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a b s t r a c t

This paper proposes a multi-scale energy-based material model for poly-crystalline materials. Describing
the behaviour of poly-crystalline materials at three spatial scales of dominating physical mechanisms
allows accounting for the heterogeneity and multi-axiality of the material behaviour. The three spatial
scales are the poly-crystalline, grain and domain scale. Together with appropriate scale transitions rules
and models for local magnetic behaviour at each scale, the model is able to describe the magneto-elastic
behaviour (magnetostriction and hysteresis) at the macroscale, although the data input is merely based
on a set of physical constants. Introducing a new energy density function that describes the demagne-
tisation field, the anhysteretic multi-scale energy-based material model is extended to the hysteretic
case. The hysteresis behaviour is included at the domain scale according to the micro-magnetic domain
theory while preserving a valid description for the magneto-elastic coupling. The model is verified using
existing measurement data for different mechanical stress levels.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Modelling of ferromagnetic material behaviour is commonly
done using microscopic approaches based on the Landau–Lif-
schitz–Gilbert equation or using macroscopic models with
constitutive laws identified from macroscopic measurements.
However, these attempts are either unfeasible for modelling
macroscopic structures or do not consider the heterogeneity and
multi-axiality of the material behaviour.

Contemporary electro-technical design requires highly accurate
models for ferromagnetic materials. They should be capable of
representing hysteresis and magnetostriction effects properly.
Moreover, they should consider the multi-axiality and hetero-
geneity of the material behaviour. Finally, it should be possible to
extract macroscopic effective properties from the constituent
properties, local anisotropy and crystallographic texture. A multi-
scale material model, connecting various spatial material scales
ave Propagation and Signal

(D. Vanoost).
upholding strong physical connections while remaining applicable
as a design tool, is required.

In 1865 Villari found the correlation between a magnetisation
change and the tensile stress of iron-based materials [34,43],
known as the Villari effect [12]. Buckley showed in 1925 [8] that a
mechanical stress has a non-negligible impact on the magnetic
material properties. It affects both the size as well as the shape of
the hysteresis loop, i.e., the extrinsic properties coercivity and
remanence [7,8,13,16,28–30,38,35].

The internal mechanical stress can originate from: (i) the
manufacturing process [5]; (ii) a heating or a cooling step [39]; (iii)
the operation of the electrical device (e.g. centrifugal forces due to
the high-rotational speed) [6]; or (iv) the magnetostriction in a
poly-crystalline material [14].

In order to account for the magneto-elastic coupling two ap-
proaches can be distinguished based on their underlying physical
assumptions.

1. Phenomenological macroscopic models predict the magnetic
behaviour at the poly-crystalline scale introducing the mechan-
ical stress as a parameter in a classical macroscopic hysteresis
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model, e.g., the Jiles–Atherton–Sablik model [37] or the Preisach
model [1]. Other macroscopic models use thermodynamic
arguments [24] as an additional macroscopic energy term
including the magneto-elastic effect. Their disadvantages are:
(i) the small working range, (ii) only representing isotropic
materials, (iii) requiring tedious parameter identifications and
(vi) mostly excluding multi-axial mechanical stresses. This
means that they are acceptable for standard magnetic materials
in traditional situations and are comparably simple with fast
computations, but not appropriate as an investigation tool to
optimize materials in specific designs. Moreover, they neglect
the subtle coupling of magnetostriction and the magneto-elastic
effect by excluding the knowledge of the internal domain
structure and the crystallographic magnetic texture.

2. Micro-magnetic models predict the magnetic behaviour at the
domain scale and/or the grain scale. The magnetic domain be-
haviour, investigated by the energy density functions, re-
presents the potential energy of the investigated crystal
[18,32,42]. The minimum of the energy density functions
defines current magnetic state being affected by a internal
mechanical stress and a magnetic field. Among others, Arm-
strong [2] and DeSimone and James [17], use uni-axial and cubic
crystalline symmetries in magneto-elastic simulations. These
simulations are done on the domain structure limiting the
approach in size to reduce the computational cost.

The aforementioned strategies are either of limited prediction
range or difficult to manage to predict the result of the intricate
magneto-elastic coupling of a poly-crystalline material for arbi-
trary mechanic stresses (vectorial, compressive, tensile).

In contrast, multi-scale methods are able to resolve the com-
plexity of the magneto-elastic coupling by enriching the macro-
scopic material description by observations at various spatial
scales. Describing the behaviour of poly-crystalline materials at
different spatial scales allows distinguishing between dominating
physical mechanisms and accounting for the heterogeneity and
multiaxiality of the material behaviour. Together with appropriate
scale transitions rules and models for the local magnetic behaviour
at each scale, the model is able to describe the magneto-elastic
behaviour (magnetostriction and hysteresis) at the macroscale
although the data input is merely based on a set of physical
constants.

This is possible using energy-based material models such as the
Armstrong model [2] or the multi-scale model [15], when ac-
complished by a static hysteresis model. The Armstrong model
uses an incremental hysteresis model for a single-crystal material
[4], i.e., hysteresis is included for a fixed crystal direction by cal-
culating the losses due to the crystal defects. In contrast the ori-
ginally anhysteretic multi-scale approach presented in [15] is ex-
tended to the hysteretic case using the Hauser energetic model for
ferromagnetic hysteresis for the description of poly-crystalline
materials [16,21]. Hysteresis is obtained by adding an irreversible
magnetic field to the anhysteretic field component obtained by the
anhysteretic multi-scale model [15]. This approach requires four
additional free parameters identified by a tedious parameter
identification. The multi-scale approach in [15] is based on the
results of the multi-scale approach of: (i) poly-crystalline materials
for structural mechanic simulations [23] and (ii) ferroelectric poly-
crystallines [25], which are included in the non-linear behaviour of
a heterogeneous material.

In this paper, however, the hysteresis effect is implemented at
the domain scale for a poly-crystalline isotropic material. In con-
trast to [20], where artificial thresholds prevent early switching of
magnetic domains, the Boltzmann distribution is extended using
the grain scale magnetisation of the previous time step for cor-
recting the statistical distribution of magnetic domains in the new
energy density function. This approach requires less parameters
compared to the Preisach [10], Jiles–Atherton [44] and Hauser [21]
models, while including the effect of the mechanical stress on the
hysteresis and does not demand a tedious parameter identification
work.

The paper is organised as follows. Section 2 introduced the
definition of the three different spatial material scales used to
account for the magneto-elastic coupling affected by the different
grain orientations in a poly-crystalline material as discussed in
Section 3. Section 4 discusses the multi-scale model posed by
Eshelby inclusion problem and the scale transitions rules mapping
between the domain scale, the grain scale and the poly-crystalline
scale. Section 4.2 describes the three standard energy density
functions of micromagnetism, i.e., Zeemann, magneto-crystalline
anisotropy and magneto-elastic energy. In addition, the proposed
energy density function for inclusion of magnetic hysteresis at the
domain scale is presented. The model is validated in Section 5
using measurements and physical theories both available in lit-
erature. The paper ends with some conclusions.
2. Various spatial material scales

The multi-scale material model iterates between three different
spatial material scales to represent the magnetic behaviour of the
poly-crystalline material. The scales are the poly-crystalline scale,
the grain scale and the domain scale, see Fig. 1.

1. The poly-crystalline scale ( – )0.1 50 mm is a representative volume
element [15], i.e., it represents the macroscopic material proper-
ties of the considered material. The poly-crystalline scale con-
tains different, randomly oriented grains. Each grain contributes
to the macroscopic behaviour.

2. One grain ( μ – )1 m 10 mm consists of multiple crystals, which are
almost perfectly aligned with each other. The grain scale con-
siders homogeneous elastic properties and a uniform strain
[15]. The grain magnetisation is determined by the magnetic
domains in the grain.

3. A magnetic domain ( – μ0.1 1 m forms a substructure of the grain
structure. Inside a magnetic domain both the mechanic as well
as magnetic quantities are homogeneous, forming the smallest
scale of the multi-scale scheme. Depending on the crystal
structure, i.e., the crystal system, (i) body centred cubic (bcc)
crystal, (ii) the face centred cubic (fcc) crystal, (iii) the hexagonal
crystal, easy and hard magnetization directions are formed de-
fining the direction of spontaneous domain magnetization in
the demagnetized state [7,9,10,12].
3. Different grain orientations – crystallographic texture

The relation between the magnetic and mechanic properties at
the three different spatial scales is defined by a combination of
localisation and homogenisation operations. Therewith it is pos-
sible to calculate the magnetisation and magnetostriction of a
material point at the poly-crystalline scale accounting for the in-
tricate magneto-elastic coupling ruled by characteristics described
at different spatial scales.

The external magnetic field Hext and mechanical stress σext act
on the poly-crystalline scale and are described in the same re-
ference frame, called the poly-crystalline reference frame. This
reference frame is the main reference frame in the material model.
The other reference frames used at the grain scale are determined
by the different grain orientations. In contrast to [15], the mag-
netic field acting at the grain scale is not transformed in a locali-
sation scheme to include the effect of the demagnetisation field,



Fig. 1. Various spatial material scales. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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but transformed to the reference of the grain scale. Instead, the
effect of the demagnetisation field is included using a new energy
density function at the domain scale, see Section 4.2.

The mechanical stress σg at the grain scale consists of the me-
chanical stress σext applied externally and a component that ac-
counts for the interaction of the different grains with each other
obtained using a localization scheme. This localisation scheme is
based on solving Eshelby's inclusion problem, as described in
[15,19,31]. The Eshelby inclusion problem is solved for a poly-
crystalline material consisting of multiple grains considered as
different inclusions [15,19,31]. This approach relies on the mac-
roscopic crystallographic magnetic texture of the material, im-
plying that the different orientations of the grains/inclusions are
known. Instead of measuring the orientation distribution function
(ODF) of one single specific sample [26] and assuming that this is
representative for the whole material an ODF is constructed for
the whole material.

As described in [41], a cubic crystal consists of 24 indis-
tinguishable standard triangles. A standard triangle is a plane
cornered by the directions 100 , 101 , 111 . As shown in Fig. 1,
scale 3, the red checker board triangle can be transformed into
another standard triangle (e.g., the blue star triangle in Fig. 1, scale
3) using an appropriate rigid rotation of the crystal. This rotation
of the crystal does not influence the atomic arrangements, but
enables to reduce the number of grain orientations by distributing
the grain orientations in one standard triangle. Indeed, when the
magnetic field is aligned with a direction in the blue star triangle
in Fig. 1, scale 3, the effect on the crystal equals the effect when the
magnetic field aligns with the similar direction in the red checker
board triangle in Fig. 1, scale 3, apart from rotation [27]. This de-
creases significantly the required number of grain orientations
that have to be considered and speeds up the model while
maintaining the same accuracy.

In order to simulate a magnetically isotropic material, a uni-
form distribution of the grains is needed. This uniform distribution
is obtained by mapping the different grain orientations in an
equilateral triangle, see Fig. 1, red vertical arrow. Depending on the
required accuracy, different levels can be used. The equilateral
triangle with corners 100 , 101 , 111 has the practical property to
generate a uniform distribution. Every point in this map re-
presents a grain. The externally applied magnetic field is aligned
with the specific grain direction shown in the map. This specific
grain orientation and the uniform distribution are obtained using
the vertices, middle faces and centroids of the equilateral triangle.
In order to obtain a more accurate model, a higher number of grain
orientations needs to be considered. This could be done iteratively
to obtain a certain, predefined accuracy, i.e., not limited to four.
Depending on the level L of accuracy, #N triangles identical equilateral
triangles are used, leading to #N orientations different grain orienta-
tions:

= ( )#
−N 4 1L

triangles
1

( )( )( )= + − − !+ ( )#
− −N 3 2 2 1 0 4 2

L L L
orientations

1 1

The use of accuracy level one, two or three requires to divide an
equilateral triangle into one, four or sixteen identical equilateral
triangles leading to seven, nineteen or sixty-one different grain
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orientations which are uniformly distributed by construction. For
level one accuracy, the used grain orientations are the directions
where the magnetic field aligns with the vertices ( 100 , 101 ,
111 ), middle faces ( = +201 100 101 , = +211 100 111 ,

= +212 101 111 ) and centroids ( = + +321 100 101 111 ).
Middle faces in accuracy level −L 1 become vertices in accuracy
level L. When material with magneto-crystalline anisotropy is
+
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Fig. 3. Details of the localization and concentration operation, performed in point
6 of Fig. 2, used to solve the Eshelby inclusion problem. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this paper.)
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magnetic field Hext (point 1 in Fig. 2), the external mechanical
stress σext (point 2 in Fig. 2), some material parameters (point 3 in
Fig. 2) and a prescribed accuracy as inputs. The material para-
meters are composed of five physical constants characteristic for
the unit cell of the crystal system: (i) the saturation magnetisation
Ms, (ii) the magneto-crystalline anisotropy constants K1 and K2, (iii)
the saturation magnetostrictions λ100 and λ111 of the crystal sys-
tems unit cell along the 100 and 111 directions, (iv) the elasticity
coefficients C11, C12 and C44.

Based on the material parameters, the different grain orienta-
tions are modelled (point 4 in Fig. 2), as described in Section 2
leading to the initial guesses of: (i) the mean poly-crystalline scale
magnetisation Mm, (ii) all grain scale magnetisations Mg, (iii) the
mean poly-crystalline scale magnetostriction ϵm and (iv) all grain
scale magnetostrictions ϵg (point 5 in Fig. 2).

4.1. Localization: Eshelby's inclusion problem

The effective elastic and magnetic properties of the poly-crys-
talline material depend on the properties, interactions and or-
ientations of the individual grains. In order to account for the in-
tricate coupling at the grain scale a transformation of the applied
mechanical stress and magnetic field from the poly-crystalline scale
to the grain scale is required. The grain scale mechanical stress σg

originates in parts from (i) the external mechanical stress σext, (ii)
the magnetostrictive strains due to the applied magnetic field and
(iii) the collisions between the grains.

In order to include the interaction of the different grains with
each other, a self-consistent scheme (Fig. 2) is used [11,15,16,33].
As described in [15,16,19,31], passing from grain to poly-crystalline
quantities represents a typical problem of homogenisation that
requires a self-consistent poly-crystalline scheme. This is a
homogenisation procedure based on the work of Hill [31], Kröner
[31] and Eshelby [19]. It assumes that the elastic properties are
known on the grain scale (point 8 in Fig. 2) and starts from Eqs.
(3) and (4), where Bg and Ag are, respectively, the stress-con-
centration and the strain-localization tensor (point 6 of Fig. 2).
Starting from the situation at the previous time step an iteration
between the grain and poly-crystalline scale is conducted until a
consistent strain distribution is obtained [33]. The result is the
required grain scale mechanical stress σg (point 7 in Fig. 2).

Fig. 3 shows in more detail the localization and concentration
scheme used in point 6 of Fig. 2. The grain scale mechanical stress
σg is composed of the external mechanical stress σext (transformed
to the crystal reference frame) and the residual mechanical stress.
The residual mechanical stress originates from the eigenstrain, i.e.,
the free strain (magnetostrictive strain). This generated residual
mechanical stress requires that the condition σ σ= = ϵL :ext g eff m

is fulfilled, where Leff is the effective elasticity coefficient tensor of
the poly-crystalline material and ϵm is the poly-crystalline scale
strain (point 17 in Fig. 2):

σ σ= ( )B : 3g g ext

ϵ = ϵ ( )A : 4g g m

Notice that (4) is only the first part of the equation used in
Fig. 3. The second part of this equation extends (4) to the magneto-
elastic coupling. The stress-concentration Bg and the strain-loca-
lization Ag tensors, which are fourth-order tensors that function as
linear operators, are defined by [15]:

= ( )−B L A L: : 5g g g eff
1

= ( + ) ( + ) ( )⁎
−

⁎A L L L L: 6g g
1

eff
= ( − ) ( )⁎
−L L S I: 70 E

1

In order to calculate the stress-concentration Bg and the strain-
localization Ag tensors, Hill's constraint tensor ⁎L (7) is needed.
Hill's constraint tensor is determined by: (i) the Eshelby tensor SE,
(ii) the fourth order unit tensor I and (iii) the elasticity coefficient
tensor L0 of the homogeneous material. L0 has the same properties
as the poly-crystalline material. Eshelby [19] has shown that, as-
suming spherical inclusions, the Eshelby tensor SE only depends
on the elasticity coefficient. This means that L0 is the only variable.
The self-consistent poly-crystalline scheme [33] works by setting

=L L0 eff and calculating Leff using (8) at the poly-crystalline scale
(point 17 in Fig. 2):

= ( + ) ( + ) ( )⁎
−

⁎L L L L L L: : 8eff g g
1

eff

Eq. (8), which is central for the self-consistent scheme, is an im-
plicit equation. To solve this implicit equation an iteration process
is required.

The self-consistent poly-crystalline scheme can be extended to
the magneto-elastic coupling (red part of the stress concentration
in Fig. 3), by including the magnetic interaction in (3). The mag-
netic interaction is implemented, using the effect of the magne-
tostrictive strain on the grain scale ϵμ

g and the poly-crystalline scale
ϵμ

m, forming an eigenstress, which amounts to replacing (3) by (9):

σ σ= + (ϵ − ϵ ) ( )σ σ μ μB L: : 9g g ext g m g

Here, σLg is the elastic incompatibility tensor. It is important to
note that these tensors depend only on the elastic coefficients of
the grain and the considered homogeneous medium. The elastic
coefficients of the homogeneous medium are obtained from the
elastic coefficients of the grain and the self-consistent poly-crys-
talline scheme. The elastic coefficients of the grain are considered
to be constant (Section 2). Eq. (9) incorporates the incompatibility
due to the difference in the behaviour between an individual grain
and the surrounding medium. Neither the actual poly-crystalline
strain ϵm, nor the grain scale strain ϵg are used. Instead the mac-
roscopic magnetostrictive strain ϵμ

m and grain scale magnetostric-
tion strain ϵμ

g are used. The magnetostrictive part of the strain is
the part that represents the magnetic interaction, i.e., the strain
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due to the magnetic field which causes the residual mechanical
stress. Only these magnetostrictive strains are used as the eigen-
strain in the Eshelby inclusion problem. The macroscopic magne-
tostriction strain is obtained with a volume average over the
polycrystal.
4.2. Domain scale

The grain scale mechanical stress σg and external magnetic field
Hext used as inputs for the grain scale (point 8 in Fig. 2) directly
serve as inputs for the domain scale calculation. Based on these,
the corresponding energy densities are calculated. These are (i) the
Zeeman energy density WH (point 9 in Fig. 2), (ii) the magneto-
crystalline anisotropy energy density Wan (point 10 in Fig. 2) and
(iii) the mechanical stress induced anisotropy energy density σW
(point 11 in Fig. 2) [10, Chapter 7] as well as the hysteresis energy
density function Whys (point 13 in Fig. 2). The assumptions of a
uniform strain and a uniform magnetic field exclude the need of
calculating the exchange energy [15].

4.2.1. Anhysteretic approach for magneto-elastic coupling
The anhysteretic description of the reversible magneto-elastic

behaviour is based on the definition of the free energy of the
material at the domain scale. In combination with the scale tran-
sition rules of Section 4.1 the behaviour of the poly-crystalline
material is defined. The free energy αW of a domain α is assumed
to be uniform and is the sum of three contributions. The Zeeman
energy density WH (10) is the energy stored in the system due to
the magnetic field = [ ]H H H H, ,1 2 3 . The Zeeman energy density is
minimized when the magnetisation α α α[ ]M , ,s M M M1 2 3 has the same
orientation as the magnetic field, i.e., it is the magneto-static en-
ergy tending to align the domain magnetization along the mag-
netic field. α α α α= [ ], ,M M M M1 2 3 defines the direction cosines of the
possible magnetisation states (point 9 of Fig. 2):

μ α α α= − ( + + ) ( )W M H H H 10H 0 s M 1 M 2 M 31 2 3

In order to account for the presence of directions of easy
magnetization of the underlying crystal system [12, Chapter 7], the
magneto-crystalline anisotropy energy density Wan (11) is used
(point 10 of Fig. 2). In case of a cubic crystallographic symmetry,
the crystal anisotropic constants K1 and K2 are used:

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

α α α α α α

α α α

= + +

+ ( )

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

W K

K 11

an 1 M
2

M
2

M
2

M
2

M
2

M
2

2 M
2

M
2

M
2

1 2 2 3 3 1

1 2 3

Interaction of mechanical stress and the crystal structure [12]
affects the hard, medium and easy directions of magnetization.
The stress induced anisotropy energy density σW (12) (point 11 of
Fig. 2) depends on the saturation magnetostrictions λ100 and λ111
in case of a cubic crystallographic symmetry. The saturation
magnetostrictions are defined by the strain change due to the
rotation of a fully random magnetisation state to a fully oriented
magnetisation state in the | |100 or | |111 direction, respectively. Eq.
(12) is notated in the Mandel notation [22], which vectorizes the
mechanical stress as σ σ σ σ σ σ σ= [ ], , , , ,11 22 33 23 13 12 :

( ) ( ) ( )
( )

λ σ α σ α σ α

λ σ α α σ α α σ α α

= − − + − + −

− [ ( ) + ( ) + ( )]
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Eq. (12) assumes that the magnetostrictive strain is isochore
[15]. This implies that the strain can be described with two instead
of three parameters as shown in (13) in Mandel notation [22]:
λ γ

λ γ

λ γ

λ γ γ

λ γ γ

λ γ γ
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( − )

( − )

( − )

( )

μ

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

3
2

1/3

1/3

1/3

2

2

2

.

13

100 1
2

100 2
2

100 3
2

111 2 3

111 1 3

111 1 2

The sum of these three energy densities (14) depends on the
direction cosines of the possible magnetisation states
α α α α= [ ], ,M M M M1 2 3 . When the crystal structure is perfect, the
magnetisation moments will align with the cosine direction
γ γ γ γ= [ ], ,1 2 3 , which is the direction with the lowest total internal
energy density γ( ( ) = ( ))α αW Wmin :

= + + ( )α σW W W W . 14H an

4.2.2. Hysteresis effects
The described multi-scale model is restricted to the reversible

part of the magneto-elastic behaviour so far. The complex, in-
tricate coupling of elastic and magnetic effects is captured but ir-
reversible effects are not included. In the following we propose to
introduced the hysteresis effect at the domain scale. The irrever-
sible behaviour is incorporated at the domain scale by adding an
additional energy density to the free energy that accounts for the
magnetic state of the previous time step. Depending on the ap-
plied magnetic field, the applied mechanical stress and the pre-
vious distribution state of the magnetic domains in the grain, the
new state is obtained. When hysteresis occurs, the difference in
magnetisation is mainly due to another distribution pattern. In-
deed, the magnetisation equals zero for a grain which consists out
of six equal domains aligned with the easy axis (in case the 100 is
an easy axis) and also when two equal opposite domains are much
larger than the other four equal domains. The opposing force that
wants to keep the magnetisation and distribution of the magnetic
domain constant is described as a demagnetisation field that en-
sures that the magnetic domains want to be aligned with their
nearest easy direction of magnetization and could be interpreted
as a mechanical analogy by inertia. Critical to this approach is the
influence of the crystal structure on the shape of the hysteresis
loop [9,10]. This resembles to the early work of Stoner and
Wohlfarth [10,40] that determines the shape of the hysteresis loop
according to the angle between the magnetisation and the easy
axis of the Stoner–Wohlfarth particle (uni-axial crystals). Although
the Stoner–Wohlfarth model is quite out of context for cubic
crystals, because a Stoner–Wohlfarth particle only has one easy
axis, it demonstrates the importance of the easy axis for the hys-
teresis process.

In a cubic crystal there are three or four easy axes available
leading to a different magnetisation process. In this case the focus
lays on the domain wall motion, i.e., 90° wall motion in materials
which have the 100 as an easy axis and 71° and 109° wall motion
in materials which have the 111 as an easy axis [10], when low
magnetic fields are used. For higher magnetic fields, when most
domains are favourably oriented, a reversible rotation occurs.

The mechanical stress affects the distribution of the magnetic
domains by affecting the easy axis. Even when the stress induced
anisotropy energy density is an order of magnitude lower than the
magneto-crystalline anisotropy energy density, its effect is not
negligible. This will lead to another distribution of the magnetic
domains over the easy axes, because some easy axes are now more
preferred than others due to the stress. The transition occurs due
to wall motion, leading to the growth of better oriented magnetic
domains at the expense of the other magnetic domains. As
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described in [9] this leads to the more rectangular shaped hys-
teresis loop, when the nearest easy axis to the magnetic field be-
comes more preferred and to the more diamond shaped hysteresis
loop, when the nearest easy axis to the magnetic field becomes
less preferred. When the applied magnetic field is sufficiently large
to overcome an energy barrier between two stable states, all
magnetic moments are forced to align with the magnetic field, as
visualised in Fig. 4. When the magnetic field decreases again, the
magnetic moments want to align with the easy axis nearest to the
magnetic field. This is not always the original easy axis, giving rise
to different magnetisation phenomena, which are responsible for
the magnetic hysteresis effect.

In order to model the effect of a magnetic field on the domain
evolution (orientation of magnetic moments), i.e., the 180° wall
motion or the non-180° wall motion, when considering a single
mechanical state, it is possible to use artificial thresholds pre-
venting early switching of magnetic domains as proposed in [20].
However, when considering several mechanical states or a dy-
namic process this simple technique is not satisfactory. The arti-
ficial thresholds depend on the mechanical state in combination
with the applied magnetic field because mechanical stress has a
considerable effect on 90° wall motion ( 100 as an easy axis) and
71° and 109° wall motion ( 111 as an easy axis).

Instead of using artificial thresholds, in this paper, a hysteresis
energy density function is introduced which accounts for the
magnetisation distribution of the previous states interpreted as an
analogy to inertia. The previous state determines the easy axis
with a higher probability to be aligned with. The hysteresis energy
density function proposed in this paper is described as (point 13 in
Fig. 2):

μ
χ

α α α= − ( + + )
( )

W
M

M M M
15

hys 0
s

0
M hys1 M hys2 M hys31 2 3

It resembles to the Zeeman energy density and is based on the
saturation magnetisation Ms, the calculated initial grain scale
magnetic susceptibility χ0 and the calculated grain scale magne-
tisation in the previous time step Mhys. Therewith, the offset with
respect to the previous time step, which affects the behaviour of
the magnetic moments, is taken into account. When the material
is in a demagnetised state, the hysteresis energy density function
equals zero for every possible cosine direction. This does not lead
to a preferred direction due to the previous time step and the
proposed model provides the same results as the anhysteretic
model. However, when the material is in a saturated state, the
hysteresis energy density function equals a distribution having a
maximum and a minimum. The difference between the maximum
and the minimum is the energy needed to enforce the flipping of
the magnetic moments when the magnetic field is aligned with
the easy axis, due to the 180° wall motion. When the magnetic
field is not aligned with an easy axis, the hysteresis energy density
function ensures that the magnetic moments favour the easy di-
rection nearest to the magnetic field.

The hysteresis energy density function is calculated at the do-
main scale, because not all easy directions of the different grains
are aligned. However, there is also a different internal mechanical
stress in every grain due to the residual mechanical stress. This
affects the preferred easy directions in a grain. As will be described
in detail in Section 4.3, the Boltzmann distribution applied to (15)
accounts for crystal defects and pinning effects, which also play an
important role in the hysteresis effect [4,7,9,12,16]. The proposed
energy density function is used separately and increases the ob-
tained probability for the anhysteretic part nearest to the grain
scale magnetisation in the previous time step as described in
Section 4.3 (point 13 of Fig. 2). In contrast to [15], χ0 is not mea-
sured as a single poly-crystalline constant but simulated for every
individual grain using the first two time steps. χ0 is a scalar value
instead of tensor that describes the linearised relation of the
projection of the magnetisation on the magnetic field. Meaning χ0
depends on the angle between the magnetic field and the nearest
easy axis. Because the easy axes have different orientation in every
grain and since the poly-crystalline scale is seen as a single crystal
aggregate, every grain should have its own χ0.

4.3. Grain-scale

Starting from the free energy αW of a given domain, the dis-
tributions of the magnetic moments across the different orienta-
tions, i.e., their volume fractions, are introduced as internal vari-
ables according to an explicit Boltzmann-type relation. This results
in the grain scale magnetisation Mg and magnetostriction ϵg using
the Boltzmann distributions αP , Phys and Pg (point 14 of Fig. 2).
These distributions use an adjustable material parameter As which
accounts for the domain walls, non-uniformity of mechanical
stresses or magnetic fields and other defects in the crystal. As
described in [15], this requires a Boltzmann distribution, which is
used as a statistical approach of a specific state by comparing the
energy of one state to the energy of all other states instead of a
simple minimization approach. Indeed, a minimization would only
lead to the most preferred direction, but in reality not all magnetic
domains will be aligned with this direction. Depending on the
internal energy, determined by the three energy density functions
introduced in Section 4.2.1, the distribution of the magnetic do-
mains is determined based on the assumption that the previous
distribution was an equal distribution across the easy axes, leading
to the demagnetised state of the grain. This was shown by [15],
leading to Eq. (16):

∫
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The Boltzmann distribution αP includes the parameter
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2

as a measure of the regularity of the crystal. According to [15], the
expression for As is obtained neglecting the rotation mechanism,
which leads to a simplified model of the magnetic behaviour.

In this paper, the poly-crystalline scale magnetic susceptibility



Table 1
Physical magnetic and mechanical constants [7,12].

Ms K1 K2 λ100

1.61 MA/m 38 kJ/m3 0 J/m3 μ23 m/m

λ111 C11 C12 C44

− μ4.5 m/m 202 GPa 122 GPa 229 GPa
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χm0 is replaced by the simulated grain scale susceptibility χ0. The
additional hysteresis energy density function (15), at the domain
scale, includes the effect of magnetic hysteresis by increasing the
probability of the anhysteretic part (16) closest to the grain scale
magnetisation in the previous time step.

The inclusion of the hysteresis is done by using an additional
Boltzmann distribution Phys in combination with a correction
factor β. β is used to fine tune the parameter As for the hysteretic
case and the product βAs acts as a potential distribution parameter
[3]. This parameter determines the defocus of the local magneti-
sation along the average directions due to different crystal defects.
When using only parameter As, the results deviate substantially
from measurements, indicating that some of the assumptions
made in [15] to obtain the expression of As, are not completely
valid for the hysteretic case, such as the rotation mechanism and
the pinning effect [10, Chapter 7]. Hauser suggested in [21] that
the irreversible work due to pinning (because domains are mainly
covering pinning sites to reduce the internal energy) affects the
probability density. Hauser resolved this using a parameter related
to the pinning similar with the classical Maxwell and Boltzmann
statistics. In our approach, we suggest a similar approach using the
factor β attributed anhysteretic model to the pinning effect which
is not incorporated in parameter As [15]. The correction factor β
has an effect on the width of the hysteresis loop and is assumed to
be a constant value of 0.875 in this paper.

Once the Boltzmann distributions are known for any direction
of magnetization, the combination of both (18) allows us to obtain
the grain scale magnetization Mg and magnetostrictive strain ϵg

with a volume average over the single crystal (20) and (21). This
step is obtained at point 15 in Fig. 2:
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4.4. Poly-crystalline-scale

When the magnetisation Mg and the magnetostriction ϵg con-
verged for all grains (point 16 in Fig. 2), a weighted averaging
procedure is applied. The weights depend on the directions of the
grains, which are assigned as indicated by the blue horizontal ar-
row in Fig. 1, using the constructed orientation distribution func-
tion described in Section 3. Here, the poly-crystalline scale mag-
netisation Mm (point 18 in Fig. 2), the magnetostriction ϵm (point
19 in Fig. 2) and the internal energy Winternal (point 20 in Fig. 2) are
determined as well as the elasticity coefficient tensor Leff of the
equivalent homogeneous material using (8) (point 16 in Fig. 2). At
this scale, a second convergence criterion (point 21 in Fig. 2), i.e.,
on the weighted average internal energy Winternal, is verified which
is needed to check the convergence of the self-consistent poly-
crystalline scheme.
5. Modelling results and comparison to measured data

The proposed multi-scale model with magnetic hysteresis at
the domain scale is applied to model the behaviour of a com-
mercially available non-oriented FeSi3% electrical steel grade.

5.1. Material parameters

The material model is parametrised without tedious parameter
identification work solely using data taken from the textbooks of
Bozorth [7] and Cullity and Graham [12] as given in Table 1.

5.2. Comparison with measurements from literature

The results obtained using the material are validated against
measurements found in literature [13,16,28–30,38]. Fig. 5 shows
simulated major loops for isotropic FeSi3% with different applied
mechanical stresses of − −100, 50, 15, 0, 15, 50 and −100 MPa. A
positive mechanical stress represents a tensile stress, whereas a
negative mechanical stress represents a compressive stress. The
simulation is performed using the parameters of Table 1. It is ap-
parent that the material model is able to simulate the effect of a
tension or a pressure on the magnetisation as well as on the
magnetostriction. Fig. 5a shows a qualitative agreement with Fig. 9
of [13] and Fig. 4 of [28] in case of a compressive stress. The effect
of a pressure or a tension on the magnetisation originates from a
different magnetisation mechanism as described in [9] and Section
4.2.2. According to [9] two “coincidence points” (points where all
curves intersect) appear.

The results for the magnetostriction (Fig. 5b) show the ex-
pected butterfly loops as described in [4,7,12,16]. Fig. 5b shows
how an applied mechanical stress affects the shape of the hys-
teresis loop of the magnetostriction. The shape of the hysteresis
loop of the magnetostriction is explained using the magnetic do-
mains and how they are affected by the mechanical stress and the
magnetic field. This will be clarified using two cases:

1. A high uni-directional tension on a positive magnetostrictive
material, like Fe-Si3%, leads to a high probability that the
magnetic domains are already aligned with the mechanical
stress direction. A magnetic field applied in the same direction,
results in a flipping of magnetic moments, due to a 180° domain
wall. The magnetic moment will not rotate to another domain
aligned with a different easy axis. When the magnetic moments
prefer to stay on the same easy axis, implies that the moments
do not contribute to the magnetostriction. Indeed, when a
magnetic moment flips, the overall shape and the axes of the
magnetic domain moments remain exactly the same.

2. A high uni-directional pressure on a positive magnetostrictive
material, like Fe-Si3%, leads to a higher probability that the
magnetic domains are not aligned with the mechanical stress
direction but in the perpendicular plane. A magnetic field
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Fig. 5. Simulated major loops for isotropic FeSi3% with different applied mechan-
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applied in the same direction of the mechanical stress, leads to a
90° rotation due to the wall motion, of the magnetic moments
and no flip. The fact that the magnetic moments rotate instead
of flipping, implies that they contribute to the magnetostriction.
Indeed, when a magnetic moment rotates the overall shape of
the magnetic domain moment is rotated. In case of a positive
magnetostrictive material, this leads to an elongation in the
magnetisation direction. The opposite, namely a shrink, occurs
in the plane perpendicular to the magnetisation direction. This
rotation only occurs when the magnetic field is high enough.
The higher the mechanical pressure, the more domains that
contribute to the magnetostriction, which leads to a higher
magnetostriction. There is however a trade-off. Indeed, a higher
pressure requires also a higher magnetic field in order to reach
saturation, as shown in Fig. 5b. This means a higher pressure
leads to a higher magnetostriction which is obtainable with a
higher magnetic field.

Fig. 6 shows simulated minor loops using the proposed mate-
rial model. The minor loops are obtained after performing a cali-
bration process to obtain the origin of the magnetisation.

These results show that the proposed material model simulates
these magnetic material behaviour without the need to perform
measurements and extract macroscopic models by tedious para-
meter identification. Fine-tuning of material parameters according
to the specific characteristics of the material (crystallographic
magnetic texture, internal mechanical stress state) is expected to
provide an better agreement, but such an approach is not in the
focus of the current paper.

The next step is to compare the model predictions based on the
data from standard textbooks without any additional adjustment
to measured data found in literature for a similar alloyed electrical
steel grade. Fig. 7 shows a good qualitative agreement between the
simulated results and the measurements available in literature
[36] when a pressure is applied (compare Fig. 5 with Fig. 7). The
proposed material model does not account for the non-monotonic
effect a tensile stress. According to the classical theory of magneto-
elasticity application of an uni-axial tensile stress to a positive
magnetostrictive material results in a steeper, more rectangular
hysteresis loop, i.e., magnetic saturation would be obtained faster.
Instead experimental results show that the effect on the magnetic
susceptibility is non-monotonic with stress intensity when going
to higher tensile mechanical stress, e.g., from 50 to 100 MPa. This
is in contradiction to the classical theory of the magneto-elastic
effect, meaning that the same phenomenon is already present in
the original anhysteresis model of Daniel et al. [15] and is not
included in the model so far. Recent proposals attribute that to a
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demagnetising effect due to the number of domains (not only
volume fraction but also their distribution) or due the fact that
some grains are already plastic at a certain threshold level of
mechanical stress. Following the classical theory of the magneto-
elastic effect, a further deformation of the hysteresis loops into a
square loop, as proposed by Bozorth and Bulte in [7,9] for mate-
rials with a positive magnetostriction, is obtained. The obtained
square loop of the model is more similar to hysteresis loops found
for a grain-oriented silicon steel as shown in Fig. 8. The obtained
square loop is explained by the fact that the grains are more or-
iented in the direction of the tension (which is the same direction
as the magnetic field), resulting in similar properties as the grain-
oriented silicon steel. Fig. 8 visualizes measured major loops [34]
for grain-oriented Fe-Si3%. This feeds the expectation that the
remaining differences are attributed to unknown crystallographic
magnetic texture and unknown internal mechanical stresses,
possibly introduced by the manufacturing process.

5.3. Effect of the crystallographic magnetic texture

Texture data describe the distribution of the grain orientations
within the poly-crystalline sample. This distribution plays an im-
portant role in the magnetic behaviour of the material. Indeed,
when all grains are perfectly aligned with each other, the sample
behaves as a single crystal. The residual mechanical stress origi-
nating from the magnetostriction is reduced and, when properly
used in a magnetic design, leads to small square-shaped hysteresis
loops [9].

Figs. 9, 10 and 11 show the effect of the crystallographic mag-
netic texture on the simulation results for a tension and a pressure
of 50 MPa, respectively. The different crystallographic magnetic
textures are simulated using different weight distributions, as
described in Section 3. The influence of different orientation dis-
tribution functions is shown by visualizing the ratio of the volume
fraction of grains with an easy axis aligned with the externally
applied field direction and the volume fraction of grains with a
hard axis aligned with the external applied field direction (easy/
hard in Figs. 9 and 10).

The volume fraction of grains with a medium axis aligned with
the externally applied field direction remains constant (mean of
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the volume fraction of grains with an easy axis and the volume
fraction of grains with a hard axis aligned with the externally
applied field direction). The volume fraction of grains with a di-
rection which does not correspond to an easy, a medium or a hard
direction are obtained using an interpolation between these two
directions.

The behaviour of coercivity and remanent magnetisation in
Figs. 9, 10 and 11, corresponding to the crystallographic magnetic
texture and mechanical stress, depicts two distinct tendencies. In
case of tension (Fig. 9), the coercivity and the remanent magne-
tisation change both in function of the crystallographic magnetic
texture. The remanent magnetisation increases when the easy axis
becomes the more pronounced direction, whereas the coercivity
decreases corresponding to more square-shaped hysteresis loops.
In case of pressure (Fig. 10), only the remanent magnetisation
changes in function of the crystallographic magnetic texture, while
the coercivity remains constant.
6. Conclusion

In this paper, an energy-based multi-scale material model has
been extended by inserting a hysteresis energy density function at
the grain scale. This model allows us to simulate the magnetic
behaviour in case of a 3D magnetisation and a multi-axial me-
chanical stress without the need of tedious parameter identifica-
tion work as it is the case when a phenomenological model is
constructed based on macroscopic measurements data. The ma-
terial model is based on different material levels (poly-crystalline,
grain, crystal) defined to simulate the magneto-mechanical inter-
actions. The poly-crystalline scale is a representative volume ele-
ment of the modelled material and exhibits effective material
properties. The grain scale consists of multiple crystals, which are
almost perfectly aligned with each other, allowing to assume
homogeneous elastic properties. The domain scale consists of
perfectly aligned magnetic moments. This allows us to assume an
uniform magnetisation and allows us to calculate the Zeeman, the
magnetocrystalline anisotropy and the mechanical stress induced
anisotropy energy density functions, together with the newly in-
troduced hysteresis energy density function combined with a se-
parate Boltzmann distribution.

The used hysteresis energy density function in the separate
Boltzmann distribution increases the obtained probability of the
anhysteretic part in favour of the direction closest to the grain scale
magnetisation in the previous time step. This, together with the
self-consistent scheme, results in the hysteresis loop of the poly-
crystalline magnetisation and magnetostriction for different poly-
crystalline materials.

The validation of the material model shows a qualitative
agreement with the measurements found in literature. As shown
in Section 5, the energy-based multi-scale material model enables
to predict the effect of different mechanical states, be it tension or
pressure, on the magnetic behaviour of the material. The change in
permeability as well as the deformation of the hysteresis follow
the predictions of Bozorth [7, Chapter 13] and Bulte and Langman
[9] on positive magnetostrictive materials. The model predicts the
square shaped hysteresis loop when applying a high tension as
well as the diamond shaped hysteresis loop when applying a high
pressure.

Using the same mechanism, the effect of the mechanical stress
on the magnetostriction loops can be explained. Only when
magnetic domain moments have to rotate (switch from easy axes),
contribute to the magnetostriction and their maximum contribu-
tion is obtained when they have to rotate over an angle of 90°
which requires the higher field.

The basic mechanisms for the hysteresis behaviour, as de-
scribed in Section 4.2.2, are used to obtain the magnetic and
magnetostrictive hysteresis loop as well as their minor loops.

The effect of the crystallographic magnetic texture on the hys-
teresis loop, i.e., distribution of the different grains, plays an im-
portant role in the residual mechanical stress which depends on the
applied magnetic field. This gives rise to different magnetisation
curves of the same material for the same applied mechanical stress.
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This energy based multi-scale material model enables to make
qualitatively predictions for: (i) the magnetic properties, (ii) the
elastic properties and (iii) the magnetostrictive properties of a
material which is subjected to a multi-axial mechanical stress and
the inclusion of the hysteresis effect. Making this a promising tool
for optimizing the material used in highly efficient but light
weighted designs of electromechanical energy transducers.
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