
On the Organisation of
Program Verification Competitions

Marieke Huisman1, Vladimir Klebanov2, and Rosemary Monahan3

1 University of Twente, The Netherlands
2 Karlsruhe Institute of Technology, Germany

3 National University of Ireland Maynooth, Ireland

Abstract. In this paper, we discuss the challenges that have to be ad-
dressed when organising program verification competitions. Our focus is
on competitions for verification systems where the participants both for-
malise an informally stated requirement and (typically) provide some
guidance for the tool to show it. The paper draws its insights from
our experiences with organising a program verification competition at
FoVeOOS 2011. We discuss in particular the following aspects: challenge
selection, on-site versus online organisation, team composition and judg-
ing. We conclude with a list of recommendations for future competition
organisers.

1 Introduction

As verification competitions are becoming more popular we are gaining expe-
rience on how to organise them. There have been three competitions to-date
focusing on a particular form of program verification. In this paper, by pro-
gram verification, we mean a formal verification process, where a human user
contributes in two ways: (a) by formalising an informally stated requirement
specification for a program, and (b) by providing (if necessary) some guidance
to the verification system to show formally the conformance of the program to
the requirement. This setup is due to the strong properties being shown and the
heterogeneity of the verification system landscape. It makes such a competition
quite different from other competitions in verification (e.g., SV-COMP [1]) or
automated reasoning (e.g., CASC [7]), where the formal requirement is identical
for all teams and fixed in advance, and no user guidance in showing it is ac-
cepted. In our context, organisers have to deal with a whole new range of issues,
such as judging the adequacy of the requirement formalisation.

Although verification competitions up until now have varied in their organ-
isation, all of them succeeded in bringing together the verification community
to compare their tools and techniques. Hence, it is important that these com-
petitions become a regular event, perhaps co-located with the same conference
every year in order to increase participation and build momentum. Through
our participation, as both organisers and competitors, we realise that competi-
tions are not mature, and we often make “imperfect” arrangements in order to



increase participation and build momentum. Therefore, such competitions are
also a learning process from an organisational viewpoint. In the remainder of
this paper we share our experience of organising a verification competition at
FoVeOOS 2011. We begin with an overview of verification competitions held so-
far. Then, we discuss the challenge selection, on-site versus online organisation,
team composition and judging. Finally, we present a list of recommendations for
the organisers of future verification competitions.

2 History of Program Verification Competitions

The first program verification competition4 [5] was an informal event, held dur-
ing the VSTTE 2010 conference as a prelude to more formal competitions at
future meetings. The competition was organised by Natarajan Shankar, SRI In-
ternational, and Peter Müller, ETH Zürich, who were assisted by Gary Leavens,
University of Central Florida, in the judging. The challenges involved simple
data types that are supported by most verification tools for sequential or func-
tional programs. The teams, of up to three people, were given five verification
exercises with informal specifications, test cases, and pseudo code. The task was
to prepare a reproducible verification of executable code relative to a formalisa-
tion of the specifications using one or more verification tools. The allotted time
was two hours, and the solutions were judged for completeness and elegance as
well as correctness.

The second competition was initiated by the COST Action IC0701 [2], whose
topic is advancing formal verification of object-oriented software. Organised by
Marieke Huisman, University of Twente, Vladimir Klebanov, Karlsruhe Insti-
tute of Technology, and Rosemary Monahan, National University of Ireland,
Maynooth, the competition aimed to evaluate the usability of verification tools
in a relatively controlled experiment that could be easily repeated by others.
This competition was inspired by the first (in fact, both Vladimir Klebanov and
Rosemary Monahan participated in the first competition), and had a similar
format: up to three people forming a team, all participants physically present,
and teams using any verification system of their choice. The event took place the
afternoon prior to the FoVeOOS 2011 conference. Three challenges were given
in natural language and required a solution that consisted of a formal specifica-
tion and an implementation, where the specification was formally verified with
respect to its implementation. In contrast to the VSTTE event, a fixed time slot
was assigned for each of the challenges provided. This setup was chosen in order
to increase precision of the tool comparisons.

In both of these verification competitions, team registration was not required
in advance so participation was quite informal, with student teams especially
encouraged. This setup proved to be successful with eleven teams participat-
ing in the VSTTE competition and six teams participating in the FoVeOOS
competition. It is interesting to note that in each competition every team used

4 In the sense defined in the introduction.



one verification tool and each tool was represented once. There was no explicit
ranking of solutions or a winner announcement. The judging panel manually in-
spected the solutions and pointed out strengths and weaknesses according to the
criteria of completeness, elegance, and automation; these subjective results were
presented during the conferences to foster discussions among the participants. In
both cases a post-competition paper provided the chance for further discussion
and revision of competition solutions.

The third competition [4] had a different format to the previous two: it was
an online competition in which participants had 48 hours to attempt five prob-
lems that were presented on the conference website. Any programming language,
specification language, and verification tool was allowed in the solution. The com-
petition, affiliated with VSTTE 2012 and organised by Jean-Christophe Filliâtre,
CNRS, Andrei Paskevich, University of Paris-Sud 11, and Aaron Stump, Univer-
sity of Iowa, attracted 29 teams (79 participants total) using 22 verification tools.
Each problem included several sub-tasks, e.g., safety, termination, behavioural
correctness, etc., and each sub-task was given a number of points. Submissions
from teams of up to four people, were ranked according to the total sum of
points they scored. The competition resulted in the award of two gold medals,
two silver medals, and two bronze medals. Within each medal class, the teams
were tied for points, with the gold medal teams earning perfect scores of 600
points.

3 Challenge Selection

An important step in the organisation of a verification competition is the se-
lection of challenges. Many of the verification challenges posed in competitions
so far have been variations of typical “text book” exercises. While posing more
open problems is an aspiration, these problems make it difficult to compare solu-
tions and may be daunting to new participants. Here, we discuss the importance
of the selection of competition challenges with the aim of making the competi-
tions accessible to all levels of participants, and in particular, making the event
attractive to newcomers to the area.

Having a pool of past competition problems in a repository like Verify This [3]
assists the challenge selection as one can vary existing problems or can extend
the problems to obtain similar or more advanced challenges. On the one hand,
such a repository would be a perfect test case for tool developers and a perfect
training base for new users. On the other, we want to avoid tool builders tailoring
their tools towards the competition database simply to win competitions rather
than contributing to the wider verification challenge.

3.1 Challenge Variety

Competition challenges should not (dis)favour a particular tool or approach if
at all possible. Verification competitions held so far did not feature tracks or
divisions, so quite different tools were pitted against each other. In our opinion,



the challenges issued so far have been favouring tools that target functional
programming languages. Tools that target object-oriented languages were in
general at a disadvantage.

While introducing tracks or divisions, increases the organisers’ effort and re-
quires a bigger participant critical mass, we suggest that the organisers define a
set of core challenges, which all teams address, and several “speciality” tracks,
where teams can choose the set of challenges that best match the stronger fea-
tures of their tool. However, it is good to have a nonempty set of core challenges
that are attempted by all participants, because one of the important goals of
any competition is the comparison of the different solutions.

Additionally, we believe that a good (core) challenge set should be distinctive,
i.e., only a few teams should be able to solve each challenge. At the moment,
we do not think that there is enough experience with verification competitions,
but we believe that eventually the problems should be so distinctive that even
strong teams might not be able to solve all challenges (within the given time).
Furthermore, we advocate individual time slots for each challenge.

3.2 Challenge Sources

It is important that the challenges are attempted in advance to determine spec-
ification pitfalls and to determine the time that should be allocated to solving
each challenge. The drawback is that this reduces the pool of people that can
participate in a competition.

To obtain a better challenge set with more variety, a possibility is to ask par-
ticipants to contribute a challenge, with a worked-out solution and an estimate
of the required time. This should be something that they consider can be done
very well (fast, elegant etc.) with their approach, and would be challenging for
other tools. We believe that this will force participants to explicitly consider the
strong features of their own tool. It will also help to balance the challenges so
that they are not all targeting the same language and problem set. Challenges
(and solutions) should be submitted well in advance, to allow the organisers to
check that the solution is actually solvable, and does not just use a “trick” that
only the tool developers know about.

However it does not seem a good idea to make challenge submission obliga-
tory, as this might prevent non-developer teams from participating, and it would
make last minute participation complicated. Instead it would be a better idea to
reward challenge submission. For example, bonus points will be awarded if the
standard solution is “better” than all submitted solutions.

3.3 Importance of Small Challenges

With certain regularity, we face expectations that competitions should feature
larger and more complex challenges. In fact, this has been almost the predom-
inant dimension along which progress of verification as a whole has been eval-
uated: how large/complex a system can be formally verified? We would like to



argue that this view needs to be supplemented with a different one involving the
verification of small, highly controlled challenges.

Two observations lead us to this opinion. First, the larger the challenge, the
more difficult/expensive it is to reproduce it. It is a significant advantage if the
competition situation can be re-enacted by anybody with access to a verification
system and a few hours to dedicate to the task. Larger time demands significantly
hamper penetration in the notoriously short-for-time work environment. Second,
when working on larger challenges, it is more difficult to keep track of net time
and effort spent, as other day-to-day activities (be it sleeping, teaching, or other
work) interfere.

It is true that certain tool capabilities that are essential for working on large
projects (hierarchical development, abstractions in-the-large, proof and change
management) are difficult to test with small challenges. At the same time, a
number of larger comparative case studies in formal development and verification
have already been carried out. Here we name examples such as the “production
cell” case study [6] and the Mondex case study [8].

What is missing is an on-going effort to evaluate usability of verification
systems, i.e., the amount of work that can be carried out by an average user
(preferably not the system’s designer) in a fixed amount of time. We conclude
that competitions with small focused challenges are an appropriate vehicle for
this.

4 On-site versus Online Competitions

To-date, verification competitions have been mainly on-site events, with all team
members participating in a common location, for the duration of the competition.
These events are typically between two and four hours long with a selection of
small challenges to be completed within the allocated timeframe. The location
of an on-site competition must provide adequate space for participants, with
sufficient caffeine and sugar supplies, and without disturbance from others. It is
an advantage to have all teams working in close proximity as this adds to the
enthusiasm and adrenaline; with teams reacting when competitors rejoice as a
challenge is solved, or lament as the verification doesn’t work out as nicely as
expected.

From the organisers’ perspective the advantage of such a setting is the ease
of ensuring that teams participate in accordance with the competition rules
(number of teams members involved etc.). A further advantage is that the or-
ganisers are available to notice, and clarify, any mis-understandings that arise.
From the participants’ perspective, the major advantage is the opportunity to
interact with users and developers of competing tools after the competition.
The momentum, built up through this interaction regarding alternative solution
strategies, has led to tool comparisons in a number of conference publications
[5] [2]. Another observation is that on-site competition with fixed time slots en-
courages co-operation between team members. This is due to the urgency of a
well-planned solution which solves the challenge in a limited time.



The major disadvantage of an on-site competition is the cost and effort re-
quired to get all participants present. Both co-locating the competition with a
conference on a related topic so that participants are already on-site and the
provision of funding for student team participation have proved to be fruitful
strategies.

Online competitions, like those used in many programming competitions,
allow for greater participation as teams may participate without travelling. They
allow for competitions of longer duration and hence challenges of a larger size. We
believe that on-site and online competitions complement each other and should
co-exist. For example, larger problems are more suited to off-site challenges that
could be issued for tool developers whereas smaller problems are more suited to
students/tool users rather than developers.

In either competition setup, we suggest that the interaction between teams
after the competition could be increased through the provision of live record-
ings of the competition (a suggestion, for which we thank Gerhard Schellhorn).
Monitoring a team’s interaction with a tool could reveal strategies and tips for
tool users as well as aiding tool evaluation and increasing interest in verification
competitions itself. Of course, the interests of judges and spectators must be
balanced with the privacy preferences of participants.

5 Team Composition

With all the verification competitions that have been held so far, one of the
dominating questions has been on how to control for the human factor, since it
is not meaningful to test the verification system alone. Without proper control,
there is a risk that competitions will be dominated by “super experts”—tool
developers with many years of experience. They are aware of all the ins-and-outs
of the tools, and can even make small changes to the tool during the competition.
They also know how to tweak the specifications so that they are easily expressed
in the tool’s input language and are easily accepted by the tool.

Several ideas exist on how to ensure that super expert users do not skew
the competition to their advantage: one could allow only teams with non-expert
users (as suggested by Erik Poll: forbid any participants with a Master’s degree);
one could force expert users to use a tool that they are not very familiar with;
one could have mixed teams with users of different tools; or one could forbid
tool developers to participate (except as judges).

Unfortunately, all these suggestions seem to have practical problems (how
to get enough participants that are not tool builders or experts; program ver-
ification tools often have a steep learning curve; and manuals are not always
available). Therefore, we believe that the best workable solution is to consider
team composition and tool maturity when judging the solutions. In addition, for
future competitions we will explicitly encourage several teams using the same
tool to participate, allowing user competitions within the overall tool competi-
tion.



To increase the variety of participants, we believe that there should be some
reward for taking part in the competition. In particular, if you are not a tool
developer, then why would you bother participating in a competition? If there is
a winner announced, you can put this on your CV. However, competitions could
have so many categories that almost all tools and participants can be judged so
that they win a prize. Organising competitions, where participants are invited
to contribute to a post-competition publication about the challenges could also
provide a motivation.

6 Judging

Judging verification competition solutions is challenging, but it is also very ex-
citing. Solutions are typically judged for their correctness, their completeness
and their elegance. While tools may verify if a given implementation is correct
with respect to the given specification, determining if a solution is complete and
elegant is not so straightforward. Presentation of proofs, degree of automation
in verification, annotation overhead, and the extent of verification (e.g., partial
vs. total correctness, etc.) are some of the further considerations.

In the first two verification competitions the judges manually inspected the
solutions providing subjective results at a presentation during the co-located
conference. A follow up conference paper allowed the participants to clean up
and revise their solutions for public consumption. In the third, a scoring scheme
was applied to each solution and submissions were ranked according to the total
sum of points they scored. However, it was noted upfront that “a certain degree
of subjectivity in judgement is inevitable and should be considered as part of
the game.”

Tools, solutions and team member abilities vary greatly, so there are many
parameters that play a role when measuring the quality of the solutions. One
strategy to aid the judging process is to categorise the tools according to their
characteristics and maturity, classifying the results based on these categories.
Usability should be measured, qualitatively until better metrics can be found.

6.1 The Role of the Tools in Judging

An important question is whether judging has to involve replaying the solutions
in the tools. There are arguments both for and against this. The main goals
related to the requirement of tool replay are: punishing fraud, tool unsoundness,
and specification inadequacy. While we discount the first issue, in the current
state of affairs, the others, especially the third, are of great importance. It is
important to keep in mind that there is no canonical requirement formalisation,
and tool replay does not bring an ultimate judgement.

If the tool produces an explicit proof object, inspecting it may expose both
unsoundness and specification inadequacy. Otherwise, the only way a tool may
help is mutation testing. If after changing a part of the requirement (including
the program being verified), the tool can still show conformance, there is a



probability that the changed part contributes nothing to the problem. This may
indicate an issue with the tool soundness or requirement adequacy (or both).

The biggest argument against tool replay is the effort, both in installing and
running the tools and carrying out the solution analysis as described above.
There exists many versions of many verification tools, which can be installed on
many different platforms, each using many different plug-ins (all having many
versions). Knowing the exact tools that will be used in the competition in ad-
vance, especially if a large number of tools participate, is essential. Taking these
arguments together, at the current level of competition maturity we would not
advocate tool replay, unless doubts in the quality of a solution are present, or if
the replay in the tool promises significant benefits in judging the solution (e.g.,
by advanced proof presentation). Replay could be made easier in the future,
if tool developers make their tools available via a web interface, or if virtual
machine images could be provided.

6.2 Understanding the Argument

In order to judge the completeness or elegance of a solution it is necessary to
understand the argument behind it. Unfortunately, program verification argu-
ments are notoriously difficult to communicate. This applied both to systems
that expose an explicit proof object (i.e., a derivation in a certain calculus) and
to systems where the user only works with the annotated source code and does
not see the logical reasoning behind it.

The explicit proof object is typically too fine-grained, while the annotated
source code often does not make the argument structure explicit. Moreover,
whenever a tool silently infers a particular fact (a termination measure, for in-
stance), it reduces the burden on the user but may appear as a gap in reasoning
to an outsider. In any case, a good portion of knowledge about the background
theory implemented in a tool is needed to understand a solution.

A team’s approach to solving a problem is often one that the adjudicator
themselves would not have used. While this is normal for any problem-solving
scenario, we have noted that the solution presented is often a result of the par-
ticular strengths and weaknesses of the verification tool used.

While the overhead of adjudicating solutions in many different formalisms
is quite high, the benefits are many. While adjudicators will not be an expert
in every tool, it is our experience that expert non-users of tools can largely un-
derstand the various solutions. Examining solutions for the same challenges in
many different verification environments is extremely educational, and experi-
encing different approaches to solving the challenges (tool-driven or user-driven)
is also a fun component of the process.

The enthusiasm of participants, both in terms of the tools that they use and
the solutions that they develop is also uplifting. Explicitly scheduling an expla-
nation session where the team members talk an adjudicator through the solution
(possible with on-site competitions only) would take full advantage of this en-
thusiasm and assist the judges in developing a complete understanding of the
teams’ solutions. Above all, we believe that participants should be encouraged



to clean up their solutions and interact after the competition, to discuss their
submissions and to compare the strengths and weaknesses of each tool.

7 List of Recommendations for Organisers

To conclude, we end this paper with a list of recommendations for future verifica-
tion competition organisers. These recommendations arise from our experience of
participating and organising verification competitions, and from our interactions
with other competition particpants. We believe that these recommendations will
contribute to improved verification competitions in the future.

– Associate the competition with a well-established, regular event.
– Encourage newcomers to participate in the competitions.
– Set up a repository of challenges.
– Remember the goals of competitions, and do not disregard small challenges.
– Ask participants to contribute challenges, and reward them for this.
– On-site verification competitions have their place, do not make all competi-

tions online.
– Encourage discussion between participants about their solutions.
– Record teams during competition participation.
– Judge teams depending on the maturity of their tools and the experience of

team members.
– Let team members explain their solutions to the judges.
– Encourage multiple teams using the same tool to participate.
– Invited participants to contribute to a post-competition publication.
– Rotate organisation and participation.

We look forward to further verification competitions and are confident that,
as they mature, they will become a major contributor to benchmarking verifica-
tion tools, improving their capabilities, and extending their usability.

References

1. D. Beyer. Competition on software verification (SV-COMP). In C. Flanagan and
B. König, editors, Proceedings of the 18th International Conference on Tools and
Algorithms for the Construction and of Analysis Systems (TACAS 2012), volume
7214 of LNCS, pages 504–524. Springer-Verlag, Heidelberg, 2012.

2. T. Bormer, M. Brockschmidt, D. Distefano, G. Ernst, J.-C. Filliâtre, R. Grigore,
M. Huisman, V. Klebanov, C. Marché, R. Monahan, W. Mostowski, N. Polikarpova,
C. Scheben, G. Schellhorn, B. Tofan, J. Tschannen, and M. Ulbrich. The COST
IC0701 verification competition 2011. In B. Beckert, F. Damiani, and D. Gurov,
editors, International Conference on Formal Verification of Object-Oriented Systems
(FoVeOOS 2011), LNCS. Springer, 2012. To appear.

3. COST Action IC0701. Verification problem repository. www.verifythis.org.
4. J.-C. Filliâtre, A. Paskevich, and A. Stump. The 2nd Verified Software Competition:

Experience report. In A. Biere, B. Beckert, V. Klebanov, and G. Sutcliffe, editors,
Proceedings of the 1st International Workshop on Comparative Empirical Evaluation
of Reasoning Systems (COMPARE 2012), 2012.



5. V. Klebanov, P. Müller, N. Shankar, G. T. Leavens, V. Wüstholz, E. Alkassar,
R. Arthan, D. Bronish, R. Chapman, E. Cohen, M. Hillebrand, B. Jacobs, K. R. M.
Leino, R. Monahan, F. Piessens, N. Polikarpova, T. Ridge, J. Smans, S. Tobies,
T. Tuerk, M. Ulbrich, and B. Weiß. The 1st Verified Software Competition: Expe-
rience report. In M. Butler and W. Schulte, editors, Proceedings, 17th International
Symposium on Formal Methods (FM), volume 6664 of LNCS. Springer, 2011. Ma-
terials available at www.vscomp.org.

6. C. Lewerentz and T. Lindner. Case study “production cell”: A comparative study
in formal specification and verification. In M. Broy and S. Jähnichen, editors,
KORSO: Methods, Languages, and Tools for the Construction of Correct Software,
volume 1009 of LNCS, pages 388–416. Springer, 1995.

7. G. Sutcliffe and C. Suttner. The state of CASC. AI Communications, 19(1):35–48,
2006.

8. J. Woodcock. First steps in the Verified Software Grand Challenge. Computer,
39(10):57–64, 2006.


