
Bridging the Gap between Natural Language
Requirements and Formal Specifications

Martin Böschen1, Ralf Bogusch2, Anabel Fraga3, and Christian Rudat1

1 OFFIS - Institute for Information Technology, Oldenburg, Germany
{martin.boeschen, christian.rudat}@offis.de

2 Airbus DS Electronics and Border Security GmbH, Friedrichshafen, Germany
ralf.bogusch@airbus.com

3 Carlos III of Madrid University, Madrid, Spain
afraga@inf.uc3m.es

Abstract. In this paper, we discuss the problem of transforming a natural lan-
guage requirements specification into a formal specification. We present several
methods to support the process and implemented them in a commercial tool, the
Requirements Quality Suite. We achieve this by enriching the requirement text
with additional structure (using a knowledge base) and asking the requirement
engineer to formulate the requirements in Boilerplates. The additional structure
is used to analyze the requirements automatically or semi-automatically leading
finally to a formal specification. The formal specification then enables verifica-
tion activities, such as testing or formal analysis. We discuss our methods by
examples from an industrial case study and report on our experiences.

Keywords: Requirements, Testing, Formalization, Boilerplates, Requirement Pat-
terns

1 Introduction

Rigorous safety regulations affect the development of safety-relevant embedded sys-
tems in the aerospace domain. Safety standards like SAE ARP4754A and RTCA DO-
178C require high efforts for assuring compliance with applicable airworthiness re-
quirements. In the past years, progress has been made in the area of formal methods.
The adoption of formal methods as a verification technique complementary to testing
has recently been encouraged by RTCA DO-333, the Formal Methods Supplement to
RTCA DO-178C.

Formal methods have the potential to increase safety and reduce the development
and verification effort. Experience shows that defining requirements using formal nota-
tions has benefits: First, it makes requirements more specific by forcing systems engi-
neers to answer questions that would otherwise be postponed until the implementation
phase. Second, it provides the basis to perform advanced verification techniques such as
formal analysis or generation of test cases and oracles. Moreover, formal methods may
enable exhaustive verification that is usually not possible with testing. For example,
model checking allows the verification engineer to explore all possible behaviours of
a formal model to determine whether a specified property is satisfied. Formal methods

are mathematical techniques for the specification, development and verification of com-
puter systems. But today, there is still a large gap between the academic community re-
searching formal methods and industrial practitioners who might benefit. Engineers are
more comfortable with tangible requirements and test cases, rather than formal specifi-
cations and analysis. Introducing formal methods in industrial practice and overcoming
the burden of formalization is a major challenge. An extensive survey about the state of
the art of formal methods in industrial use and a discussion about the issues surrounding
the industrial adoption of formal methods is provided in [14].

In this paper, we present a tool supported methodology to manage requirements on
different levels of formality. In industrial projects, there is a need for natural language
requirement documents as well as a formal specification. We do not try to unify the
different languages, but show by examples possible ways to manage the interactions
between the different levels without restricting either side in an unacceptable way. This
makes it much easier to transform system requirements into formal specifications. Sys-
tem and verification engineers agree on a set of Boilerplates and quality metrics for
requirements, which ease the process of formalization and which can be evaluated au-
tomatically. If these metrics evaluate above a defined threshold, a requirement is stated
with the agreed quality. We present a set of different methods, which work together to-
wards the goal of having a simpler management between these two levels of formality.
We build our methods on top of the Requirements Quality Suite4, an industrial require-
ments analysis tool. It allows a lot of customization and extensions, so we can integrate
our techniques into its user interface and build on services it provides, like natural lan-
guage processing or pattern matching.

There is a plethora of previous work on the formalization of requirements, [7] and
[2] are the closest in spirit to our work. Both are centered around tools (DODT and
RETA respectively) and pattern matching is used to make the requirement easier acces-
sible for an analysis. In contrast to these papers, we deliberately choose an industrial
tool. This left us with less control over the tools, but makes it easier to discuss the ideas
with industrial practitioners.

This paper is organized as follows: In Section 2, we present an industrial case study
that exemplifies our approach. Section 3 shows the used representations for the require-
ments. Section 4 presents several methods that aid formalization of requirements and
discusses them on examples. Section 5 concludes and gives an outlook onto future work.

2 Industrial Case Study

Airbus Defence and Space develops avionic systems that support helicopter pilots in
degraded visual environments (DVE) which can be caused by e.g. rain, fog, sand and
snow. Many accidents can directly be attributed to such DVE where pilots often loose
spatial and environmental orientation (see Figure 1 on the left side). In this case study
we employ the landing symbology function which is part of the pilot assistance landing
capabilities of the situational awareness suite Sferion.

The landing symbology function (LS3D) supports helicopter pilots during the land-
ing approach. It enables the pilot to mark the intended landing position on ground using

4 http://www.reusecompany.com/requirements-quality-suite

http://www.reusecompany.com/requirements-quality-suite

a head-tracked HMS/D (Helmet Mounted Sight and Display) and HOCAS (Hands on
Collective and Stick). During the final landing approach the landing symbology func-
tion enhances the spatial awareness of flying crews by displaying 3D conformal visual
cues on the HMS/D (see Figure 1 on the right side). Additionally, obstacles residing in
the landing zone can be detected.

The requirements of the system specify its functional behavior and state exactly
under which conditions which reactions shall occur. The following two requirements
will serve as a running example for the methods to be demonstrated:

R1: The LS3D function shall set the marked landing position to valid, on re-
ception of the trigger mark landing symbol, if the landing symbology has been
activated and there is an intersection between the LoS of the tracker of the
HMS/D and the ground surface and there is no sensor and/or database clas-
sified obstacle within the doghouse square with edge length of 40 m for the
marked landing position.

R2: The LS3D function shall visualize a pin symbol at the marked landing
position if the marked landing position is valid and (0.08NM ≤ distance H/C
to landing position < 1.8NM).

Fig. 1: Landing aid in degraded visual environments

The development process within the case study covers the following activities:

– The systems engineer develops natural language system requirements.
– The system requirements are analyzed using natural language processing tech-

niques and improvements are made to ease subsequent formalization.
– The verification engineer develops the formal system specification.
– The verification engineer uses the formal system specification to perform verifica-

tion activities.

A demonstrator has been setup that comprises the following tool chain:
– IBM DOORS: develop natural language requirements, manage requirements.
– TRC Requirements Quality Suite RQS : analyze natural language requirements,

guide formalization.
– BTC Embedded Specifier: develop formal specification.

We use DOORS as the requirements repository and management tool. It serves as the
central place to store the requirements within the development process. It is customiz-
able and makes its data and functions accessible through an API, so that other tools can
access the data and save additional attributes for the requirements. It is widely estab-
lished in the industry and the Requirements Quality Suite as well as the BTC Embedded
Specifier provide an interface to DOORS.

We use the Requirements Quality Suite to author and analyze the requirements as
well as manage the knowledge about our requirements. The suite provides a lot of ser-
vices (like natural language processing and pattern matching) on which we build upon,
all accessible through a common interface. The requirements can be analyzed on differ-
ent levels (syntactic and semantic), it aids in the automatic process to distinguish tokens
by its syntactical and its semantic meaning. Given the rules to tokenize and process the
requirements in an automatic way, it is possible to measure the quality of requirements
based on some metrics established in the quality suite, which provides immediate feed-
back. It is also possible to integrate custom code to define custom metrics. The systems
engineer is assisted in the requirements writing process by using adequate Boilerplates
for writing good requirements. These Boilerplates can be customized to fit the needs
of one’s organization. Boilerplates will be discussed in more detail in Section 3.1. A
much more detailed discussion about the capabilities of the Requirements Quality Suite
can be found in [9]. While the tool is used in industry mainly to improve the quality of
the requirement specifications and to define and check common guidelines for the tex-
tual requirements, one of the main motivations of this paper was to use its services and
capabilities to make the formalization of the requirements easier, thus making formal
methods easier to apply in industrial contexts.

We use the BTC Embedded Specifier to manage our formal requirements. It sup-
ports a pattern language (see Section 3.2), which defines temporal relations between
observables. It is a variant of Linear Temporal Logic, but instead of building formulas,
it provides patterns for commonly used formulas. This makes the tool more accessible
for engineers, as they have to just choose a pattern, and then fill in the parameters. The
parameters are typically boolean expressions over the observables.

3 Requirement Representations

The problem we are considering in this paper is to transform the natural languages
requirements into formal specifications. In this section we introduce the representations
that are used by systems and verification engineers, respectively.

3.1 Boilerplates
Boilerplates [5] are sequential restrictions based on a place-holders structure for the
specific terms and values that constitute a particular knowledge statement, where the

restrictions can be grammatical, semantic, or even both, as well as other Boilerplates
(Sub-Boilerplates). There are several Boilerplate languages with EARS [10] being a
popular one in industry. We will give two Boilerplates as examples, which are slight
variations of the EARS Boilerplates:

B1: WHEN <trigger> the <system> shall <action> if <assumption>.

B2: WHILE <state> the <system> shall <action> if <assumption>.

The Requirements Quality Suite allows the definition of such Boilerplates. One can de-
fine sophisticated rules for the restriction of the Boilerplates, in the example we choose
a rather general form. Boilerplates consist of some fixed syntax elements, while arbi-
trary text can be inserted between the angle brackets. Furthermore, the tool can check
if a requirement matches a Boilerplate and it can extract the structure of the Boilerplate
for further processing. Parts of the Boilerplates can be connected through relationships,
forming a so called semantic graph. We will illustrate these features in Section 4 by
applying Boilerplates to the use case.

3.2 Pattern

Several pattern-based formal requirement languages have been developed within aca-
demia (e.g. RSL [12]) and industry (e.g. BTC Pattern [3]) to support an engineer during
the formalization process of requirements. The pattern libraries cover the most typical
instances of formal system properties, but are also understandable by non-experts of
formal methods.

The concept of a pattern is similar to a Boilerplate, in the sense that both define a
structural skeleton for requirement texts. The major difference is that a pattern not only
provides a syntactical form, but it also provides a precise semantic interpretation. Figure
2 shows as an example the semantic of the pattern Q while P. The previous section
explained that Boilerplates are able to extract some relationships of a requirement, but
not to a level which is necessary to perform formal verification procedures. Therefore,
the substitution of parameters defined by a pattern is restricted to formal expressions
and does not allow arbitrary texts (which are allowed in Boilerplates).

For this paper, we will use the BTC Patterns which are part of the BTC Embedded
Platform. These patterns also support the contract-based approach [11]. The core idea
is that a requirement always has a context provided by the environment in which it must
hold. A contract states this context explicitly in form of an assumption. The promised
behavior (or commitment) of a requirement contract must only hold, if its assumption
is fulfilled.

As an example of a requirement formalization by using BTC patterns and contracts,
we use the requirement R2. The requirement text describes that the visualization of a
Pin symbol shall be displayed as long as two conditions are valid. The first condition
is that the landing position is valid, which can be interpreted as assumption on the
environment of the requirement. If the positions are not valid, the requirement can not
guarantee anything. The second condition is that the helicopter is in an approaching
range to the target. We decided to formalize this condition as part of the commitment.

Fig. 2: Semantic of the pattern Q while P represented by its observer automaton. The
state labeled with F indicates that the pattern has been violated and is reached if P holds
while Q does not hold. The observer accepts any run of a system which does not lead to
the failure state. The detailed definition of the semantic can be found in [6]

Table 1 describes the selected patterns for both the commitment and the assumption
by using the pattern Q while P for the commitment and a simple invariant condition
pattern P for the assumption.

Commitment
Base Pattern Q while P
Parameters

P: $distanceApproachRange
Q: $visualizePinSymbol

Assumption
Base Pattern P
Parameters

P: $markedLandingPositionValid

Table 1: Formalization of requirement R2

The parameters of the patterns are specified by using special macro variables which
are indicated by a $ sign in the name. The macros are Boolean variables which act as
placeholders and can be further specified by the definition of a formal expression on
interface variables of the actual implementation model. For example, the macro $dis-
tanceApproachRange is formalized as:

f abs(evLandingPosition position− evHelicopterPosition position) ≥0.08
&& f abs(evLandingPosition position− evHelicopterPosition position) <1.8

The macro mechanism allows to specify the semantic of the requirement independent
of the availability of architecture information. A requirement formalized to a pattern

with macros can be formally analyzed without concrete architecture information (e.g.
it is possible to check the consistency of multiple requirements [6]). The formalized
macros allow to verify the requirements against their implementation either by formal
methods or by testing.

4 Formalization Process

In this section, we discuss several problems which arise when managing Boilerplates
and Patterns, keeping them synced, or formalizing a Boilerplate into the corresponding
pattern-based representation. Figure 3 gives an overview about the overall process and
how it relates to the sections of the paper.

Fig. 3: Formalization Process

While the different representations of requirements have been discussed in previous
sections, this section concentrates on the process steps. The following subsections con-
sist of a short introduction into the problem, our approach to solve the problem and an
application to the use case.

4.1 Identification of Relevant Requirements

Problem One of the first problems the verification engineer has to face is the identi-
fication of the verification-relevant requirements. For functional verification activities,
requirements referring to causal relations, ordering and timing are important, which are
typically only a subset of the requirements of the system. We need a filtering mechanism
that identifies exactly these functional requirements.

Approach We defined several Boilerplates and asked the systems engineer to formu-
late all functional requirements in terms of these Boilerplates. The Boilerplates can be
of great generality, such that they allow a natural formulation. However, they enforce
a certain structure, so the engineer cannot choose very complicated sentence structures
(illustrated below). Every Boilerplate can be matched to a pattern and the requirement
can be easily transformed. To make sure that we did not miss a requirement, we defined
a metric, which checks for functional requirements not matching a Boilerplate. Such a
requirement is assigned a low quality, and the engineer would need to reformulate it. A
simple heuristic to identify a functional requirement is the following rule: If the require-
ment contains keywords like “if”, “when”, ”whenever”, ”while”, ”during” or a similar

keyword, it is a functional requirement and it must match one of the Boilerplates. More
sophisticated methods are also possible: In [13], Nikora described how to identify pat-
terns by using machine learning techniques on large requirement corpora. The learned
model could also be implemented as a metric. In that way, we get the following catego-
rization:

– Functional (formalizable) requirements
– Non-functional requirements
– Possibly formalizable requirements

To summarize, we did the following: The requirements are formulated according to
Boilerplates. “Possible formalizable requirements” are detected by a heuristic and can
be reformulated by the engineer. Finally, all requirements should be formulated as re-
quired by the Boilerplates.

Previous research on classifying requirements is for example reported in [4]. In
contrast to them, we perform the classification by customization of our tools and guided
manual work, not by learning the classification automatically on a set of requirements.

Example We discuss the approach using the example of requirement R2. This require-
ment can be formulated according to the Boilerplate B2:

WHILE the distance to the marked landing position is in the range between
0.08 NM and 1.8 NM the system shall visualize a pin symbol at the marked
landing position if the marked landing position is valid.

To demonstrate how that requirement matches with the Boilerplate, the fixed syntax
elements are shown in bold, while the filled gaps are shown in italics. The Boilerplate
B2 has been added in the Requirement Quality Suite, so we can check if the require-
ments match with it. Figure 4a shows a screenshot of the tool, where the matching is
demonstrated. Let us now consider the following variation of the requirement R2:

Unless the marked landing position is invalid, the system shall visualize a pin
symbol at the marked landing position while the distance to the marked landing
position is in the range between 0.08 NM and 1.8 NM.

This requirement defines the same content, but the syntax is slightly more complicated.
The requirement does not match to our Boilerplate and because it contains the keyword
“while”, the metric will classify it as a low quality requirement. This gives the systems
engineer the possibility to reformulate it. The metric has been implemented into the
Requirement Quality Suite. Metrics can be integrated as custom code, which can decide
the quality based on the requirement text and the information attached by the tool – in
this case the matching of a Boilerplate. The direct feedback makes it possible to change
the requirement immediately.

(a) Pattern matching

(b) Meta Properties

(c) Relations

Fig. 4: Requirement Analysis in the Requirement Quality Suite

4.2 Extracting Semantics from Boilerplates

Problem There are often many different variations of similar requirements, containing
the same relationship and the same properties. For example, there are many different
“Trigger-Reaction” requirements, which only have differences in temporal conditions.
In the Sferion system, there are triggers which have to hold for a certain time period to
cause a reaction. On the other hand, the very same requirement might be expressed in
different variations, and it is often desirable to keep this variability as it helps a human
reader to understand the requirements and the context.

That leaves us with the problem of how to deal with different language variations
on the requirements text side and the same semantics on the formal analysis side. The
diversity of language variation makes it hard for the verification engineer to scan the
requirement and find the corresponding pattern.

Approach We approach this problem by using the possibility of the Requirement Qual-
ity Suite to attach semantics to the different Boilerplates via Semantic Graphs and Meta
Properties. The parts of the Boilerplates can be extracted and related to each other.
Parts of the Boilerplate can be assigned to Meta Properties, so whenever the Boiler-
plate matches, we can access the Meta Property. This is similar to the grouping feature

available in several programming languages when matching regular expression. The
relationship is visualized by a semantic graph. In this way, several Boilerplates can
generate the same semantic graph.

The extracted information is helpful for the verification engineer, since the different
parts are clearly separated, for example one can immediately identify the triggering
condition of a requirement. Furthermore, the extracted information is more accessible
for automatic processing. In Section 4.3, we will sketch an application which uses this
information.

Example Let us consider the Requirement R1. We formulated it according to Boiler-
plate B1:

WHEN the trigger mark landing symbol symbol is received and there is an in-
tersection between the LoS of the tracker of the HMS/D and the ground surface
and there is no sensor and database classified obstacle within the doghouse
square with edge length of 40 m for the marked landing position the LS3D
function shall set the marked landing position to valid if the landing symbol-
ogy has been activated.

Similar to what we described in Section 4.1, the requirement is matched with the Boil-
erplate. As we have defined Meta Properties in the Requirements Quality Suite, parts of
the requirement can be extracted and accessed as properties of this requirement. Table
2 show the extracted properties, while Figure 4b shows how this is visualized in the
Requirement Quality Suite.

Trigger the mark landing symbol symbol is received and there is an inter-
section between the LoS of the tracker of the HMS/D and the ground
surface and there is no sensor and database classified obstacle within
the doghouse square with edge length of 40 m for the marked land-
ing position

Reaction set the marked landing position to valid
Assumption the landing symbology has been activated

Table 2: Extraction of Meta Properties

It is also possible to extract relationships. In this example, we can find a “Causality”-
relationship, which we have defined in the tool. A matching Boilerplate will cause this
relationship to be automatically extracted from the requirement. In the Requirement
Quality Suite (Figure 4c) the relation is represented as a small tree, in which the relation
is the root and the values are the leafs of the tree. Much more sophisticated relations
can also be extracted as a semantic graph. A more detailed discussion about semantic
graphs and how they can be used in requirement engineering can be found in [8].

4.3 Guided Formalization

This section gives an outlook on methods which can be built on top of the methods that
we described in the previous sections. We describe them to show the opportunities the
previous methods provide and as an outlook on future work.

Problem Deriving a formal specification from a natural language requirement docu-
ment is still a challenge in industrial real-world projects. The reasons are huge require-
ment bases, imprecise and missing information, different styles of writing requirements
and changes. For a verification engineer, it is quite hard to keep the formal specification
in sync with the system requirements. An appealing solution would be an automatic
formalization: a program which takes as input the natural language requirements and
returns as output the formal specification. We do not believe that such a program is
possible in the near future nor that it is desirable. First, a wrong interpretation could
be catastrophic. If the system has been tested and verified successfully, but this was the
result of an incorrect derivation of the formal specification, it could fail in practice with
possibly dangerous consequences. Second, even if the verification of the system suc-
ceeds, by taking the human out of the loop we weaken the validation. The careful look
of a human expert to build a formal specification is usually an important step in the
validation. Errors in the requirements specification are often found when developing
the formal specification. Therefore, we propose a semi-automatic system, which can
support the human by performing tedious tasks (like scanning manually through long
lists), but allowing full control over the process.

Approach When the requirements are matched with Boilerplates and the semantics is
extracted, it is possible to process the information automatically and to analyze it. A
prerequisite for this is the possibility to access the information which has been built in
the previous steps. While the Requirements Quality Suite had no mechanism to access
the knowledge, there is extensive ongoing work (see [1]) to make this knowledge acces-
sible and build applications on top of it. It is then possible to build custom applications,
using the data via an API. A tool can now make suggestions, which pattern can be used
and how the parameters should be filled. The suggestion can be based on following
information:

– The matched pattern and the extracted relationships make a certain class more prob-
able, for example invariant pattern vs. “Trigger-Reaction”-Pattern.

– Extracted Meta Properties (for example an assumption) can be parsed into a Boolean
expression and then be used as the parameter of a pattern.

– Common terms in the Meta Properties can be matched with same macro of the
pattern model.

Using this approach, many hints can be offered to the verification engineer, freeing him
from tedious tasks and facilitating the formalization process.

5 Conclusion

The benefits of formal specifications are manifold: the experience from the industrial
case study showed that formalization leads to an in-depth understanding of the func-
tional system behaviour. This allows detecting errors and removing ambiguities early
in the lifecycle and hence reduces cost of rework in downstream processes. For the de-
velopment of safety-relevant systems, the effectiveness of the verification process is of
particular importance and justifies additional means for assurance. Therefore, Airbus is
complementing its traditional testing approach by formal methods. One key technology
is the automatic generation of so-called C-code observers from formal specifications.
C-code observers representing particular formal requirements can be executed either at
model or implementation level during the verification process. In this way, the quality
of requirements-based testing is improved: the notion of requirements-based coverage
is refined into observer coverage and the system behaviour is monitored against its for-
mal specification during test execution. However, we currently do not intend to claim
any certification credit towards certification authorities due to the increased level of au-
tomation of the verification process, i.e. formal specifications, test cases and observers
must undergo a review.

In this paper, we presented an approach that supports industry in the application of
formal methods by addressing the gap between natural-language requirements and for-
mal specifications. Since formal methods are often regarded to be mathematical and too
difficult to learn, we propose a more user-friendly way of transforming natural language
requirements into a formal specification. We showed several methods to support the pro-
cess and implemented them in a commercial tool, the Requirement Quality Suite. This
is mainly achieved by enriching the requirement text with additional structures and ask-
ing the systems engineer to formulate requirements with the help of Boilerplates. The
structure can then be used to analyze the requirements automatically. The industrial
case study has provided evidence that a small set of generic Boilerplates is sufficient to
cover the most relevant variants of functional system requirements.

In our experience, two factors have proven to be especially valuable: the direct feed-
back when writing requirements and the high degree of customization the Requirements
Quality Suite offers. The direct feedback while authoring requirement helps to prevent
low quality requirement right at the beginning and shortens the Write-Review-Rewrite-
cycle. Furthermore, it is well accepted by users like the spell-checker in a text processor.
The high degree of customization makes it possible to integrate the requirement rules
of one organization or even custom analysis logic into a common interface. This allows
developing and maturing the process of requirement writing and formalizing step-by-
step, always within the same tool. On the downside, the customization can be quite
tricky and a lot of training is needed to tailor the tool to ones need. There is certainly
some further development needed to benefit from the methods we have described.

A natural question which arises in the context of requirement formalization is: if we
aim at a formal specification, why dont we just start with it? This would certainly go
too far and we already emphasized the value of natural language requirements in this
paper. Nevertheless, it leads us to our main future research question: What are the right
restrictions on writing natural language requirements, such that they are comprehensi-
ble for the system engineer, but facilitate the derivation of a formal specification? These

questions are addressed in the CRYSTAL project, where we work both on the tool side
as well as on the methodological side. In this paper, we chose a specific instance of
such restrictions, discussed how we can use them to derive a formal specification and
reported on our experiences.

Acknowledgments The research leading to these results has received funding from
the ARTEMIS Joint Undertaking under Grant Agreement N◦332830 (CRYSTAL) and
national funding agencies.

References
1. Alvarez-Rodriguez, J.M., Alejandres, M., Llorens, J., Fuentes, J.: OSLC-KM: A knowledge

management specification for OSLC-based resources. INCOSE International Symposium
25(1), 16–34 (2015), http://dx.doi.org/10.1002/j.2334-5837.2015.00046.x

2. Arora, C., Sabetzadeh, M., Briand, L.C., Zimmer, F.: Requirement boilerplates: Transition
from manually-enforced to automatically-verifiable natural language patterns. In: Require-
ments Patterns (RePa), 2014 IEEE 4th International Workshop on. pp. 1–8. IEEE (2014)

3. BTC Embedded Systems AG: BTC Embedded Validator Pattern Library (2012), http://
www.btc-es.de/index.php?idcatside=52, Release 3.6

4. Cleland-Huang, J., Settimi, R., Zou, X., Solc, P.: Automated classification of non-functional
requirements. Requirements Engineering 12(2), 103–120 (2007)

5. Dick, J., Llorens, J., J.: Using statement-level templates to improve the quality of require-
ments. ICSSEA (2012)

6. Ellen, C., Sieverding, S., Hungar, H.: Detecting consistencies and inconsistencies of pattern-
based functional requirements. In: Lang, F., Flammini, F. (eds.) Formal Methods for Indus-
trial Critical Systems. Lecture Notes in Computer Science, vol. 8718, pp. 155–169. Springer
Switzerland (2014), http://dx.doi.org/10.1007/978-3-319-10702-8_11

7. Farfeleder, S., Moser, T., Krall, A., Stålhane, T., Zojer, H., Panis, C.: DODT: Increasing
requirements formalism using domain ontologies for improved embedded systems develop-
ment. In: Design and Diagnostics of Electronic Circuits & Systems (DDECS), 2011 IEEE
14th International Symposium on. pp. 271–274. IEEE (2011)

8. Fraga, A., Llorens, J., Alonso, L., Fuentes, J.M.: Ontology-assisted systems engineering pro-
cess with focus in the requirements engineering process. In: Complex Systems Design &
Management, pp. 149–161. Springer (2015)

9. Génova, G., Fuentes, J.M., Llorens, J., Hurtado, O., Moreno, V.: A framework to measure
and improve the quality of textual requirements. Requirements Engineering 18(1), 25–41
(2013)

10. Mavin, A., Wilkinson, P., Harwood, A., Novak, M.: Easy approach to requirements syntax
(EARS). In: Requirements Engineering Conference, 2009. RE’09. 17th IEEE International.
pp. 317–322. IEEE (2009)

11. Meyer, B.: Applying ”design by contract”. Computer 25(10), 40–51 (1992)
12. Mitschke, A., Loughran, N., Josko, B., Oertel, M., Rehkop, P., Häusler, S., Benveniste,

A.: RE Language Definitions to formalize multi-criteria requirements V2 (2010), http:
//cesarproject.eu/index.php?id=77

13. Nikora, A.P., Balcom, G.: Automated identification of LTL patterns in natural language re-
quirements. In: Software Reliability Engineering, 2009. ISSRE’09. 20th International Sym-
posium on. pp. 185–194. IEEE (2009)

14. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: Practice and ex-
perience. ACM Computing Surveys (CSUR) 41(4), 19 (2009)

http://dx.doi.org/10.1002/j.2334-5837.2015.00046.x
http://www.btc-es.de/index.php?idcatside=52
http://www.btc-es.de/index.php?idcatside=52
http://dx.doi.org/10.1007/978-3-319-10702-8_11
http://cesarproject.eu/index.php?id=77
http://cesarproject.eu/index.php?id=77

	Bridging the Gap between Natural Language Requirements and Formal Specifications

