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Abstract. In this paper we test how efficiently state-of-the art solvers
are capable of solving credulous and sceptical argument-acceptance for
lower-order extensions. As our benchmark we consider two different ran-
dom graph-models to obtain random Abstract Argumentation Frame-
works with small-world characteristics: Kleinberg and Watt-Strogatz. We
test two reasoners, i.e., ConArg2 and dynPARTIX, on such benchmark,
by comparing their performance on NP/co-NP-complete decision prob-
lems related to argument acceptance in admissible, complete, and stable
semantics.

1 Introduction

An Abstract Argumentation Framework (AAF ) [8], or System, is simply a pair
〈A,R〉 consisting of a set A of arguments, and of a binary relation R on A, called
the “attack” relation. An abstract argument is not assumed to have any specific
structure but, roughly speaking, an argument is anything that may attack or
be attacked by another argument. Two main styles of argumentation semantics
definition can be identified in the literature: extension-based and labelling-based.
In this work we exploit the extension-based approach, where a given semantics
definition (related to varying degrees of scepticism or credulousness) specifies
how to derive a set of extensions from an AAF, which basically consist in conflict-
free subsets of A with different properties.

In this paper we are interested in the acceptance (or justification) state of
arguments: intuitively an argument is regarded as accepted if it is at least once
(credulously) or always (sceptically) present in all the extensions satisfying a
given semantics. The kind of semantics (from le least to the most binding), and
its acceptance state (e.g., credulous or sceptical) point to a strength evaluation
of an argument.

In this work we move along the line activated in our previous works [5, 2,
4, 3]. Differently from these papers, here we extend [3] by considering networks
with small-world topologies [15, 18]: in [3] we present a benchmark assembled
with random trees, scale-free networks [1], and just random graphs [13]. The
motivation is to study topologies possibly shown by advanced social debating
platforms, as DebateGraph1, which allow a discussion to be less rigidly structured

1 http://debategraph.org
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than a tree, as instead commonly offered in today’s digital fora. Hence, in this
paper we consider Kleinberg [15] and Watts-Strogatz [18] topologies.

The problems we tackle in this work correspond to the credulous acceptance
in admissible, complete, and stable semantics (all NP-complete problems), and
the sceptical acceptance in the stable semantics (a coNP-complete problem). We
test two different solvers ConArg2 [7] and dynPARTIX [10], in order to have
a comparison between them and a more informative analysis on the most effi-
cient relation “technology against AAF topology” (i.e., Constraint Programming
against Dynamic Programming).

Note that in this work we do not consider higher-order semantics, e.g., pre-
ferred or grounded [8], which can be defined from lower-order ones by selecting
only the maximal or minimal ones w.r.t. set inclusion; for instance, preferred ex-
tensions are the maximal (w.r.t. set inclusion) admissible extensions. We leave
their testing to future work (see Sec. 5).

2 Preliminaries

In this section we focus on the basic definitions of an AAF, and on the extension-
based semantics that will be tested in our comparison (see Sec. 4).

Definition 1 (Abstract AFs). An Abstract Argumentation Framework (AAF)
is a pair F = 〈A,R〉 of a set A of arguments and a binary relation R ⊆ A×A,
called the attack relation. ∀a, b ∈ A, aR b (or, a � b) means that a attacks b.
An AAF may be represented by a directed graph (an interaction graph) whose
nodes are arguments and edges represent the attack relation. A set of arguments
S ⊆ A attacks an argument a, i.e., S � a, if a is attacked by an argument of
S, i.e., ∃b ∈ S.b� a.

The following notion of defence [8] is fundamental to AAFs.

Definition 2 (Defence). Given an AAF, F = 〈A,R〉, an argument a ∈ A is
defended (in F ) by a set S ⊆ A if for each b ∈ A, such that b � a, also S � b
holds. Moreover, for S ⊆ A, we denote by S+

R the set S ∪ {b | S � b}.

The “acceptability” of an argument [8], defined under different semantics,
depends on the frequency of its membership to some argument subsets, called
extensions: such semantics characterise a collective “acceptability”. In Def. 3 we
report only the semantics of interest in this study.

Definition 3. Let F = 〈A,R〉 be an AAF. A set S ⊆ A is conflict-free (in F),
denoted S ∈ cf(F ), iff there are no a, b ∈ S, such that (a, b), (b, a) ∈ R. For
S ∈ cf(F ), it holds that

– S ∈ adm(F ), if each a ∈ S is defended by S;
– S ∈ com(F ), if S ∈ adm(F ) and for each a ∈ A defended by S, a ∈ S holds;
– S ∈ stb(F ), if for each a ∈ A\S, S � a, i.e., S+

R = A;
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Table 1: Some known complexity results for the credulous and sceptical accep-
tance [16, Ch. 5]: in bold, the problems we test in this study.

adm com stb
Credulous acc. NP-c NP-c NP-c
Sceptical acc. trivial P-c coNP-c

a b c d e

Fig. 1: A graphical example of an AAF.

We recall that for each AAF, stb(F ) ⊆ com(F ) ⊆ adm(F ) holds, and that
adm(F ) 6= ∅, and com(F ) 6= ∅ always hold, while stb(F ) = ∅ may happen
instead.

Definition 4 (Acceptance state). Given a semantics σ (e.g., stb) and a
framework F , an argument a is i) sceptically accepted iff ∀E ∈ σ(F ), a ∈ E,
and ii) credulously accepted if ∃E ∈ σ(F ), a ∈ E.

Checking the credulous/sceptical acceptance of an argument is sometimes a
(time) complex problem (e.g., with the grounded semantics they are polynomial):
in Tab. 1 we report in bold the complexity class of the problems we tackle in
this paper, i.e., the credulous acceptance in the admissible, complete, and stable
semantics (all NP-complete problems), and the sceptical acceptance in the stable
semantics (a coNP-complete problem).

Consider the F = 〈A,R〉 in Fig. 1, withA = {a, b, c, d, e} andR = {(a, b), (c, b),
(c, d), (d, c), (d, e), (e, e)}. We have that stb(F ) = {{a, d}}. The admissible exten-
sions of F are adm(F ) = {∅, {a}, {c}, {d}, {a, c}, {a, d}}, while the complete ones
are com(F ) = {{a}, {a, c}, {a, d}}. For instance, argument a is both credulously
and sceptically accepted in stb(F ) and com(F ), while it is only credulously ac-
cepted in adm(F ).

3 Tools and Graphs

In this section we introduce how we performed our tests, by describing the
analysed tools (Sec. 3.1) and the generated AAFs (Sec. 3.2).

3.1 Tools

dynPARTIX2 is a system based on decomposition and dynamic program-
ming; it is motivated by the theoretical results in [10]. The underneath algo-
rithms make use of the graph-parameter tree-width, which measures the “tree-
likeness” of a graph. More specifically, tree-width is defined via the so-called

2 http://www.dbai.tuwien.ac.at/proj/argumentation/dynpartix/
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tree-decompositions. A tree decomposition is a mapping from an AAF to a tree
where the nodes in the tree contain bags of arguments from the AAF. Each ar-
gument appears in at least one bag, adjacent arguments are together in at least
one bag, and bags containing the same argument are connected. The benchmarks
in [9] show that the run-time performance of dynPARTIX heavily depends on
the tree-width of the considered graph: for example, with instances of small
tree-width, dynPARTIX outperforms ASPARTIX [12], while with a high tree-
width ASPARTIX still performs comparably (better on credulous acceptance,
still worse on sceptical acceptance). In our tests we use the new 64-bit version
(2.0) of dynPARTIX, which has recently become available.

ConArg2. ConArg3 [7] is our solver based on the Java Constraint Program-
ming solver4 (JaCoP), a Java library that provides a Finite Domain Constraint
Programming paradigm [17]. The tool comes with a graphical interface, which
visually shows all the obtained extensions for each problem. ConArg is able to
solve also the weighted and coalition-based problems presented in [6]. Moreover,
it can import/export AAFs with the same text format of ASPARTIX. Recently,
we have extended the tool to its second version, i.e., ConArg2 (freely download-
able from the same Web-page of ConArg), in order to improve its performance:
we implemented all the models in Gecode5, which is an open, free, and efficient
C++ environment where to develop constraint-based applications. Hence, we
model each semantics as a Constraint Satisfaction Problem (CSP) [17]. We have
also dropped the graphical interface, having a textual output only, with the pur-
pose to have a tool exclusively oriented to performance. So far, on classical AAFs,
ConArg2 is able to find all conflict-free, admissible, complete, stable, grounded,
preferred, semi-stable, and ideal extensions; moreover, it solves the credulous
and sceptical acceptance of arguments given the admissible, complete, and sta-
ble semantics, and the existence of a stable extension (which is an NP-complete
problem).

3.2 Graphs

The justification behind using Kleinberg and Watts-Strogatz models is that sev-
eral works in the Argumentation literature investigate AAFs extracted from
social networks [14]. However, benchmarks collected with such tools are still not
available.

To generate random graphs we adopted two different libraries. The first one
is the Java Universal Network/Graph Framework (JUNG6), which is a Java soft-
ware library for the modelling, generation, analysis and visualization of graphs.
With JUNG we generate Kleinberg [15] graphs. The second library we use is Net-
workX 7, and it consists of a Python software package for the creation, manipu-

3 http://www.dmi.unipg.it/conarg/
4 http://www.jacop.eu
5 http://www.gecode.org
6 http://jung.sourceforge.net
7 http://networkx.github.io
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Model/Nodes Edges Shortest Path Clustering C. Diam. InDeg. Cycles Min-Max Deg.
KL/16 47 1.6 0.3 2.9 5 Yes 5-11
KL/25 74 1.9 0.19 3 5 Yes 5-11
KL/36 107 2.2 0.14 3.9 5 Yes 5-11
KL/49 146 2.4 0.11 4 5 Yes 5-11
KL/64 191 2.57 0.8 4.2 5 Yes 5-12
KL/81 242 2.7 0.07 4.8 5 Yes 5-11
WS/25 50 2.4 0.22 4.7 2 Yes 2-8
WS/50 100 3.4 0.28 6.7 2 Yes 2-8
WS/80 240 2.6 0.09 4.9 3 Yes 3-13
WS/100 400 2.4 0.12 4 4 Yes 4-15

Table 2: Analysis of the generated random-AFs: values are averaged over the
generated 100 AFs in each class. The considered models are Kleinberg (KL) and
Watts-Strogatz (WS).

lation, and study of the structure, dynamics, and functions of complex networks.
With NetworkX we generate Watts-Strogatz [18] graphs.

The Kleinberg [15] graph-model adds a number of directed long-range ran-
dom links to an n × n lattice network. Links have a non-uniform distribution
that favours edges to close nodes over more distant ones (in the number of hops).
In the implementation provided by JUNG, each node u has four local connec-
tions, one to each of its neighbours, and in addition, one or more long-range
connections to some node v, where v is randomly chosen according to probabil-
ity proportional to d−θ where d is the lattice distance between u and v and θ is
the clustering exponent. In our generation we set θ = 0.9, in order to have a high
clustering coefficient. Given a node, each link is directed towards its neighbours:
edges are created in both directions between neighbours. Each long-distance edge
has the tail in the considered node.

The Watts-Strogatz model [18] consists in a ring over n nodes. each node
in the ring is connected with its k nearest neighbours (k − 1 neighbours if k is
odd). Then shortcuts are created by replacing some edges as follows: for each
edge (u, v) in the underlying “n-ring with k nearest neighbours with probability
p replace it with a new edge (u,w) with uniformly random choice of existing
node w. Varying p makes it possible to interpolate between a regular lattice
(p = 0) and an Erdős-Rényi graph (p = 1). In our graph generation we set
k = (n/10) − 2 and p = 0.1: in this way we obtain a high clustering coefficient
(the max is with k = n/2, i.e., a complete graph) without increasing the number
of edges (attacks) too much; we also obtain a graph structure closer to a lattice (p
is low). Note that, since NetworkX generates undirected Watts-Strogatz graphs,
we orient each edge in one of the two directions (0.5 of probability each).

For each set of 100 networks we also collected the following parameters, shown
in Tab. 2: the Average Number of Edges, the Average Shortest Path (between
all the couples of nodes), the Average Clustering Coefficient (the fraction of
all the possible triangles through a node), the Average Diameter, the Average
InDegree, the presence of Simple Cycles (closed paths where no node appears
twice, except that the first and last node are the same), and the Max and Min
degree for a node over the whole class.
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Fig. 2: Avg. time dynPARTIX ( ), ConArg2 ( ), % Unsuc. instances dyn-

PARTIX ( ).

4 Tests and Discussion

Performance results have been collected on an Intel(R) Core(TM) i7 CPU 970
@3.20GHz (6 core, 2 threads per core), and 16GB of RAM. For both the tools,
the output has been redirected to /dev/null, and the standard error to file.
To test dynPARTIX we adopted its 64-bit version, by calling commands like
./dynpartix -f barabasi graph -s admissible --skept d. Flag -f speci-
fies the input file, -s the considered semantics (admissible in this case), and
--skept sets argument with id d to be checked for sceptical acceptance. We
could flag -n semi, i.e., the semi-normalised tree-decomposition (more perfor-
mant than the default normalised one, as stated by the authors of dynPARTIX)
only for the admissible semantics, because it is not currently implemented for
the other two semantics. We set a timeout of 300 seconds to interrupt the search
of each of the two tools.

In Fig. 2 and Fig. 3 we show the tests collected on the whole database pre-
sented in Tab. 2, for the credulous and sceptical acceptance respectively. For
each of the reported number of nodes (on the x axis), the left y axis reports the
CPU time averaged over 100 different instances of AAFs, and 10% random ar-
guments chosen on that class. Acceptance and non-acceptance have been forced
to be equally distributed within such random sample (5% each). On the right
y axis we also report the percentage of instances that are not solved within the
timeout (“% Unsuccessful”).
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Fig. 3: Avg. time dynPARTIX ( ), ConArg2 ( ), % Unsuc. instances dyn-

PARTIX ( ).

As we can appreciate from Fig. 2 and Fig. 3, we can state that constraint
propagation in ConArg2 works very well with credulous/sceptical acceptance
of arguments: most of the problems are solved almost instantaneously, while
dynPARTIX is not able to return an answer within the timeout. Note that the
performance of dynPARTIX on sceptical acceptance are proven to be better
(with low tree-width graphs) or comparable (with high tree-width graphs) to
the performance of ASPARTIX, while ASPARTIX works definitely better with
high tree-width and credulous acceptance [9].

5 Conclusion

In the paper we have compared two reasoners (dynPARTIX and ConArg2). The
main goal has been to study how efficiently state-of-the-art reasoners behave
on hard problems related to credulous and sceptical acceptance in lower-order
semantics, i.e., admissible, complete, and stable.

In the future we will implement in ConArg2 all the other hard problems re-
lated to higher-order semantics [16, Ch. 5]; in particular, credulous/sceptical
acceptance in preferred (NP-c/ΠP

2 -c), semi-stable (ΣP
2 -c/ΠP

2 -c), and stage se-
mantics (ΣP

2 -c/ΠP
2 -c), with the purpose to compare our tool with dynPARTIX

again, but also with CEGARTIX8 [11], since it computes sceptical acceptance
for the preferred semantics, and both sceptical and credulous acceptance for
semi-stable and stage semantics. Moreover, in order to have an engine as more
comprehensive as possible, we plan to solve other hard problems (not currently
implemented in any other solver) related to the preferred semantics, e.g., its
verification (co-NP-complete), and non-emptiness (NP-complete).

To solve higher-order semantics, we will need to work on branch-and-bound
search itself, with the result to better manage maximality/minimality of set
inclusion directly at the search level; the reason is that it is usually not possible
to express such requirements as constraints.

8 http://www.dbai.tuwien.ac.at/proj/argumentation/cegartix/
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