = [0.1, 0.9] for
all ¢ € N. Results for both scenarios differentiated by the
color and the line style (blue continuous lines and black
dashed lines for the first and the second scenarios, respec-
tively). The most notable difference between the two sce-
narios concerns the maximin strategy. Indeed, its perfor-
mance in the second scenario significantly departs from the
non-random strategies (to which it was very close in the
first scenario). The maximin strategy is in this case proba-
bly too cautious, missing potentially good opportunities to
reduce the uncertainty.

T T
—e— Maxgap
—>— Bayesi an|

09r

FIGURE 4 — Sensitivity of the performance of the selection
strategies to the initial state of knowledge.

The good results of the baseline strategy for the bridge sys-
tem are mainly due to the fact that every component is im-
portant in the system, hence gaining knowledge on any one
of them reduces uncertainty in similar ways. This is not
always true : consider a simple series parallel system com-
posed of four independent and non-identical components
(Fig. 5). The system reliability is :

R = p1pap3pa+p1pat+popatp3ps—p1p3ps—p2p3ps—P1P2D4.

Let the initial state of knowledge on the elementary reliabi-
lities be the following : p; € [0.01,0.99], p2 € [0.01,0.99],
ps € [0.97,0.99], p4 € [0.7,0.9], and the true values be :
p1 = 0.6, ps = 0.7, p3 = 0.98, py = 0.8.



FIGURE 5 — Reliability block diagram of a series parallel
system.

The results of the sequential elicitation procedure using the
baseline strategy can be visualized in Figure 6 which plots
the uncertainty on each component at every stage. A jump
in the curve of component 7 at stage k& + 1 indicates that
the k™ optimal query inquired about that component, and
its magnitude corresponds to the uncertainty reduction af-
ter the question has been answered. Note that up to the 6™
question, the strategy inquired about the reliability of com-
ponents 1 and 2, being the most uncertain.

Cl c2
1 1
08 08
.06 .06
DQ‘ * ¥ Dc‘ * ¥
04 0.4
0.2 o 0.2 *ox
i L * ¥
* *
o o
0 2 4 6 8 10 o 2 4 6 8 10
# query # query
c3 c4
1 0.25
08 02% * * * ¥ * *
06
" = 0.15
=} =) -
04
* ok *
02 01
gk x o w ow 0w 0w 0w 0w o 0.05
0 2 4 6 10 2 4 6 10
# query # query

FIGURE 6 — Sequence of optimal components using the ba-
seline strategy.

However, reducing uncertainty on components 1 and 2 does
not reduce our global uncertainty, as shows Figure7. In this
case the baseline strategy performs actually very bad, not
only compared to the maximin strategy, but also to the ran-
dom up to the 6" query. This is due to the fact that the base-
line strategy does not consider the importance components
have on the overall system reliability.

4.3 REAL CASE SYSTEM

Up to now, we considered simple structures with distinct
(non-redundant) components. However, the majority of real
systems are complex and redundant, i.e., some of their
components are duplicated. Redundancy ensures a backup
in case of failure of one of the critical parts, and aims at
increasing the overall reliability of the system.

When a system has redundancies, its reliability function is
no longer multi linear, and depending on the redundancy
architecture (parallel, triple modular, etc.), it becomes po-
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FIGURE 7 — Maximin, random, and baseline strategies for
the case of series parallel system.

lynomial in the reliability of the redundant components,
while remaining linear in the others. We are concerned here
with the study of this type of systems/functions.

As a case study, we consider a real system used in the Euro-
pean railways traffic management system : the Radio Block
Center system (RBC), whose role is to collect data about
the position of trains and to provide movement authori-
sation (Flammini et al., 2006). Because of the relatively
recent exploitation of the system, sufficient data to estimate
the reliability of the RBC are lacking.

The RBC is composed of 5 different components, each of
them being redundant. The architecture of the RBC is pic-
tured in Figure 8, where the 2/3 symbol means that the
subsystem composed of components 5 works if and only if
at least 2 out of the three components work.

FIGURE 8 — Reliability block diagram of the RBC.

The reliability function can be written as :

R = (1= (1-p1)*) (1~ (1-p2)*) (1= (1-p3)*) (1= (1=p4)*)Ptrmr;

with
Pemr = (3p3) — 2(p3))(1 — (1 — pg)?).

We consider the case where some initial evidence sug-
gests that the reliability of the RBC components ranges in
[0.5, 1], and that the true values are : p; = 0.83, p, = 0.77,
ps = 0.8, ps = 0.55, p5 = 0.72, pg = 0.78. Results of the
query strategy are plotted in Figure 9. Here, the maximin
strategy outperfoms the Bayesian one, which is consistent
with Remark 1. The baseline does not do well and signifi-
cant uncertainty reduction only occurs when asking about
component 5, which is indeed the most important in this
architecture.
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FIGURE 9 — Performance of the query strategies for the
RBC system.

The computations involved in the elicitation procedure for
this systems, and more complex systems in general, remain
tractable as they only require optimization of polynomials
and can still take advantage of the increasingness of func-
tion ®. This makes our procedure of practical use in real-
time elicitation involving real experts — this will be the ob-
ject of a forthcoming work concerned with the estimation
of the RBC reliability using expert elicitation.

S CONCLUSION

In this paper, we addressed the problem of optimal expert
elicitation when the goal is to reduce interval uncertainty.
We described different optimal querying strategies to deter-
mine the best question to ask at each stage of the procedure,
studied their computational costs, and illustrated their use
in a common estimation problem in reliability analysis.

For the particular problem of interval uncertainty reduc-
tion using local bound queries, the optimal elicitation ap-
proach proves to be effective and computationally tractable,
especially for the maximin approach. We also discussed
some cases, such as monotonic and multi linear functions,
for which these computations are even easier. In future
works, we plan to consider (1) more general uncertainty
models, such as belief functions (Shafer, 1976) or probabi-
lity sets (Augustin et al., 2014) which are particularly ap-
pealing to model, e.g. non-completely reliable experts (al-
lowing for instance to relax the assumption that the expert
is an oracle) and (2) other types of queries formats and ans-
wers, such as comparative assessments.

The strategies we described in this paper are myopic. Such
strategies offer natural advantages (any-time stop, compu-
tational easiness), yet may select a sequence of questions
that are globally sub-optimal, despite being locally optimal.
A natural extension of this work is then to address the se-
quential approach for selecting the optimal set of queries to
ask, and compare it with the myopic method. Clearly, this
includes dealing with a computationally challenging pro-
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blem, given the multistage nature of the optimization task,
as well as some potential difficulties when choosing the va-
lues of strategies (e.g., the over-cautious nature of maxi-
min could lead to strategies with very low average perfor-
mances).
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Abstract

We consider the task of summing a non-negative
function f over a discrete set (2, e.g., to com-
pute the partition function of a graphical model.
Ermon et al. have shown that in a probabilistic
approximate sense summation can be reduced to
maximizing f over random subsets of {2 defined
by parity (XOR) constraints. Unfortunately,
XORs with many variables are computationally
intractable, while XORs with few variables have
poor statistical performance. We introduce two
ideas to address this problem, both motivated by
the theory of error-correcting codes. The first is
to maximize f over explicitly generated random
affine subspaces of €2, which is equivalent to un-
constrained maximization of f over an exponen-
tially smaller domain. The second idea, closer in
spirit to the original approach, is to use systems
of linear equations defining Low Density Par-
ity Check (LDPC) error-correcting codes. Even
though the equations in such systems only con-
tain O(1) variables each, their sets of solutions
(codewords) have excellent statistical properties.
By combining these ideas we achieve dramatic
speedup over the original approach and levels of
accuracy that were completely unattainable.

1 INTRODUCTION

The partition function of a graphical model with unnormal-
ized probability function f over a domain (2 is the integral
(sum) of f over (2. The partition function is a central object
of Bayesian statistics. While some inference tasks, such as
MAP or MLE, can be completed without it, knowledge of
(an approximation of) the partition function is necessary for
marginalization, prediction, sampling, and model compar-
ison, as a proper distribution is required. In general, parti-
tion function estimation is intractable [1] and, in practice,
becomes problematic rapidly as |{2| increases.
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To overcome this problem approximation schemes, such as
MCMC [7], or variational methods [5] are commonly used.
However, variational methods, in general, do not provide
accuracy certificates/guarantees, while the mixing time of
MCMC is similarly unpenetratable in most applications. In
recent years, Ermon, Gomes, Sabharwal, and Selman have
pioneered an alternative approach [14, 13, 15]. The gen-
eral idea is to reduce the counting problem into a collec-
tion of random optimization problems, the final estimate
being a statistic over the optima found. Each random prob-
lem amounts to maximizing f over a random set R C (),
defined via a random system of parity constraints. Realiz-
ing this idea, the WISH algorithm [14] is shown to yield
a constant-factor approximation for the partition function
given access to an optimization oracle. Importantly, the
approximation guarantee requires the induced optimization
problems to be solved to optimality, an assumption that
clearly does not hold in general. Nevertheless, empirically,
the WISH algorithm achieves remarkable accuracy com-
pared to other established algorithms [14, 13, 15], leverag-
ing the practical advancements in optimization software.

The idea of adding parity constraints originates in the work
of Sipser [16] as a reduction technique. Most famously,
it was used by Valiant and Vazirani [19] to reduce SAT to
Unique SAT. A variant of the technique plays an impor-
tant role in the proof of Toda’s theorem [18]. The idea has
since been applied to various counting problems including
#SAT [11], #k-SAT [17], and#CSP [12]. WISH [14] can
be regarded as a natural generalization to weighted CSPs
(or, equivalently, Markov Random Fields (MRFs)).

To provably approximate the partition function of an MRF
with n variables, the parity constraints added must each
have n/2 variables on average. Unfortunately, the addition
of such long constraints makes the MAP problem dramat-
ically harder since each constraint (i) amounts to a clique
involving half the variables of the MRF, and (ii) collapses
the probability function whenever violated. In practice, this
additional hardness can cause a MAP solver to submit dra-
matically suboptimal solutions under any reasonable time
constraint, impairing the accuracy of estimation.



In all prior works the addition of random parity constraints
is framed as hashing and the statistical properties of the
resulting subsets of the domain is discussed in terms of
independence properties of the corresponding families of
hash functions. We break with this paradigm by taking a
step back and asking: “how can we define subsets of the
domain so that they are computation-friendly while having
good statistical properties?” We answer the question twice,
the two answers corresponding to two different notions of
“friendliness” under the same notion of “goodness”.

Regarding goodness we will see that the key statistical
property is pairwise negative correlation of membership,
i.e., that for any two distinct 0,0’ € €, it should be that
Pr[Both 0,0’ € R] < Pr[o € R]Pr[o’ € R]. (Long parity
constraints achieve this with equality.) Equivalently, con-
ditioning on ¢ € R should not make any ¢’ # ¢ more
likely to be in R (but can make it less). Visualizing this
as 0 € R exerting a repulsive force suggests an error-
correcting code. Indeed, any linear error-correcting code
C C Q = {0,1}" with 2"~ elements can be specified as
C={0€Q: Ao = b}, where A € {0,1}%*" is any rank
d matrix and operations are over GF(2), i.e., as the set of
solutions to parity constraints.

Equipped with this idea, our first notion of computation-
friendliness can be seen as “dimensionality reduction”.
That is, instead of operating over {0,1}" and maximizing
f over R by setting f(o) = 0foro € Q\ R, we can operate
over R directly by taking G € {0, 1}"*? to be a generator
of the subspace Ao = b and maximizing f(Gxz + v) over
x € {0,1}%. We thus get an unconstrained optimization
problem over a domain of size 2¢ instead of 2". For any
optimizer treating f as a black box, as is typical in MAP
estimation, this makes optimizing f dramatically easier.

Our second notion of computation-friendliness can be seen
as endowing 2\ R with a “gradient” (pointing towards R),
so that satisfying Ao = b does not impose significant com-
putational burden. Again drawing insights from the the-
ory of error-correcting codes, the idea is to desire the num-
ber of violated equations of Ao = b to be a function that
has few local minima that are not global minima, i.e., not
codewords, thus making its global minima easily accessi-
ble by some naive local method such as gradient descent.
In other words, to make the optimizer’s life easy, we would
like C = R to be an “easily decodable” code. This is pre-
cisely what we will achieve by taking the random sets R to
correspond to the codewords of LDPC codes constructed
by the Progressive-Edge-Growth construction [3].

Finally we note that independently of how the optimiza-
tion problems are constructed, the number of instances that
need to be solved can be reduced significantly in practice
by using branch-and-bound. Combined with the two ideas
mentioned above, this gives a dramatic speedup over WISH
and entirely new levels of accuracy.
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2 BACKGROUND

For the benefit of clarity, as in previous works, we will
restrict our exposition to Q@ = {0,1}" and only approxi-
mate the partition function, Z, within a fixed constant fac-
tor, e.g., 32 (recall that, typically, Z ~ exp(n)). All ideas
presented generalize readily to {2 = D™ for any finite D.

2.1 BINARY MARKOV RANDOM FIELD

Given 2 = {0,1}" and a collection of non-negative func-
tions, 7 = {1}, defined on subcubes of (2, let

@)= [ ¢alota) .

Yo €EF

where {c},, is the subset of variables entailed by 1/. The
partition function is the sum of f over all configurations:

Z=Y flo).

oe
2.2 ESTIMATION BY STRATIFICATION

We start by briskly revisiting (and, to some extent, refor-
mulating) the groundbreaking work of Ermon et al. [14]
connecting partition function estimation to optimization.

The first key idea is to stratify f over €2 into quantiles and
estimate Z by bounding from above and below the contri-
bution of each quantile. Specifically, and w.l.o.g., assume
that the configurations are sorted in descending order ac-
cording to f, i.e., f(o1) > f(o2) > ... > f(o2n). Let
b; = f(o9i). Now, define the lower sum as

n—1

L:=by+ Z bip12!
i=0

and the upper sum as
n—1
U:= bo+2bi21 .
i=0

Trivially, L < Z < U. Moreover,

n—1

2L = by + (bo +y bi+12i+1>

i=0

1=0

Hence, if we compute by, b1, .. . , by, taking any Z € [L,U]

yields a 2-approximation of Z.

More generally, if for some integer ¢ > 0 and all ¢ € [n] an
estimate b; € [Ditc, bi—c] is available, then letting U and
L be the counterparts of U and L with b; replaced by 132
weseethat L < L < Z < U < UandU/L < 2%+,
Thus, any Z € [Z, Tj'] is a 22¢*1_approximation of Z, e.g.,
yielding a 32-approximation for ¢ = 2.



2.3 STRATIFICATION BY THINNING

The second key idea is to estimate each b; = f(0:i) as
the maximum of f over a random set R; C 2 of (ex-
pected) size 27— As mentioned, the essential requirement
for this approach to work is pairwise negative correlation
of membership in R;. Including each element of 2 in R;
independently with probability 2~ achieves this trivially
but at the cost of an exponentially large, and thus inoper-
able, representation of R;. The foundation of this entire
line of research has been that it is possible to achieve pair-
wise independence for membership in R in compact form
via hashing. We introduce a somewhat more general, and
ultimately more fruitful, point of view reflected in our def-
inition of Thinning Sets below.

Thinning Sets. A random variable R; taking values in 2%
is an i-thinner if

e Vo, Prlo € Rj]=27"¢ (Uniform)

o Vo #0o,Prlo € Ry Ao’ € R;] <272 (Universal)
Given an i-thinner R; and a solver capable of maximizing
f over R;, estimating b; is entirely straightforward. Theo-
rem 1 below is identical to the main result of [14], except
for thinning sets replacing hash functions (for complete-
ness we prove Theorem 1 in Section 5.)

Theorem 1 ([14]). Let R; be any i-thinner random vari-
able. Let {m;};_, be i.id. random variables distributed
as mj = maxyeg, f(0). If M = median(mq,...,my),
then for every ¢ > 2,

t
Pr[bi . <M<b;_.]>1—2exp (—2(1 — 26“)2)

One way to create an ¢-thinner is to take the solutions of a
random system of linear equations over GF(2), i.e., mod-
ulo 2. Let A ~ Ber(m x n) denote that A is an m x n
random matrix whose entries are independent random vari-
ables with Pr{a;; = 1] = Pr[a,;; = 0] = 1/2, for all 4, j.

Random Linear Code. The random set

R, ={c€{0,1}": Ao = b} (D

is an i-thinner if A ~ Ber(i X n) and b ~ Ber(i x 1).

In coding theory the set R; in (1) is known as a random lin-
ear code, while the distribution A ~ Ber(i x n) is known
as the Shannon ensemble. Note that the rows of A have,
on average, n/2 non-zero entries. We will refer to it as the
dense parity ensemble, to distinguish it from other distri-
butions on {0, 1}**" which we will encounter shortly. By
Theorem 1, we can thus estimate b; given an oracle O for

flo) . 2

max
oe{0,1}"
Ao=b
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The idea of adding long random parity constraints to
achieve unweighted counting, e.g., to count the number of
satisfying assignments of a CNF formula goes back to [11].
Ermon et al. in [14], after i-thinning 2 in the manner above,
solved the optimization problem (2) with ToulBar2 [2],
dedicated software for MAP estimation in graphical mod-
els (the parity constraints added as factors to f evaluating
to 0 when violated). In later work [13], the authors trans-
lated (2) to an Integer Linear Program, thus bringing to bear
CPLEX, a powerful commercial optimization software. Fi-
nally, for reasons to be discussed shortly, in [15], the dense
parity ensemble was replaced by the sparse parity ensem-
ble wherein the entries of A are i.i.d. Bernoulli random
variables where Prla;; = 1] =p < 1/2.

3 OUR CONTRIBUTION

3.1 RANDOM AFFINE MAPS

Instead of starting with Q = {0,1}" and restricting it via
¢ random parity equations to a subset R; of (expected) size
27~ we will start with {0,1}"~% and generate R; as the
image of {0,1}"~* under a random affine transformation
g : {0,1}"% — {0,1}", where g(z) = Az + b. Thus,
instead of solving the constrained optimization problem

flo)

max
ce{0,1}"
Aoc=b

we will solve the unconstrained optimization problem

max
ze{0,1}n—1

(fog)(z) ,

over the exponentially smaller set {0, 1}"~%. The benefit of
such dimensionality reduction increases with , i.e., smaller
R;, in contrast to thinning by parity constraints which typ-
ically has worsening behavior as ¢ is increased.

3.2 LOW DENSITY PARITY CHECK CODES

In certain settings, such as when performing “light” thin-
ning or when the function f can be optimized better than
black box, operating directly on the restriction of €2 induced
by parity constraints is preferable to operating through a
random affine map. In these settings, instead of forming the
constraint matrix A by having its entries be i.i.d. Bernoulli
random variables (either sparse or dense) we will take A to
be the parity check matrix of a Low Density Parity Check
(LDPC) code. As we demonstrate experimentally, this has
a stunning effect on the performance of CPLEX.

In the eyes of a solver operating on the variable represen-
tation of €2 (as opposed to a local search solver) a 3-XOR
is greatly preferable to an (n/2)-XOR, even though both
shrink the domain by half. This is because repairing a vi-
olated constraint of arity k represents a k-way choice, i.e.,



a branching factor of k. This motivated the introduction
of sparse i.i.d. Bernoulli parity check matrices in [11] and
later in [15]. While a step in the right direction, this does
not go far enough. To cover the remaining distance, we
exploit insights from the modern theory of LDPC codes.

Imagine a code C = {0 € {0,1}" : Ao = b}, for some
fixed matrix A and vector b. Imagine further that o € C is
transmitted along a channel that erases a subset of the bits
of &, so that the recipient receives 7 € {0, 1, }". Clearly,
equations (checks) with no * variables offer no new infor-
mation regarding . On the other hand, equations with two
or more * variables are ambiguous, as they can be satis-
fied in multiple ways. But any equation with exactly one *
variable is ideal: its erased bit can be recovered unambigu-
ously; moreover, this recovery may cause other equations
that had two * variables to now only have one. Such a cas-
cade of “safe steps” will recover o unless it encounters a
stopping set: a non-empty set V' of erased bits, such that
no equation entails exactly 1 element of V. The amazing
performance of LDPC codes is, to first order, due to the ab-
sence of small stopping sets. Thus, if 7 does not have too
many erased bits, safe steps will suffice to recover o.

To readers familiar with satisfiability algorithms the par-
allel between “‘safe” decoding and unit-clause propagation
(UCP) will be immediate. The linear equations defining
code C can be thought of as a formula F' very carefully
designed to have the following property: if one selects a
random subset of variables and assigns them random val-
ues (subject only to no empty clause being created), then
for the vast majority of random choices (corresponding to
the unerased bits in the communication setting) the residual
formula should be solvable by UCP alone. It is not hard to
imagine that adding such a formula F' to a formula F” will
induce little “additional hardness” to any solver capable
of recognizing the presence of “safe” choices: as soon as
enough variables are instantiated to get within the “radius
of attraction” of a solution to F', the solver devolves to a
“safe choice decoder”, setting variables at a rapid pace with
minimal branching. We conjecture that this is precisely
what causes the stunning improvement we observe in the
performance of CPLEX when switching from dense/sparse
parity ensembles to LDPC codes. Unfortunately, verifying
this directly is non-trivial as CPLEX is commercial soft-
ware. As implicit evidence we offer the observed complete
insensitivity of stochastic local search to the structure of A
(we use LocalSolver [9] in our experiments).

3.3 BRANCH AND BOUND

Recall that to form our estimate Z we multiply each by =
f(o9i) by 2. As a result, in most cases, Z is dominated
by the contribution of a set of quantiles I C [n], where
|I| < n. (Indeed, in physical terms, failure of this to be
true is the signature of criticality.) With this observation
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in mind, rather than estimating all {l;l}le in sequence, we
can save computation by starting with S = {Z;O, l;n} and es-
timating more and more quantiles until sufficient accuracy
is achieved. In particular, simply enlarging .S by the unesti-
mated quantile of greatest remaining potential contribution,
gives a speedup ranging from 2x to 10x in our experiments,
with 7x being the most common case.

4 RANDOM AFFINE MAPS

Throughout this section let d := n — i, where i € [n]. Let
A € {0,1}"*4 be a matrix of rank d and let b € {0,1}".
If g(x) = Az + b, then the image of {0, 1}? under g is an
affine subspace of {0, 1}" containing 27 distinct elements
(since A has full rank). Let {0, 1}7*? denote the set of all
full rank, i.e., rank d, matrices in {0, 1},

Theorem 2. Let A be uniform over {0,1}1*% and let v
be uniform over {0,1}". The image of {0,1}¢ under x +
Az 4 v is an (n — d)-thinner.

Theorem 1 immediately implies the following.
nxd

Corollary 1. Let A be uniform over {0,1},*% and let v
be uniform over {0,1}". Let {m;}}_, be iid. random
variables distributed as

A .
a:en{léi,}li}d f( v 1))

If M = median(my, ..., my), then for every ¢ > 2,

t .
Pribiyc <M <bic] >1-2exp (‘2(1 - 2_°+1)2)

In other words, replacing long parity constraints with ran-
dom affine maps, retains all statistical guarantees while giv-
ing rise to optimization instances over {0, 1}"~* instead of
{0,1}™. As in the estimation of the partition function, ¢
ranges from 1 to n, at some point it becomes much more
efficient to operate on f o g in the reduced domain that to
operate on f on 2. Moreover, because |R;| = 2"~ de-
terministically, rather than in expectation, the variance of
each estimate m; is smaller than for a random linear code.

To sample uniformly from {0, 1}7*? it is convenient and

efficient to employ rejection sampling: trivially generate
A ~ Ber(n x d) and accept only if rank(A) = d. Unifor-
mity follows from the uniformity of A ~ Ber(n x d) over
{0,1}™*4. By Lemma 1, the number of trials needed is a
geometric random variable with mean less than 4.

Lemma 1. [{0,1}7| > 2dn=2,

4.1 EVALUATION

In Figure 1 we compare parity constraints vs. affine maps
on the 10 x 10 Ising grid with F' = 0.1 and C' = 1.0,
a noted hard problem in [14]. For the exact definition of
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Figure 1: 10 x 10 Ising grid with C' = 1.0 and F' = 0.1.
Experiment: for i € [0,100] generate R; via ¢ random pari-
ty constraints, or as a random affine subspace of dimension
n — i; seek max,ecp, f(o) for 30 seconds (see legend).
Plot: for each i, repeat the experiment 10 times and report
the binary logarithm of the median value found. We also
plot the number 100 — ¢ as a visual aid.

f see (9) in Section 7. The parity constraints are gener-
ated from the dense parity ensemble and the sparse parity
ensemble adopted in [15] and we use the ILP formulation
proposed in [13], with CPLEX being the solver. To opti-
mize f o g for random affine maps we use LocalSolver [9],
since CPLEX is an ILP solver and does not natively sup-
port affine transformations over GF(2). While not as strong
as CPLEX on constrained optimization problems, Local-
Solver is specialized in stochastic local search under black-
box evaluation, hence a suitable choice for our setting.

As can be seen in Figure 1, when there are more than,
roughly, 10 parity constraints, the performance of both ran-
dom parity ensembles deteriorates rapidly, in sharp con-
trast to the robust performance of LocalSolver under affine
maps. Note that since the y-axis is in log,-scale and each
b; contributes roughly b;2 to the partition function, the fact
that the solutions found by LocalSolver are nearly parallel
to the line 100 —7 imply that the under-performance of opti-
mization under parity constraints is highly relevant and will
have dramatic effect on the accuracy of estimation.

Moreover, as shown in Figure 2, the best solutions found
under parity constraints in 10 minutes are still inferior to
those found via random affine maps in 30 seconds. In par-
ticular, when there are 50 constraints, CPLEX cannot find
a solution better than the initial one under either parity en-
semble, suggesting that the hardness of optimization under
parity constraints overwhelms the solver. Notably, the orig-
inal MAP inference max,cq f(o) can be solved to prov-
able optimality in 0.1 second by CPLEX, highlighting that
the hardness is due to the parity constraints.
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Figure 2: 10 x 10 Ising grid with C' = 1.0 and F' = 0.1.
Experiment: for i € {20,50} generate R; via ¢ random
parity constraints; seek max,¢cp, f(o) with a timeout of
t € {30,120,240, 360,480,600} seconds (see legend).
Plot: for each pair (i,t) repeat the experiment 10 times
and report the binary logarithm of the values found.

4.2 PROOF OF THEOREM 2 AND LEMMA 1

We will refer to A as a generator matrix for the subspace,
which we will represent by the pair (A, v).

Lemma 2. If A is uniform over {0,1}7*% and v is uni-
form over {0,1}™, then (A,v) is uniform over all affine
subspaces of dimension d. In particular, for any fixed vy,
the subspace (A, vy) is uniform over all affine subspaces of
dimension d that contain vy.

Proof. 1t suffices to prove the second statement as the in-
dependence of A and v implies the first.

We will prove that for any fixed vy and any affine subspace
A of dimension d that contains vg, the number of matrices
A € {0,1}7"% such that (A, vp) = A is independent of A.

Clearly, (A, vg) = A iff the columns of A are linearly in-
dependent elements of A. For k € [d], let a, be the k-
th column of A and let ayp = 0. Linear independence is
equivalent to ar ¢ span(ao,...,ar—1) for all k € [d].
Since |span(ai,...,ax)| = 2F if the first £ columns are
linearly independent, we see that for every k € [d] there
are 2¢ — 2F=1 valid choices for the k-th column. O

Proof of Theorem 2. By the first part of Lemma 2, (A, v)
is uniform over all affine subspaces of dimension d. There-
fore, by symmetry, Prjc € (A,v)] is the same for all
o € {0,1}". Since (A,v) contains 2¢ elements, unifor-
mity follows. To prove universality we need to show that
Pr[o’ € (A,v) | 0 € (A,v)] < Pr[o’ € (A4,v)]. For this
we first observe that, by the second part of Lemma 2,

Pr[o’ € (A,v) |0 € (A,v)] =Prlo’ € (4,0)] .



Since o # o', this last probability equals the probability
that 7 = ¢’ — o # 0 belongs in (A, 0). Let a), be the k-th
column of A and let Ay comprise the first k£ columns of A.
If we generate A column by column we see that this last
probability equals 1 — HZ:1 Priay ¢ span(Ax_1 U {7})]
which is the same for all 7 # 0. O

Proof of Lemma 1. 1f we construct A column by column
then, as shown in Lemma 2, there are 2 — 25~1 choices
for the k-th column that lead to A being full rank. Induction
thus shows HZ:1(2” —2k=1) > 1 (29 4 2). O

S THINNING AS ERROR-CORRECTION

Let us start by deriving the statistical desiderata of thinning
sets from first principles. This will illuminate the suitabil-
ity of error-correcting codes for thinning and offer insight.
Recall that our goal is to estimate b; = f(o9i), for i € [n].
We start by observing that for this it suffices to construct
a random variable m; such that for some (small) integer ¢
and any € > 0,

Pr[mi < bi—c]

Pr[mi > biJrc]

1/2 +¢€
1/24¢€ .

3)
4)

v IV

This is because if we take b; to be the median of ¢ indepen-
dent realizations of m;, by Hoeffding’s inequality,

Pr [bH_C < /b\l < bi_c] > 1 — 2exp(—2€%t) .

Thus, in order for Pr[m; € [bjyc, bi—.]] = 1—exp(—©(s))
it suffices to take O(s/€*) samples.

Achieving (3) is trivial. Let Q; = {o01,02,...,09;}. If
R; C Qis any random set such that Pr[o € R;] = 27 for
all 0 € Q and m; = max,cp, f(0), then

Prim; > b;_] < |27 = 27 6)

In other words, for m; to be unlikely to be “too big” it suf-
fices for R; to have the right (expected) size, without any
requirement of its geometry beyond uniformity. For exam-
ple, R; could even be a random subcube of €2, an extremely
computation-friendly constraint: pick ¢ variables at random
and assign them random values.

Achieving (4) is far more subtle. This is because in or-
der for Pr[m; > bi4.| to not vanish the random variable
X; = |Qit. N R;| must be well-behaved. In particular, ob-
serve that EX; = 2°¢ and we aim for ¢ to be small, e.g.,
¢ = 2, so the expectation of X; is modest. If X; realizes
its modest expectation via a lottery phenomenon, i.e., typi-
cally X; = 0O but rarely X is very large we are in trouble.
To control for this possibility we use the Paley-Zygmund
inequality asserting that if X is any non-negative integer
random variable, then Pr[X > 0] > (EX)?/EX?. Tak-
ing R; to be a random cube is thus exposed as a bad idea:

27

if ;4. is also a cube, their potential alignment implies
EX? > (EX;)%

To minimize EX? we would like to find random sets R;
that behave like “mists”, minimizing the probability of
having an atypically large intersection with any fixed set.
Error-correcting codes are ideal for this, with linear codes
particularly so, as they are specified via linear equations.
Motivated by these considerations, let

R, ={c€{0,1}": Ao =b} ,
where the vector b € {0,1}* is uniformly random, while
A € {0,1}"™ is arbitrary (even deterministic), for now.

It is easy to see that the uniformity of b over {0, 1} alone
suffices to make R; uniform over {0, 1}", i.e., for all o,

Prlo € Rj]=2"". (6)

At the same time, for any S C Q, if X; = |S N R;|, then

E (Z 1(,637)2

oceS

Z E(]-UER?: 10'/€R1;)
o,0'€S
EX;+ Y PrlAo=b

o,0’'€S
o#o’

EX?

Ad'] .

To deal with the sum above note that, trivially,
Pr[Ac =b= Ao’ = Pr[doc =bANA(c — ') =0] .

Fix any distinct pair o, 0’. Choosing A first (to determine
if A(c —¢’) = 0) and then choosing b (to determine if
Ao = b) we see that Pr[Ac = b = Ao’] = 27 Pr[A(0 —
o') = 0]. Therefore, without any assumptions on either the
set S or the distribution of A, we can conclude that

EX? =EX;+27" > PrA(c—d)=0. (7

o,0’'eS
o#o’

To move beyond this point we must make some assump-
tions about (the distribution of) A. One such assumption,
of course, would be that for all o — ¢’ = 7 # 0,

Pr[Ar =0] < 277, 8)

It is not hard to see that if (8) holds then:

(a) R; is an ¢-thinner.

(b) EX? < EX; + (EX;)?2. Thus, by the Payley-Zigmund
inequality, Pr[m; > b;j1c] > 1 —27°.

(c) Taking ¢ = 2 and recalling (5) we see that (3), (4) are
satisfied with ¢ = 1/4 (and we have proven Theorem 1).



The above viewpoint exposes how extraordinarily strict is
the requirement of universality: it asks that an element
7 € €2 that has a single 1 should be no more likely to solve
A7 = 0 than 7 = 1. Clearly, this can only be satisfied if
the rows of A have very large expected mass. In [15] the
universality requirement was dropped and the case where
the entries of A are i.i.d. Bernoulli taking the value 1 with
probability p < 1/2 was analyzed. The bound derived for
the contribution of each ¢ € S to the sum in (7) under
this scheme is dominated by its pairing with ¢’ forming a
Hamming ball centered at o. Note, though, that if R; is an
error-correcting code and o € R;, then it is extremely un-
likely that any o’ near o will also be in R;. Indeed, the most
basic metric of the quality of an error-correcting code is its
distance, i.e, the minimum distance of any two codewords.
This “self-repulsive” property of error-correcting codes is
our key insight in regards to their statistical properties.

5.1 LOW DENSITY PARITY CHECK CODES

In the basic LDPC construction, the (random) system of
linear equations is represented as a bipartite graph with
variables on the left and equations (checks) on the right,
with adjacency denoting entailment, i.e., that the variable
participates in the equation. To create a code with n vari-
ables, i.e., with codewords in {0, 1}", one first specifies the
numbers {\; } and {¢; } of variables and equations, respec-
tively, of each degree j. In the simplest case, A\; = ¢, =0
for all but one value of j and k, respectively, i.e., the graph
is (bi-)regular. In general, with the degree sequences thus
fixed, a random bipartite graph is chosen uniformly at ran-
dom subject to the degree constraints. This uniformity im-
plies that Pr[A7T = 0] depends only on the weight of 7, i.e.,
its number of 1s, for every 7 € {0,1}".

An even better construction of LDPC codes than the above
is the Progressive Edge Growth (PEG) construction [3]. Its
main feature, relative to the standard LDPC construction,
is that it tries to maximize the length of the shortest cy-
cle (girth) of the resulting bipartite graph, as short cycles
contribute significantly to the formation of small stopping
sets. Motivated by these considerations we replaced the
dense and sparse parity ensembles with PEG constructed
LDPC codes. If N(w) is the number of codewords of
weight w for a given code, then the probability in (8) is
P(w) = N(w)/([). Ideally, P(w) would be constant for
all w > 0, i.e., (8) would be an equality, which is precisely
what happens when A ~ Ber(i x n). More generally, the
flatter P(w) is, the better the statistical properties of R;.

To demonstrate the superiority of PEG LDPC over the
sparse ensemble we plot in Figure 3 the empirical value
of log P(w) for parity matrices of size 20 x 40, derived by
exhaustively enumerating each code’s, roughly, 249/2 ~ 1
million codewords (exhaustive enumeration was chosen be-
cause the number of codewords can have non-trivial fluctu-
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Figure 3: Empirical log P(w) for w € [1,40] of dense par-
ity ensemble (average 20 vars/equation), sparse parity en-
semble (avg 8 vars/eq), and PEG LDPC (avg 8 vars/eq.)

ations for small n.) For the dense and sparse parity en-
sembles we generated 100 matrices each and report the
mean; the PEG construction for LDPC is deterministic. We
only considered codes with n = 40 variables, as exhaustive
enumeration rapidly becomes intractable with n. Already,
though, for n = 40 the behavior is very stable and it is easy
to prove that flatness increases as n grows.

As can be seen, for a wide range of w both the sparse parity
ensemble and the LDPC ensemble match P(w) perfectly
(the fact that dense parity itself is not flat for w ¢ [3, 36)
is a finite-size effect). Crucially, though, for small w there
is a big difference, with the sparse parity ensemble con-
taining many more codewords (note that the vertical axis is
logarithmic). The over-representation of low-weight code-
words causes nearby pairs in S C 2 to contribute dispro-
portionately to the sum in (7), potentially causing the vari-
ance of X; to blow up if S is clustered, e.g., if S is a cube.
No such blowup occurs for the PEG codes even for such
small n, witnessing their very good statistical properties.
As the study of the codeword weight distribution function
of LDPC codes greatly exceeds the scope of this work, we
leave a formal proof that thinning by LDPC codes give rise
to small-variance estimators as future work.

We claimed earlier that LDPC codes should be far prefer-
able to random parity matrices. To that end we plot the per-
formance of CPLEX on the Ising grid in Figure 4. The only
difference between the three plots is in the parity matrix A
used to define R; = Ao + b. The collapse of CPLEX be-
yond a certain number of constraints was already pointed
out in Figure 1. For LDPC PEG codes no such collapse
occurs and CPLEX remains competitive with LocalSolver
and random affine maps until ¢ ~ 40 even with a time-
out at small as 30 seconds. In contrast, as demonstrated
in Figure 5, LocalSolver, unaware of the variable/product
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Figure 4: 10 x 10 Ising grid with C' = 1.0 and F' = 0.1.
Experiment: fori € [0, 100], generate R; via an ¢x 100 par-
ity matrix chosen from 3 different ensembles (see legend);
seek max,¢ g, f (o) for 30 seconds using CPLEX. Plot: for
each 7 and each ensemble repeat the experiment 10 times
and report the binary logarithm of the median value found.
(As a yardstick, we also plot the values found by Local-
Solver when R; is a random affine subspace.)

structure of € (and the factorization of f over {1, }) does
not “feel” the difference between different parity check ma-
trices, consistent with our hypothesis that it is the presence
(and exploitation) of “safe” decoding moves that causes the
dramatic improvement in the performance of CPLEX.

6 BRANCH-AND-BOUND

Our last observation is that not all b; are equally impor-
tant (or even necessary) for an accurate estimate Z. For
instance, if f(o) € {0,1}, it suffices to find the boundary
k such that b; = 1 fori < k and b; = 0 for ¢ > k. Using
binary search we can do this by solving only log n, instead
of n, optimization problems as in (2).

To generalize let I = {ig, 1,19, ...,1s} be the set of quan-
tiles estimated so far, where 0 = ig < 11 < ... < iy = n.
Now define

s—1 ij41—1
Uy = b0+Zbij Z 2°
=0 i=i,
s—1 tj+1—1
Ly = b0+2bij+1 Z 2°
=0 i=ij

By cgnstruction, Ur >U > 7Z > L > Lj. Let [71
and L; be the estimated counterparts, of Uy, Ly, respec-
tively, with Bi in place of b;. To identify the next quan-
tile to estimate we consider the successive pairs (ig,i¢+1)
in I and for each such pair (is,i¢41) = (¢,7) we define
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Figure 5: 10 x 10 Ising grid with C' = 1.0 and F' = 0.1.
Experiment: for i € [0, 40], generate R; via an ¢ x 100 par-
ity matrix chosen from 3 different ensembles, or as a ran-
dom affine subspace (see legend); seek max,cp, f(o) for
30 seconds using LocalSolver. Plot: for each ¢ and method
repeat the experiment 10 times and report the binary loga-
rithm of the median value found.

Gap(i,j) = (31 - i)j) Zgzi 29. At each iteration, we
chose the pair (¢, ) with maximum gap and estimate b,
where k = [“52]. Once the ratio U;/L; drops below the
desired accuracy threshold, the process can stop early (see
Table 6 for some indicative results).

Algorithm 1 Branch-and-Bound

bo < ESTIMATE(b)

by ESTIMATE(b,,)

I+ {0,n}

0 e

L[ — bJ\L2n N

while (U; > L;- Tolerance) do
Find successive i, j € I maximizing Gap(i, j)
Ee L+5)/2)
by < Estimate(by)
I+ TuU{k}
Compute fj Is L I

: end while

: Return (Ur + Lp)/2

R I AN A S ol

—

The benefit of branch and bound is universal, i.e., indepen-
dent of the {b;} estimation method. For example, over 24
problems on Ising grids it yielded a 7x average speedup.

1.5 2 25

C (F=01)]025 05 10 3

Speedup (x) | 11 5 3 7 9 11 12

Table 1: Speedup by Branch and Bound



7 EXPERIMENTS

The ferromagnetic Ising grid is a canonical spin glass
model. Binary variables (spins) x; € {£1} are placed on
the vertices of a v/n x /n grid (V, E) and have nearest-
neighbor interactions and a local (to each spin) field. Thus,

f(z) = H%ﬁz(xz) H Vi (@i, x5)

i€V (i,j)€E

€))

with ¥;(2;) = exp(Fix;) and 9;;(z;) = exp(Cijziz;),
where the local fields F; are i.i.d. U[—F, F] and the cou-
pling strengths C;; are i.i.d. U[0,C]. (As C;; > 0, config-
urations where neighboring spins align are favored.)

The model has been widely used as a test case for partition
function estimation [4][8][14][15] due to its flexibility: as
C' is increased, the dominant contribution to the partition
function shifts from configurations with many unaligned
neighbors to configurations with few unaligned neighbors.
We focus on the particularly challenging setting C' ~ 1. A
side benefit of this choice (not unrelated to hardness) is that
a wide range of quantiles contribute significantly to Z, thus
exercising each method for a wide range of thinning.

7.1 THE ALGORITHMS

Given the complementary nature of thinning via parity ma-
trices and thinning via affine subspaces, it is natural to com-
bine our two ideas into one algorithm that uses LDPC par-
ity check matrices for small 7 (“light” thinning) and random
affine subspaces for large ¢ (“heavy” thinning). To reduce
the confounding factors we simply used parity matrices for
i € [1, 33] and affine subspaces for 7 € [34, 100].

Besides the junction-tree algorithm used to compute Z ex-
actly, we also evaluated the Mean Field approximation, and
Tree-Reweighted Belief Propagation (TRWBP) [6], pro-
viding a lower and an upper bound for the partition func-
tion, respectively. We use the libDAI [10] implementations
of all three algorithms. The WISH algorithm is the CPLEX
implementation by the authors of [14].

7.2 THE RESULTS

WISH is not competitive with our algorithm in certain set-
tings, as indicated by Figure 6 (note that the vertical axis
is logarithmic). For example, our algorithm achieves bet-
ter accuracy with a 10-second timeout than WISH achieves
with 360 seconds. When this difference in accuracy is com-
bined with the Branch and Bound speedup, our algorithm
is over 100x faster than WISH.

In Figure 7 we compare all four algorithms for F' = 0.1
and various values of C' € [0.25,3.0]. Rather than com-
paring run times, which in order to be fair would require
adapting the timeout of each algorithm to the difficulty it

30

Exact
+— SECCO ]

o—e WISH

Log error

—10} 1
_12///

1030 60

—14}

180 360

Timeout (seconds)
Figure 6: 10 x 10 Ising grid with C' = 1.0 and F' = 0.1.
Experiment: tun WISH and our algorithm with a timeout
of t € {10, 30, 60, 180, 360} seconds per instance to get an
estimate Z (see legend). Plot: report log,(Z /7).

experiences, we have chosen the more transparent experi-
ment of running each algorithm with the same timeout of
360 seconds across all instances and all ¢ € [n] and com-
paring the accuracy achieved in the final estimate of Z.

The case of high coupling strengths is easy for both algo-
rithms as the dominant contribution to Z comes from few
configurations of high probability and, thus, only light thin-
ning is performed. For C' € {0.5,0.75,1.0}, though, our
algorithm outperforms WISH by a significant margin (the
vertical axis is logarithmic).

1
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-
—20}| e—e TRWBP AN A
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A} ’ A 1
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0.5 1.0 1.5 2.0 2.5 3.0
Coupling strength

Figure 7: 10 x 10 Ising grid with C' € [0.25,3.0], F' = 0.1.
Experiment: for C € {0.25,0.50,...,3.0}, determine Z
and run four algorithms to get an estimate Z (see legend).
Mean Field and TRWBP are run to termination. WISH and
our algorithm have a 360 second timeout for each instance.
Plot: For C' € {0.25,0.50, . ..,3.0} report log,(Z/Z).
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Learning the Structure of Sum-Product Networks
via an SVD-based Algorithm

Tameem Adel
Radboud University

Abstract

Sum-product networks (SPNs) are a recently de-
veloped class of deep probabilistic models where
inference is tractable. We present two new struc-
ture learning algorithms for sum-product net-
works, in the generative and discriminative set-
tings, that are based on recursively extracting
rank-one submatrices from data. The proposed
algorithms find the subSPNss that are the most co-
herent jointly in the instances and variables — that
is, whose instances are most strongly correlated
over the given variables.

Experimental results show that SPNs learned us-
ing the proposed generative algorithm have bet-
ter likelihood and inference results — and also
much faster — than previous approaches. Finally,
we apply the discriminative SPN structure learn-
ing algorithm to handwritten digit recognition
tasks, where it achieves state-of-the-art perfor-
mance for an SPN.

1 INTRODUCTION

Sum-product networks (SPNs), introduced in Poon and
Domingos [2011], provide compact, tractable representa-
tions of probability distributions. Layers of hidden vari-
ables are added to the model so long as they maintain com-
pactness whilst keeping inference tractable.

In this work, we present a new SPN structure learning algo-
rithm that constructs an SPN by identifying coherent sub-
SPNs that are sought concurrently across both the instance
and variable dimensions. The subSPN search procedure
aims at compactly and tractably representing the data and
is capable of splitting the data matrix across both dimen-
sions at once, if this leads to a better data representation.

Contribution. We make two main contributions. The
first is SPN-SVD, a new SPN structure learning algorithm

David Balduzzi
Victoria University of Wellington
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based on rank-one (rank-1) submatrix extraction. The
problem of finding subSPNs is reformulated as a problem
of finding approximate rank-1 submatrices of the data ma-
trix. An important feature of the approach is that it splits
the data along two dimensions (variables and instances) si-
multaneously when doing so optimises the objective. In
contrast, previously developed approaches to learning the
structure of SPNs split the data across one dimension only,
at a time, without taking into consideration that such local
improvement might drift the overall resulting SPN away
from the optimal representation.

The second main contribution is an extension of our struc-
ture learning algorithm to the setting of discriminative
learning [Gens and Domingos, 2012]. The discrimina-
tive structure learning algorithm, DSPN—-SVD, first extracts
the features that are the most dependent on the labels,
where dependence is measured via the Hilbert-Schmidt In-
dependence Criterion (HSIC), and then recursively applies
SPN-SVD. To the best of our knowledge, it is the first struc-
ture learning algorithm designed for discriminatively train-
ing SPNs.

The performance of both algorithms is extensively evalu-
ated. When evaluated on the Caltech-101 and Olivetti im-
age datasets, SPN—SVD outperforms other SPN algorithms,
with higher log-likelihood (LL) values and much faster per-
formance. The discriminative structure learning algorithm
achieves state-of-the-art performance on handwritten digit
classification when compared with other SPN algorithms.

2 SUM-PRODUCT NETWORKS

SPNs are built by composing tractable distributions. A
tractable distribution is a distribution whose partition func-
tion and mode can be computed in time O(1) [Gens and
Domingos, 2013]. A tractable univariate distribution, Dx,
is an SPN. SPNs provide a representation in which single
tractable distributions of the form D x are combined into
a richer and more complex distribution, provided that the
resulting distribution remains tractable.



An SPN is a rooted directed acyclic graph (DAG), Gr,
whose leaves are univariate distributions, and whose inter-
nal nodes are sum and product nodes. Edges from a sum
node to its children are assigned positive weights, W. Let
Br(S) denote the branches (children) of S. The scope, sc,
of a sum-product network, S(Gr, W), is the set of vari-
ables that appear in the leaf nodes of the SPN [Poon and
Domingos, 2011]. Sum nodes are denoted by Sum;(Br :
wy, Bra @ wa,...), where Bry, Bra, ... are the branches
and w; and wy are their respective weights. Similarly,
product nodes are denoted by Prd;(Bry, Bra,...).

The two composition rules used in SPNs are defined as fol-
lows. Firstly, a product, Prd, of SPNs, suby, ..., subg,
over disjoint scopes, is an SPN, rooted by Prd:

Vsub;, sub; € Br(Prd) : sc(sub;) N sc(subj) =¢ (1)

A decomposable SPN is one in which each product node
satisfies Eq. (1).

Secondly, a positive weighted sum, Sum, of SPNs over the
same scope is an SPN rooted by Sum [Gens and Domin-
gos, 2013]:

Vsub;, sub; € Br(Sum) : sc(sub;) = sc(subj)  (2)
A complete SPN is one in which each sum node satisfies
Eq. (2). A sum node, Sum, can be thought of as the result

of summing out a hidden variable. The sum of weights
of all the branches of a sum node is always equal to 1

(ZsubEBr(Sum) Wsub = 1)
2.1 Related Work on Structure Learning

The emphasis in the SPN literature has recently shifted
from learning parameters to learning the structure of mod-
els. Parameter learning algorithms assume a fixed struc-
ture and learn weights using either generative [Poon and
Domingos, 2011] or discriminative [Gens and Domingos,
2012] training. A hard EM algorithm is used by Poon and
Domingos [2011] to perform generative parameter learn-
ing on SPNs. Deep SPNs are learned successfully using
hard EM with a pre-defined network structure. A discrim-
inative parameter learning algorithm based on gradient de-
scent was introduced in Gens and Domingos [2012].

The first algorithm to learn the structure of an SPN from
data was proposed by Dennis and Ventura [2012]. The
algorithm first clusters data instances and creates a corre-
sponding sum node. Then, it clusters variables in a top-
down approach, creating product nodes. There are three
potential problems with the algorithm. The first is that
any context-specific independences that appear after the
first clustering are not taken into consideration because in-
stances are not clustered after the first step. Secondly, the
algorithm is based on a clustering method that ignores cor-
relation between variables. It will therefore tend to place
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dissimilar, but strongly correlated, variables in different
clusters. Finally, the structure and weights are learned us-
ing two distinct methods.

A bottom-up approach, based on greedily merging small
image regions into larger regions, was introduced in Peharz
et al. [2013]. An online learning algorithm was proposed
by Lee et al. [2013], where the problem was cast as an on-
line clustering problem. They develop an incremental SPN
structure learning algorithm based on dynamically modify-
ing the number of clusters based on incoming data.

The most prominent general SPN structure learning algo-
rithm was proposed by Gens and Domingos [2013]. It ap-
plies a recursive top-down approach which, at each step,
checks whether variables can be split into approximately
independent subsets — in which case a product node is con-
structed. Otherwise, the current instances are clustered,
and a sum node is returned with weights proportional to
the number of instances in each cluster. The algorithm
greedily optimises the log-likelihood and overcomes sev-
eral limitations in Dennis and Ventura [2012]. However,
it only searches locally for the ideal splitting candidate at
each step, see discussion of Table 1 below.

To the best of our knowledge, the most recent algorithm for
general SPN structure learning was proposed in Rooshenas
and Lowd [2014]. The authors adapt a method based on
mixture modelling and arithmetic circuit learning. It does
not only apply local modifications in the search of an op-
timal model as arithmetic circuit learning could lead to
global changes. However, a global search over the data is
neither systemic nor guaranteed.

Peharz et al. [2014] learn the structure of a restricted class
of SPNs, where each sum node can have no more than one
branch with a non-zero output for a certain input. Nath
and Domingos [2014] develop an algorithm that learns the
structure of relational SPNs.

Our focus is on learning the structure of general SPNs in
both the generative and discriminative settings.

3 LEARNING THE STRUCTURE OF AN
SPN

Previous SPN structure learning algorithms cluster in-
stances without ensuring that the clustering respects
context-specific independences (independences that hold
only among instances of a specific context or cluster). In
contrast, our proposed algorithm (SPN-SVD) concurrently
checks the data matrix across both the instance and vari-
able dimensions, looking for coherent subSPNs in the form
of rank-1 submatrices.

Motivating Example. It is useful to consider a simple
example in detail, so as to understand how SPN-SVD dif-
fers from SPN-Gens. Tables 1 & 2 contrast the steps



taken by SPN-SVD and SPN-Gens [Gens and Domingos,
2013]. Table 1(A) shows the data matrix, which consists
of 6 instances with 4 variables each. SPN-Gens clusters
the data into 2 clusters, as shown in Table 1(B) and in Fig-
ure 1. In the example, the cluster of elements with value 18
is split.

Table 1: SPN-Gens on an Example Data Matrix. Rows
are instances and columns are variables.

40 40 40 40 40 40 40 40
40 40 40 40 40 40 40 40
40 18 18 40 40 18 18 40
20 18 18 20 20 18 18 20
20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20
A B
a0 ] a0 40| 40
a0 | a0 | a0 40
40| 18 | 18| 40
20 ] 18 [ 18| 20
20| 20 [ 20| 20
20| 20 [ 20| 20
4,j»’ﬁ’#‘ *
M EED
an | 40 [ a0 | 40
an | 18 [ 18| 40
0|18 [ |20
20|20 [ 20| 20
0|20 z20] 20

Figure 1: The SPN Structure Learned from Table 1 by
SPN-Gens.

SPN-SVD deals with the same data quite differently, as
shown in Table 2. The algorithm simultaneously searches
over instances and variables and therefore immediately
identifies the submatrix with all entries equal to 18, chooses
it as a rank-1 submatrix. The algorithm then decomposes
the original matrix into three components and acts recur-
sively on each.

The crucial difference between the two algorithms is that
SPN-SVD identifies the submatrix of entries with value
18 as an “atom” in the data, resulting in a graph struc-
ture that captures an important feature of the data, whereas
SPN-Gens does not. Quantitatively, the final LL value for
SPN-Gens is —2 whereas for SPN-SVD it is —1.39.
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Table 2: SPN-SVD Applied to the Matrix from Table 1.

40 40 40 40 40 40 40 40
40 40 40 40 |40 40 40 40
40 | 18 18 | 40 40 | 18 18 | 40
20 | 18 18 | 20 20| 18 18 | 20
20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20
A B
15 | 18
18 | 18
éifffff +~hhﬁhhﬁhé
18 | 18
18 | 18
é*”’f'x-%“““H%
18 | 18 18 | 18
15 | 18 15 | 18

Figure 2: The SPN Structure Learned from Table 1 by
SPN-SVD.

In essence, SPN-SVD and SPN-Gens are motivated by
two different extreme cases.

SPN-Gens is inspired by the observation that if variables
are independent, then they can be decomposed into separate
(branches or) leaves of an SPN product node.

In contrast, SPN-SVD is inspired by a complementary
observation: if a subset of variables is perfectly corre-
lated over a subset of data, then it forms a rank-1 sub-
matrix. These rank-1 submatrices are the “atoms” out
of which SPN-SVD builds an SPN. Whereas SPN-Gens
searches for independencies; SPN-SVD searches for corre-
lated components.

Searching for rank-1 submatrices instead of independent
variables has three potential advantages. Firstly, correla-
tions are easier to estimate than independence. Secondly,
the search for rank-1 submatrices occurs jointly over vari-
ables and instances, whereas clustering and identifying in-
dependencies are two unrelated procedures. Thirdly, ex-
tracting correlated submatrices reduces redundant compu-



tations, resulting in a faster algorithm, see Lemma 1 below.

3.1 Extracting a Rank-1 Submatrix

The main subroutine of SPN-SVD is a rank-1 extraction
algorithm based on singular value decomposition (SVD).
The approach derives from an algorithm for nonnega-
tive matrix factorization (NMF) developed in Biggs et al.
[2008a].

Let X € R™*™ denote a data matrix containing m in-
stances and n variables. We denote by X, the ith row
of the matrix, corresponding to the i*" instance of the data,
and by X,; the j th column of the matrix, corresponding to
the ;" variable.

In the generative training case, assume the labels, if pro-
vided, are included in X. We introduce the notation
X, to refer to the submatrix of X consisting of rows
M c{1,...,m}and columns N C {1,...,n}.

The algorithm extracts the submatrix of the data matrix X
that is closest to having rank-1, denoted by B;, by max-
imising

Bj := argmax ||X(M}N)||;—7HX(M,N) — auvTH;, 3)

X(M,N)

where ¢ is the maximum singular value of the submatrix
Xm,ny and v € R™,v € R" are the dominant sin-
gular vectors of of X5 vy, and || e || is the Frobenius
norm. Recall that the Frobenius norm is the root sum of the
squared singular values.

The second term in Eq. (3) thus encourages the optimiza-
tion to find a submatrix that is close to rank-1. The first
term ensures the submatrix is biased towards having large
singular values; «y controls the penalty incurred as X,/ )
deviates from being rank-1.

Algorithm 1 details the subroutine, extractR1, used to
extract approximate rank-1 submatrices. For fixed M and
N, extractR1 exactly coincides with the SVD power
method. However, instead of fixing M and N, the in-
ner loop searches for the submatrix with the closest rank-
1 approximation. Lines 6 and 8 show a heuristic used
to solve the NP-hard problem defined in Eq. (3) [Biggs
et al.,, 2008a]. The criterion in lines 6 and 8 of Algo-
rithm 1 decides whether or not to include one column or
row separately. This makes the subroutine parallelisable
and highly scalable in terms of memory and processing
power. ext ractR1 computes the dominant singular vec-
tors of a submatrix, which are less prone to perturbations
by noise than the full matrix [Biggs et al., 2008b].

3.2 Generative SPN Structure Learning Algorithm
(SPN-SVD)

SPN-SVD recursively extracts “atomic” submatrices from
the input matrix. Each extraction breaks the input ma-
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Algorithm 1 Function extractR1(X)

Input: X € R™*" ~ > 1
Output: [M, N, Stop]

1: Select jo € {1,...,n} to maximise || X(. )lr
22 M={1,2,....,m}, N = {jo}

3 u =X jo)
4: repeat

) _ u(M)

55 v=Xon)r oDl

. N2 2

6: N={j:w() — I Xaylr" >0}

. — v(N)

7: U = X(;,N) : HU(QN)”F )

8 M ={i:yu(i)” — [ Xunlr" >0}

9: until M, N, u, v do not change
10: if X (57, vy = X or (|M| = 0 and |[N| = 0) then
11:  Stop = true
12: else
13:  Stop = false
14: end if

trix into three pieces, which are glued together as sum and
product nodes.

Algorithm 2 details the main steps of SPN-SVD. Rows
are instances and columns are variables. Each variable is
divided by its standard deviation before extracting rank-1
submatrices. The normalised values are used in the sub-
routine ext ractR1 only, and are not returned or updated
in the matrix. Normalisation helps discover correlated sets
of variables.

Given an input matrix, subroutine ext ractR1 recursively
extracts an approximate rank-1 submatrix B;. The ma-
trix is then split into three components: the submatrix B,
submatrix By consisting of other variables on the same in-
stances as Bj, and finally submatrix Bs consisting of the
remaining instances.

The optimization in (3) ensures that variables in B; are
maximally correlated and the remaining variables, captured
by Bs, are largely uncorrelated with B;. The algorithm
therefore combines B; and By via a product node

P?"d(Bl, Bg)

Finally, the remaining instances, captured by B3, are added
via a sum node

Sum(Bg : ’th’f’d(Bl,BQ) : 'IUQ),
[M]

where wo = “ - and w; = 1 — ws.

The algorithm proceeds recursively by feeding By, By and
Bs back into the algorithm as input matrices until one of
three base cases is reached:

1. The input matrix contains a single variable:

The remaining vector represents a univariate distribu-
tion and a leaf node is created (line 2).



Algorithm 2 Function SPN-SVD(A)

Input: A € R™*" v > 1

Output: Sum-product network S representing A
1: if #columns(A) = 1 then

2:  return univariate distribution on variable.

3: else if #rows(A) = 1 then

4:  return return Prd(variables in A).

5

6

7

: end if

: [M, N, Stop] = extractR1(A,%)

: Set By = A(M,N): By = A(JVI,NC) and By =
A(pre {1..m})

8: if Stop = true then

9:  return multivariate distribution MVLN(A)

10: else

11:  Construct Prd(B1, Bs)

12:  Call SPN-SVD(B;) and SPN-SVD(B5)

13:  Construct
—|M M

Sum <33 =M By By) - |>

m m

14:  Call SPN-SVD(B3)

15: end if

2. The input matrix contains a single instance:

All variables are independent and a product node is
created (line 4). Its leaves are the relevant variables.

3. The entire input matrix is extracted.:

The variables in A are highly correlated since A has
rank-1. The algorithm therefore constructs a sum node
with a branch per instance in A, followed by product
nodes over the variables. We refer to the node as a
multivariate leaf node or MV LN.

More precisely, if A € RM*N and B,
each instance j form product node

JAGN).

= A then for

Ty = Pde(Ajl, ‘e

Combine the product nodes by summing over in-
stances:

MVLN(A) := Sum(ry :w,...,ra:w),  (4)

where w = e
Variables in a rank-1 submatrix cannot be indepen-
dent. SPN-SVD achieves significant speedups by avoid-
ing redundant searches for independencies and returning
MVLNSs. In contrast, when SPN—-Gens encounters a rank-
1 submatrix, it recursively searches for independences and
clusters across its subsets, which leads to a slower imple-
mentation and also an SPN with a more complicated struc-
ture. The speedup from using MVLNSs is reported in the
experimental results below.
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A commonly used assumption is that data is clustered in
strongly correlated groups. For example, algorithms such
as the group Lasso seeks solutions where groups of vari-
ables are zero together [Bach, 2008]. The following simple
Lemma illustrates how large MVLNSs arise in the more gen-
eral setting where groups of variables receive the same, or
even approximately the same, values.

Lemma 1. Let X € R™*™ be a data matrix consisting of
m instances. Suppose that X contains a group of instances
G C {1,...,m} with similarity pattern K¢ = {k|X;;, =
X foralli,j € G}. Then SPN-SVD will find a multi-
variate leaf node satisfying

IMVLN| > K¢l - |G].

Proof. The result follows immediately since the algorithm
will either find the MVLN corresponding to the group, or a
larger MVLN. O

An interesting question, deferred to future work, is to char-
acterise the collections of groups with similarity patterns
that are best suited to the SPN-SVD algorithm. It is also
worth investigating how robustly MVLNs are extracted in
the presence of noise.

3.3 Discriminative SPN Structure Learning
Algorithm (DSPN-SVD)

Finally, we consider the setting of discriminative learn-
ing, where the algorithm is provided with labeled data.
Discriminative learning models the conditional distribu-
tion P(Y|X), rather than the joint distribution P(X,Y).
Discriminative SPNs combine the flexibility of select-
ing/extracting relevant features, with the tractability and
representational prowess of SPNs. They can achieve high
classification or regression accuracy by selecting variables
that are dependent on Y. They were first introduced
by Gens and Domingos [2012], where parameters were
learned on a pre-defined structure.

We propose a new discriminative SPN structure learning
algorithm, referred to as DSPN-SVD. We assume the la-
bels are discrete, and belong to the set C = {1,...,1}.
The algorithm extracts features Z from the input matrix,
X, that are maximally correlated (in a suitable sense) with
the labels Y. The algorithm then applies SPN-SVD to
the learned features to construct a collection of generative
SPNs, one per conditional distribution P(Z]Y = j) for
Jj € C, that are combined by a single sum-node.

Extracting Z requires a measure of dependence between
variables. We use the Hilbert-Schmidt independence crite-
rion (HSIC), which we briefly recall [Gretton et al., 2005].

Let k(x,2’) and I(y, ') be kernels on the input space X
and the label space ), with corresponding feature maps ¢ :



X — Fand ¢ : Y — G respectively. The Hilbert-Schmidt
Independence Criterion is

HSIC(]{?,LPX)/) = ||Ca:yHF7 where

Coyi= B 0@ =) ® (W) =)l

is the cross-covariance operator [Fukumizu et al., 2004].
We apply the HSIC for supervised feature selection follow-
ing Song et al. [2007].

LetIT := {W € R"*4 : (W,;, W,;) = §;;} denote the set
of orthogonal projections from R™ = X to R?. Given the
standard dot product (e, ®) on R?, each projection induces
akernel Ky (z,y) := (Wz, Wy) on X.

Let L(y,y) = 0y, be the Kronecker kernel, which is 1 if
y = v’ and O otherwise. The Kronecker kernel is suitable
for the categorical variable, Y € C, because it expresses
precisely whether or not two labels are equal. It is easy
to extend to real-valued or structured labels by employing
more sophisticated kernels.

Let X € R™*"™ be a data matrix with labels Y € Y™,
yielding empirical distribution Pxy. Construct the center-
ing matrix H = (Id,, —m~'11T) and empirical Kronecker
kernel L;j = 0y,=y, .

Lemma 2. Let V € R"*? be the top d eigenvectors of
x:=XTHLHX 5)

Then V maximizes the Hilbert-Schmidt dependence:

V = argmax HSIC(Kw, L,PXY).
Well

Proof. The vectors V4, j = 1,...,d, are the eigenvectors
of x. They therefore maximize the trace

argmax tr(VIXTHLHXV)
1%

Since tr(AB)
as:

= tr(BA), the objective can be rewritten

argmax tr(HXVVTXTHL) (6)
1%

Following Barshan et al. [2011], let K = XV VTXT. The

objective in Eq. (6) is then

tr(HKHL),

which is the HSIC [Gretton et al., 2005]. L]

The higher the HSIC value, the stronger the dependence
between the projected representation of the data Z = XV
and Y, and thus the more useful the representation is for
discriminative learning.

37

Algorithm 3 Function DSPN-SVD

Inmput: X e R™*" Y e Y™ v>1,d>1

Output: Sum-product network S representing Y| X

1: Construct kernel matrix L;; = (8,,—y )an and cen-
tering matrix H = (Id,,, — m_lllT).

Compute the d eigenvectors V€ R" 4 of y =
XTHLHX with the largest eigenvalues.

3: Set feature matrix Z,,xq < Xmxn * Vaxd

Construct sum node Sumi(Br; : w,), where Br;
contains all instances with label j, and weight w; =
F##instances labeled j

5 for label j in Y do

SPN-SVD(Brj,7)

7: end for

After extracting the features Z, there are two remaining
steps. The first step constructs the base node for the dis-
criminative SPN as a sum node that separates instances be-
longing to different labels. Nodes in the sum are weighted
by the number of instances. The resulting network is thus
automatically biased towards more common labels. The
second step applies the generative SPN-SVD algorithm to
each branch of the sum node using the extracted features in
Z.

The main steps of DSPN—-SVD are shown in Algorithm 3.

Figure 3 shows an example with 2 labels and 3 variables.
As shown in the tables at the top of the figure, the X vari-
ables are replaced by a more suitable representation, Z.
The base sum node then places instances of each label on
separate branches, where each branch’s subSPN is in turn
learned by SPN-SVD. A simplified example of the feature
extraction process is shown in Figure 4. Since the first two
features convey no information about the labels, extracting
only the third feature, Z = X3, maximises the HSIC.

4 EXPERIMENTS

4.1 Generatively Trained SPNs

Our main evaluation of SPN-SVD is based on comparing
its accuracy and speed to other SPN structure learning algo-
rithms. Following prior work on structure learning [Gens
and Domingos, 2013, Rooshenas and Lowd, 2014], we re-
port accuracy in terms of the test-set log-likelihood (LL)
and query conditional log-likelihood (CLL). These values
are obtained from experiments on the Caltech-101 dataset
[Fei-Fei et al., 2004], the Olivetti face dataset [Salakhutdi-
nov and Hinton, 2009], and 20 binary datasets. Caltech-
101 is one of the most commonly used image datasets. It
contains images divided into 101 categories, e.g. airplanes,
cameras and faces. Each object category contains from 40
to 800 images. Images in Caltech-101 are 64 x 64 pixels.
The Olivetti dataset contains 400 face images of 64 x 64
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Figure 3: The Discriminative SPN Prior to Running SPN-
SVD on Each Sum Node Branch.

Xa KXo Xea Za
1 2 2 | v=1 2 | v=1
1 2 5 | v=2 5 | v=2
1 2 2 | v=a1 9 2 | v=1
1 2 5 | v=2 5 | v=z2

Figure 4: An Example of X, Y and Z where
m=4,n=3,d=1.Z=XV=X[001]".

pixels. Importantly, these datasets are not binary, in con-
trast to previous datasets used for SPN structure learning.
The datasets are discrete-valued. Extending to the contin-
uous case is straightforward. 60% of the instances of each
object category are used for training, 10% for validation
(needed mainly for WinMine) and 30% for testing.

Accuracy. For Caltech-101, values of LL and inference
are displayed as average values across all object categories,
as well as averages for some of the individual object cat-
egories, while only the grand average is displayed for
Olivetti. By “average”, we mean that the LL values dis-
played represent their respective summation of LL values
divided by the number of test instances. Univariate leaf dis-
tributions are multinomials with Laplace smoothing (add
0.1).

We compared SPN-SVD with four algorithms: (1)
SPN-Gens [Gens and Domingos, 2013], with code avail-
able online; (2) ID-SPN [Rooshenas and Lowd, 2014]
by the Libra toolkit; (3) SPN-Dennis [Dennis and Ven-
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tura, 2012], which was implemented via algorithms 1, 2
& 3 of Dennis and Ventura [2012]; (4) Bayesian network
structure learning with the WinMine toolkit [Chickering,
2002], which was chosen because it can express context-
specific independence.

Table 3 shows the test-set LL values obtained for 18
example object categories from Caltech-101, the whole
Caltech-101 dataset and the Olivetti face dataset using
the SPN-SVD, SPN-Gens, ID-SPN, SPN-Dennis al-
gorithms and WinMine. The greater the LL, the better.
The total number of instances (training + test + validation)
in each category or dataset is shown in Table 3. Bold red
signifies that an algorithm is significantly better than com-
petitors on a category, whereas bold black indicates that an
algorithm is better than competitors on a category. Signif-
icant results are identified using a paired t-test (performed
in the log scale) with p = 0.05. Out of the 101 Caltech-101
categories, SPN—-Gens is significantly better than its com-
petitors in 5 categories, WinMine in 9 categories, ID—SPN
in 12 categories while SPN-SVD is significantly better in
42 categories, 9 of which are shown in Table 3.

Training time. An important advantage of SPN—-SVD is
its rapid training time. SPN-SVD took 2.5 hours with 1
CPU to build the SPN and calculate the test-set LL values
for Caltech-101 and Olivetti. In contrast, SPN-Gens took
13.5 hours, ID-SPN took 12 hours, and SPN-Dennis
took 7.5 hours to perform the same task. WinMine took
2.5 hours to build the Bayesian network and calculate LL
values.

Per the discussion of Lemma 1, we expect that larger
MYV LNs lead to larger reductions in run-time. Our experi-
ments show a 3-fold speedup when comparing SPN-SVD’s
performance with and without MV LNs. Returning
MVLNSs thus accounts for most of the 4.5-fold speedup of
SPN-SVD compared to SPN-Gens.

Another major advantage of SPN-SVD is that is has few
tuning parameters. The generative algorithm has one pa-
rameter, -y, which controls the penalty for deviating from
rank-1, whereas DSPN-SVD has a 274 parameter: d, the
number of extracted features. In comparison, ID-SPN, for
example, has: L, prior parameters C7%, split penalty S P7?,
maximum edges M E7% for each AC node, cluster penalty,
standard deviation of the Gaussian priors, and the number
of main iterations [Rooshenas and Lowd, 2014].

Queries. Next, we investigate the accuracy and speed of
queries. Queries are generated following Gens and Domin-
gos [2013]. Experiments are performed with a range of
query and evidence variables, see Table 4. A number of in-
stances are selected randomly from the test-set of each ob-
ject category or dataset, and then queries P(Q) = ¢q|F = ¢)
are created by randomly picking proportions of the vari-
ables. The average CLL log P(Q = ¢|F = e) is com-



Table 3: Test-set LL and Learning Time. Results are shown for 18 Caltech-101 Categories, Caltech-101 & Olivetti. Bold

red signifies that an algorithm significantly outperforms the rest.

Dataset # inst. | SPN-SVD | SPN-Gens | SPN-Dennis ID-SPN WinMine
Faces 435 -1122.71 -1520.03 -1607.8 -1440.84 -1309.37
Faces-Easy 435 -1002.11 -1298.59 -1490.21 -1314.09 -1320.87
Accordion 55 -974.93 -1114.05 -1507.79 -1300 -1240
Airplanes 800 -587.4 -920.69 -1000.3 -898.7 -914.81
Anchor 42 -1315.71 -1420.1 -1392.28 -1404.12 -1239.8
Ant 42 -770.2 -1535.82 -1980.3 -1264.1 -1271.94
Background-Google 467 -1105.49 -1316.8 -2020.88 -1291.16 -1220
Barrel 47 -774.23 -1330.4 -1289.4 -1259.7 -1300.86
Bass 54 -1051.7 -1293.11 -1712.84 -1321.49 -1212.37
Beaver 46 -1167.33 -1570.26 -1487.79 -1290.1 -1012.03
Binocular 33 -907.48 -1390.3 -1600.3 -1400.44 -1309.4
Bonsai 128 -887.42 -1551.09 -1979.26 -1302.37 -1336.28
Brain 98 -1270.1 -1208.41 -1498 -1307.12 -1286.2
Brontosaurus 43 -837.02 -1288.13 -1600.26 -1393.9 -1410.61
Buddha 85 -1291.15 -1374.12 -1230.8 -1172.28 -1219
Butterfly 91 -1020.67 -1397.19 -1535.91 -1230.11 -1207.44
Camera 50 -1201.8 -1470.25 -1488.85 -1019.51 | -1200.49
Cannon 43 -956.47 -1303.1 -1404.71 -1307.8 -1288.1
[ Caltech-101 (All) [ 9144 [ -892.93 | -1492.12 [ -1780.5 [ -1250.6 [ -1269.29 |
\ Olivetti [ 400 | -189.81 | -29436 | -302.55 | 29581 | -293.9 |
[ Learning Time | | 25hours [ 13.5hours | 7.5hours [ 12 hours | 2.25 hours |
puted and normalised by the number of query variables by SPN-SVD.

following Gens and Domingos [2013]. Table 4 shows the
results, for varied proportions of evidence and query vari-
ables, in the form of the average CLL for both SPN-SVD
and SPN-Gens.

Both SPN-SVD and SPN-GENS achieve average dataset
CLL values that are significantly higher than the results
obtained by SPN-Dennis, ID-SPN and the conditional
marginal likelihood (CMLL) values of WinMine. The lat-
ter three results are therefore not reported to save space.
Similarly, we only show queries of 5 object categories,
rather than 18, along with the average CLL of the whole
Caltech-101 and Olivetti datasets.

Across all proportions of object categories, there are 84
categories in which SPN-SVD significantly outperforms
SPN-Gens, and 18 where the converse occurs. As in-
ference is linear in the number of edges of an SPN, there
is not a major difference between average query time for
SPN-SVD and SPN-Gens.

Image completion. To confirm that the LL values are vi-
sually meaningful, an image completion task was applied
to a select few images from Caltech-101. Two images are
shown in Figure 5, taken from one of the face categories of
Caltech-101, referred to as Faces-easy. The left half of each
test image is inferred after building an SPN using training
images from the same faces category. In each case, the
right half of the test image is given as evidence and the left
half is regarded as query variables, and inference is per-
formed by the SPN. The top part of Figure 5 displays the
original images and the bottom shows the images inferred
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Binary datasets. In Table 5, we report the test-set LL
values of SPN-SVD, SPN-Gens and ID-SPN (LL val-
ues of SPN-Dennis are significantly lower) on 20 binary
datasets used in Gens and Domingos [2013], Rooshenas
and Lowd [2014]. The number of instances in a binary
dataset ranges from 2k to 388k, and the number of vari-
ables ranges from 16 to 1556 [Gens and Domingos, 2013].
Out of the 20 datasets, SPN-SVD outperforms the alterna-
tives in 7 datasets, whereas ID—SPN outperforms the rest in
6 datasets. Significant results are identified using a paired
t-test with p = 0.05.

The results on discrete and binary datasets indicate that
SPN-SVD achieves, by far, state-of-the-art performance
for an SPN on discrete datasets. This is where interpreting
correlations makes a huge difference. SPN-SVD is also at
par with SPN state-of-the-art on binary datasets.

4.2 Discriminatively Trained SPNs

We present results obtained by applying discriminative
SPNs on two handwritten digit recognition datasets, USPS
[Hull, 1994] and MNIST [LeCun et al., 1998]. USPS con-
sists of 1100 images per digit for each of the 10 digits. Each
image is 16 x 16. For each digit, 800 images are assigned to
the training set and 300 to the test set. MNIST consists of
6000 training images per digit, each of size 28 x 28, and a
test set of 1000 images per digit. Discriminative SPN struc-
tures were learned by DSPN-SVD in both cases. The num-
ber of extracted features d was chosen by cross-validation.



Table 4: Average CLL & Query Time. Results are normalised by number of query variables. Results are shown for 5
Caltech-101 categories, Caltech-101 & Olivetti. SVD refers to SPN-SVD, and Gens to SPN-Gens.

30% Q., 50% Ewv. 10% Q., 30% Ev. 30% Q., 30% Ev. 50% Q., 30% Ev.
Dataset SVD Gens SVD Gens SVD Gens SVD Gens
Faces -0.301 -0.318 -0.81 -0.96 -0.221 -0.319 -0.4 -0.53
Faces-Easy -0.118 -0.16 -0.86 -0.908 -0.238 -0.318 -0.511 -0.543
Accordion -0.314 -0.312 -0.88 -0.95 -0.284 -0.313 -0.47 -0.523
Airplanes -0.211 -0.221 -0.058 -0.074 -0.202 -0.222 -0.309 -0.371
Anchor -0.301 -0.419 -0.761 -0.944 -0.256 -0.331 -0.501 -0.569
Caltech-101 (All) -0.117 -0.24 -0.131 -0.204 -0.204 -0.34 -0.312 0.423
Olivetti -0.27 -0.289 -0.205 -0.234 -0.439 -0.472 -0.466 0.513
Avg. query time 31 ms 30 ms 29 ms 28 ms 30 ms 32 ms 26 ms 27 ms

Table 5: Test-set LL for 20 Binary Datasets. Bold red: an
algorithm significantly outperforms the rest.

Dataset SPN-SVD | SPN-Gens | ID-SPN
NLTCS -6 -6.11 -6.02
MSNBC -6.1 -6.11 -6.04
KDDCup 2k 2.2 -2.18 -2.13
Plants -11.99 -12.98 -12.54
Audio -41.02 -40.5 -39.79
Jester -41.11 -75.99 -52.86
Netflix -58.02 -57.33 -56.36
Accidents -24.87 -30.04 -26.98
Retail -10.6 -11.04 -10.85
Pumsb-star -23.7 -24.78 -22.4
DNA -80.07 -82.52 -81.21
Kosarak -10.57 -10.99 -10.6
MSWeb -9.22 -10.25 -9.73
Book -30.18 -35.89 -34.14
EachMovie -52.47 -52.49 -51.51

WebKB -153.5 -158.2 -151.84
Reuters-52 -82.1 -85.07 -83.35

20 Newsgrp. -152.39 -155.93 -151.47

BBC - 251 -250.69 -248.93

Ad -17.82 -19.73 -19

Table 6 shows the results for DSPN-SVD, SPN-SVD,
SPN-Gens and ID-SPN. Apart from boosting algorithms,
DSPN-SVD achieves higher accuracy than other algo-
rithms on USPS, including C4.5 as reported in Demiriz
et al. [2002]. As per MNIST, DSPN-SVD also achieves the
highest accuracy for an SPN, and 2.2% less than the cur-
rent overall state-of-the-art accuracy on MNIST (reported
as 99.79% by Wan et al. [2013] and 99.77% by Ciresan
et al. [2012]). The flexibility of extracting features and
building a discriminative SPN tailored for the respective
dataset makes DSPN-SVD superior to SPN-SVD, as well
as SPN-Gens and ID-SPN on both USPS and MNIST.

Table 6: Classification of Handwritten Digits.

Dataset | DSPN-SVD | SPN-SVD | SPN-Gens | ID-SPN
USPS 92.4% 90.2% 79% 77.1%
MNIST 97.6% 85% 81.8% 83.4%
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Figure 5: Face Image Completions. The top row shows the
original images; the bottom row shows images with the left
half inferred using SPN-SVD.

S CONCLUSION

State-of-the-art results when performing learning and in-
ference on image datasets and digit classification indicate
that the proposed SPN structure learning algorithms are ef-
fective.

Some important advantages of SPN-SVD over previously
developed approaches are that it: (i) does not depend on
local data splittings and instead globally splits the data
based on rank-1 submatrix extraction; (ii) is based on cor-
relations, which are easier to estimate than independences;
and (iii) achieves considerable speedups by detecting large
approximate rank-1 submatrices and avoiding redundant
computations.

Interesting directions for future research include extending
the discriminative setting to regression or structured-output
learning by plugging more sophisticated kernels into the
HSIC step, and enabling the SPN to model features opti-
mised for different labels.

References

F R Bach. Consistency of the Group Lasso and Multiple
Kernel Learning. JMLR, 2008.

E. Barshan, A. Ghodsi, Z. Azimifar, and M. Jahromi. Su-



pervised principal component analysis: visualization,
classification and regression on subspaces and submani-
folds. In Pattern Recognition, 44:1357-1371, 2011.

M. Biggs, A. Ghodsi, and S. Vavasis. Nonnegative matrix
factorization via rank-one downdate. In International
Conference on Machine Learning (ICML), 25, 2008a.

M. Biggs, A. Ghodsi, and S. Vavasis.
tive matrix factorization via rank-one downdate.
http://www.arxiv.org/abs/0805.0120, 2008b.

D. M. Chickering. The winmine toolkit. Microsoft, Red-
mond, WA MSR-TR-2002-103, 2002.

D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column
deep neural networks for image classification. In IEEE
Conference on Computer Vision and Pattern Recognition

(CVPR), pages 3642-3649, 2012.

A. Demiriz, K. P. Bennett, and J. Shawe-Taylor. Linear pro-
gramming boosting via column generation. In Machine
Learning, 46:225-254, 2002.

A. Dennis and D. Ventura. Learning the architecture of
sum-product networks using clustering on variables. In
NIPS, 25, 2012.

L. Fei-Fei, R. Fergus, and P. Perona. Learning generative
visual models from few training examples. In proceed-
ings of CVPR Workshop on Generative Model-Based Vi-
sion, 2004.

K Fukumizu, F R Bach, and M I Jordan. Dimensionality re-
duction for supervised learning with reproducing kernel
Hilbert spaces. JMLR, 5:73-99, 2004.

R. Gens and P. Domingos. Discriminative learning of sum-
product networks. In NIPS, 25, 2012.

Nonnega-
In

R. Gens and P. Domingos. Learning the structure of sum-
product networks. In International Conference on Ma-
chine Learning (ICML), 30, 2013.

A. Gretton, O. Bousquet, A. Smola, and B. Scholkopf. Sta-
tistical dependence with Hilbert-Schmidt norms. In Al-
gorithmic Learning Theory (ALT), 3734:63-77, 2005.

J. J. Hull. A database for handwritten text recognition re-
search. In IEEE Transactions on Pattern Analysis and
Machine Intelligence, 16(5):550-554, 1994.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. In Pro-
ceedings of the IEEE, 86(11):2278-2324, 1998.

S.-W. Lee, H. Min-Oh, and Z. Byoung-Tak. Online incre-
mental structure learning of sum—product networks. In
Neural Information Processing, 2013.

A. Nath and P. Domingos. Learning tractable statistical
relational models. In Workshop on Learning Tractable
Probabilistic Models (LTPM), 2014.

R. Peharz, B. C. Geiger, and F. Pernkopf. Greedy partwise
learning of sum-product networks. In Machine Learning

41

and Knowledge Discovery in Databases, 8189:612-627,
2013.

R. Peharz, R. Gens, and P. Domingos. Learning selec-
tive sum-product networks. In Workshop on Learning
Tractable Probabilistic Models (LTPM), 2014.

H. Poon and P. Domingos. Sum-product networks: A new
deep architecture. In UAI, 27, 2011.

A. Rooshenas and D. Lowd. Learning sum-product net-
works with direct and indirect variable interactions. In
International Conference on Machine Learning (ICML),
31, 2014.

R. Salakhutdinov and G. Hinton. Deep Boltzmann ma-
chines. In AISTATS, pages 448—455, 2009.

Le Song, Alex J. Smola, Arthur Gretton, Karsten Borg-
wardt, and Justin Bedo. Supervised Feature Selection
via Dependence Estimation. In /ICML, 2007.

L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fer-
gus. Regularization of neural networks using DropCon-

nect. In International Conference on Machine Learning
(ICML), 30:1058-1066, 2013.



Robust reconstruction of causal graphical models based on
conditional 2-point and 3-point information

Séverine Affeldt, Hervé Isambert
Institut Curie, Research Center, CNRS, UMR168, 26 rue d’Ulm, 75005, Paris France;
and Université Pierre et Marie Curie, 4 Place Jussieu, 75005, Paris, France
herve.isambert@curie.fr

Abstract

We report a novel network reconstruction
method, which combines constraint-based and
Bayesian frameworks to reliably reconstruct
graphical models despite inherent sampling noise
in finite observational datasets. The approach
is based on an information theory result trac-
ing back the existence of colliders in graphi-
cal models to negative conditional 3-point in-
formation between observed variables. In turn,
this provides a confident assessment of structural
independencies in causal graphs, based on the
ranking of their most likely contributing nodes
with (significantly) positive conditional 3-point
information. ~ Starting from a complete undi-
rected graph, dispensible edges are progressively
pruned by iteratively “taking off” the most likely
positive conditional 3-point information from the
2-point (mutual) information between each pair
of nodes. The resulting network skeleton is
then partially directed by orienting and propa-
gating edge directions, based on the sign and
magnitude of the conditional 3-point informa-
tion of unshielded triples. This “30ff2” net-
work reconstruction approach is shown to out-
perform constraint-based, search-and-score and
earlier hybrid methods on a range of benchmark
networks.

1 INTRODUCTION

The prospect of learning the direction of causal de-
pendencies from mere correlations in observational data
has long defied practical implementations (Reichenbach,
1956). The fact that causal relationships can, to some ex-
tent, be inferred from nontemporal statistical data is now
known to hinge on the unique statistical imprint of colliders
in causal graphical models, provided that certain assump-
tions are made about the underlying process of data gen-
eration, such as its faithfulness to a tree structure (Rebane
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and Pearl, 1988) or a directed acyclic graph model (Spirtes,
Glymour, and Scheines, 2000; Pearl, 2009).

These early findings led to the developments of two types
of network reconstruction approaches; on the one hand,
search and score methods (Cooper and Herskovits, 1992;
Heckerman, Geiger, and Chickering, 1995; Chickering,
2002) need heuristic strategies, such as hill-climbing al-
gorithms, to sample network space, on the other hand,
constraint-based methods, such as the PC (Spirtes and Gly-
mour, 1991) and IC (Pearl and Verma, 1991) algorithms,
rely on the identification of structural independencies, that
correspond to edges to be removed from the underlying net-
work (Spirtes, Glymour, and Scheines, 2000; Pearl, 2009).
Yet, early errors in removing edges from the complete
graph often lead to the accumulation of compensatory er-
rors later on in the pruning process. Hence, despite re-
cent, more stable implementations intending to overcome
order-dependency in the pruning process (Colombo and
Maathuis, 2014), constraint-based methods are not robust
to sampling noise in finite datasets.

In this paper, we present a more robust constrained-based
method and corresponding 30ff2 algorithm. It is directly
inspired by the PC anc IC algorithms but relies on a quanti-
tative information theoretic framework to reliably uncover
conditional independencies in finite datasets and subse-
quently orient and propagate edge directions between con-
nected variables.

2 RESULTS

2.1 UNCOVERING CAUSALITY FROM A
STABLE / FAITHFUL DISTRIBUTION

Consider a network G = (V, E) and a stable (or faithful)
distribution P(X) over V, implying that each structural in-
dependency (i.e. missing edge XY in G) corresponds to a
vanishing conditional 2-point (mutual) information and re-
ciprocally as,

(X LYH{Ui})e <= (X LYH{U})p
— I(X;YH{Ui}) =0

6]
©))



Eq. 1 assumes, in particular, that P(X) is a theoretical dis-
tribution, defined by a formal expression of its variables
X = {X,Y,U;,Us,...}. Note, however, that no such
expression is known a priori, in general, and P(X) must
typically be estimated from the available data. In princi-
ple, an infinite amount of data would be necessary to infer
an ‘exact’ stable distribution P(X) consistent with Eq. 1.
In the following, we will first assume that such an infinite
amount of data is available and distributed as a stable P(X)
to establish how causality can be inferred statistically from
conditional 2-point and 3-point information. We will then
consider the more realistic situation for which P(X) is not
known exactly and must be estimated from a finite amount
of data.

Let us first recall the generic decomposition of a condi-
tional 2-point (or mutual) information I(X; Y'|{U,}) by the
introduction of a third node Z and the conditional 3-point
information I(X;Y; Z|{U,}),

I(XY U =1(XY;Z{Us}) + I(XY UL Z2) (3)

This relation can be taken as the definition of conditional
3-point information I(X;Y’; Z|{U;}) which is in fact sym-
metric in X, Y and Z,

I(X;Y; Z|{Us}) = I(X; YH{UGY) — I(X; Y {U:, Z)
= I(X; Z{U}) - 1(X; Z{U;},Y)
= I(Y§ Z|{Uz}) - I(Y; Z|{Ui}»X)

Note that Eq. 3 is always valid, regardless of any assump-
tion on the underlying graphical model and of the amount
of data available to estimate conditional 2-point and 3-point
information terms. Eq. 3 will be used to prove the follow-
ing lemmas and propositions, which trace back the origin
of necessary causal relationships in a graphical model to
the existence of a negative conditional 3-point information
between three variables {X,Y, Z}, I(X;Y; Z|{U;}) < 0,
where {U;} accounts for a structural independency be-
tween two of them, e.g. I(X; Y'|{U;}) =0 (see Theorem 4).

Lemma 1. Given a stable distribution P(X) on V,
VX,Y € V not adjacent in G, HU;} C Vigxyy
st I(X;YNHU:}) 0 and ¥Z # X,Y,{U;},
I(X;Y;Z|{Ui}) <.

Proof. If X,Y € V are not adjacent in G, this corre-
sponds to a structural independency, i.e. H{Us;} C W (x v}
s.t. I(X;Y|{U;}) = 0. ThenVZ # X,Y,{U;} Eq. 3 im-
plies I(X;Y; Z|{U;}) =—I(X;Y|{U;}, Z) <0, as condi-
tional mutual information is always positive. []

Corollary 2 (3-point contribution). VX,Y,Z € V and
v{U;} C V\{X,Y,Z} st. I(X;Y; Z{U;}) > 0, then
I(X;Y{U;}) > 0 (as well as I(X; Z|{U;}) > 0 and
I(Y; Z{Ui}) > 0 by symmetry of I(X; Y5 Z|{U;}))-

Corollary 2, which is a direct consequence of Eq. 3
and the positivity of mutual information, will be the ba-
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sis of the 30off2 causal network reconstruction algorithm,
which iteratively “takes off” 3-point information from 2-
point information, as I(X; Y {U;}) — I(X;Y; Z|{U;}) =
I(X;Y|{U;}, Z), and update {U;} < {U;} + Z as long
as there remains some Z € V with (significantly) positive
conditional 3-point information I(X;Y’; Z|{U;}) > 0.

Lemma 3 (vanishing conditional 2-point and 3-point
information in undirected networks). If G is an undi-
rected (Markov) network, VXY € V and V{U;} C
Wixyy st I(X5YH{U}) =0, then VZ # X, Y, {U;},
I(X;Y; Z{Us}) =0.

Proof. If G is a Markov network, VX, Y € V and V{U,} C
ix,yy st I(X;Y{Us}) = 0, then VZ # X, Y, {U;},
I(X;Y|{U;},Z) = 0 as conditioning observation can-
not induce correlations in Markov networks (Koller and
Friedman, 2009). This implies that I(X;Y; Z|{U;}) = 0
through Eq. 3. O

Note, however, that the converse of Lemma 3 is not
true. Namely, (partially) directed networks can also have
vanishing conditional 3-point information associated to
all their structural independencies. In particular, tree-
like bayesian networks without colliders (i.e. without v-
structures, X — Z <« Y) present only vanishing 3-
point information associated to their structural indepen-
dencies, i.e. I(X;Y;Z|{U;}) = 0, VX,Y,Z,{U;} € V
s.t. I(X;Y|{U;}) = 0. However, such a directed network
must be Markov equivalent to an undirected network corre-
sponding to the same structural independencies but lacking
any trace of causal relationships (i.e. no directed edges).
The probability distributions faithful to such directed net-
works do not contain evidence of obligate causality; i.e. no
directed edges can be unambiguously oriented.

The following Theorem 4 establishes the existence of neg-
ative conditional 3-point information as statistical evidence
of obligate causality in graphical models. For the purpose
of generality in this section, we do not exclude the possi-
bility that unobserved ‘latent’ variables might mediate the
causal relationships among observed variables. However,
this requires dissociating the labelling of the two endpoints
of each edges. Let us first introduce three different end-
point marks associated to such edges in mixed graphs: they
are the tail (—), the head (>) and the unspecified (o) end-
point marks. In addition, we will use the asterisk symbol
(*) as a wild card denoting any of the three marks.

Theorem 4 (negative conditional 3-point information
as statistical evidence of causality). If 3X,Y, 7 €
Voand {Us} € Wixy,zy st I(X;Y{Us}) = 0
and I(X;Y; Z|{U;}) < O then, G is (partially) directed,
i.e. some variables in G are causally linked, either directly
or indirectly through other variables, including possibly
unknown, ‘latent’ variables unobserved in G.



Proof. Theorem 4 is the contrapositive of Lemma 3, with
the additional use of Lemma 1. d

Proposition 5 (origin of causality at unshielded triples
with negative conditional 3-point information).

For all unshielded triple, X x—o Z o—x Y, 3{U;} C
V\{X7y} S.1. I(X, Y|{UZ}) = 0, lf 7 ¢ {Uz} then
I(X;Y; ZI{U;}) < 0 and the unshielded triple should be
oriented as X «— Z < Y.

Proof. If I(X;Y|{U;}) = 0 with Z ¢ {U;}, the unshiel-
ded triple has to be a collider and I(X; Y |{U;}, Z) >0, by
faithfulness, hence, I(X;Y; Z|{U,}) <0 by Eq. 3. O

Hence, the origin of causality manifests itself in the form of
colliders or v-structures in graphical models which reveal
‘genuine’ causations (X — Z or Y — Z) or, alternatively,
‘possible’ causations (Xo— Z or Yo— Z), provided that
the corresponding correlations are not due to unobserved
‘latent’ variables L or L' as, X ¢«-- L --» ZorY «--
L --s Z.

Following the rationale of constraint-based approaches,
it is then possible to ‘propagate’ further the orientations
downstream of colliders, through positive (conditional) 3-
point information, if one assumes that the underlying dis-
tribution P(X) is faithful to an ancestral graph G on V.
An ancestral graph is a mixed graph, that is, with three
types of edges, undirected (—), directed (+— or —) or bidi-
rectional (<), but with i.) no directed cycle, ii.) no al-
most directed cycle (including one bidirectional edge) and
iii.) no undirected edge with incoming arrowhead (such
as X x— Z—Y). In particular, Directed Acyclic Graphs
(DAG) are subclasses of ancestral graphs (i.e. without undi-
rected nor bidirectional edges).

Proposition 6 (‘propagation’ of causality at unshielded
triples with positive conditional 3-pt information).
Given a distribution P(X) faithful to an ancestral
graph G on 'V, for all unshielded triple with already
one converging orientation, X x— Z o— Y, {U;} C
V\{X7y} S.1. I(X,Y‘{UZ}) =0 if Z € {Ui} then
I(X;Y; Z{Ui}\z) > 0 and the first orientation should
be ‘propagated’ to the second edge as X x— Z — Y.

Proof. If I(X;Y|{U;}) = 0 with Z € {U;}, the un-
shielded triple cannot be a collider and, since G is assumed
to be an ancestral graph, the edge Z—Y cannot be an undi-
rected edge either. Hence, it has to be a directed edge,
Z—Y and I(X;Y; Z|{Us}\z) > 0 by faithfulness and
Eq. 3. U

Note that the propagation rule of Proposition 6 can be
applied iteratively to successive unshielded triples corre-
sponding to positive conditional 3-point information. Yet,
all arrowhead orientations can be ultimately traced back to
a negative conditional 3-point information, Theorem 4 and
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Proposition 5.

2.2 ROBUST RECONSTRUCTION OF CAUSAL
GRAPHS FROM FINITE DATASETS

We now turn to the more practically relevant situation of
finite datasets consisting of N independent data points.
The associated sampling noise will instrinsically limit the
accuracy of causal network reconstruction. In particu-
lar, conditional independencies cannot be exactly achieved
(I(X;Y|{U;}) = 0) but can be reliably established using
statistical criteria that depend on the number of data points
N.

Given N independent datapoints from the available data
D, let us introduce the maximum likelihood, L‘D|g, that
they might have been generated by the graphical model G
(Sanov, 1957),

e~ NH(9,D) v > e,y PHzi}) log(a({=:i}))
Lpig = = “4)
Z(9,D) Z(G,D)
where H(G,D) = — Y, p{:})log(g({x;})) is the

cross entropy between the “true” probability distribution
p({x;}) of the data D and the theoretical probability dis-
tribution g({z;}) of the model G and Z(G, D) is a data-
and model-dependent factor ensuring proper normalization
condition. The structural constraints of the model G can
be included a priori in the factorization form of the the-
oretical probability distribution, ¢({z;}). In particular, if
we assume a Bayesian network as underlying graphical
model, q({x,}) factorizes as q({z;}) = I1, p(a:l{pa, }),
where {pa,, } denote the values of the parents of node X,
{Pax,}, and leads to the following maximum likelihood
expression,

e~ N2 H(X:[{Pax, })
Z(G,D)
The model G can then be compared to the alternative model

G\ x -y with one additional missing edge X — Y using
the maximum likelihood ratio,

Lpig = &)

Lpig .y — o~ NI(X;Y|{Pay }\x) Z(G,D) ©)
Lpig Z(G\x-v, D)
where I(X;Y[{Pay}hx) = H(Y|{Payhx) —
H(Y|{Pay}). However, Eq. 6 cannot be used as

such to learn the underlying graphical model, as it assumes
that the order between the nodes and their parents is
already known (see however (de Campos, 2006)). Yet, fol-
lowing the rationale of constraint-based approaches, Eq. 6
can be reformulated by replacing the parent nodes with an
unknown separation set {U;} to be learnt simultaneously
with the missing edge candidate XY,

ﬁg\xw{Ui}
Lg
kX§Y\{Uz:} = log (Z(gvp)/Z(g\XY\{U,}»D»

= ¢~ NIXSYHUD+kx v v,y

(N



where the factor kx.y|{y,} > 0 tends to limit the complex-
ity of the models by favoring fewer edges. Namely, the con-
dition, I(X;Y{Us}) < kx,y|{uv,}/N. implies that sim-
pler models compatible with the structural independency,
X 1 Y|{U,}, are more likely than model G, given the
finite available dataset. This replaces the ‘perfect’ condi-
tional independency condition, I(X;Y |{U;}) = 0, valid
in the limit of an infinite dataset, N — oco. A common
complexity criteria in model selection is the Bayesian In-
formation Criteria (BIC) or Minimal Description Length
(MDL) criteria (Rissanen, 1978; Hansen and Yu, 2001),

MDL

1
kx.yiuy = 5(% —1)(ry — 1) Hrui logN  (8)

where 7, 7, and r,,, are the number of levels of the corre-
sponding variables. The MDL complexity, Eq. 8, is simply
related to the normalisation constant reached in the asymp-
totic limit of a large dataset N — oo (Laplace approxi-
mation). However, this limit distribution is only reached
for very large datasets in practice. Alternatively, the nor-
malisation of the maximum likelihood can also be done
over all possible datasets including the same number of
data points to yield a (universal) Normalized Maximum
Likelihood (NML) criteria (Shtarkov, 1987; Rissanen and
Tabus, 2005) and its decomposable (Kontkanen and Myl-
lymaki, 2007; Roos et al., 2008) and XY -symmetric ver-

sion, kZ{M;LY‘ vy defined in the Supplementary Methods.

Then, instead of exploring the combinatorics of sepset
composition {U;} for each missing edge candidate XY as
in traditional constraint-based approaches, we propose that
Eq. 7 can be used to iteratively extend a likely sepset us-
ing the maximum likelihood ratios between two successive
sepset candidates, i.e. between the already ascertained {U; }
and the possible extended {U;} + Z, as,

L
Plo\xviviyz _ e NICGY s Z{U ) +hx vz (v,

)
ﬁDW\XY\{Uﬁ

using Eq. 3 for I(X;Y’; Z|{U;}) and introducing a similar
3-point complexity conditioned on {U; } as,

kxyviziquy = kExyyiquitz — kxpyviy - (10)

where kx.y,z|(v;; = 0, unlike 3-point information,
I(X;Y; Z|{U;}) which can be positive or negative.
Introducing also the shifted 2-point and 3-point informa-

tion for finite datasets as,

kxyiquy
N
kxiviziquy

I'(X;Y{U}) I(X;Y{U}) -

I'(X;Y; Z{Ui}) I(X;Y; Z{U:}) +

Eq. 9,
£DI5 v 1w,y e NIXSYHUD (1)
Lpig
LD v iwne MNIXYVIZIUL (g

'CD'g\XYHUi}

As will become apparent in the following discussion, learn-
ing, iteratively, the most likely edge to be removed XY
and its corresponding separation set {U;} will imply to si-
multaneously minimize 2-point information (Eq. 11) while
maximizing 3-point information (Eq. 12).

We start the discussion with 3-point information, Eq. 12.
The sign and magnitude of shifted conditional 3-point in-
formation I'(X;Y; Z|{U,}) determine the probability that
Z should be included in or excluded from the sepset candi-
date {U;},

o If I'(X;Y; Z|{U,;}) > 0, Z is more likely to be included
in {U;} with probability,

£D|9\XYHU,-},Z

PnV(X§Y§Z|{Ui}): T L
DIG\xv (v, DI9\xv|(v,}.2

1
-1 T e NI'(X3Y3Z[{Ui}) (13)

o If I'(X;Y; Z|{U;}) < 0, Z is more likely to be excluded
from {U;}, suggesting obligatory causal relationships in
the form of a v-structure or collider between X, Y, Z with
probability,

P,(X;Y; Z{U;}) =1 — P (X;Y; ZI{U;})

1

T 14 NIV ZI{Ui)) (14)
But, in the case I'(X;Y;Z|{U;}) > 0, Eq. 12
can also be interpreted as quantifying the likeli-

hood increase that the edge XY should be removed
from the model by extending the candidate sepset
from {U;} to {U;} + Z, ie £D|Q\XYHU,-}.Z —
ﬁD\g\xw{Uﬁ x exp(NI'(X;Y; Z|{U;})), with
exp(NI'(X;Y;Z|{U;})) > 1. Yet, as the 3-point
information, I'(X;Y; Z|{U;}), is actually symmetric
with respect to the variables, X, Y and Z, the factor
exp(NI'(X;Y; Z|{U;})) > 1 provides in fact the same
likelihood increase for the removal of the three edges XY,
XZ and ZY, conditioned on the same initial set of nodes
{U;}, namely,

_ ‘CDW\ZY\{UH,I

ﬁD‘g\XY\{U,i},Z ﬁDlg\XZ\{U,i},y

N

leads to maximum likelihood ratios equivalent to Eq. 7 and
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£D|9\XZ|{Ui> £D‘g\zwwi}

NI (X5Y3Z|{U:Y)

ED‘Q\XYI(UH



However, despite this symmetry of 3-point information,
I'(X;Y; Z|{U;}), the likelihoods that the edges XY, X Z
and ZY should be removed are not the same, as they
depend on different 2-point information, I'(X;Y|{U;}),
I'(X; Z|{U;}) and I'(Z;Y|{U;}), Eq. 11. In particular,
the likelihood ratio between the removals of the alternative
edges XY and X Z is given by,

_ £D|g\XYI{Ui} _ e~ NI'(X;Y{U:})
£D|Q\xzuui},y e~ NI'(X;Z|{U;})
(15)

‘CD|9\XY\{U1-},Z

LDI6, x 2110,

and similarly between edges XY and ZY.

Hence, for XY to be the most likely edge to be removed
conditioned on the sepset {U;} + Z, not only Z should
contribute through I'(X;Y; Z|{U;}) > 0 with probabil-
ity Po(X;Y; Z|{U;}) (Eq. 13), but XY must also cor-
respond to the ‘weakest’ edge of XY, XZ and ZY con-
ditioned on {U;}, as given by the lowest conditioned 2-
point information, Eq. 15. Note that removing the edge
XY with the lowest conditional 2-point information is con-
sistent, as expected, with the Data Processing Inequality,
I(X;YHU:}) < min(I(X; Z{Us}), 1(Z; Y {U3})). in
the limit of large datasets. However, quite frequently, X Z
or ZY might also have low conditional 2-point informa-
tion, so that the edge removal associated with the symmet-
ric contribution I(X;Y; Z|{U;}) will only be consistent
with the Data Processing Inequality (DPI) with probability,

Paoi(XY; Z{Us}) =
l:Dlg\XYHUi}

EDW\XY\{UI-} + £D‘9\XZ|{Ui} + ED‘Q\ZYHUi}
1

e~ NI'(X;Z|{U;})
e~ NI'(X;Y[{U; )

(16)

o NI/(Z:Y [{U; })
- NI (XY {U; 1)

1+

In practice, taking into account this DPI-consistency prob-
ability Pypi(XY'; Z|{U;}), as detailed below, significantly
improves the results obtained by relying solely on the ‘non-
v-structure’ probability P, (X;Y; Z|{U;}). Conversely,
the DPI-consistency probability Py,i(XY; Z|{U;}) is
not sufficient on its own to uncover causal relation-
ships between variables, which require to compute 3-
point information I(X;Y; Z|{U;}) and the probability
P (X;Y; Z|{U;}) (see Proposition 7 and Proposition 8,
below).

To optimize the likelihood that the edge XY can be ac-
counted for by the additional contribution of Z conditioned
on previously selected {U;}, we propose to combine the
maximum of 3-point information (Eq. 13) and the mini-
mum of 2-point information (Eq. 16) by defining the score
Sib(Z; XY |{U3}) as the lower bound of P, (X;Y; Z|{U})
and Py,i(XY; Z|{U,}), since both conditions need to be
fulfilled to warrant that edge XY is likely to be absent from
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the model G,

Sw(Z; XY |{U}) =
— min Pm,(X;Y;Z\{Ui})7Pdp;(XY;Z\{UZ-})]

Hence, the pair of nodes XY with the most likely con-
tribution from a third node Z and likely to be absent
from the model can be ordered according to their rank
R(XY; Z|{U,}) defined as,

R(XY; Z|{U3}) = max (Su(Z: XY[{U;})) (A7)

Then, Z can be iteratively added to the set of contributing
nodes (i.e. {U;} < {U;} + Z) of the top edge XY =
argmax yy R(XY; Z|{U;}) to progressively recover the
most significant indirect contributions to all pairwise mu-
tual information in a causal graph.

Implementing this local optimization scheme, the 30off2 al-
gorithm eventually learns the network skeleton by collect-
ing the nodes of the separation sets one-by-one, instead
of exploring the full combinatorics of sepset composition
without any likelihood guidance. Indeed, the 30ff2 scheme
amounts to identify {U;} by “taking off” iteratively the
“most likely” conditional 3-point information from each 2-
point information as,

I(X;Y{Uitn) = I(X3Y) = I(X; Y5 Uh)
(X3Y;Us|Uy) — - -
(X§Y§ Un|{Ui}n—1)

~ o~

or equivalently between the shifted 2-point and 3-point in-
formation terms,

I'(X:YHUiks) =T'(X;Y) = I'(X; Y3 Un)
— I,(X;Y;U2|U1) —
- I/(X,Y, Un|{Uz}n—1)

This leads to the following Algorithm 1 for the reconstruc-
tion of the graph skeleton using the 3off2 scheme. Note,
in particular, that the 3off2 scheme to reconstruct graph
skeleton is solely based on identifying structural indepen-
dencies, which can also be applied to graphical models for
undirected Markov networks.

Then, given the skeleton obtained from Algorithm 1,
Egs. 13 and 14 lead to the following Proposition 7 and
Proposition 8 for the orientation and propagation rules of
unshielded triples, which are equivalent to Proposition 5
and Proposition 6 but for underlying DAG models (assum-
ing no latent variables) and for finite datasets with the cor-
responding probabilities for the initiation/propagation of
orientations.



Algorithm 1: 30ff2 Skeleton Reconstruction

In: observational data of finite size N

Out: skeleton of causal graph G

Initiation
Start with complete undirected graph
forall edges XY do
if I'(X;Y) <0 then
XY edge is non-essential and removed
separation set of XY: Sepyy = ()
else

find the most contributing node Z neighbor of X
or Y and compute 3off2 rank, R(XY’; Z|0)

end
end

Iteration
while 3 XY edge with R(XY; Z|{U;}) > 1/2 do
for edge XY with highest rank R(XY; Z|{U;}) do
expand contributing set {U;} « {U;} + Z
if I'(X; Y|{U;}) <0 then
XY edge is non-essential and removed
separation set of XY Sepyy, = {U;}
else

find next most contributing node Z neighbor
of X or Y and compute new 30ff2 rank:
R(XY; Z|{Ui})

end

sort the 3off2 rank list R(XY'; Z|{U,})

end
end

Proposition 7 (Significantly negative conditional 3-point
information as robust statistical evidence of causality in
finite datasets).

Assuming that the underlying graphical model is a
DAG G on V, VX, Y,Z € V and V{U;} C
Wixv.zy st I'(X;YH{Ui}) < 0 (ie. no XY edge)
and I'(X;Y; Z|{U;}) < O then,

i. if X,Y, Z form an unshielded triple, X o—o Z o—o Y,
then it should be oriented as X — Z <+ Y, with
probabilities,

1 4+ eN(X3Y;521{Us})

Pxoz=Proz= 1+ 3eNT'(X3Y5Z[{Us})

ii. similarly, if X,Y,Z form an unshielded triple,
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with one already known converging arrow,

X — Z o—o Y, with probability Px_,z > P%_, ,,

then the second edge should be oriented to form a
v-structure, X — 7 <Y, with probability,

1

)+

Proof. The implications (i.) and (ii.) rely on Eq. 14 to
estimate the probability that the two edges form a collider.
We start proving (ii.) using the probability decomposition
formula:

1 1
1+ eNIGYZI0) 2

Py 7z =Px_z (

Px_ .z v

Py .z =Px_.z
Px_,zcv +Px_zy

P

Pxzev +Pxezy
1 1 n 1
2

1 4+ eNI'(X5Y521{Us}) 9
which also leads to (i.) if one assumes Px_,z = Py _,z by
symmetry in absence of prior information on these orienta-
tions. U

=Px_.z <

Following the rationale of constraint-based approaches,
it is then possible to ‘propagate’ further the orientations
downstream of colliders, using Eq. 13 for positive (condi-
tional) 3-point information. For simplicity and consistency,
we only implement the propagation of orientation based on
likelihood ratios, which can be quantified for finite datasets
as proposed in the following Proposition 8. In particular,
we do not extend the propagation rules (Meek, 1995) to in-
force acyclic constraints that are necessary to have a com-
plete reconstruction of the Markov equivalent class of the
underlying DAG model.

Proposition 8 (robust ‘propagation’ of causality at un-
shielded triples with significantly positive conditional 3-
pt information). Assuming that the underlying graphical
model is a DAG G on V, VXY, Z € V and V{U;} C
Wixy,zy st T'(X; YU}, Z) < 0 (ie. no XY edge)
and I'(X;Y; Z|{U;}) > 0, then if X,Y,Z form an un-
shielded triple with one already known converging orienta-
tion, X — Z o—x Y, with probability Px_,z > 1/2, this
orientation should be ‘propagated’ to the second edge as
X — Z—'Y, with probability,
1
)+

Proof. This results is shown using the probability decom-

1 1
1+67NI’(X;Y;Z|{U1'}) o 5

Pz .y =Px_,z (



position formula,

Px_ 7y

Pz v =Px_.z
Px_zev +Pxozy

P
+ (1 _ PX—>Z) X+—Z—=Y

Pxizev+ Pxczy
1 1 1
[reNrxyzimy 2) T

= Px_,z (

Proposition 7 and Proposition 8 lead to the following Algo-
rithm 2 for the orientation of unshielded triples of the graph
skeleton obtained from Algorithm 1.

Algorithm 2: 30ff2 Orientation / Propagation Step

In: Graph skeleton from Algorithm 1 and corresponding

conditional 3-point information I’ (X;Y’; Z|{U;}).

Out: Partially oriented causal graph G with edge
orientation probabilities.

3off2 Orientation / Propagation Step

sort list of unshielded triples, £, = {(X, Z,Y) x+v }, in
decreasing order of their orientation/propagation

probability initialized at 1/2 and computed from:
- (i.) Proposition 7, if I'(X;Y; Z|{U;}) <0, or
- (ii.) Proposition 8, if I'(X;Y; Z|{U;}) >0

repeat

Take (X, Z,Y) x-+y € L. with highest orientation /
propagation probability > 1/2.

if I'(X;Y; Z|{U;}) < 0 then
Orient/propagate edge direction(s) to form a
v-structure X — Z <Y with probabilities Px _, 7
and Py _, 7 given by Proposition 7.

else

Propagate second edge direction to form a
non-v-structure X — 7 —Y assigning
probability P_,y from Proposition 8.

end

Apply new orientation(s) and sort remaining list of
unshielded triples L. <— L \(X, Z,Y) x v after
updating propagation probabilities.

until no additional orient./propa. probability >1/2 ;
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2.3 APPLICATIONS TO CAUSAL GRAPH
BENCHMARKS

We have tested the 3off2 method on a range of bench-
mark networks of 50 nodes with up to 160 edges
generated with the causal modeling tool Tetrad IV
(http://www.phil.cmu.edu/tetrad). The average connec-
tivity (k) of these benchmark networks ranges between
1.6 to 6.4, and the average maximal in/out-degree be-
tween 3.2 to 8.8 (see Table S1 for a detailed descrip-
tion). The evaluation metrics are the Precision, Prec =
TP/(TP + FP), the Recall, Rec = TP/(TP + FN)
and the F'—score = 2Prec.Rec/(Prec+ Rec). How-
ever, in order to take into account the orientation/non-
orientation of edges in the predicted networks and compare
them with the CPDAG of the benchmark graphs, we define
orientation-dependent counts as, TP’ = TP — T Ppisorient
and F'P' = FP + TPpicorient. Where T'Pisorient COITE-
sponds to all true positive edges of the skeleton with dif-
ferent orientation/non-orientation status as in the CPDAG
reference.

The first methods used for comparison with 3off2 are the
PC-stable algorithm (Colombo and Maathuis, 2014) with
conservative (Ramsey, Spirtes, and Zhang, 2006) or ma-
jority orientation rules, implemented in the pcalg pack-
age (Kalisch et al., 2012; Kalisch and Biihlmann, 2008)
and the hybrid method MMHC combining constraint-based
skeleton and Bayesian orientation (Tsamardinos, Brown,
and Aliferis, 2006), implemented in the bnlearn pack-
age (Scutari, 2010). Figs. 1-5 give the average CPDAG
comparison results over 100 dataset replicates from 5 dif-
ferent benchmark networks (Table S1). The causal graph-
ical models predicted by the 3off2 method are obtained
using either the MDL/BIC or the NML complexities (see
Supplementary Methods). Figs. S1-S6 provide additional
results on the prediction of the network skeletons and ex-
ecution times. The PC and MMHC results are shown,
Figs. 1-5, for an independence test parameter o = 0.1, as
reducing « tends to worsen the CPDAG F-score for bench-
mark networks with (k) > 2.4 (Figs. S7-S18). All in all,
we found that 30ff2 outperforms PC-stable on all tested
datasets, Figs. 1-5, and to a lesser extent, MMHC espe-
cially on less sparse networks, (k) > 2.4, Figs. 2-5.

Additional comparisons were obtained with Bayesian in-
ference implemented in the bnlearn package (Scu-
tari, 2010), using AIC, BDe and BIC/MDL scores and
hill-climbing heuristics with 30 to 100 random restarts,
Figs. S19-S30. 3off2 reaches equivalent or significantly
better F-scores than Bayesian hill-climbing on relatively
sparse benchmark networks, (k) < 4.8 (Figs. S19 & S23).
In particular, 3off2 with MDL scores reaches one of
the best F-scores on sparse networks (Figs. S19 & S20)
and eventually better Fscores on large datasets for less
sparse networks when combined to NML complexity
(Figs. S21 & S22). For somewhat denser networks



((k) ~ b), the 30ff2 F-score appears slightly lower than for
Bayesian inference methods, Fig. S23, although it eventu-
ally becomes equivalent for large datasets (N > 1000).

On denser networks ({(k) > 5 — 6), Bayesian inference
exhibits better F-scores than 30ff2, in particular with AIC
score, Fig. S24. However, the good performance with AIC
strongly relies on its high Recall (but low Precision), due to
its very small penalty term on large datasets, which makes
it favor more complex networks (Figs. S24) but perform
very poorly on sparse graphs (Figs. S19-S21). By con-
trast, the reconstruction of dense networks is impeded with
the 3off2 scheme, as it is not always possible to uncover
structural independencies, I(X;Y |{U;},) ~ 0, in dense
graphs through an ordered set {U;},, with only positive con-
ditional 3-point information, I'(X;Y; Uy |{Ui}x—1) > 0.
Indeed in complex graphs, there are typically many indi-
rect paths X — U; — Y between unconnected node pairs
(X,Y). At the beginning of the pruning process, this is
prone to suggest likely v-structures X — Y <« U,, in-
stead of the correct non-v-structures, X — U; — Y (for
instance if I(X;U;) < I(X;Y), I(X;U;) < I(Uj;Y)
and I(X;U;)—-I(X;U;|Y) =1(X;Y;Uj) <0, for all 5).
Such elimination of F'N edge X — U; and conservation
of 'P X — Y tend to decrease both Precision and Recall,
although 30ff2 remains significantly more robust than PC
and MMHC, Fig. 5. Besides, for most practical applica-
tions on real life data, interpretable causal models should
remain relatively sparse and avoid to display multiple indi-
rected paths between unconnected nodes.

Finally, 30ff2 running times on these benchmark networks
are similar to MMHC and Bayesian hill-climbing heuristic
methods (with 100 restarts) and 10 to 100 times faster than
PC for large datasets, Figs. S1-S30.

3 DISCUSSION

In this paper, we propose to combine constraint-based and
score-based frameworks to improve network reconstruc-
tion. Earlier hybrid methods, including MMHC, have also
attempted to exploit the best of these two types of infer-
ence approaches by combining the robustness of Bayesian
scores with the attractive conceptual features of constraint-
based approaches (Dash and Druzdzel, 1999; Tsamardi-
nos, Brown, and Aliferis, 2006; Cano, Gomez-Olmedo,
and Moral, 2008; Claassen and Heskes, 2012). In partic-
ular, (Dash and Druzdzel, 1999) have proposed to exploit
an intrinsic weakness of the PC algorithm, its sensitivity to
the order in which conditional independencies are tested on
finite data, to rank these different order-dependent PC pre-
dictions with Bayesian scores. More recently, (Claassen
and Heskes, 2012) have also combined constraint-based
and Bayesian approaches to improve the reliability of
causal inference. They proposed to use Bayesian scores
to directly assess the reliability of conditional independen-
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Figure 1: CPDAG comparison between 3off2, PC-stable and
MMHC. 50 node, 40 edge benchmark networks generated using
Tetrad. (k) = 1.6, (ki) = 3.2, (kL) = 3.6. PC-stable
benchmarks were tested up to N=10,000 due to their sharp in-
crease in execution time, see Figs. S7-S12.
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Figure 2: CPDAG comparison between 3off2, PC-stable and
MMHC. 50 node, 60 edge benchmark networks generated using
Tetrad. (k) = 2.4, (kll,,) = 4.6, (k%iL) = 3.6. PC-stable
benchmarks were tested up to N=10,000 due to their sharp in-
crease in execution time, see Figs. S7-S12.
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Figure 3: CPDAG comparison between 3off2, PC-stable and
MMHC. 50 node, 80 edge benchmark networks generated using
Tetrad. (k) = 3.2, (kil,) = 4.8, (kZul) = 5.6. PC-stable
benchmarks were tested up to N=10,000 due to their sharp in-
crease in execution time, see Figs. S7-S12.
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Figure 4: CPDAG comparison between 3off2, PC-stable and
MMHC. 50 node, 120 edge benchmark networks generated us-
ing Tetrad. (k) = 4.8, (ki) = 8.8, (kL) = 7.2. PC-stable
benchmarks were tested up to N=10,000 due to their sharp in-
crease in execution time, see Figs. S7-S12.
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Figure 5: CPDAG comparison between 3off2, PC-stable and
MMHC. 50 node, 160 edge benchmark networks generated us-
ing Tetrad. (k) = 6.4, (k") = 8.6, (k2“.) = 8.6. PC-stable
benchmarks were tested up to N=10,000 due to their sharp in-
crease in execution time, see Figs. S7-S12.

cies by summing the likelihoods over compatible graphs.
By contrast, we propose to use Bayesian scores to progres-
sively uncover the best supported conditional independen-
cies, by iteratively “taking off” the most likely indirect con-
tributions of conditional 3-point information from every 2-
point (mutual) information of the causal graph. In addition,
using likelihood ratios (Eqs. 11 & 12) instead of likelihood
sums (Claassen and Heskes, 2012) circumvents the need
to score conditional independencies over a potentially in-
tractable number of compatible graphs.

All in all, we found that 3off2 outperforms constraint-
based, search-and-score and earlier hybrid methods on a
range of benchmark networks, while displaying similar
running times as hill-climbing heuristic methods.
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Abstract

The key for effective interaction in many multia-
gent applications is to reason explicitly about the
behaviour of other agents, in the form of a hypothe-
sised behaviour. While there exist several methods
for the construction of a behavioural hypothesis,
there is currently no universal theory which would
allow an agent to contemplate the correctness of
a hypothesis. In this work, we present a novel al-
gorithm which decides this question in the form
of a frequentist hypothesis test. The algorithm al-
lows for multiple metrics in the construction of the
test statistic and learns its distribution during the
interaction process, with asymptotic correctness
guarantees. We present results from a comprehen-
sive set of experiments, demonstrating that the
algorithm achieves high accuracy and scalability
at low computational costs.

1 INTRODUCTION

A common difficulty in many multiagent systems is the fact
that the behaviour of other agents may be initially unknown.
Important examples include adaptive user interfaces, robotic
elderly assistance, and electronic markets. Often, the key for
effective interaction in such systems is to reason explicitly
about the behaviour of other agents, typically in the form
of a hypothesised behaviour which makes predictions about
future actions based on a given interaction history.

A number of methods have been studied for the construction
of behavioural hypotheses. One method is to use opponent
modelling techniques to learn a behaviour from the inter-
action history. Two well-known examples include fictitious
play (Brown, 1951) and case-based reasoning (Gilboa and
Schmeidler, 2001), as well as their many variants. Another
method is to maintain a set of possible action policies, called
types, over which a posterior belief is computed based on
the interaction history (Albrecht and Ramamoorthy, 2014;
Gmytrasiewicz and Doshi, 2005). The hypothesis is then
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obtained by using the posterior to mix the types. Related
methods have been studied in the plan recognition literature
(Carberry, 2001; Charniak and Goldman, 1993).

The learned behaviours (or models) of these methods can
be viewed as hypotheses because they are eventually either
true or false (subject to the various assumptions they are
based on), and because they are festable. Thus, the following
is a natural question: given an interaction history H and a
hypothesis 7* for the behaviour of an agent, does the agent
indeed behave according to 7*? There are several ways
in which an answer to this question could be utilised. For
instance, if we persistently reject the hypothesis 7%, we may
construct an alternative hypothesis or resort to some default
plan of action (such as a “maximin” strategy).

Unfortunately, the above methods for hypothesis construc-
tion do not provide an answer to this question. Some oppo-
nent modelling methods use goodness-of-fit measures (e.g.
those that rely on maximum likelihood estimation), but these
measures describe how well the model fits the data (i.e. in-
teraction history) and not necessarily if the model is correct.
Similarly, the posterior belief in the type-based approach
quantifies the relative likelihood of types (relative to a set of
alternative types) but not the correctness of types.

To illustrate the source of difficulty, consider the below ex-
cerpt of an interaction process between two agents which
can choose from three actions. The columns show, respec-
tively, the current time ¢ of the interaction, the actions chosen
by the agents at time ¢, and agent 1’s hypothesised probabil-
ities with which agent 2 would choose its actions at time ¢,
based on the prior interaction history.

t (af,ah) 5

1T (1,2) (3,.1,.6)
2 (3,1)  (2,.3,.5)
30(2,3)  (7,.1,.2)
4 (2,3)  (0,.4,.6)
50 (L,2)  (4,2.4)

Assuming that the process continues in this fashion, and
without any restrictions on the behaviour of agent 2, how



should agent 1 decide whether or not to reject its hypothesis
about the behaviour of agent 2?7

A natural way to address this question is to compute some
kind of score from the information given in the above ta-
ble, and to compare this score with some manually chosen
rejecting threshold. A prominent example of such a score
is the empirical frequency distribution (Conitzer and Sand-
holm, 2007; Foster and Young, 2003). While the simplicity
of this method is appealing, there are two significant prob-
lems: (1) it is far from trivial to devise a scoring scheme that
reliably quantifies “correctness” of hypotheses (for instance,
an empirical frequency distribution taken over all past ac-
tions would be insufficient in the above example since the
hypothesised action distributions are changing), and (2) it is
unclear how one should choose the threshold parameter for
any given scoring scheme.

In this work, we present an efficient algorithm which decides
this question in the form of a frequentist hypothesis test. The
algorithm addresses (1) by allowing for multiple scoring cri-
teria in the construction of the test statistic, with the intent
of obtaining an overall more reliable scoring scheme. The
distribution of the test statistic is then learned during the
interaction process, and we show that the learning is asymp-
totically correct. Finally, analogous to standard frequentist
testing, the hypothesis is rejected at a given point in time
if the resulting p-value is below some “significance level”.
This eliminates (2) by providing a uniform semantic for re-
jection that is invariant to the employed scoring scheme. We
present a comprehensive set of experiments, demonstrating
that our algorithm achieves high accuracy and scalability at
low computational costs.

Of course, there is a long-standing debate on the role of
statistical hypothesis tests and quantities such as p-values
(e.g. Gelman and Shalizi, 2013; Berger and Sellke, 1987;
Cox, 1977). The usual consensus is that p-values should
be combined with other forms of evidence to reach a final
conclusion (Fisher, 1935), and this is the view we adopt as
well. In this sense, our method may be used as part of a
larger machinery to decide the truth of a hypothesis.

2 RELATED WORK

In addition to the related works mentioned in the previous
section, there are a number of other related research areas:

There exists a large body of literature on what is often re-
ferred to as model criticism (e.g. Bayarri and Berger, 2000;
Meng, 1994; Rubin, 1984; Box, 1980). Model criticism at-
tempts to answer the following question: given a data set D
and model M, could D have been generated by M ? This
is analogous to our question, in which D is a sequence of
observed actions of some agent and M is a hypothesised
behaviour for that agent. However, in contrast to our work,
model criticism usually assumes that the data are indepen-
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dent and identically distributed, which is not the case in the
interactive settings we consider.

A related problem, sometimes referred to as identity testing,
is to test if a given sequence of data was generated by some
given stochastic process (Ryabko and Ryabko, 2008; Ba-
sawa and Scott, 1977). Instead of independent and identi-
cal distributions, this line of work assumes other properties
such as stationarity and ergodicity. Unfortunately, these as-
sumptions are also unlikely in interaction processes, and the
proposed solutions are very costly.

Model criticism and identity testing are not to be confused
with model selection, in which two or more alternative mod-
els are under consideration (e.g. Vehtari and Ojanen, 2012).
Similarly, we do not consider alternative hypotheses. How-
ever, our method can be applied individually to multiple
hypotheses, or the hypotheses may be fused into a single
hypothesis using a posterior belief (Albrecht and Ramamoor-
thy, 2014; Gmytrasiewicz and Doshi, 2005).

Another related problem is that of model checking, which
attempts to verify that a given system (or model) satisfies
certain formal properties (Clarke et al., 1999). Recently,
Albrecht and Ramamoorthy (2014) applied the concept of
probabilistic bisimulation (Larsen and Skou, 1991) to the
question of “incorrect” hypotheses and showed that a cer-
tain form of optimality is preserved if a bisimulation relation
exists. However, their work is not concerned with establish-
ing whether or not a given behavioural hypothesis is correct,
and their analysis is performed before any interaction.

Our method can be viewed as passive in the sense that it does
not actively probe different aspects of the hypothesis, and
we show in Section 5 that this can be a drawback. This is in
contrast to methods such as (Carmel and Markovitch, 1999),
which promote active exploration. However, this exploration
comes at high computational costs and limits the structure
of hypotheses, such as deterministic finite state machines.
On the other hand, our method has low computational costs
and leaves the structure of the hypothesis open.

3 PRELIMINARIES

We consider a sequential interaction process with m agents.
The process begins at time ¢ = 0. At each time ¢, each agent
i € {1,...,m} receives a signal s and chooses an action a’
from a finite set of actions A;. (Agents choose actions simul-
taneously.) The process continues in this fashion indefinitely
or until some termination criterion is satisfied.

The signal s! specifies information that agent 7 receives at
time ¢ and may in general be the result of a random variable
over past actions and signals. For example, s may be a
discrete system state and its dynamics may be described by
some stochastic transition function. Note that we allow for
asymmetric information (i.e. s} # s'). For example, s} may
include a private payoff for agent ¢. In this work, we leave



the precise structure and dynamics of s! open.

We assume that each agent i can choose actions a! based on
the entire interaction history H} = (s?,a°, s}, al, ..., st),
where a” = (a], ..., a])) is the tuple of actions taken by the
agents at time 7. Formally, each agent ¢ has a behaviour
m; which assigns a probability distribution over actions A;
given a history HY, denoted ;(H}). We use II; to denote
the infinite and uncountable space of all such behaviours.
Note that a behaviour may implement any kind of logic, and
it is useful to think of it as a black-box programme.

Given two agents ¢ and j, we use H;- to denote ¢’s hypothesis
space for j’s behaviours. The difference between H; and IT;
is that 7 € Hé— are defined over H} while 7; € II; are de-

fined over H ; Since we allow for asymmetric information,

any information that is contained in s§ but not in s, denoted

53‘—1" becomes part of the hypothesis space H; For exam-
ple, if s§_i contains a private payoff for j, ¢ can hypothesise

a payoff as part of its hypothesis for j’s behaviour.

Defining a behavioural hypothesis 77 € Hé— as a function
W;‘(Hf) has two implicit assumptions: firstly, it assumes
knowledge of A;, and secondly, it assumes that the informa-
tion in s%_, is a (deterministic) function of H. If, on the
other hand, we allowed sé_i to be stochastic (i.e. a random
variable over the interaction history), we would in addition
have to hypothesise the random outcome of szﬂ In other
words, w;’f (H!) would itself be a random variable, which is
outside the scope of this work.

4 A METHOD FOR BEHAVIOURAL
HYPOTHESIS TESTING

Let 7 denote our agent and let j denote another agent. More-
over, let 77 € H§- denote our hypothesis for j’s behaviour
and let 7; € II; denote j’s true behaviour. The central ques-
tion we ask is if 77 = 7;?

Unfortunately, since we do not know ;, we cannot directly
answer this question. However, at each time ¢, we know j’s
past actions a’; = (ag, s aé-*l) which were generated by ;.
If we use 77 to generate a vector ﬁ; = (ay, ..., &3_1), where
aj is sampled using 7 (H] ), we can formulate the related

two-sample problem of whether a§ and ﬁ; were generated
from the same behaviour, namely 77;.

In this section, we propose a general and efficient algorithm
to decide this problem. At its core, the algorithm computes
a frequentist p-value

p=P(IT@}a) > |T(al,a})) M

where a; ~ 0'(r7) = (7 (H),...,m; (H{"")). The value
of p corresponds to the probability with which we expect
to observe a test statistic at least as extreme as T' (az-, éﬁ»),
under the null-hypothesis 77 = ;. Thus, we reject 7} if p
is below some “significance level” .

Algorithm 1

: Input: history H} (including observed action a

t—1

i)

: Output: p-value (reject 7} if p below some threshold o)

: Parameters: hypothesis 7 ; score functions 21, ..., zx; N >0

: // Expand action vectors
t—1 _t—1

J ) @ J >

1

: Setal < (a
: Sample @' ~ i (H{'); seta) < (a]
forn=1,...,N do

7 (L) setal o (@)

Sample a;
: // Fit skew-normal distribution f

—_
=]

: if update parameters? then

Compute D < {T'(a;",a5) [n=1,..,N}
Fit&,w, B to D, e.g. using (12)

Find mode p from &, w, 8

—
AN =

: // Compute p-value

—_
W

: Compute g + T'(a’, a}) using (2)/(5)
s return p < f(q|&w,B) / f(u]& w,B)

—_
[*))

In the following subsections, we describe the test statistic T’
and its asymptotic properties, and how our algorithm learns
the distribution of T (ﬁ;, ﬁ;). A summary of the algorithm
is given in Algorithm 1.

4.1 TEST STATISTIC

We follow the general approach outlined in Section 1 by
which we compute a score from a vector of actions and their
hypothesised distributions. Formally, we define a score func-
tionas z : (A;) x A(A;)" — R, where A(A;) is the set of
all probability distributions over A;. Thus, z(a%, 6" (7)) is
the score for observed actions a§ and hypothesised distribu-
tions ¢* (7} ), and we sometimes abbreviate this to z(a, 7).
We use Z to denote the space of all score functions.

Given a score function z, we define the test statistic 7" as

t
al § 1 ST AT
T(a?,aé) = ¥ZT7(aj,aj) 2)
=1
T:(aj,a]) = z(aj,7}) — z(a], ;) 3)

~ R ~ ~t .
where a]T- and a; are the 7-prefixes of a; and a, respectively.

In this work, we assume that z is provided by the user. While
formally unnecessary (in the sense that our analysis does
not require it), we find it a useful design guideline to inter-
pret a score as a kind of likelihood, such that higher scores
suggest higher likelihood of 7 being correct. Under this in-
terpretation, a minimum requirement for z should be that it
is consistent, such that, for any ¢ > 0 and 7r;-k e I1%,

™

* / /
75 € II* = arg rpealglc Ea;,\,ét(ﬂ;) [z(aj,wj)] )
J J

where [E, denotes the expectation under 7. This ensures



that if the null-hypothesis 77 = m; is true, then the score
z(al, 77) is maximised on expectation.

Ideally, we would like a score function z which is perfect
in that it is consistent and |HZ| = 1. This means that 7} can
maximise z(a}, 77) (where a} ~ 6*(m;)) only if 75 = ;.
Unfortunately, itis unclear if such a score function exrsts for
the general case and how it should look. Even if we restrict
the behaviours agents may exhibit, it can still be difficult
to find a perfect score function. On the other hand, it is a
relatively simple task to specify a small set of score functions
21, ..., 2z which are consistent but imperfect. (Examples
are given in Section 5.) Given that these score functions are
consistent, we know that the cardinality | N, II##| can only
monotonically decrease. Therefore, it seems a reasonable
approach to combine multiple imperfect score functions in
an attempt to approximate a perfect score function.

Of course, we could simply define z as a linear (or otherwise)
combination of 21, ..., 2. However, this approach is at risk
of losing information from the individual scores, e.g. due
to commutativity and other properties of the combination.
Thus, we instead propose to compare the scores individually.
Given score functions 21, ..., 2x € Z which are all bounded
by the same interval [a, b] C R, we redefine T’ to

Zwk z(aj,75) —

where wy, € R is a weight for score function zj. In this
work, we set wy, = % (We also experiment with alternative
weighting schemes in Section 5.) However, we believe that
wy, may serve as an interface for useful modifications of our
algorithm. For example, Yue et al. (2010) compute weights
to increase the power of their specific hypothesis tests.

TAT
J’J

z(a],77))  (5)

4.2 ASYMPTOTIC PROPERTIES

The vectors a; and a§ are constructed iteratively. That is, at
time ¢, we observe agent j’s past action aé‘l which was

<a§ 1 t 1> At
the same time, we sample an action &?_1 using 7; (Ht b

At 1 At 1
and set a; (aj ,a

* X . t
= m;, will T(aJ,

generated from 7, (H ;‘1), and set a}

). Assummg the null- hypothes1s

j) converge in the process?

Unfortunately, 7' might not converge. This may seem surpris-

ing at first glance given that ', a’~" have the same distri-
1 - .

bution 7; (H{ ™) = w7 (H{™"), since By yy [z —y] = 0

for any distribution ). However, there is a subtle but im-

portant difference: while at L 2_1 have the same distri-

bution, zj,(a%, 7¥) and zk( , ™7 ) may have arbitrarily dif-
ferent d1str1butrons This is because these scores may de-
: t—1 at—1

pend on the entire prefix vectors a and a; ~, respec-
tively, which means that their distributions may be different
if at ! #a, 5! . Fortunately, our algorithm does not require
T to converge because it learns the distribution of 7" during
the interaction process, as we will discuss in Section 4.3.
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Interestingly, while 7" may not converge, it can be shown
that the fluctuation of 7T is eventually normally distributed,
for any set of score functions 21, ..., zx with bound [a, b].
Formally, let E[T (a7, a7 )] and Var[ +(a7,a})] denote the
finite expectation and variance of T’ (a aj ), where it is
irrelevant if a7, a; are sampled directly from 07 (7}) or
generated iteratively as prescribed above. Furthermore, let

ZT , Var[T- (a7, a7 )] denote the cumulative variance.
Then, the standardised stochastic sum

t

> T.(a},a]) - E[T,(a],

S r=1

1

aj)] (6)
will converge in distribution to the standard normal distribu-
tion as t — oo. Thus, T is normally distributed as well.

To see this, first recall that the standard central limit theorem
requires the random variables 7. to be independent and
identically distributed. In our case, T’ are independent in
that the random outcome of 7T’; has no effect on the outcome
of T,,. However, T, and T, depend on different action
sequences, and may therefore have different distributions.
Hence, we have to show an additional property, commonly
known as Lyapunov’s condition (e.g. Fischer, 2010), which
states that there exists a positive integer d such that

0A_2+d

=0, with 7

lim %
t—o0 0'2+d

ZE“T 704;)

Since z;, are bounded, we know that I’; are bounded. Hence,
the summands in (8) are uniformly bounded, say by U for
brevity. Setting d = 1, we obtain

~E[Ty(a,a7)][ "] ®)

7770

3 -2
. O} Ués; U
lim — < 3 = — ©)]
t—oo 0} lop: o

The last part goes to zero if 0, — 00, and hence Lyapunov’s
condition holds. If, on the other hand, o; converges, then
this means that the variance of T’ is zero from some point
onward (or that it has an appropriate convergence to zero).
In this case, 7; will prescribe deterministic action choices
for agent 7, and a statistical analysis is no longer necessary.

4.3 LEARNING THE TEST DISTRIBUTION

Given that 7" is eventually normal, it may seem reasonable to
compute (1) using a normal distribution whose parameters
are fitted during the interaction. However, this fails to recog-
nise that the distribution of 7" is shaped gradually over an
extended time period, and that the fluctuation around 7" can
be heavily skewed in either direction until convergence to
a normal distribution emerges. Thus, a normal distribution
may be a poor fit during this shaping period.

What is needed is a distribution which can represent any nor-
mal distribution, and which is flexible enough to faithfully



represent the gradual shaping. One distribution which has
these properties is the skew-normal distribution (Azzalini,
1985; O’Hagan and Leonard, 1976). Given the PDF ¢ and
CDF & of the standard normal distribution, the skew-normal

PDF is defined as
2 T
oo () ()
w
where £ € R is the location parameter, w € R™ is the
scale parameter, and 8 € R is the shape parameter. Note
that this reduces to the normal PDF for 8 = 0, in which
case & and w correspond to the mean and standard deviation,
respectively. Hence, the normal distribution is a sub-class
of the skew-normal distribution.

T

f(e1€w.6) = —

Our algorithm learns the shifting parameters of f during the
interaction process, using a simple but effective sampling

procedure. Essentially, we use 7} to iteratively generate N
~t,N

A,

are then mapped into data points

.. . ~t.1 .
additional action vectorsa ', ... in the exact same way

At ~t
as a;. The vectors aj’"

Y

which are used to estimate the parameters &, w, 8 by min-
imising the negative log-likelihood

Z1og¢< >+10g<1><6<
(12)

zeD
whilst ensuring that w is positive. An alternative is the
method-of-moments estimator, which can also be used to
obtain initial values for (12). Note that it is usually unneces-
sary to estimate the parameters at every point in time. Rather,
it seems reasonable to update the parameters less frequently
as the amount of evidence (i.e. observed actions) grows.

T

Nlog(w —¢
w

Given the asymmetry of the skew-normal distribution, the se-
mantics of “as extreme as” in (1) may no longer be obvious
(e.g. is this with respect to the mean or mode?). In addition,
the usual tail-area calculation of the p-value requires the
CDF, but there is no closed form for the skew-normal CDF
and approximating it is rather cumbersome. To circumvent
these issues, we approximate the p-value as

L IT (al,a]) | & w, B)
flu] & w,B)

where y is the mode of the fitted skew-normal distribution.
This avoids the asymmetry issue and is easier to compute.

13)

S EXPERIMENTS

We conducted a comprehensive set of experiments to inves-
tigate the accuracy (correct and incorrect rejection), scala-
bility (with number of actions), and sampling complexity of
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our algorithm. The following three score functions and their
combinations were used:

1 w(H])d]
t * -
21(3]77rj) n gmaxa ca, ™ (HT)[ ]
2(af, 7)) ZlEmemmwﬂwmw
t—1 1t71
aj,7;) Zmnf 07 =ash, § 3 (HDlos
ajEA; = 7=0

where [b]; = 1if b is true and O otherwise. Note that 21, z3
are generally consistent (cf. Section 4.1), while 23 is consis-
tent for | A;| = 2 but not necessarily for |A;| > 2. Further-
more, 21, z2, z3 are all imperfect. The score function 23 is
based on the empirical frequency distribution (cf. Section 1).

The parameters of the test distribution (cf. Section 4.3) were
estimated less frequently as ¢ increased. The first estimation
was performed at time ¢ = 1 (i.e. after observing one action).
After estimating the parameters at time ¢, we waited L\/ﬂ -1
time steps until the parameters were re-fitted. Throughout
our experiments, we used a significance level of a = 0.01
(i.e. reject 7} if the p-value is below 0.01).

5.1 RANDOM BEHAVIOURS

In the first set of experiments, the behaviour spaces 11;, I1;
and hypothesis space H; were restricted to “random” be-
haviours. Each random behaviour is defined by a sequence
of random probability distributions over A;. The distribu-
tions are created by drawing uniform random numbers from
(0,1) for each action a; € Aj;, and subsequent normalisa-
tion so that the values sum up to 1.

Random behaviours are a good baseline for our experiments
because they are usually hard to distinguish. This is due to
the fact that the entire set A; is always in the support of the
behaviours, and since they do not react to any past actions.
These properties mean that there is little structure in the
interaction that can be used to distinguish behaviours.

We simulated 1000 interaction processes, each lasting 10000
time steps. In each process, we randomly sampled be-
haviours 7; € II;, m; € II; to control agents i and j,
respectively. In half of these processes, we used a correct
hypothesis 77 = ;. In the other half, we sampled a ran-
dom hypothesis 7} € H; with 77 # ;. We repeated each
set of simulations for |[4;| = 2,10, 20 (with [4;] = |4;])
and V = 10,50, 100 (cf. Section 4.3).

5.1.1 Accuracy & Scalability

Figure 1 shows the average accuracy of our algorithm (for
N = 50), by which we mean the average percentage of time
steps in which the algorithm made correct decisions (i.e.
no reject if 7 = 7;; reject if w7 # 7;). The x-axis shows
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Figure 1: Average accuracy with random behaviours, for N = 50 and |A,| = 2, 10, 20. Results averaged over 500 processes
with 10000 time steps, for 77 = 7; and 7} # m; each. X-axis shows score functions z;, used in test statistic.
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Figure 2: Average p-values with random behaviours, for N = 50 and 7} # m; (i.e. hypothesis wrong). Results averaged
over 500 processes. Legend shows score functions zj, used in test statistic.

the combination of score functions used to compute the test wy, (cf. (5)). As mentioned in Section 4.1, we use uniform
statistic (e.g. [1 2] means that we combined z1, 25). weights wy, = % However, to show that the weighting is no
trivial matter, we repeated our experiments with four alterna-
tive weighting schemes: Let 2] = 2z;(a},7}) — 2x(a], 77)
denote the summands in (5). The weighting schemes
truemax/truemin assign wy = 1 for the first k£ that
maximises / minimises |z,§ |, and 0 otherwise. Similarly, the
weighting schemes max /min assign wy, = 1 for the first k
that maximises / minimises 27, and 0 otherwise.

The results show that our algorithm achieved excellent accu-
racy, often bordering the 100% mark. They also show that
the algorithm scaled well with the number of actions, with
no degradation in accuracy. However, there were two excep-
tions to these observations: Firstly, using z3 resulted in very
poor accuracy for 7 # ;. Secondly, the combination of
22, 23 scaled badly for 77 # ;.

Figures 3 and 4 show the results for truemax and
truemin. As can be seen in the figures, t ruemax is very
similar to uniform weights while t ruemin improves the
convergence for [22, 23] but compromises elsewhere. The re-
sults for max and min are very similar to those of t ruemin
and t ruemax, respectively, hence we omit them.

The reason for both of these exceptions is that z3 is not a
good scoring scheme for random behaviours. The function
z3 quantifies a similarity between the empirical frequency
distribution and the averaged hypothesised distributions. For
random behaviours (as defined in this work), both of these
distributions will converge to the uniform distribution. Thus,
under z3, any two random behaviours will eventually be the Finally, we recomputed all accuracies using a more lenient
same, which explains the low accuracy for 77 # ;. significance level of o = 0.05. As could be expected, this
marginally decreased and increased (i.e. by a few percentage
points) the accuracy for 77 = m; and 7w} # 7;, respectively.
Overall, however, the results were very similar to those ob-
tained with o = 0.01.

As can be seen in Figure 1, the inadequacy of z3 is solved
when adding any of the other score functions 27, z5. These
functions add discriminative information to the test statis-
tic, which technically means that the cardinality |II7| in (4)
is reduced. However, in the case of [z3, 23], the converge is
substantially slower for higher |A;|, meaning that more ev-
idence is needed until 75 can be rejected. Figure 2 shows  Recall that V specifies the number of sampled action vectors
how a higher number of actions affects the average conver- 347 y15eq to learn the distribution of the test statistic (cf.
gence rate of p-values computed with 2y, z3. Section 4.3). In the previous section, we reported results
for N = 50. In this section, we investigate differences in
accuracy for N = 10, 50, 100.

5.1.2 Sampling Complexity

In addition to the score functions zj, a central aspect for
the convergence of p-values are the corresponding weights

o7
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Figure 3: Average accuracy with random behaviours, for N = 50 and |4;| = 2, 10, 20. X-axis shows score functions zj,
used in test statistic. Weights wj, computed using t ruemax weighting.
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Figure 4: Average accuracy with random behaviours, for N = 50 and |A4;| = 2, 10, 20. X-axis shows score functions zj
used in test statistic. Weights wj, computed using t ruemin weighting.

Figures 5 and 6 show the differences for |[4;| = 2, 20, re-
spectively. (The figure for |A;| = 10 was virtually the same
as the one for |A,;| = 20, except with minor improvements
in accuracy for the 22, 23] cluster. Hence, we omit it here.)
As can be seen, there were improvements of up to 10% from
N = 10to N = 50, and no (or very marginal) improve-
ments from N = 50 to N = 100. This was observed for all
|A;] = 2,10, 20, and all constellations of score functions.
The fact that N = 50 was sufficient even for |A;| = 20 is
remarkable, since, under random behaviours, there are 20
possible action vectors to sample at any time ¢.

We also compared the learned skew-normal distributions
and found that they fitted the data very well. Figures 7 and
8 show the histograms and fitted skew-normal distributions
for two example processes after 1000 time steps. In Figure 8,
we deliberately chose an example in which the learned dis-
tribution was maximally skewed for N = 10, which is a
sign that /N was too small. Nonetheless, in the majority of
the processes, the learned distribution was only moderately
skewed and our algorithm achieved an average accuracy of
90% even for N = 10. Moreover, if one wants to avoid
maximally skewed distributions, one can simply restrict the
parameter space when fitting the skew-normal (specifically,
the shape parameter J; cf. Section 4.3).

The flexibility of the skew-normal distribution was particu-
larly useful in the early stages of the interaction, in which
the test statistic typically does not follow a normal distri-
bution. Figure 9 shows the test distribution for an example
process after 10 time steps, using zo for the test statistic and
N = 100 (the histogram was created using N = 10000).
The learned skew-normal approximated the true test distri-
bution very closely. Note that, in such examples, the normal
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Figure 9: True test distribution for z9 (histogram) and

learned skew-normal distribution (red curve) after 10 time

steps, with [A;| = 10 and N = 100.

and Student distributions do not produce good fits.

Our implementation of the algorithm performed all calcula-
tions as iterative updates (except for the skew-normal fitting).
Hence, it used little (fixed) memory and had very low com-
putation times. For example, using all three score functions
and |A;| = 20, N = 100, one cycle in the algorithm (cf. Al-
gorithm 1) took on average less than 1 millisecond without
fitting the skew-normal parameters, and less than 10 mil-
liseconds when fitting the skew-normal parameters (using
an off-the-shelf Simplex-optimiser with default parameters).
The times were measured using Matlab R2014a on a Unix
machine with a 2.6 GHz Intel Core i5 processor.

5.2 ADAPTIVE BEHAVIOURS

We complemented the “structure-free” interaction of ran-
dom behaviours by conducting analogous experiments with
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Figure 5: Average accuracy with random behaviours, for |A;| = 2 and N = 10, 50, 100. Results averaged over 500 processes
with 10000 time steps, for 7T;‘ = m; and ﬂ; # m; each. X-axis shows score functions z;, used in test statistic.
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Figure 6: Average accuracy with random behaviours, for |[A;] = 20 and N = 10, 50, 100. Results averaged over 500
processes with 10000 time steps, for 77 = 7; and 77 # m; each. X-axis shows score functions zj, used in test statistic.

three additional classes of behaviours. Specifically, we used

a benchmark framework specified by Albrecht et al. (2015) W =n
which consists of 78 distinct 2 x 2 matrix games and three g LA
methods to automatically generate sets of behaviours for 8 L] e
any given game. The three behaviour classes are Leader- ® H cor
Follower-Trigger Agents (LFT), Co-Evolved Decision Trees <] onn
(CDT), and Co-Evolved Neural Networks (CNN). These

. : . 123
classes cover a broad spectrum of possible behaviours, in- (23l

cluding fully deterministic (CDT), fully stochastic (CNN), Figure 10: Average accuracy for behaviour classes LFT,

and hybrid (LFT) behaviours. Furthermore, all generated  CDT, CNN (N = 50). II; and I1; restricted to same class.
behaviours are adaptive to varying degrees (i.e. they adapt

their action choices based on the other player’s choices). We

refer to Albrecht et al. (2015) for a more detailed description -

of these classes (we used the same parameter settings). 5 : :J'* ::'
5 c e

The following experiments were performed for each be- § L] LJFT J

haviour class, using identical randomisation: For each of ES H cot

the 78 games, we simulated 10 interaction processes, each X NN

lasting 10000 time steps. For each process, we randomly

sampled behaviours m; € II;, m; € II; to control agents ¢ (23]

and j, respectively, where IT;, II; (and II7) were restricted Figure 11: Average accuracy for behaviour classes LFT,
to the same behaviour class. In half of these processes, we CDT, CNN (N = 50). T, set to random behaviours.

used a correct hypothesis 77; = 7, and in the other half, we
sampled a random hypothesis 77 € H? with 777 # ;. As
before, we repeated each simulation for N = 10, 50, 100
and all constellations of score functions, but found that there reveals an inherent limitation of our approach, which is that

were virtually no differences. Hence, in the following, we .. 45 not actively probe aspects of the hypothesis 7% In
report results for NV = 50 and the [21, 22, z3] cluster. other words, our algorithm performs statistical hypothesis

Figure 10 shows the average accuracy achieved by our algo-  tests based only on evidence that was generated by 7;.
rithm for all three behaviour classes. While the accuracy for To illustrate this, it is useful to consider the tree structure

mj = mj was generally good, the accuracy for 7y 7 7; Was  of behaviours in the CDT class. Each node in a tree ;
mixed. Note that this was not merely due to the fact that the corresponds to a past action taken by ;. Depending on how
score functions were imperfect (cf. Section 4.1), since we 7; chooses actions, we may only ever see a subset of the

obtained the same results for all combinations. Rather, this
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Figure 7: Example histograms and fitted skew-normal distributions (red curve) after 1000 time steps, for random behaviours
with |A;| = 10 and N = 10, 50, 100. Using score function z; in test statistic.
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Figure 8: Example histograms and fitted skew-normal distributions (red curve) after 1000 time steps, for random behaviours
with |A;| = 10 and N = 10, 50, 100. Using score functions z1, 22, 23 in test statistic.

entire tree that defines m;. However, if our hypothesis 77
differs from 7; only in the unseen aspects of 7;, then there is
no way for our algorithm to differentiate the two. Hence the
asymmetry in accuracy for 77 = 7; and 7} # 7;. Note that
this problem did not occur in random behaviours because,

there, all aspects are eventually visible.

Following this observation, we repeated the same experi-
ments but restricted IT; to random behaviours, with the goal
of exploring 7 more thoroughly. As shown in Figure 11,
this led to significant improvements in accuracy, especially
for the CDT class. Nonetheless, choosing actions purely ran-
domly may not be a sufficient probing strategy, hence the
accuracy for CNN was still relatively low. For CNN, this
was further complicated by the fact that two neural networks
m;, 7 may formally be different (7; # 7’;) but have essen-
tially the same action probabilities (with extremely small
differences). Hence, in such cases, we would require much
more evidence to distinguish the behaviours.

6 CONCLUSION

We hold the view that if an intelligent agent is to interact ef-
fectively with other agents whose behaviours are unknown,
it will have to hypothesise what these agents might be doing
and contemplate the truth of its hypotheses, such that appro-
priate measures can be taken if they are deemed false. In this
spirit, we presented a novel algorithm which decides this
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question in the form of a frequentist hypothesis test. The
algorithm can incorporate multiple statistical criteria into
the test statistic and learns the test distribution during the in-
teraction process, with asymptotic correctness guarantees.
We presented results from a comprehensive set of experi-
ments, showing that our algorithm achieved high accuracy
and scalability at low computational costs.

There are several directions for future work: To bring some
structure into the space of score functions, we introduced
the concepts of consistency and perfection as minimal and
ideal properties. However, more research is needed to un-
derstand precisely what properties a useful score function
should satisfy, and whether the concept of perfection is fea-
sible or even necessary in the general case. Furthermore,
we used uniform weights to combine the computed scores
into a test statistic, and we also experimented with alterna-
tive weighting schemes to show that the weighting can have
a substantial effect on convergence rates. However, further
research is required to understand the effect of weights on
decision quality and convergence.

Finally, in this work, we assumed that the behaviour of the
other agent () could be described as a function of the infor-
mation available to our agent (7). An important extension
would be to also account for information that cannot be deter-
ministically derived from our observations, especially in the
context of robotics where observations are often described
as random variables.
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Abstract

We introduce disciplined convex stochastic pro-
gramming (DCSP), a modeling framework that
can significantly lower the barrier for modelers
to specify and solve convex stochastic optimiza-
tion problems, by allowing modelers to naturally
express a wide variety of convex stochastic pro-
grams in a manner that reflects their underly-
ing mathematical representation. DCSP allows
modelers to express expectations of arbitrary ex-
pressions, partial optimizations, and chance con-
straints across a wide variety of convex optimiza-
tion problem families (e.g., linear, quadratic, sec-
ond order cone, and semidefinite programs). We
illustrate DCSP’s expressivity through a number
of sample implementations of problems drawn
from the operations research, finance, and ma-
chine learning literatures.

1 INTRODUCTION

We introduce disciplined convex stochastic program-
ming (DCSP), a modeling framework for specifying and
solving convex stochastic programs: convex optimization
problems that include random variables. DCSP builds on
principles from stochastic optimization and convex analy-
sis to allow modelers to naturally express a wide variety of
stochastic programs in a manner that reflects their underly-
ing mathematical representation. At a high level, DCSP en-
ables modelers to specify — in a straightforward way —
and solve convex optimization problems that include (1)
expectations of arbitrary expressions, (2) partial optimiza-
tions, optimizations over (only) a subset of the optimization
variables, which additionally pave the way for the specifi-
cation of multi-stage stochastic programs (Sec. 2.1), and
(3) chance constraints, constraints that are required to hold
with high probability — these three building blocks can be
used to express a wide variety of stochastic optimization
problems.

stevend2@stanford.edu
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Concurrently with this paper, we also make available an
open source Python implementation of DCSP, which we
refer to as cvxstoc!, that allows modelers to write and
solve stochastic programs — we present a variety of exam-
ples of using cvxstoc to model stochastic optimization
problems, drawn from the operations research, finance, and
machine learning literatures, in Sec. 4.

Related work Although other frameworks for stochastic
programming do exist ([24, 20, 11], and in Python mainly
[26]), they often require significant effort from the modeler
to manipulate the optimization problem into an amenable
form, support a limited number of stochastic programming
constructs (e.g., [11] only supports chance constraints with
uncertainty sets), and cannot express certain families of
convex optimization problems; indeed, checking the con-
vexity of and solving (convex) optimization problems in
general is challenging. DCSP builds on (and extends) dis-
ciplined convex programming (DCP) [10], a recently intro-
duced framework that makes it natural for modelers to ex-
press convex optimization problems, and additionally auto-
mates the tasks of verifying the convexity of these problems
and translating them into conic form (see, e.g., [8]). This
means that DCSP can be used to express and solve a wide
variety of stochastic convex optimization problems, includ-
ing linear, quadratic, second order cone, and semidefi-
nite programs. Probabilistic programming languages (e.g.,
[9, 16, 13]) offer an alternative approach, but tend to fo-
cus on inference problems, and may not contain the fea-
tures to capture traditional stochastic programming prob-
lem formulations; in contrast, convex modeling can be at-
tractive because local solutions are global solutions, effi-
cient solvers exist, and guarantees can often be obtained on
the optimality of a solution obtained by a solver.

This paper is structured as follows. In Sec. 2, we re-
view background on stochastic programming, DCP, and
cvxpy (an open source Python implementation of DCP).
In Sec. 3, we describe DCSP and cvxstoc’s syntax. In

'evxstoc is available as an extension of the cvxpy Python
package [7]: see http://www.CcVvxpy.org.



Sec. 4, we present a number of examples that illustrate our
framework.

2 BACKGROUND

2.1 STOCHASTIC PROGRAMMING

A convex optimization problem has the form

minimize  fo(z)
subjectto  fi(z) <0, i=1,...,m,
hl(m):O, iZl,...,p,

where x € R" is the optimization variable, fy : R®™ — Riis
a convex objective function, f; : R* - R, i =1,...,m
are convex inequality constraint functions, and h; : R" —
R, i =1,...,p are affine equality constraint functions.

A convex stochastic program has the form

minimize E fo(z,w)
x

subjectto  E fi(z,w) <0, i=1,....,m (1)
hi(aj):O7 221, Py
where f; : R” x RY - R, ¢ = 0,...,m are convex func-

tions in x for each value of a random variable w € RY, and
h; : R" = R, i =1,...,p are (deterministic) affine func-
tions; since expectations preserve convexity, the objective
and inequality constraint functions in (1) are (also) convex
in z, making (1) a convex optimization problem.

Two-stage stochastic programs An important special
case of (1) is a so-called two-stage stochastic program (also
referred to as an optimization problem with recourse) [6]:

minimize  fo(z) + EQ(z,w)

subjectto  f;(z) <0, i=1,...

2

7m7
)"'7p7

where Q(JJ,(JJ) = infy{d)o(x,y,w) : sz(xava) S 07
Q/JJ(z»y):O’ i:17"'755 ]Zlvvw}

is the second stage problem, y € R" is the second stage
optimization variable, ¢g : R” x R” x R? — R is the
second stage objective function, and is convex in (z, y) for
eachvalue of w, ¢; : R" xR" xR? - R, i =1,...,s
are the second stage inequality constraint functions, also
convex in (x,y) for each value of w, and ¢; : R® x R" —
R, 7 = 1,...,w are the second stage equality constraint
functions, and are affine in (x,y). That is, @ is itself the
optimal value of another convex optimization problem, and
is convex in z for each value of w.

Two-stage stochastic programs model the uncertain conse-
quences (in the second stage) of here-and-now decision-
making (in the first stage): e.g., in a finance application, we
may wish to decide which assets to purchase now, while
(also) factoring in how the asset prices might fluctate later.
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Chance-constrained problems A chance constraint [5]
is a constraint on the variable x of the form

Prob (f(z,w) <0) >n,

where f is convex in x for each value of w, and 7 is typi-
cally a large probability (e.g., 0.95); a chance-constrained
problem is an optimization problem with one or more
chance constraints. Chance constraints are typically non-
convex, although effective convex approximations exist
(see Sec. 3.3).

2.2 DISCIPLINED CONVEX PROGRAMMING

Disciplined convex programming (DCP) is a recently intro-
duced modeling framework for specifying and solving con-
vex optimization problems [10]. In a nutshell, DCP con-
sists of a library of convex atomic functions, and a convex
rule-set that prescribes how these atomic functions may be
composed to express (more complex) convex optimization
problems.

Convex rule-set Verifying the convexity of arbitrary ex-
pressions is challenging; DCP checks convexity using
Thm. 2.1, which is equivalent to enforcing a set of rules.

Theorem 2.1 ([10]). Suppose f = h(gi(x),...,gr(x)),
where h : R¥ — R is convex and g; : R* — R, i =
1,...,k, and one of the following holds for each i
...,k

e g, is convex and h is nondecreasing in argument i

e g, is concave and h is nonincreasing in argument i
e g; is dffine.

Then f is convex?.

Thm. 2.1 permits a wide variety of convex expressions: for
example, the maximum eigenvalue of a symmetric matrix,
Amax(2X — 471), where X € S", is recognized as convex.
(On the other hand, as an example of a limitation of the

. 1/2 .
rule-set, the expression (Y, z7) 2 \Where z € R", is
not recognized as convex, although it is recognized as con-

vex once reformulated as ||z]|2.)

Library of atoms Atomic convex functions® are speci-
fied in DCP in their epigraph form: for example, the (con-
vex) function f(x) = ||z||; is specified as

minimize 17t
t

3

subject to

%A similar result holds for concave functions.

3See http://www.cvxpy.org/en/latest/
tutorial/functions/index.html for a list of the
convex atoms available in cvxpy.



where z,¢ € R™. Thus, whenever a modeler writes the
atom f(x) = ||z||1, DCP internally replaces it with (3),
introduces the variable ¢, and can subsequently optimize
over (z,1).

Disciplined convex programming DCP certifies a prob-
lem’s convexity by constructing an abstract syntax tree for
the objective and constraint functions, with atoms as inter-
nal nodes, and variables and constants as leaves, and then
applying Thm. 2.1 recursively [10, 22].

2.3 cvxpy

cvxpy [7] is an open source Python DCP implementation;
we briefly describe its syntax next.

Variables are declared simply in cvxpy as follows:

X
X
X

Variable ()
NonNegative ()
Semidefinite (n)

The first line declares x to be a variable in R, the second
declares x to be a variable in the nonnegative orthant R,
and the third declares X to be a (n X n matrix) variable in
the positive semidefinite cone S’ .

Convex expressions are specified by composing con-
vex atoms; for example, the log loss Zznzllog(l +
exp(—y;(wTz; + b))) can be specified by using the sim-
pler log_sum_exp atom as follows:

[log_sum_exp (vstack (0,
for i in range (m) ]

—y[i]l*(w.T*x[1]+b)))

[expr =

An objective is specified by instantiating a sense (i.e.,
Minimize or Maximize) with an expression:

obj = x.T*c
Minimize (obj)

Constraints are specified by forming a list of expressions:

[constrs = [x >= 0, x.Txnumpy.ones((n,1l)) == 1, ...]

A convex optimization problem, then, is specified by in-
stantiating a Problem with an objective and a list of con-
straints:

prob = Problem(Minimize (obj), constrs)
prob.solve ()

The last line solves the optimization problem.

3 DISCIPLINED CONVEX STOCHASTIC
PROGRAMMING

In this section we present the chief methodological contri-
bution of the paper: the disciplined convex stochastic pro-
gramming (DCSP) framework, along with an overview of

)
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its implementation in the cvxstoc Python package. In
a nutshell, DCSP consists of the addition of three opera-
tions to the disciplined convex programming (DCP) frame-
work, which can be used to express a wide variety of con-
vex stochastic programs: the ability to (1) compute (ap-
proximations to) expectations of arbitrary expressions, (2)
handle partial optimization, and (3) compute (approxima-
tions to) chance constraints.

3.1 RANDOM VARIABLES AND EXPECTATIONS

Random variables The most fundamental operations in
stochastic programs, and hence in DCSP, are the ability to
specify random variables, and compute (approximations to)
expectations of arbitrary expressions containing these ran-
dom variables. As in Sec. 2, DCSP assumes that all expres-
sions in a stochastic program are convex in the optimization
variable(s) for each value of the random variable(s) — thus,
from the point of view of DCSP, random variables do not
affect the convexity of their parent expressions and can be
regarded as equivalent to constants, thereby requiring no
additions to the DCP convex rule-set. (Practically speak-
ing, DCSP permits the specification of a variety of random
variables; see Sec. 3.4.)

Expectations DCSP computes (approximations to) ex-
pectations of arbitrary expressions using simple Monte
Carlo evaluation, i.e.,

N
Ef(x,w) ~ (1/N) Zf(l',wi)7

i=1
where f is (again) assumed to be convex in the optimiza-
tion variable x for each value of the random variable w,
andw;, 7 =1,..., N are samples of w; this approximation
is referred to as the sample average approximation (SAA)
in the stochastic programming literature, and methods that
use it are often referred to as scenario-based methods. By
the DCP rule-set, the nonnegative weighted sum of convex
functions is a convex function; thus, the expectation oper-
ator applied to an expression that is convex in x returns an
expression that is (also) convex in .

The SAA is, of course, a very simple method for approx-
imating an expectation, and much more involved methods
for solving stochastic programs exist, but the clear advan-
tage of this method is its simplicity: any random variable
can be included in a stochastic program as long as we are
able to draw samples of it. If w is a discrete random vari-
able, then DCSP calculates its expectation exactly; oth-
erwise, DCSP draws samples using Markov chain Monte
Carlo (MCMC) methods* [15].

In the case of unconstrained stochastic programs, the SAA
objective value is (naturally) an unbiased estimator of the

“We implement MCMC by leveraging the PyMC Python pack-
age [15].



true objective value, E fo(z,w), with variance o< 1/N,
and an asymptotically normal distribution [21, chap. 5].
Thm. 3.1 additionally tells us that (roughly) both the opti-
mal value and optimal set of a SAA converge almost surely
to the optimal value and optimal set of the true problem.

Theorem 3.1 ([21, Thm. 5.3]). Define py, Sx and p*, S as
the optimal value and optimal set of a SAA with N samples
and of the true problem, respectively, and let K C R" be a
compact set. Suppose (a) S C K is nonempty, (b) Sy CK
is nonempty a.s., (c) fo is finite and continuous on K, and
(d) (1N) X folw,wi) =% f(z) (uniformly) for z €
K. Then ply =25 p* andsup, g infyes ||[z—yll2 2550.
Py is also a downward biased estimator of p*, although
its bias decreases with NV [21, Prop. 5.6]. In Sec. 3.4, we
empirically investigate the quality of the SAA.

3.2 PARTIAL OPTIMIZATION

DCSP adds a new partial optimization atom to the DCP
atom library, allowing modelers to express partial optimiza-
tions, i.e., optimizations over (only) a subset of the opti-
mization variables; this atom also forms the basis for spec-
ifying two-stage stochastic programs.

We start with the observation that partial optimization is a
convex operation (see, e.g., [4, page 87]): i.e., if f is convex
in (x,y) and C' is a nonempty convex set, then

g(x) := ir;f{f(x,y) (z,y) € CF,

s convex in x.

Accordingly, DCSP specifies a new partial optimization
atom that takes as input a convex optimization problem and
returns (the epigraph form for) another convex atom, which
complies with the DCP prescription for specifying atoms
— this means that modelers can use partial optimizations
in stochastic programs as they would other atoms. In par-
ticular, two-stage stochastic programs, i.e., (2), can be nat-
urally expressed using this atom; furthermore, the second
stage optimization problem () need not be in standard form
(as required by other frameworks).

3.3 CHANCE CONSTRAINTS

DCSP computes conservative approximations to chance
constraints, as they are typically nonconvex’; in particular,
DCSP replaces

Prob (f(z,w) >0) <1—mn, 4)

One notable exception is chance constraints involving affine
functions of normal random variables, which can be expressed as
a second order cone constraint (see, e.g., [4, page 157]). How-
ever, we favor the approximate approach described in this section
because it is substantially more general, and applies to any class
of random variables.
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with a convex upper bound derived as follows [3]. Suppose
¢ : R — R, is a nonnegative, increasing convex function
with ¢(0) = 1; then ¢(z) > 1(z > 0), where 1(z > 0)
equals 1 if z > 0 and O otherwise, and so ¢(z/a) > 1(z >
0), for some variable o € R . Thus

E¢(f(z,w)/a) = Prob (f(z,w) > 0),
and so

aEo(f(z,w)/a) <ol —n)
= Prob (f(z,w) >0) <1-—n,

&)

i.e., (5) is a conservative approximation to (4). Note that (5)
is convex in (z, a): it is the perspective of the expectation
of a convex increasing function, ¢, of a convex function,

£

In (5), o can be interpreted as modulating the “steepness”
of the approximation; several choices of ¢ are possible, and
are analogous, e.g., to different approximations to the zero-
one loss common in machine learning. DCSP uses ¢(z) =
max{0, z + 1}, which roughly corresponds to a Markov-
inequality type bound’ on (4), and can also be interpreted
as the conditional value-at-risk of f(x,w) [19]. Prop. 3.2
also tells us that this is the tightest possible choice of ¢.

Practically speaking, DCSP approximates (5) with its SAA
(at which point all the benefits of DCP readily apply), then
optimizes over (, «) to obtain the tightest possible bound;
in Sec. 4.3, we empirically investigate the quality of these
approximations.

Proposition 3.2 ([14]). Suppose ¢ : R — R, is a non-
negative, increasing convex function and ¢(z) > 1(z >
0); then 3o € Ry such that E (f(z,w)/a+1), <
E¢(f(z,w)).

+

34 cvxstoc

Next, we briefly detail the syntax of cvxstoc;
cvxstoc builds on cvxpy, and thus much of the usage
is similar.

Random variables are specified simply in cvxstoc as fol-
lows:

[omeqa = RandomVariableFactory () .create_normal_rv(0,1) ]

Here, omega is a standard normal random variable.
cvxstoc includes a RandomVariableFactory ob-
ject to simplify the specification of common random vari-
ables; see Sec. 4 for examples of the specification of other
random variables.

Expectations are specified by applying the expectation
atom:

6Alternatively, the modeler can fix «, in which case the bound
is convex in (z, ) if desired.

7 Alternatively, one could take ¢(z) = exp z, which would be
analogous to a Chernoff-type inequality.



[result = expectation (exp (omegax*x), m)

Here, exp (omegaxx) is the expression we wish to com-
pute the expectation of, and m is the number of Monte Carlo
samples to use when constructing the SAA.

Partial optimizations are specified by applying the
partial_optimize atom:

partial_optimize (prob,

[atom =

The first argument here is a Problem, the second is a list
of variables to optimize over, and the third is a list of vari-
ables to not optimize over.

Two-stage stochastic programs can, in turn, be specified as
follows:

Q = partial_optimize (prob2, [y], [x])
probl = Problem(Minimize (f0 + expectation(Q(x
constrs)

) m)),

Here, prob2 is the second stage problem, y is the second
stage variable, x is the first stage variable, and probl is
the first stage problem. Multi-stage stochastic programs
can be specified by iterating this construction:

Q2 = partial_optimize (prob3, [z], [x,V])
prob2 = Problem(Minimize (phi0O + expectation (Q2 (
< constrs2)
Ql = partial_optimize (prob2, [y], [x])
probl = Problem(Minimize (f0 + expectation(Ql(x),m)),
constrsl)

y),m)),

Chance constraints are specified by instantiating the prob
class and chaining it with an inequality:

[prob(constr >= 0, m) <= l-eta

Here, constr is a (stochastic) constraint, and m is the
number of Monte Carlo samples to use.

3.4.1 Quality of the sample average approximation

Here, we investigate the quality of the SAA employed by
cvxstoc in the special case of a (unconstrained) least
squares problem

minimize E | Az — b||3, (6)
where the entries of A € R™*" ~ Normal(uy,0%), b €

R™ ~ Normal(us,03), and z € R”, in which case the
objective has the analytic form

T EAT Az —2Eb Az + EbTb,

assuming we know the second moments of (A,b). Fig. 1
plots the optimal value of the true problem (6) and a SAA
to (6): we see that the SAA obtains reasonable accuracy
after roughly 100 Monte Carlo samples.

)
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Figure 1: The optimal values of the stochastic least squares prob-
lem (6) (red) and a SAA to (6) (blue) with 95% confidence inter-
vals (light blue) vs. the number of Monte Carlo samples; in this
case, m = 100,n = 50, although similar results hold across a
variety of problem sizes.

4 EXAMPLES

At this point, we switch gears slightly and present sev-
eral examples of stochastic programs along with their
corresponding cvxstoc implementations®; the majority
of these applications are well established or previously
known, though we also include some formulations that are
novel, to the best of our knowledge (namely, the precise
formulation of the stochastic optimal power flow problem
in Sec. 4.4, and the budgeted learning of a classifier in a
cascade problem in Sec. 4.6).

4.1 YIELD-CONSTRAINED COST
MINIMIZATION

We begin with a simple example from the operations re-
search literature (see, e.g., [4, page 107]). Consider the
(general) problem of choosing the parameters x € R"
governing a manufacturing process so that our cost ¢z,
where ¢ € R", is minimized, while the parameters lie
in a set of allowable values S; we can model noise in
the manufacturing process by expressing this constraint as
Prob(z +w € S) > 7, where w € R" is a random vector
and 7 is a large probability (e.g., 0.95), which is referred
to as an n-yield constraint. Thus, we have the optimization
problem

T

minimize c¢'x

T
subjectto  Prob(z +w € S) > 7.

8Due to space constraints, we present one of these examples
in the supplementary material.



Note that if the distribution over w is log-concave and S
is a convex set, then this constraint is convex in z. We
can directly express the yield-constrained cost minimiza-
tion problem using cvxstoc; an implementation is given
in Listing 1 (S is taken to be an ellipsoid).

# Create problem data
n = 10
c = numpy.random.randn (n)
P, g, r = numpy.eye(n), numpy.random.randn(n), numpy.
< random.randn ()
mu, Sigma = numpy.zeros(n), O0.lxnumpy.eye (n)
omega = RandomVariableFactory () .create_normal_rv (mu,
< Sigma)
m, eta = 100, 0.95
# Create and solve optimization problem
Variable (n)
yield_constr = prob (quad_form(x+omega,P)
+ (x+omega) .Txgq + r >= 0, m)
p = Problem(Minimize (x.T*c), [yield_constr]
p.solve()

X =

<= l-eta

Listing 1: A cvxstoc implementation of the yield-constrained
cost minimization problem.

4.2 THE NEWS VENDOR PROBLEM

The news vendor problem is a classic problem in the
stochastic programming literature (see, e.g., [2, page 15]);
in this problem, a vendor must decide how much newspa-
per to stock, so that profit is maximized while backorder
and return fees (due to excess or insufficient demand, re-
spectively) are minimized, in the face of uncertain demand.

Our optimization variables are the number of units of
stocked newspaper x € R, the number of units purchased
by customers y; € R, and the number of unpurchased
(surplus) units that must be returned by the vendor y» €
R, . Our problem data are b, s, € Ry, which denote the
price to stock, sell, and return a unit of newspaper, respec-
tively. Lastly, we let the random variable d ~ Categorical
model the uncertain (newspaper) demand.

We can pose the news vendor problem as the following
two-stage stochastic program:

minimize bz + E Q(z)
subjectto 0 <z < w,

where Q(z) = 5nlyn —(sy1 +1y2)
1,Y2
S.t. 1ty <z
0<y <d
yQ Ei 0.

A cvxstoc implementation of the news vendor problem
is given in Listing 2; in contrast, a PySP [26] implemen-
tation (see the supplementary material) required 111 lines
spanning 6 files.

# Create problem data

b, s, r, u= 10, 25, 5, 150
d_probs = [0.3, 0.6, 0.11]
d_vals = [55, 139, 141]
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d = RandomVariableFactory () .create_categorical_rv(

— d_vals, d_probs)
# Create optimization variables
x = NonNegative ()
yl, y2 = NonNegative (), NonNegative ()

# Create second stage problem

obj = -s*xyl - rxy2

constrs = [yl+y2<=x, yl<=d]

p2 = Problem(Minimize (obj), constrs)

Q = partial_optimize (p2, [yl, y2], [x]

# Create and solve first stage problem

pl = Problem(Minimize (bxx + expectation(Q(x), want_de=
— True)), [x<=u])

pl.solve ()

J

Listing 2: A cvxstoc implementation of the news vendor
problem.

We can also represent a stochastic program by means of an
influence diagram, a directed acyclic graph, where circular
nodes correspond to random variables, square nodes corre-
spond to decision variables, diamond nodes correspond to
costs, and edges flow from node = to node y iff the value
of node y depends in some way on the value of node z;
Fig. 2 presents the influence diagram for the news vendor

problem.

T
& &

Figure 2: The influence diagram for the news vendor problem.

X

4.3 PORTFOLIO OPTIMIZATION

In portfolio optimization, we wish to maximize wealth
while meeting certain restrictions on risk, in the face of
uncertain asset prices; we can pose a standard portfolio op-
timization problem [12], subject to two kinds of risk con-
straints, as a stochastic program.

The risk constraints we consider here are the value-at-risk
(VaR) (see, e.g., [25, chap. 29]) and conditional value-at-
risk (CVaR) (e.g., [19], [23, page 286]); intuitively, VaR
allows the modeler to control the probability of a loss (on
asset sales) beyond a (modeler-defined) threshold, and is
often nonconvex, while CVaR allows the modeler to control
the expected value of such a loss, and is convex.

Our optimization variables are the allocation vector (across
a set of n assets) x € R™, and the CVaR § € R; the prob-



lem data is the loss threshold v € R, and the vector of
returns p ~ Normal(p, X).

We can pose a CVaR-constrained portfolio optimization
problem as

minirélize E—pTz
subjectto B+ 1/(1—n)E(-pTz -8 <u D
1Tz =1, x>0,

where (z)1 := max{0, z}.

A cvxstoc implementation of the CVaR-constrained
portfolio optimization problem is given in Listing 3.

# Create problem data

n = 10

pbar, Sigma = numpy.random.randn(n), numpy.eye (n)

p = RandomVariableFactory () .create_normal_rv (pbar,
— Sigma)

u, eta, m = numpy.random.rand(), 0.95, 100

# Create optimization variables
%, beta = NonNegative (n), Variable()

# Create and solve optimization problem

expectation (pos (-x.Txp - beta), m)

beta + 1/ (l-eta) *cvar

Problem(Minimize (expectation (-x.Txp,m)),
[x.Txnumpy.ones((n,1l)) == 1, cvar<=u])

cvar =
cvar
prob

prob.solve ()

Listing 3: A cvxstoc implementation of the CVaR-constrained
portfolio optimization problem.

We can also pose a VaR-constrained portfolio optimization
problem as

minimize E —pTz
subjectto  Prob(pTx <0)<1-19
1Tz =1, z>0.

®)

As per Sec. 3.3, DCSP replaces the chance constraint in
(8) with a sample average approximation (SAA) to a (more
conservative) CVaR constraint (making (8) equivalent to
(7)). We investigate the quality of this approximation in the
special case where p ~ Normal(p, 2), in which case both
the VaR and CVaR constraints have analytic forms [18]: the
VaR constraint can be expressed as

pre > @t ()| 2al2, ©)
where ®~1(-) is the inverse standard normal cumulative
distribution function, while the CVaR constraint can be ex-
pressed as

e = exp (~(@71m)?/2) / (V2r(1l = m)|= 2.

(10)
Fig. 3 plots the optimal value (i.e., wealth) of the VaR-
constrained portfolio optimization problem (8), the CVaR-
constrained portfolio optimization problem (7), and a SAA
to (7): we see that the wealth obtained by constraining VaR
is indeed less conservative than by constraining CVaR. The
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SAA also obtains reasonable accuracy after roughly 100
Monte Carlo samples. Fig. 4 plots the probability of a SAA
to (7) vs. the number of Monte Carlo samples, and has a
similar interpretation.

22.0

worf_— e (VaR)

18.5 —_— p* (CVaR)

180t — Py (CVaR)

175 i s s ;
100 10! 102 103

# Monte Carlo samples N

Figure 3: The optimal values (higher means more wealth) of the
VaR-constrained portfolio optimization problem (8) (green), the
CVaR-constrained portfolio optimization problem (7) (red), and
a SAA to (7) (blue) with 95% confidence intervals (light blue)
vs. the number of Monte Carlo samples; the problem size n = 50,
although similar results hold across a variety of problem sizes.

44 OPTIMAL POWER FLOW

Consider a network G = (V, ), with a set of vertices V
and a set of edges &, that models an electrical grid: i.e., a
subset of the vertices G C V are generators, which produce
power, the remaining vertices £ = V \ G are loads, which
consume power, and an edge is drawn between a generator
and a load if and only if there is a (physical) transmission
line between them.

In the standard optimal power flow problem, we wish to
minimize the total cost of generating power, while satis-
fying demand, subject to the topology of the network and
per-generator capacity constraints. We often do not have
complete control over all the generators in the grid, so we
denote the subset of generators that we do have control over
as G1, and also define Go = G\ G1; we also define G = |G|,
G1 = |G1], G2 = |G2|, and L = |L£|. We write the per-
generator costs as cg, € RY and cg, € RY, and the
per-gegerator lower and upper (respectively) limits as [ and
u € R™.

The topology/demand constraints can be expressed as
Apiin = (pgy, PG5, Pr), Where A € R™*¥ is the incidence
matrix for the (directed) graph G, pg, € R and DG, €
R are variables denoting (nonnegative) power genera-
tion, py € R’ are constants denoting the (non-positive)
power consumption at the loads, and py, € R” are vari-
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Figure 4: The probability of a SAA to (7) (blue) with 95% con-
fidence intervals (light blue) and 3 (red) vs. the number of Monte
Carlo samples; the problem size n = 50, although similar results
hold across a variety of problem sizes.

ables denoting the power flowing through each edge.

Now, additionally consider the presence of a set of renew-
able generators (e.g., wind farms), which we denote WV,
whose (intermittent) generation an operator can either sell
on the spot market [17], or use to power loads. We let
W = |W)|, and model this situation with a random vector
pw € RY (pw)i ~ LogNormal(u;, 02), i =1,..., W.

We can cast this as the following optimization problem:

minimize E Q(pg,)

yalery
where
c T P
: g1 G1 T
= min + 2
Q) PGy +2:Plin [ g, } {pg2 } w
bg,
S.t. Aplin = I;)g;
bw — %z
0=z=pw
|Dlin| = Win
lg = |: Pa, = ug,
PG,

cyy 1s the (nonpositive) revenue obtained by selling renew-
able power, z € R"Y is the decision vector for the renew-
able generators, and uy;,, are the limits on the power flowing
through each edge.

A cvxstoc implementation of the stochastic optimal
power flow problem is given in Listing 4. We solved this
problem on the IEEE 14 Bus Test Case, i.e., with n = 14,
Gi1=1,G3 =1,W =1, and L = 10: Fig. 5 presents the
results.
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# Create optimization variables

p_gl, p_g2 = NonNegative (), NonNegative ()

z = NonNegative (num_winds)

p_lines = Variable (E)

p_w = RandomVariable (pymc.Lognormal (name="p_w", mu=1,
tau=1l, size=num_winds))

# Create second stage problem

p_g = vstack(p_gl, p_g2)

p = vstack(p_gl,
p_g2,
plload_idxes[:-11],
p_w-z,

plload_idxes[-1]])
Problem(Minimize (p_g.Txc_g + z.T*c_w),
[Axp_lines == p, p_g<=u_gens, z<=p_w,
abs (p_lines)<=u_lines])
Q = partial_optimize(p2, [p_g2, z, p_lines],

p2 =

[p_g1l)

# Create and solve first stage problem
pl = Problem(Minimize (expectation (Q(p_gl), m)))
pl.solve ()

J

Listing 4: A cvxstoc implementation of the optimal power
flow problem.

Figure 5: The electrical grid and (optimal) power generation for
the optimal power flow problem on the IEEE 14 Bus Test Case.
Red vertices are generators: a positive number indicates the opti-
mal power generation, while “sec. stg.” denotes an uncontrolled
generator. The blue vertex is a (stochastic) renewable generator:
its mean available (wind) power is shown above it. Other vertices
are loads: their (nonpositive) demanded powers are shown above
them.

4.5 ROBUST SUPPORT VECTOR MACHINE

Consider the problem of learning a support vector machine
(SVM) from a set of m data points {(z;,v;)}7,. Sup-
pose we would like to (additionally) model the fact that
our data collection process is noisy (in order to gain ro-
bustness in our solution), by incorporating the belief that
(say) x; ~ Normal(uy, %) for all ¢ where y; = 1 and
x; ~ Normal(ug,Ys) for all ¢ where y; = —1 into
the learning process. We can thereby pose the following
chance-constrained variant of the canonical (soft-margin)



SVM optimization problem [1]
minimize

Jwll3 +C 322, &
w,b,&;

subjectto  Prob (y;(w z; +b) >1-¢&) >,
fi > 0, 1= 1,... ,m,

where w € R", b € R, & € Ry fori = 1,...,m, C
is the regularization trade-off parameter, and 7 is a large
probability (e.g., 0.95)°.

A cvxstoc implementation of the robust SVM problem
is given in Listing 5.

(Q, b, xi = Variable(n), Variable(), NonNegative (m)

constr = []

Sigma = 0.lxnumpy.eye (n)

for i in range (m):
mu = numpy.array (X[i]) [0]
x = RandomVariableFactory () .create_normal_rv (mu,
<~ Sigma)
chance = prob(-y[i]* (w.T*x+b) >= (xi[i]-1), ns)
constr += [chance <= eta]

p = Problem(Minimize (norm(w, 2)
constr)

+ Cxsum_entries (x1i)),

p.solve ()

Listing 5: A cvxstoc implementation of the robust SVM
problem.

4.6 BUDGETED LEARNING OF A CLASSIFIER
IN A CASCADE

Suppose we are interested in learning a (single) classifier
that is part of a system (cascade) of classifiers; i.e., we are
interested in estimating the parameters a € R™ and b € R
of a first stage classifier, whose output is to be (somehow)
combined with the output of a second stage classifier, be-

fore presenting the combined output to a user'”.

If we knew the second stage classifier’s parameters, then
our learning task would be trivial. Instead, we choose to
model our uncertainty as follows: we assume that we do
know the second stage classifier’s loss function, but remain
uncertain of its feature representation. We can pose this as
a two-stage stochastic program, where the expectation in
the second stage is taken over all possible feature represen-
tations for the second stage classifier; for instance, if the
cascade is being used for document classification, then we
might posit that each possible feature representation in the
second stage is a function of a sample of a word from a
generative model (e.g., latent Dirichlet allocation).

We additionally assume that there is some overall test time
budget on the cascade, which we express as an upper bound
u € R4 on the quantity ||a||; + ||c/|1, where ¢ € R? are the
parameters of the second stage classifier [27].

“We note that this formulation is quite fine-grained, in the
sense that per-data point noise models/distributions, as well as
mistake probabilities, may be specified.

19Such scenarios are common in web search: see, e.g., [27].

Concretely, we can write this optimization problem as
minimize L (a, b; {x;, y:}71) + EQ(a,b),

a,b

where Q(a,b) = midn Ly (e, d; {z;,wi}_))

st. Jlally + leflh < wu,

{(x;,y;)}™, is the (fixed) training set of m points in
R" for the first stage classifier, and {(z;,w;)}}_; is the
(stochastic) training set of p points in R? for the second
stage classifier.

A cvxstoc implementation, where Ly and L, are (both)
taken to be the f5-regularized log loss, is given in Listing
6.
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# Create optimization variables
a, b = Variable(n), Variable()
c, d = Variable(q), Variable()

# Create second stage problem

obj2 = [log_sum_exp (vstack (0, -w[i]x(c.Txz[i]+d)))
for i in range (p)]
budget = norml (a) + norml (c)
p2 = Problem(Minimize (sum(obj2) + Cxnorm(c,2)),
[budget<=u])
Q = partial_optimize(p2, [c,d], [a,bl)

# Create and solve first stage problem

objl = [log_sum_exp (vstack (0, -y[i]~*(x
for i in range (m) ]

pl = Problem(Minimize (sum(objl) + Cxnorm(a,2) +

expectation(Q(a,b), ns)),

[i]*xa+tb)))

[n

pl.solve ()
J

Listing 6: A cvxstoc implementation of the budgeted learning
of a classifier in a cascade problem.

S CONCLUSION

We described disciplined convex stochastic program-
ming (DCSP), a modeling framework that can significantly
lower the barrier for modelers to specify and solve con-
vex stochastic programs. We presented a number of sam-
ple implementations of stochastic programs that illustrated
DCSP’s expressivity; in constrast, other frameworks often
require significantly more effort from the modeler to ex-
press the problem and/or manipulate it into standard form,
support a limited number of stochastic programming con-
structs, and cannot express certain families of convex opti-
mization problems.
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Abstract

Affect Control Theory (ACT) is a mathematical
model that makes accurate predictions about hu-
man behaviour across a wide range of settings.
The predictions, which are derived from statistics
about human actions and identities in real and
laboratory environments, are shared prescriptive
and affective behaviours that are believed to lead
to solutions to everyday cooperative problems. A
generalisation of ACT, called BayesAct, allows
the principles of ACT to be used for human-
interactive agents by combining a probabilistic
version of the ACT dynamical model of affect
with a utility function encoding external goals.
Planning in BayesAct, which we address in this
paper, then allows one to go beyond the affective
prescription, and leads to the emergence of more
complex interactions between ‘“‘cognitive” and
“affective” reasoning, such as deception leading
to manipulation and altercasting. We use a con-
tinuous variant of a successful Monte-Carlo tree
search planner (POMCP) that dynamically dis-
cretises the action and observation spaces while
planning. We give demonstrations on two classic
two-person social dilemmas.

INTRODUCTION

BayesAct [4, 20, 21, 22] is a partially-observable Markov
decision process (POMDP) model of affective interactions
between a human and an artificial agent. BayesAct is based
upon a sociological theory called “Affect Control The-
ory” (ACT) [16], but generalises this theory by modeling
affective states as probability distributions, and allowing
decision-theoretic reasoning about affect. BayesAct posits
that humans will strive to achieve consistency in shared af-
fective cultural sentiments about events, and will seek to
increase alignment (decrease deflection) with other agents
(including artificial ones). Importantly, this need to align
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implicitly defines an affective heuristic (a prescription') for
making decisions quickly within interactions. Agents with
sufficient resources can do further planning beyond this
prescription, possibly allowing them to manipulate other
agents to achieve individual profit in collaborative games.

BayesAct arises from the symbolic interactionist tradition
in sociology and proposes that humans learn and maintain
a set of shared cultural affective sentiments about people,
objects, behaviours, and about the dynamics of interper-
sonal events. Humans use a simple affective mapping to
appraise individuals, situations, and events as sentiments
in a three dimensional vector space of evaluation (good
vs. bad), potency (strong vs. weak) and activity (active
vs. inactive). These mappings can be measured, and the
culturally shared consistency has repeatedly been demon-
strated to be extremely robust in large cross-cultural stud-
ies [17, 29]. Many believe this consistency “gestalt” is a
keystone of human intelligence. Humans use it to make
predictions about what others will do, and to guide their
own behaviour. The shared sentiments, and the resulting
affective ecosystem of vector mappings, encodes a set of
social prescriptions that, if followed by all members of a
group, results in an equilibirium or social order [14] which
is optimal for the group as a whole, rather than for individ-
ual members. Humans living at the equilibrium “feel” good
and want to stay there. The evolutionary consequences of
this individual need are beneficial for the species.

Nevertheless, humans are also a curious, crafty and devi-
ous bunch, and often use their cortical processing power to
go beyond these prescriptions, finding individually bene-
ficial strategies that are still culturally acceptable, but that
are not perfectly normative. This delicate balance is main-
tained by evolution, as it is beneficial for the species to
avoid foundering within a rigid set of rules. In this pa-
per, starting from the principles of BayesAct, we investi-
gate how planning beyond cultural prescriptions can result
in deceptive or manipulative strategies in two-player social
dilemma games. To handle the continuous state, action and
observation spaces in BayesAct, we use a Monte-Carlo tree

"We prefer prescription, but also use norm, although the latter
must not be mis-interpreted as logical rules (see Section 5).



search (MCTS) algorithm that dynamically clusters obser-
vations and actions, and samples actions from the BayesAct
prescriptions as a distribution over the action space.

This paper makes two contributions. First, it describes how
to use MCTS planning in BayesAct, and gives arguments
for why this is an appropriate method. This idea was only
hinted at in [22]. Second, it shows how this planning can
lead to realistic and manipulative behaviours in the pris-
oner’s dilemma and battle of the sexes games.

2 BACKGROUND

2.1 Partially Observable Markov Decision Processes

A partially observable Markov decision process
(POMDP) [1] is a stochastic control model that con-
sists of a finite set S of states; a finite set A of actions;
a stochastic transition model Pr : S x A — A(S), with
Pr(s’|s, a) denoting the probability of moving from state s
to s’ when action « is taken, and A(.S) is a distribution over
S; a finite observation set 24; a stochastic observation
model, Pr(wg|s), denoting the probability of making
observation ws € €25 while the system is in state s; and a
reward assigning R(a, s’) to a transition to s’ induced by
action a. A policy maps belief states (i.e., distributions
over S) into actions, such that the expected discounted
sum of rewards is (approximately) maximised. =~ We use
factored POMDPs in which the state is represented by the
cross-product of a set of variables or features. POMDPs
have been used as models for many human-interactive
domains, including assistive technologies [19].

2.2 Affect Control Theory

Affect Control Theory (ACT) arises from work on the psy-
chology and sociology of human social interaction [16].
ACT proposes that social perceptions, behaviours, and
emotions are guided by a psychological need to minimize
the differences between culturally shared fundamental af-
fective sentiments about social situations and the transient
impressions resulting from the interactions between ele-
ments within those situations. Fundamental sentiments,
f, are representations of social objects, such as interac-
tants’ identities and behaviours, as vectors in a 3D affec-
tive space, hypothesised to be a universal organising prin-
ciple of human socio-emotional experience [29]. The ba-
sis vectors of affective space are called Evaluation/valence,
Potency/control, and Activity/arousal (EPA). EPA profiles
of concepts can be measured with the semantic differen-
tial, a survey technique where respondents rate affective
meanings of concepts on numerical scales with opposing
adjectives at each end (e.g., good, nice vs. bad, awful for
E, weak, little vs. strong, big for P, and calm, passive vs.
exciting, active for A). Affect control theorists have com-
piled lexicons of a few thousand words along with aver-
age EPA ratings obtained from survey participants who are
knowledgeable about their culture [17]. For example, most
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English speakers agree that professors are about as nice as
students (E), more powerful (P) and less active (A). The
corresponding EPAs are [1.7,1.8,0.5] for professor and
[1.8,0.7,1.2] for student®. In Japan, professor has the same
P (1.8) but students are seen as less powerful (-0.21).

The three dimensions were found by Osgood to be ex-
tremely robust across time and cultures. More recently
these three dimensions are also thought to be related di-
rectly to intrinsic reward [12]. That is, it seems that reward
is assessed by humans along the same three dimensions:
Evaluation roughly corresponds with expected value, Po-
tency with risk (e.g. powerful things are more risky to
deal with, because they do what they want and ignore
you), and Activity corresponds roughly with uncertainty,
increased risk, and decreased values (e.g. faster and more
excited things are more risky and less likely to result in
reward) [12]. Similarly, Scholl argues that the three dimen-
sions are in correspondence with the major factors govern-
ing choice in social dilemmas [33]. Evaluation is a measure
of affiliation or correspondence between outcomes: agents
with similar goals will rate each other more positively. Po-
tency is a measure of dependence: agents who can reach
their goals independently of other agents are more power-
ful. Activity is a measure of the magnitude of dependence:
agents with bigger payoffs will tend to be more active.

Social events can cause transient impressions, 7 (also three
dimensional in EPA space) of identities and behaviours that
may deviate from their corresponding fundamental senti-
ments, f. ACT models this formation of impressions from
events with a grammar of the form actor-behaviour-object.
Consider for example a professor (actor) who yells (be-
haviour) at a student (object). Most would agree that this
professor appears considerably less nice (E), a bit less po-
tent (P), and certainly more aroused (A) than the cultural
average of a professor. Such transient shifts in affective
meaning caused by specific events are described with mod-
els of the form 7 = MY (f’, ), where M is a matrix
of statistically estimated prediction coefficients from em-
pirical impression-formation studies and ¥ is a vector of
polynomial features in f and 7. In ACT, the weighted sum
of squared Euclidean distances between fundamental senti-
ments and transient impressions is called deflection, and is
hypothesised to correspond to an aversive state of mind that
humans seek to avoid. This affect control principle allows
ACT to compute prescriptive actions for humans: those
that minimize the deflection. Emotions in ACT are com-
puted as a function of the difference between fundamentals
and transients [16], and are thought to be communicative
signals of vector deflection that help maintain alignment
between cooperative agents. ACT has been shown to be
highly accurate in explaining verbal behaviours of mock
leaders in a computer-simulated business [34], and group
dynamics [18], among others [27].

2 All EPA labels and values in the paper are taken from the
Indiana 2002-2004 ACT lexicon [17]. Values range by historical
convention from —4.3 to 4+-4.3.



2.3 Bayesian Affect Control Theory

Recently, ACT was generalised and formulated as a
POMDP for human-interactive artificially intelligent sys-
tems [22]. This new model, called BayesAct, generalises
the original theory in three ways. First, sentiments and im-
pressions are viewed as probability distributions over latent
variables (e.g., f and 7) rather than points in the EPA space,
allowing for multimodal, uncertain and dynamic affective
states to be modeled and learned. Second, affective inter-
actions are augmented with propositional states and actions
(e.g. the usual state and action space considered in Al ap-
plications). Third, an explicit r