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ABSTRACT 

The present paper describes a way for calculating the mechanical 

ling of electrical machines. The mechanical vibrations are the 
result of the magnetic forces acting on the surfaces of the stator. 

three steps: 
1. Finite Element Method (FEM) calculation of the magnetic 
field, 
2. Local force density calculation and its Fourier decomposition, 
3. Calculation of the dynamic displacements of the electrical 
machine's stator and case. 

vibrations of the stator and case in the two dimensional model- 

The proceeding of the vibration calculation can be divided into 

1 

2 

Fig. 1: The surface force density 
MAGNETIC FIELD 

@ =  F.?ida (2) The calculation of the magnetic field will be done using the Finite f 
Element Method with a vector potential description. Therefore 
this procedure isn't discussed here in detail. 

F~~ the expression F . it can be written 

(3) 
1 F . ?i = &d. ?i) - 5?i12(8. 2) 

supposing to regard linear material properties. Regarding the 
definition of the stress tensor (2) for a small part of volume on 
the surface of a body (Fig. l) ,  one gets 

SURFACE FORCE DENSITY 

The magnetic field and the mechanical force distribution in syn- 
chronous and asynchronous machines can be regarded as rotating 
ones. The magnetic field is cyclic in one pole-pair. As soon as 
these forces act on the machine's stator together with the case, 
dynamic deformation occurs on the surface. 
The FEmethod will be used for the calculation of the magnetic 
field distribution as well as for the calculation of the mechanical 
vibrations. 
pole of a synchronous machine, which will be used here for illu- 
strating the method. This model can be used for the calculation 

a' = lim - F .  ?ids = Fl Gl + F2.  ?i2 (4) d,l+O 'f 1 c 
using (3) and the unit vector z12, (4) becomes (l). 
Regarding further on the electrodynamic field-conditions on the 

border 

On the one hand a magnetic model describes one 

of the magnetic field as well as for the surface force density. On 

D i v g = D  a n d R o t 2 = 0 ,  (5) 

an easy calculation leads to the expression 
1 

the other hand a mechanical model including the whole stator 3 = -z12[Bn(Hln 2 - H2n) - Ht(B1t - &)I.  (6)  
and the case will be used for the calculation of the mechanical 
vibrations. 
Following 111 the method used for the calculation of the surface 
force density is a derivative of the stress tensor method. For a 
linear approximation of the ferromagnetic material the surface 
force density 

having set B, = B ~ ,  = B~~ and H, = Hln = H2n . 
See also Fig. 2 and take into account that the surface force 
density is always in the direction of the normal unit vector on 
the surface. 
Returning to the application of the synchronous machine, the 
force is a cyclic function in one pole. This surface force density 

1 1 - - function has to be approximated by a number of models, each 

takes the form as below: 

a" = I%($, . f i l a )  - 5 ?i12 (&.&) - [G2 (32. G12) - 5 ?i12 (B2 HZ)] 
(1) area I --;;- 

The values Z?1,&,&,& describe the magnetic field at both 
sides of the boundary surface. An illustration can be taken from 
Fig. 1. 
The unit normal vector G12 is in the direction from region 2 to 

area 2 
1. It can be seen from equation (1) that the product of the field 
strength and the flux density is essential for the calculation of 

\ 
I \ ' 

the surface force density. In [I] it is shown that the global force 
@ acting upon a body can be calculated by integrating the stress 
iensor T - ii over a closed surface S 

~ i ~ .  2: ~ ~ ~ ~ ~ ~ ~ ~ i ~ i ~ ~  of the vectors in normal and tangen- 
tial direction 
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with another rotor position. The synchronous machine, here 
used as an example, includes 12 poles. There have been chosen 
30 models with a 1 degree (mech.) difference of the rotor position 
from one model to the next one. 
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Fig. 4: Time dependent functions of force density at some 
chosen points (see also Fig. 3) and a spectrum for 
the points 1 and 2 

Fig. 3: Geometric data and some models with their surface 

Fig.3 shows some geometric data about the synchronous machine 
and a selection of 3 models with the surface force densities acting 
on the stator. The arrows show the direction and the relative 
magnitude of the force density. The calculated force densities 
are in a range of 13 N/cm2. 
In Fig. 4 and Fig. 5 there is shown a set of time functions of 
the force density at several points described in Fig. 3. A dis- 
crete Fourier decomposition of the surface force time dependent 
functions in every surface element, using the following equations 

force density 
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Fig. 5: Time dependent functions of force density at some 
chosen points (see also Fig. 3) 
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The models for both the magnetic and mechanic computation 
consist of triangular elements. The mechanic model is shown in 
Fig. 6. The model includes the stator and its case with 1100 
nodes and 1776 elements. The two bore-holes have, as a result 
of the Dirichlet boundary conditions, no displacements. The 
following table includes some parameters which were used for 
the mechanic computation. 

stator Al-case 
Emodul.-1.2.1D1’”27.1.1010”Z 
. density 7.8 103kg/m3 0.9. 103kg/m3 
poisson’s 0.25 0.25 
number 

P 

o(wt)  = ao/2 + a, cos(nwt) + b, cos(nwt) (7) 
n=l 

2 N  2 N  

N i=l ;=I 
a0 = - ( ~ ( w t i )  , an = - a(&;) cos(nwti), (8) 

produces a spectrum for each surface element of the mesh. N is 
the double number of models used for one period of the surface 
force function, e.g. N = 60 for this example. Such a spectrum, 
as shown in Fig. 4, has to be made for each surface element of 
the mesh. The frequencies of the harmonics are related to the 
frequency of the stator current. The surface force distribution 
has to be transfered from the magnetic to the mechanic model 
(see Fig. 4 and Fig. 5) for each harmonic. Then the displacement 
calculations can be made. 

MECHANICAL COMPUTATION 

1100 nodes and 1776 elements 

Fig. 6: The mechanical model 

The FE-calculation of the dynamic displacements is based upon 
the principle of Hamilton, which prescribes to find the minimum 
of the difference from the kinetic energy and the elastic potential 
of the whole structure [2]. Using this principle one gets the 
following system of equations 

- M.&!+I&Q=& (10) 
- D is the global vector of node displacements, M is the glo- 
bal mass matrix including .the informations of inertia and K 
is the global stiffness matrix, describing the elastic features of 
the structure. Because of the harmonic time dependence of the 
node displacements one gets 

- d = -  w m e c h ’ D .  2 (11) 

( K -  wi,& ’ a) ‘ = B. (12) 

Combined with the equation (10) it follows 

The vector 
densities. 

includes the amplitudes of the excitating force 

SOME RESULTS 

The mechanical vibrations were computed at 1500 rpm and 3000 
rpm. The machine with 12 poles signifies a stator-frequency of 
fSst = 150Hz at a speed of 1500 rpm. Therefore the stator’s fre- 
quency at a speed of 3000 rpm is fst = 300Hz. The following ta- 
ble presents an overview of the harmonics surface-force-densities 
and their displacements. 

I harmonic I frequency I displacement I COR’S force 1 I order I 1500 rpm [Hz] I 1500 rpm [pm] I densities [N/cm2] I 

Following there shall be presented some results for a speed of 
1500 rpm. Fig. 7 displays the resulting deformation for the 2nd 
harmonic (300 Hz). It is quasistatic, i.e. the local deformation 
follows consequently the surface force distribution as a result of 
the fact that the frequency is far away from an eigenvalue. 
Fig. 8 shows the nodes displacements for the 6th harmonic (900 
Hz).One recognizes an eigenform of the order 1. 
Fig. 9 presents the deformation results of the 24th harmonic 
(3000 Hz). Here can be found the third eigenform of the struc- 
ture. 
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Fig. 10 and 11 finally display at a speed of 3000 rpm the defor- 
mations of the 16th and 24th harmonics. The eigenforms of the 
order 4 and 5 can be recognized. 

Fig. 11: Structure deformation - 24th harmonic - 7200Hz 

Fig. 7: Structure deformation - 2nd harmonic - 300Hz 
CONCLUSIONS 

1.) The Finite Element Method is a usefull tool to compute 

the machine’s magnetic field, 

0 the machine’s mechanic deformations even in case of time 
harmonic magnetic fields; 

Fig. 8: Structure deformation - 6th harmonic - 9OOHz 
._.-.-..__ 

Fig. 9: Structure deformation - 24th harmonic - 3600 Hz 

- 
Fig. 10: Structure deformation - 16th harmonic - 4800Hz 

2.) The method used here for calculating the surface force den- 
sity being a derivative of the Maxwell Stress Tensor method per- 
mits the combination of computing magnetic field and mechanic 
deformation. 

3.) The computed results of structure deformations point out 
the importance of eigenvalues and eigenforms. An investigation 
of mechnical vibrations has to pay attention to the resonance 
frequencies. 
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