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Summary. The large size and the dynamic nature of the Web make it necessary
to continually maintain Web based information retrieval systems. Crawlers facili-
tate this process by following hyperlinks in Web pages to automatically download
new and updated Web pages. While some systems rely on crawlers that exhaus-
tively crawl the Web, others incorporate “focus” within their crawlers to harvest
application or topic specific collections. In this chapter we discuss the basic issues
related to developing an infrastructure for crawlers. This is followed by a review
of several topical crawling algorithms, and evaluation metrics that may be used to
judge their performance. Given that many innovative applications of Web crawling
are still being invented, we briefly discuss some that have already been developed.

1 Introduction

Web crawlers are programs that exploit the graph structure of the Web to
move from page to page. In their infancy such programs were also called
wanderers, robots, spiders, fish, and worms, words that are quite evocative
of Web imagery. It may be observed that the noun ‘crawler’ is not indicative
of the speed of these programs, as they can be considerably fast. In our own
experience, we have been able to crawl up to tens of thousands of pages within
a few minutes.4

From the beginning, a key motivation for designing Web crawlers has been
to retrieve Web pages and add them or their representations to a local repos-
itory. Such a repository may then serve particular application needs such as
those of a Web search engine. In its simplest form a crawler starts from a
seed page and then uses the external links within it to attend to other pages.
4 on a Pentium 4 workstation with an Internet2 connection.
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The process repeats with the new pages offering more external links to follow,
until a sufficient number of pages are identified or some higher level objective
is reached. Behind this simple description lies a host of issues related to net-
work connections, spider traps, canonicalizing URLs, parsing HTML pages,
and the ethics of dealing with remote Web servers. In fact a current generation
Web crawler can be one of the most sophisticated yet fragile parts [5] of the
application in which it is embedded.

Were the Web a static collection of pages we would have little long term use
for crawling. Once all the pages had been fetched to a repository (like a search
engine’s database), there would be no further need for crawling. However, the
Web is a dynamic entity with subspaces evolving at differing and often rapid
rates. Hence there is a continual need for crawlers to help applications stay
current as new pages are added and old ones are deleted, moved or modified.

General purpose search engines serving as entry points to Web pages strive
for coverage that is as broad as possible. They use Web crawlers to maintain
their index databases [3] amortizing the cost of crawling and indexing over the
millions of queries received by them. These crawlers are blind and exhaustive
in their approach, with comprehensiveness as their major goal. In contrast,
crawlers can be selective about the pages they fetch and are then referred
to as preferential or heuristic-based crawlers [10, 6]. These may be used for
building focused repositories, automating resource discovery, and facilitating
software agents. There is a vast literature on preferential crawling applica-
tions, including [15, 9, 31, 20, 26, 3]. Preferential crawlers built to retrieve
pages within a certain topic are called topical or focused crawlers. Synergism
between search engines and topical crawlers is certainly possible with the lat-
ter taking on the specialized responsibility of identifying subspaces relevant
to particular communities of users. Techniques for preferential crawling that
focus on improving the “freshness” of a search engine have also been suggested
[3].

Although a significant portion of this chapter is devoted to description
of crawlers in general, the overall slant, particularly in the latter sections, is
towards topical crawlers. There are several dimensions about topical crawlers
that make them an exciting object of study. One key question that has moti-
vated much research is: How is crawler selectivity to be achieved? Rich contex-
tual aspects such as the goals of the parent application, lexical signals within
the Web pages and also features of the graph built from pages already seen
— these are all reasonable kinds of evidence to exploit. Additionally, crawlers
can and often do differ in their mechanisms for using the evidence available
to them.

A second major aspect that is important to consider when studying
crawlers, especially topical crawlers, is the nature of the crawl task. Crawl
characteristics such as queries and/or keywords provided as input criteria to
the crawler, user-profiles, and desired properties of the pages to be fetched
(similar pages, popular pages, authoritative pages etc.) can lead to signifi-
cant differences in crawler design and implementation. The task could be con-



Crawling the Web 3

strained by parameters like the maximum number of pages to be fetched (long
crawls vs. short crawls) or the available memory. Hence, a crawling task can
be viewed as a constrained multi-objective search problem. However, the wide
variety of objective functions, coupled with the lack of appropriate knowledge
about the search space, make the problem a hard one. Furthermore, a crawler
may have to deal with optimization issues such as local vs. global optima [28].

The last key dimension is regarding crawler evaluation strategies neces-
sary to make comparisons and determine circumstances under which one or
the other crawlers work best. Comparisons must be fair and made with an
eye towards drawing out statistically significant differences. Not only does
this require a sufficient number of crawl runs but also sound methodologies
that consider the temporal nature of crawler outputs. Significant challenges
in evaluation include the general unavailability of relevant sets for particular
topics or queries. Thus evaluation typically relies on defining measures for
estimating page importance.

The first part of this chapter presents a crawling infrastructure and within
this describes the basic concepts in Web crawling. Following this, we review a
number of crawling algorithms that are suggested in the literature. We then
discuss current methods to evaluate and compare performance of different
crawlers. Finally, we outline the use of Web crawlers in some applications.

2 Building a Crawling Infrastructure

Figure 1 shows the flow of a basic sequential crawler (in section 2.6 we con-
sider multi-threaded crawlers). The crawler maintains a list of unvisited URLs
called the frontier. The list is initialized with seed URLs which may be pro-
vided by a user or another program. Each crawling loop involves picking the
next URL to crawl from the frontier, fetching the page corresponding to the
URL through HTTP, parsing the retrieved page to extract the URLs and ap-
plication specific information, and finally adding the unvisited URLs to the
frontier. Before the URLs are added to the frontier they may be assigned a
score that represents the estimated benefit of visiting the page corresponding
to the URL. The crawling process may be terminated when a certain number
of pages have been crawled. If the crawler is ready to crawl another page and
the frontier is empty, the situation signals a dead-end for the crawler. The
crawler has no new page to fetch and hence it stops.

Crawling can be viewed as a graph search problem. The Web is seen as a
large graph with pages at its nodes and hyperlinks as its edges. A crawler starts
at a few of the nodes (seeds) and then follows the edges to reach other nodes.
The process of fetching a page and extracting the links within it is analogous
to expanding a node in graph search. A topical crawler tries to follow edges
that are expected to lead to portions of the graph that are relevant to a topic.
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Fig. 1. Flow of a basic sequential
crawler

2.1 Frontier

The frontier is the to-do list of a crawler that contains the URLs of unvisited
pages. In graph search terminology the frontier is an open list of unexpanded
(unvisited) nodes. Although it may be necessary to store the frontier on disk
for large scale crawlers, we will represent the frontier as an in-memory data
structure for simplicity. Based on the available memory, one can decide the
maximum size of the frontier. Due to the large amount of memory available
on PCs today, a frontier size of a 100,000 URLs or more is not exceptional.
Given a maximum frontier size we need a mechanism to decide which URLs to
ignore when this limit is reached. Note that the frontier can fill rather quickly
as pages are crawled. One can expect around 60,000 URLs in the frontier with
a crawl of 10,000 pages, assuming an average of about 7 links per page [30].

The frontier may be implemented as a FIFO queue in which case we have
a breadth-first crawler that can be used to blindly crawl the Web. The URL
to crawl next comes from the head of the queue and the new URLs are added
to the tail of the queue. Due to the limited size of the frontier, we need to
make sure that we do not add duplicate URLs into the frontier. A linear
search to find out if a newly extracted URL is already in the frontier is costly.
One solution is to allocate some amount of available memory to maintain a
separate hash-table (with URL as key) to store each of the frontier URLs
for fast lookup. The hash-table must be kept synchronized with the actual
frontier. A more time consuming alternative is to maintain the frontier itself
as a hash-table (again with URL as key). This would provide fast lookup for
avoiding duplicate URLs. However, each time the crawler needs a URL to
crawl, it would need to search and pick the URL with earliest time-stamp
(time when a URL was added to the frontier). If memory is less of an issue
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than speed, the first solution may be preferred. Once the frontier reaches its
maximum size, the breadth-first crawler can add only one unvisited URL from
each new page crawled.

If the frontier is implemented as a priority queue we have a preferential
crawler which is also known as a best-first crawler. The priority queue may be
a dynamic array that is always kept sorted by the estimated score of unvisited
URLs. At each step, the best URL is picked from the head of the queue. Once
the corresponding page is fetched, the URLs are extracted from it and scored
based on some heuristic. They are then added to the frontier in such a manner
that the order of the priority queue is maintained. We can avoid duplicate
URLs in the frontier by keeping a separate hash-table for lookup. Once the
frontier’s maximum size (MAX) is exceeded, only the best MAX URLs are kept
in the frontier.

If the crawler finds the frontier empty when it needs the next URL to
crawl, the crawling process comes to a halt. With a large value of MAX and
several seed URLs the frontier will rarely reach the empty state.

At times, a crawler may encounter a spider trap that leads it to a large
number of different URLs that refer to the same page. One way to alleviate
this problem is by limiting the number of pages that the crawler accesses
from a given domain. The code associated with the frontier can make sure
that every consecutive sequence of k (say 100) URLs, picked by the crawler,
contains only one URL from a fully qualified host name (e.g. www.cnn.com).
As side-effects, the crawler is polite by not accessing the same Web site too
often [14], and the crawled pages tend to be more diverse.

2.2 History and Page Repository

The crawl history is a time-stamped list of URLs that were fetched by the
crawler. In effect, it shows the path of the crawler through the Web starting
from the seed pages. A URL entry is made into the history only after fetching
the corresponding page. This history may be used for post crawl analysis
and evaluations. For example, we can associate a value with each page on the
crawl path and identify significant events (such as the discovery of an excellent
resource). While history may be stored occasionally to the disk, it is also
maintained as an in-memory data structure. This provides for a fast lookup
to check whether a page has been crawled or not. This check is important to
avoid revisiting pages and also to avoid adding the URLs of crawled pages to
the limited size frontier. For the same reasons it is important to canonicalize
the URLs (section 2.4) before adding them to the history.

Once a page is fetched, it may be stored/indexed for the master appli-
cation (such as a search engine). In its simplest form a page repository may
store the crawled pages as separate files. In that case, each page must map
to a unique file name. One way to do this is to map each page’s URL to
a compact string using some form of hashing function with low probabil-
ity of collisions (for uniqueness of file names). The resulting hash value is
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used as the file name. We use the MD5 one-way hashing function that pro-
vides a 128 bit hash code for each URL. Implementations of MD5 and other
hashing algorithms are readily available in different programming languages
(e.g., refer to Java 2 security framework5). The 128 bit hash value is then
converted into a 32 character hexadecimal equivalent to get the file name.
For example, the content of http://www.uiowa.edu/ is stored into a file
named 160766577426e1d01fcb7735091ec584. This way we have fixed-length
file names for URLs of arbitrary size. (Of course, if the application needs to
cache only a few thousand pages, one may use a simpler hashing mechanism.)
The page repository can also be used to check if a URL has been crawled
before by converting it to its 32 character file name and checking for the exis-
tence of that file in the repository. In some cases this may render unnecessary
the use of an in-memory history data structure.

2.3 Fetching

In order to fetch a Web page, we need an HTTP client which sends an HTTP
request for a page and reads the response. The client needs to have timeouts to
make sure that an unnecessary amount of time is not spent on slow servers or
in reading large pages. In fact we may typically restrict the client to download
only the first 10-20KB of the page. The client needs to parse the response
headers for status codes and redirections. We may also like to parse and
store the last-modified header to determine the age of the document. Error-
checking and exception handling is important during the page fetching process
since we need to deal with millions of remote servers using the same code. In
addition it may be beneficial to collect statistics on timeouts and status codes
for identifying problems or automatically changing timeout values. Modern
programming languages such as Java and Perl provide very simple and often
multiple programmatic interfaces for fetching pages from the Web. However,
one must be careful in using high level interfaces where it may be harder
to find lower level problems. For example, with Java one may want to use
the java.net.Socket class to send HTTP requests instead of using the more
ready-made java.net.HttpURLConnection class.

No discussion about crawling pages from the Web can be complete without
talking about the Robot Exclusion Protocol. This protocol provides a mech-
anism for Web server administrators to communicate their file access poli-
cies; more specifically to identify files that may not be accessed by a crawler.
This is done by keeping a file named robots.txt under the root directory
of the Web server (such as http://www.biz.uiowa.edu/robots.txt). This
file provides access policy for different User-agents (robots or crawlers). A
User-agent value of ‘*’ denotes a default policy for any crawler that does
not match other User-agent values in the file. A number of Disallow entries
may be provided for a User-agent. Any URL that starts with the value of a
5 http://java.sun.com
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Disallow field must not be retrieved by a crawler matching the User-agent.
When a crawler wants to retrieve a page from a Web server, it must first fetch
the appropriate robots.txt file and make sure that the URL to be fetched
is not disallowed. More details on this exclusion protocol can be found at
http://www.robotstxt.org/wc/norobots.html. It is efficient to cache the
access policies of a number of servers recently visited by the crawler. This
would avoid accessing a robots.txt file each time you need to fetch a URL.
However, one must make sure that cache entries remain sufficiently fresh.

2.4 Parsing

Once a page has been fetched, we need to parse its content to extract informa-
tion that will feed and possibly guide the future path of the crawler. Parsing
may imply simple hyperlink/URL extraction or it may involve the more com-
plex process of tidying up the HTML content in order to analyze the HTML
tag tree (see section 2.5). Parsing might also involve steps to convert the ex-
tracted URL to a canonical form, remove stopwords from the page’s content
and stem the remaining words. These components of parsing are described
next.

URL Extraction and Canonicalization

HTML Parsers are freely available for many different languages. They provide
the functionality to easily identify HTML tags and associated attribute-value
pairs in a given HTML document. In order to extract hyperlink URLs from a
Web page, we can use these parsers to find anchor tags and grab the values
of associated href attributes. However, we do need to convert any relative
URLs to absolute URLs using the base URL of the page from where they
were retrieved.

Different URLs that correspond to the same Web page can be mapped
onto a single canonical form. This is important in order to avoid fetching
the same page many times. Here are some of the steps used in typical URL
canonicalization procedures:

• convert the protocol and hostname to lowercase. For example, HTTP://
www.UIOWA.edu is converted to http://www.uiowa.edu.

• remove the ‘anchor’ or ‘reference’ part of the URL. Hence, http://
myspiders.biz.uiowa.edu/faq.html#what is reduced to
http://myspiders.biz.uiowa.edu/faq.html.

• perform URL encoding for some commonly used characters such as ‘˜’.
This would prevent the crawler from treating http://dollar.biz.uiowa.
edu/~pant/ as a different URL from http://dollar.biz.uiowa.edu/
%7Epant/.

• for some URLs, add trailing ‘/’s. http://dollar.biz.uiowa.edu and
http://dollar.biz.uiowa.edu/ must map to the same canonical form.
The decision to add a trailing ‘/’ will require heuristics in many cases.



8 G. Pant, P. Srinivasan, F. Menczer

• use heuristics to recognize default Web pages. File names such as
index.html or index.htm may be removed from the URL with the as-
sumption that they are the default files. If that is true, they would be
retrieved by simply using the base URL.

• remove ‘..’ and its parent directory from the URL path. Therefore, URL
path /%7Epant/BizIntel/Seeds/../ODPSeeds.dat is reduced to
/%7Epant/BizIntel/ODPSeeds.dat.

• leave the port numbers in the URL unless it is port 80. As an alternative,
leave the port numbers in the URL and add port 80 when no port number
is specified.

It is important to be consistent while applying canonicalization rules. It is pos-
sible that two seemingly opposite rules work equally well (such as that for port
numbers) as long as you apply them consistently across URLs. Other canoni-
calization rules may be applied based on the application and prior knowledge
about some sites (e.g., known mirrors).

As noted earlier spider traps pose a serious problem for a crawler. The
“dummy” URLs created by spider traps often become increasingly larger in
size. A way to tackle such traps is by limiting the URL sizes to, say, 128 or
256 characters.

Stoplisting and Stemming

When parsing a Web page to extract content information or in order to score
new URLs suggested by the page, it is often helpful to remove commonly
used words or stopwords6 such as “it” and “can”. This process of removing
stopwords from text is called stoplisting. Note that the Dialog7 system recog-
nizes no more than nine words (“an”, “and”, “by”, “for”, “from”, “of”, “the”,
“to”, and “with”) as the stopwords. In addition to stoplisting, one may also
stem the words found in the page. The stemming process normalizes words by
conflating a number of morphologically similar words to a single root form or
stem. For example, “connect,” “connected” and “connection” are all reduced
to “connect.” Implementations of the commonly used Porter stemming algo-
rithm [29] are easily available in many programming languages. One of the
authors has experienced cases in bio-medical domain where stemming reduced
the precision of the crawling results.

2.5 HTML tag tree

Crawlers may assess the value of a URL or a content word by examining the
HTML tag context in which it resides. For this, a crawler may need to utilize
the tag tree or DOM structure of the HTML page [8, 24, 27]. Figure 2 shows
6 for an example list of stopwords refer to http://www.dcs.gla.ac.uk/idom/ir_

resources/linguistic_utils/stop_words
7 http://www.dialog.com
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a tag tree corresponding to an HTML source. The <html> tag forms the root
of the tree and various tags and texts form nodes of the tree. Unfortunately,
many Web pages contain badly written HTML. For example, a start tag may
not have an end tag (it may not be required by the HTML specification), or
the tags may not be properly nested. In many cases, the <html> tag or the
<body> tag is all-together missing from the HTML page. Thus structure-based
criteria often require the prior step of converting a “dirty” HTML document
into a well-formed one, a process that is called tidying an HTML page.8 This
includes both insertion of missing tags and the reordering of tags in the page.
Tidying an HTML page is necessary for mapping the content of a page onto
a tree structure with integrity, where each node has a single parent. Hence, it
is an essential precursor to analyzing an HTML page as a tag tree. Note that
analyzing the DOM structure is only necessary if the topical crawler intends
to use the HTML document structure in a non-trivial manner. For example,
if the crawler only needs the links within a page, and the text or portions of
the text in the page, one can use simpler HTML parsers. Such parsers are also
readily available in many languages.

<html>
<head>
<title>Projects</title>
</head>
<body>
<h4>Projects</h4>
<ul>
  <li> <a href="blink.html">LAMP</a> Linkage analysis with multiple processors.</li>
  <li> <a href="nice.html">NICE</a> The network infrastructure for combinatorial exploration.</li>
  <li> <a href="amass.html">AMASS</a> A DNA sequence assembly algorithm.</li>
  <li> <a href="dali.html">DALI</a> A distributed, adaptive, first-order logic theorem prover.</li>
</ul>
</body>
</html>

html

bodyhead

h4title

text text

ul

li

a

text

Fig. 2. An HTML
page and the corre-
sponding tag tree

2.6 Multi-threaded Crawlers

A sequential crawling loop spends a large amount of time in which either the
CPU is idle (during network/disk access) or the network interface is idle (dur-
ing CPU operations). Multi-threading, where each thread follows a crawling

8 http://www.w3.org/People/Raggett/tidy/
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loop, can provide reasonable speed-up and efficient use of available bandwidth.
Figure 3 shows a multi-threaded version of the basic crawler in Figure 1. Note
that each thread starts by locking the frontier to pick the next URL to crawl.
After picking a URL it unlocks the frontier allowing other threads to access
it. The frontier is again locked when new URLs are added to it. The locking
steps are necessary in order to synchronize the use of the frontier that is now
shared among many crawling loops (threads). The model of multi-threaded
crawler in Figure 3 follows a standard parallel computing model [18]. Note
that a typical crawler would also maintain a shared history data structure
for a fast lookup of URLs that have been crawled. Hence, in addition to the
frontier it would also need to synchronize access to the history.

The multi-threaded crawler model needs to deal with an empty frontier
just like a sequential crawler. However, the issue is less simple now. If a thread
finds the frontier empty, it does not automatically mean that the crawler as
a whole has reached a dead-end. It is possible that other threads are fetching
pages and may add new URLs in the near future. One way to deal with the
situation is by sending a thread to a sleep state when it sees an empty frontier.
When the thread wakes up, it checks again for URLs. A global monitor keeps
track of the number of threads currently sleeping. Only when all the threads
are in the sleep state does the crawling process stop. More optimizations can
be performed on the multi-threaded model described here, as for instance to
decrease contentions between the threads and to streamline network access.

This section has described the general components of a crawler. The com-
mon infrastructure supports at one extreme a very simple breadth-first crawler
and at the other end crawler algorithms that may involve very complex URL
selection mechanisms. Factors such as frontier size, page parsing strategy,
crawler history and page repository have been identified as interesting and
important dimensions to crawler definitions.

3 Crawling Algorithms

We now discuss a number of crawling algorithms that are suggested in the
literature. Note that many of these algorithms are variations of the best-first
scheme. The difference is in the heuristics they use to score the unvisited
URLs with some algorithms adapting and tuning their parameters before or
during the crawl.

3.1 Naive Best-First Crawler

A naive best-first was one of the crawlers detailed and evaluated by the authors
in an extensive study of crawler evaluation [22]. This crawler represents a
fetched Web page as a vector of words weighted by occurrence frequency.
The crawler then computes the cosine similarity of the page to the query
or description provided by the user, and scores the unvisited URLs on the
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Fig. 3. A multi-threaded crawler model

page by this similarity value. The URLs are then added to a frontier that is
maintained as a priority queue based on these scores. In the next iteration
each crawler thread picks the best URL in the frontier to crawl, and returns
with new unvisited URLs that are again inserted in the priority queue after
being scored based on the cosine similarity of the parent page. The cosine
similarity between the page p and a query q is computed by:

sim(q, p) =
vq · vp

‖ vq ‖ · ‖ vp ‖ (1)

where vq and vp are term frequency (TF) based vector representations of the
query and the page respectively, vq · vp is the dot (inner) product of the two
vectors, and ‖ v ‖ is the Euclidean norm of the vector v. More sophisticated
vector representation of pages, such as the TF-IDF [32] weighting scheme often
used in information retrieval, are problematic in crawling applications because
there is no a priori knowledge of the distribution of terms across crawled pages.
In a multiple thread implementation the crawler acts like a best-N-first crawler
where N is a function of the number of simultaneously running threads. Thus
best-N-first is a generalized version of the best-first crawler that picks N best
URLs to crawl at a time. In our research we have found the best-N-first crawler
(with N = 256) to be a strong competitor [28, 23] showing clear superiority
on the retrieval of relevant pages. Note that the best-first crawler keeps the
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frontier size within its upper bound by retaining only the best URLs based
on the assigned similarity scores.

3.2 SharkSearch

SharkSearch [15] is a version of FishSearch [12] with some improvements. It
uses a similarity measure like the one used in the naive best-first crawler for
estimating the relevance of an unvisited URL. However, SharkSearch has a
more refined notion of potential scores for the links in the crawl frontier. The
anchor text, text surrounding the links or link-context, and inherited score
from ancestors influence the potential scores of links. The ancestors of a URL
are the pages that appeared on the crawl path to the URL. SharkSearch, like
its predecessor FishSearch, maintains a depth bound. That is, if the crawler
finds unimportant pages on a crawl path it stops crawling further along that
path. To be able to track all the information, each URL in the frontier is
associated with a depth and a potential score. The depth bound (d) is provided
by the user while the potential score of an unvisited URL is computed as:

score(url) = γ · inherited(url) + (1− γ) · neighborhood(url) (2)

where γ < 1 is a parameter, the neighborhood score signifies the contex-
tual evidence found on the page that contains the hyperlink URL, and the
inherited score is obtained from the scores of the ancestors of the URL. More
precisely, the inherited score is computed as:

inherited(url) =
{

δ · sim(q, p) if sim(q, p) > 0
δ · inherited(p) otherwise (3)

where δ < 1 is again a parameter, q is the query, and p is the page from which
the URL was extracted.

The neighborhood score uses the anchor text and the text in the “vicinity”
of the anchor in an attempt to refine the overall score of the URL by allowing
for differentiation between links found within the same page. For that purpose,
the SharkSearch crawler assigns an anchor score and a context score to each
URL. The anchor score is simply the similarity of the anchor text of the
hyperlink containing the URL to the query q, i.e. sim(q, anchor text). The
context score on the other hand broadens the context of the link to include
some nearby words. The resulting augmented context, aug context, is used
for computing the context score as follows:

context(url) =
{

1 if anchor(url) > 0
sim(q, aug context) otherwise (4)

Finally we derive the neighborhood score from the anchor score and the
context score as:

neighborhood(url) = β · anchor(url) + (1− β) · context(url) (5)
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where β < 1 is another parameter.
We note that the implementation of SharkSearch would need to preset four

different parameters d, γ, δ and β. Some values for the same are suggested by
[15].

3.3 Focused Crawler

A focused crawler based on a hypertext classifier was developed by Chakrabarti
et al. [9, 6]. The basic idea of the crawler was to classify crawled pages with
categories in a topic taxonomy. To begin, the crawler requires a topic tax-
onomy such as Yahoo or the ODP.9 In addition, the user provides example
URLs of interest (such as those in a bookmark file). The example URLs get
automatically classified onto various categories of the taxonomy. Through an
interactive process, the user can correct the automatic classification, add new
categories to the taxonomy and mark some of the categories as “good” (i.e., of
interest to the user). The crawler uses the example URLs to build a Bayesian
classifier that can find the probability (Pr(c|p)) that a crawled page p belongs
to a category c in the taxonomy. Note that by definition Pr(r|p) = 1 where
r is the root category of the taxonomy. A relevance score is associated with
each crawled page that is computed as:

R(p) =
∑

c∈good

Pr(c|p) (6)

When the crawler is in a “soft” focused mode, it uses the relevance score
of the crawled page to score the unvisited URLs extracted from it. The scored
URLs are then added to the frontier. Then in a manner similar to the naive
best-first crawler, it picks the best URL to crawl next. In the “hard” focused
mode, for a crawled page p, the classifier first finds the leaf node c∗ (in the
taxonomy) with maximum probability of including p. If any of the parents (in
the taxonomy) of c∗ are marked as “good” by the user, then the URLs from
the crawled page p are extracted and added to the frontier.

Another interesting element of the focused crawler is the use of a distiller.
The distiller applies a modified version of Kleinberg’s algorithm [17] to find
topical hubs. The hubs provide links to many authoritative sources on the
topic. The distiller is activated at various times during the crawl and some of
the top hubs are added to the frontier.

3.4 Context Focused Crawler

Context focused crawlers [13] use Bayesian classifiers to guide their crawl.
However, unlike the focused crawler described above, these classifiers are
trained to estimate the link distance between a crawled page and the rele-
vant pages. We can appreciate the value of such an estimation from our own
9 http://dmoz.org
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browsing experiences. If we are looking for papers on “numerical analysis,”
we may first go to the home pages of math or computer science departments
and then move to faculty pages which may then lead to the relevant papers. A
math department Web site may not have the words “numerical analysis” on
its home page. A crawler such as the naive best-first crawler would put such
a page on low priority and may never visit it. However, if the crawler could
estimate that a relevant paper on “numerical analysis” is probably two links
away, we would have a way of giving the home page of the math department
higher priority than the home page of a law school.

The context focused crawler is trained using a context graph of L layers
corresponding to each seed page. The seed page forms the layer 0 of the graph.
The pages corresponding to the in-links to the seed page are in layer 1. The in-
links to the layer 1 pages make up the layer 2 pages and so on. We can obtain
the in-links to pages of any layer by using a search engine. Figure 4 depicts a
context graph for http://www.biz.uiowa.edu/programs/ as seed. Once the
context graphs for all of the seeds are obtained, the pages from the same layer
(number) from each graph are combined into a single layer. This gives a new
set of layers of what is called a merged context graph. This is followed by a
feature selection stage where the seed pages (or possibly even layer 1 pages)
are concatenated into a single large document. Using the TF-IDF [32] scoring
scheme, the top few terms are identified from this document to represent the
vocabulary (feature space) that will be used for classification.

A set of naive Bayes classifiers are built, one for each layer in the merged
context graph. All the pages in a layer are used to compute Pr(t|cl), the prob-
ability of occurrence of a term t given the class cl corresponding to layer l.
A prior probability, Pr(cl) = 1/L, is assigned to each class where L is the
number of layers. The probability of a given page p belonging to a class cl can
then be computed (Pr(cl|p)). Such probabilities are computed for each class.
The class with highest probability is treated as the winning class (layer). How-
ever, if the probability for the winning class is still less than a threshold, the
crawled page is classified into the “other” class. This “other” class represents
pages that do not have a good fit with any of the classes of the context graph.
If the probability of the winning class does exceed the threshold, the page is
classified into the winning class.

The set of classifiers corresponding to the context graph provides us with
a mechanism to estimate the link distance of a crawled page from relevant
pages. If the mechanism works, the math department home page will get
classified into layer 2 while the law school home page will get classified to
“others.” The crawler maintains a queue for each class, containing the pages
that are crawled and classified into that class. Each queue is sorted by the
the probability scores (Pr(cl|p)). When the crawler needs a URL to crawl, it
picks the top page in the non-empty queue with smallest l. So it will tend to
pick up pages that seem to be closer to the relevant pages first. The out-links
from such pages will get explored before the out-links of pages that seem to
be far away from the relevant portions of the Web.
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Layer 0

Layer 1

Layer 2

http://www.ulinks.com/list/business.html 

http://www.biz.uiowa.edu/programs/

http://www.biz.uiowa.edu/

Fig. 4. A context
graph

3.5 InfoSpiders

In InfoSpiders [21, 23], an adaptive population of agents search for pages rel-
evant to the topic. Each agent is essentially following the crawling loop (sec-
tion 2) while using an adaptive query list and a neural net to decide which
links to follow. The algorithm provides an exclusive frontier for each agent. In
a multi-threaded implementation of InfoSpiders (see section 5.1) each agent
corresponds to a thread of execution. Hence, each thread has a non-contentious
access to its own frontier. Note that any of the algorithms described in this
chapter may be implemented similarly (one frontier per thread). In the origi-
nal algorithm (see, e.g., [21]) each agent kept its frontier limited to the links
on the page that was last fetched by the agent. Due to this limited memory
approach the crawler was limited to following the links on the current page
and it was outperformed by the naive best-first crawler on a number of evalu-
ation criterion [22]. Since then a number of improvements (inspired by naive
best-first) to the original algorithm have been designed while retaining its
capability to learn link estimates via neural nets and focus its search toward
more promising areas by selective reproduction. In fact the redesigned version
of the algorithm has been found to outperform various versions of naive best-
first crawlers on specific crawling tasks with crawls that are longer than ten
thousand pages [23].

The adaptive representation of each agent consists of a list of keywords
(initialized with a query or description) and a neural net used to evaluate
new links. Each input unit of the neural net receives a count of the frequency
with which the keyword occurs in the vicinity of each link to be traversed,
weighted to give more importance to keywords occurring near the link (and
maximum in the anchor text). There is a single output unit. The output of
the neural net is used as a numerical quality estimate for each link considered
as input. These estimates are then combined with estimates based on the
cosine similarity (Equation 1) between the agent’s keyword vector and the
page containing the links. A parameter α, 0 ≤ α ≤ 1 regulates the relative
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importance given to the estimates based on the neural net versus the parent
page. Based on the combined score, the agent uses a stochastic selector to
pick one of the links in the frontier with probability

Pr(λ) =
eβσ(λ)

∑
λ′∈φ eβσ(λ′) (7)

where λ is a URL in the local frontier (φ) and σ(λ) is its combined score. The
β parameter regulates the greediness of the link selector.

After a new page has been fetched, the agent receives “energy” in pro-
portion to the similarity between its keyword vector and the new page. The
agent’s neural net can be trained to improve the link estimates by predicting
the similarity of the new page, given the inputs from the page that contained
the link leading to it. A back-propagation algorithm is used for learning. Such
a learning technique provides InfoSpiders with the unique capability to adapt
the link-following behavior in the course of a crawl by associating relevance
estimates with particular patterns of keyword frequencies around links.

An agent’s energy level is used to determine whether or not an agent should
reproduce after visiting a page. An agent reproduces when the energy level
passes a constant threshold. The reproduction is meant to bias the search
toward areas (agents) that lead to good pages. At reproduction, the offspring
(new agent or thread) receives half of the parent’s link frontier. The offspring’s
keyword vector is also mutated (expanded) by adding the term that is most
frequent in the parent’s current document. This term addition strategy in a
limited way is comparable to the use of classifiers in section 3.4 since both try
to identify lexical cues that appear on pages leading up to the relevant pages.

In this section we have presented a variety of crawling algorithms, most of
which are variations of the best-first scheme. The readers may pursue Menczer
et. al. [23] for further details on the algorithmic issues related with some of
the crawlers.

4 Evaluation of Crawlers

In a general sense, a crawler (especially a topical crawler) may be evaluated on
its ability to retrieve “good” pages. However, a major hurdle is the problem of
recognizing these good pages. In an operational environment real users may
judge the relevance of pages as these are crawled allowing us to determine if the
crawl was successful or not. Unfortunately, meaningful experiments involving
real users for assessing Web crawls are extremely problematic. For instance
the very scale of the Web suggests that in order to obtain a reasonable notion
of crawl effectiveness one must conduct a large number of crawls, i.e., involve
a large number of users.

Secondly, crawls against the live Web pose serious time constraints. There-
fore crawls other than short-lived ones will seem overly burdensome to the
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user. We may choose to avoid these time loads by showing the user the results
of the full crawl — but this again limits the extent of the crawl.

In the not so distant future, the majority of the direct consumers of in-
formation is more likely to be Web agents working on behalf of humans and
other Web agents than humans themselves. Thus it is quite reasonable to
explore crawlers in a context where the parameters of crawl time and crawl
distance may be beyond the limits of human acceptance imposed by user
based experimentation.

In general, it is important to compare topical crawlers over a large number
of topics and tasks. This will allow us to ascertain the statistical significance
of particular benefits that we may observe across crawlers. Crawler evaluation
research requires an appropriate set of metrics. Recent research reveals several
innovative performance measures. But first we observe that there are two basic
dimensions in the assessment process. We need a measure of the crawled page’s
importance and secondly we need a method to summarize performance across
a set of crawled pages.

4.1 Page importance

Let us enumerate some of the methods that have been used to measure page
importance.

1. Keywords in document : A page is considered relevant if it contains some
or all of the keywords in the query. Also, the frequency with which the
keywords appear on the page may be considered [10].

2. Similarity to a query : Often a user specifies an information need as a short
query. In some cases a longer description of the need may be available.
Similarity between the short or long description and each crawled page
may be used to judge the page’s relevance [15, 22].

3. Similarity to seed pages: The pages corresponding to the seed URLs, are
used to measure the relevance of each page that is crawled [2]. The seed
pages are combined together into a single document and the cosine simi-
larity of this document and a crawled page is used as the page’s relevance
score.

4. Classifier score: A classifier may be trained to identify the pages that are
relevant to the information need or task. The training is done using the
seed (or pre-specified relevant) pages as positive examples. The trained
classifier will then provide boolean or continuous relevance scores to each
of the crawled pages [9, 13].

5. Retrieval system rank : N different crawlers are started from the same
seeds and allowed to run till each crawler gathers P pages. All of the
N · P pages collected from the crawlers are ranked against the initiating
query or description using a retrieval system such as SMART. The rank
provided by the retrieval system for a page is used as its relevance score
[22].
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6. Link-based popularity : One may use algorithms, such as PageRank [5]
or HITS [17], that provide popularity estimates of each of the crawled
pages. A simpler method would be to use just the number of in-links to
the crawled page to derive similar information [10, 2]. Many variations of
link-based methods using topical weights are choices for measuring topical
popularity of pages [4, 7].

4.2 Summary Analysis

Given a particular measure of page importance we can summarize the per-
formance of the crawler with metrics that are analogous to the information
retrieval (IR) measures of precision and recall. Precision is the fraction of re-
trieved (crawled) pages that are relevant, while recall is the fraction of relevant
pages that are retrieved (crawled). In a usual IR task the notion of a relevant
set for recall is restricted to a given collection or database. Considering the
Web to be one large collection, the relevant set is generally unknown for most
Web IR tasks. Hence, explicit recall is hard to measure. Many authors pro-
vide precision-like measures that are easier to compute in order to evaluate
the crawlers. We will discuss a few such precision-like measures:

1. Acquisition rate: In case we have boolean relevance scores we could mea-
sure the explicit rate at which “good” pages are found. Therefore, if 50
relevant pages are found in the first 500 pages crawled, then we have an
acquisition rate or harvest rate [1] of 10% at 500 pages.

2. Average relevance: If the relevance scores are continuous they can be av-
eraged over the crawled pages. This is a more general form of harvest rate
[9, 22, 8]. The scores may be provided through simple cosine similarity
or a trained classifier. Such averages (see Figure 6(a)) may be computed
over the progress of the crawl (first 100 pages, first 200 pages and so on)
[22]. Sometimes running averages are calculated over a window of a few
pages (e.g. last 50 pages from a current crawl point) [9].

Since measures analogous to recall are hard to compute for the Web, authors
resort to indirect indicators for estimating recall. Some such indicators are:

1. Target recall : A set of known relevant URLs are split into two disjoint
sets-targets and seeds. The crawler is started from the seeds pages and
the recall of the targets is measured. The target recall is computed as:

target recall =
| Pt ∩ Pc |
| Pt |

where Pt is the set of target pages, and Pc is the set of crawled pages.
The recall of the target set is used as an estimate of the recall of relevant
pages. Figure 5 gives a schematic justification of the measure. Note that
the underlying assumption is that the targets are a random subset of the
relevant pages.
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Fig. 5. The performance metric: | Pt∩Pc | / | Pt |
as an estimate of | Pr ∩ Pc | / | Pr |

2. Robustness: The seed URLs are split into two disjoint sets Sa and Sb. Each
set is used to initialize an instance of the same crawler. The overlap in
the pages crawled starting from the two disjoint sets is measured. A large
overlap is interpreted as robustness of the crawler in covering relevant
portions of the Web [9, 6].

There are other metrics that measure the crawler performance in a manner
that combines both precision and recall. For example, search length [21] mea-
sures the number of pages crawled before a certain percentage of the relevant
pages are retrieved.

Figure 6 shows an example of performance plots for two different crawlers.
The crawler performance is depicted as a trajectory over time (approximated
by crawled pages). The naive best-first crawler is found to outperform the
breadth-first crawler based on evaluations over 159 topics with 10,000 pages
crawled by each crawler on each topic (hence the evaluation involves millions
of pages).
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Fig. 6. Performance Plots: (a) average precision (similarity to topic description)
(b) average target recall. The averages are calculated over 159 topics and the error
bars show ±1 standard error. One tailed t-test for the alternative hypothesis that
the naive best-first crawler outperforms the breadth-first crawler (at 10,000 pages)
generates p values that are < 0.01 for both performance metrics.



20 G. Pant, P. Srinivasan, F. Menczer

In this section we have outlined methods for assessing page importance and
measures to summarize crawler performance. When conducting a fresh crawl
experiment it is important to select an evaluation approach that provides a
reasonably complete and sufficiently detailed picture of the crawlers being
compared.

5 Applications

We now briefly review a few applications that use crawlers. Our intent is not
to be comprehensive but instead to simply highlight their utility.

5.1 MySpiders: query-time crawlers

MySpiders [26] is a Java applet that implements the InfoSpiders and the naive
best-first algorithms. The applet is available online.10 Multi-threaded crawlers
are started when a user submits a query. Results are displayed dynamically
as the crawler finds “good” pages. The user may browse the results while the
crawling continues in the background. The multi-threaded implementation of
the applet deviates from the general model specified in Figure 3. In line with
the autonomous multi-agent nature of the InfoSpiders algorithm (section 3.5),
each thread has a separate frontier. This applies to the naive best-first algo-
rithm as well. Hence, each thread is more independent with non-contentious
access to its frontier. The applet allows the user to specify the crawling al-
gorithm and the maximum number of pages to fetch. In order to initiate the
crawl, the system uses the Google Web API11 to obtain a few seeds pages.
The crawler threads are started from each of the seeds and the crawling con-
tinues until the required number of pages are fetched or the frontier is empty.
Figure 7 shows MySpiders working on a user query using the InfoSpiders
algorithm.

5.2 CORA: building topic-specific portals

A topical crawler may be used to build topic-specific portals such as sites that
index research papers. One such application developed by McCallum et al. [20]
collected and maintained research papers in Computer Science (CORA). The
crawler used by the application is based on reinforcement learning (RL) that
allows for finding crawling policies that lead to immediate as well as long term
benefits. The benefits are discounted based on how far away they are from
the current page. Hence, a hyperlink that is expected to immediately lead to
a relevant page is preferred over one that is likely to bear fruit after a few
links. The need to consider future benefit along a crawl path is motivated
10 http://myspiders.biz.uiowa.edu
11 http://www.google.com/apis
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a

b

Fig. 7. The user interface of
MySpiders during a crawl us-
ing the InfoSpiders algorithm.
(a) In the search process;
Spider 9 has reproduced and
its progeny is visible in the
expandable tree (right). A
spider’s details are revealed
by clicking on it on the tree
(left) (b) At the end of the
crawl; one of the top hits is
found by a spider (and it is
not one of the seeds). The hit
is viewed by clicking its URL
in the results frame.

by the fact that lexical similarity between pages falls rapidly with increasing
link distance. Therefore, as noted earlier, a math department home page that
leads to a “numerical analysis” paper may provide very little lexical signal to a
naive best-first crawler that is searching for the paper. Hence, the motivation
of the RL crawling algorithm is similar to that of the context focused crawler.
The RL crawler was trained using known paths to relevant pages. The trained
crawler is then use to estimate the benefit of following a hyperlink.

5.3 Mapuccino: building topical site maps

One approach to building site maps is to start from a seed URL and crawl
in a breadth first manner until a certain number of pages have retrieved or
a certain depth has been reached. The site map may then be displayed as
a graph of connected pages. However, if we are interested in building a site
map that focusses on a certain topic, then the above mentioned approach will
lead a to a large number of unrelated pages as we crawl to greater depths
or fetch more pages. Mapuccino [15] corrects this by using shark-search (see
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section 3.2) to guide the crawler and then build a visual graph that highlights
the relevant pages.

5.4 Letizia: a browsing agent

Letizia [19] is an agent that assists a user during browsing. While the user
surfs the Web, Letizia tries to understand user interests based on the pages
being browsed. The agent then follows the hyperlinks starting from the current
page being browsed to find pages that could be of interest to the user. The
hyperlinks are crawled automatically and in a breadth-first manner. The user
is not interrupted but is suggested pages of possible interest only when she
needs recommendations. The agents makes use of topical locality on the Web
[11] to provide context sensitive results.

5.5 Other applications

Crawling in general and topical crawling in particular is being applied for
various other applications, many of which do not appear as technical papers.
For example, business intelligence has much to gain from topical crawling. A
large number of companies have Web sites where they often describe their
current objectives, future plans and product lines. In some areas of business,
there are a large number of start-up companies that have rapidly changing
Web sites. All these factors make it important for various business entities
to use sources other than the general purpose search engines to keep track of
relevant and publicly available information about their potential competitors
or collaborators [27].

Crawlers have also been used for biomedical applications like finding rele-
vant literature on a gene [33]. On a different note, there are some controversial
applications of crawlers such as extracting email addresses from Web sites for
spamming.

6 Conclusion

Due to the dynamism of the Web, crawling forms the back-bone of applications
that facilitate Web information retrieval. While the typical use of crawlers
has been for creating and maintaining indexes for general purpose search-
engine, diverse usage of topical crawlers is emerging both for client and server
based applications. Topical crawlers are becoming important tools to support
applications such as specialized Web portals, online searching, and competitive
intelligence. A number of topical crawling algorithms have been proposed in
the literature. Often the evaluation of these crawlers is done by comparing
a few crawlers on a limited number of queries/tasks without considerations
of statistical significance. Anecdotal results while important do not suffice
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for thorough performance comparisons. As the Web crawling field matures,
the disparate crawling strategies will have to be evaluated and compared on
common tasks through well-defined performance measures.

In the future, we see more sophisticated usage of hypertext structure and
link analysis by the crawlers. For a current example, Chakrabarti et. al. [8]
have suggested the use of the pages’ HTML tag tree or DOM structure for
focusing a crawler. While they have shown some benefit of using the DOM
structure, a thorough study on the merits of using the structure (in differ-
ent ways) for crawling is warranted [24]. Topical crawlers depend on various
cues from crawled pages to prioritize the fetching of unvisited URLs. A good
understanding of the relative importance of cues such as the link-context,
linkage (graph) structure, ancestor pages etc. is also needed [16]. Another po-
tential area of research is stronger collaboration between search engines and
crawlers [25], and among the crawlers themselves. The scalability benefits of
distributed topical crawling [9, 21] are yet to be fully realized. Can crawlers
help a search engine to focus on user interests? Can a search engine help a
crawler to focus on a topic? Can a crawler on one machine help a crawler
on another? Many such questions will motivate future research and crawler
applications.
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