
Ontology-based Rules for Recommender Systems

Jeremy Debattista, Simon Scerri, Ismael Rivera, and Siegfried Handschuh

Digital Enterprise Research Institute, National University of Ireland, Galway
firstname.lastname@deri.org

Abstract. Nowadays, smart devices perceive a large amount of information from
device sensors, usage, and other sources which contribute to defining the user’s
context and situations. The main problem is that although the data is available, it
is not processed to help the user deal with this information easily. Our approach
is based on the assumption that, given that this information can be unified in a
single personal data space, it can be used to discover and learn rules to provide
the user with personal recommendations. In this paper we introduce a Rule Man-
agement Ontology to support the representation of event-based rules that trigger
specific actions. We also discuss how a context listener component can provide
recommendations based on the perceived context-data, or in the future, semi-
automatically learnt rules.

1 Introduction

With the increasing popularity of smart devices, recommender systems can be useful
in providing solutions based on real-time context information perceived by such de-
vices in a ubiquitous environment. As McDonald pointed out, recommender systems
“mediate the user experience in the digital world, and they will be increasingly helpful
in performing the same role in the physical world, thereby filling an important gap in
ubiquitous computing” [11]. Through sensors and device usage information, smart de-
vices can be enabled to continuously accrue context information about repetitive daily
tasks performed by the user; such as changing the mobile mode to silent when arriving
at work, changing online status during a meeting, and opening certain applications and
documents when in presence of other peers.

Data collected by smart devices is usually domain-specific to the application han-
dling it. Having useful information in different domains and in different formats means
that the heterogenous context data collected is not unified under one model. Semantic
heterogeneity is thus another problem limiting the power of smart devices. Although
different devices and their embedded sensors could be used for a common objective,
their use of non-standard data formats means that the context information that they
gather cannot be unified in an interoperable representation. This limitation, associated
with the lack of a common domain model, is tackled in the di.me1 project. The project
targets the unification of the user’s personal information across various heterogeneous
sources, such as social networks and device sensors, into one personal data cloud. This
is done with the aim of assisting the user in daily tasks. In the context of di.me, we

1 http://www.dime-project.eu



2 Lecture Notes in Computer Science

restrict our working knowledge base to cover a personal closed-world environment; by
extending and introducing models that enable the representation of the user’s entire
Personal Information Model (PIM). Unlike in Social Semantic Desktops [14], the PIM
in di.me does not only cover conventional structured data (such as files, emails, status
messages), but also unstructured and abstract data such as user context, situations, and
online presence. This type of data is what will drive our intelligent recommender sys-
tem to perform the desired functions through the di.me userware and intelligent user
interface2.

In this paper we will discuss our plans and progress in relation to the following three
project objectives:

1. The definition of rules for recommendation and automation of tasks, based on the
user’s personal data cloud;

2. Automatic rule learning;
3. The processing mechanism to trigger learnt rules based on the perceived events.

For the first objective we provide a model that allows us to represent the learnt context-
driven rules in a declarative manner. This contribution consists of the di.me Rule Man-
agement Ontology (DRMO)3, an activity rule vocabulary integrated in the di.me knowl-
edge representation models that allows PIM knowledge to be exploited for activity rule
management. For the second objective, we are currently investigating techniques, such
as case-based reasoning (CBR), which allow the system to automatically learn rules
based on the user context-aware history. Currently we allow users to define context-
aware rules using the intelligent user interface available in the di.me userware. The third
objective is that of providing mechanisms to recommend actions to the user based on
the real-time events perceived through the userware. We investigate various techniques
in order to provide a scalable context listener which can provide recommendations or
actions based on the learnt rules and the user’s integrated PIM data.

After discussing the related work (Section 2), we discuss the integration of personal
data in di.me and how open data sources such as LinkedGeoData4 and Sindice5 can
be utilised for recommendation (Section 3.1). The Rule Management Ontology and the
Context Listener are discussed in Section 3.2 and 3.3 respectively. We then discuss tech-
niques for the automatic learning of context-driven rules (Section 3.4), before providing
a real-world scenario (Section 4) and some concluding remarks and discussing future
work (Section 5).

2 Related Work

In this section we look at how earlier efforts have tackled rule modelling, and how they
were applied in various context-aware and event processing systems respectively. We
also discuss techniques on how rules can be learnt automatically.

2 The UI in question is currently being improved to factor in the results of a number of usability
studies. A separate submission detailing its design is currently under review.

3 http://www.semanticdesktop.org/ontologies/drmo/
4 http://linkedgeodata.org/
5 http://sindice.com/



Lecture Notes in Computer Science 3

In [4] and [2], rules are defined by an English-like rule language. The SECE system
provided five different types of hard-coded events [4], and was later extended towards
an ontology-based system [2] in order to enable the automatic discovery of services.
This allowed the users to define rules that give recommendations based on open linked
data services. The SECE language is specific to their system; thus, unlike our proposed
model which is based on Resource Description Framework (RDF), the SECE rule lan-
guage cannot be easily reused on other frameworks. The authors do not give any in-
dication regarding the use of event and logical operators defined in the rule language.
Li et al. [9] presents an event ontology with the aim of describing perceived situations.
This model does not represent rules, but users can define rules by creating patterns
(called processes) of composed event instances using event and logic operators. The
resulting actions are inferred semantic knowledge, from the system knowledge base.
On the other hand, in di.me, the actions give the user recommendations and automation
based on the user’s context-environment. In [10], May et al. present an ontology-based
framework based on the Event-Condition-Action (ECA) pattern in order to integrate
heterogenous semantic web services via rule definition. This framework allows the def-
inition of sub-languages in order to process events from different web services, unlike
the DRMO which is geared towards one domain: the personal information manage-
ment. Sub-languages include detection processors for events defined in rules and for
defining composite events. In contrast, in our model we create properties for composite
conditions. May et al. defined the concepts Event-Condition-Action as three separate
components since in a rule these might be defined with three different languages. In our
case, the Event concept is composed by a number of condition blocks, and if these are
satisfied they trigger one or more actions.

To apply our proposed rule model, we need a rule engine to execute the rules. In [9]
event processes (rules) take perceived events as input and return an inferred semantic
event as output. Their objective is to collect contextual data from the surroundings and
present the user with an intelligent deduction of the current situation. An inference
graph is used to keep track of the detected event concepts. In our context-listener we
apply an event-set to store perceived events. We are also investigating time-window
techniques with the aim of keeping the listener scalable. Rules are then executed on
the event-set in order to provide recommendations. The framework proposed in [9] is
composed of two inference engines; one which identifies rule patterns from perceived
events and the other one which translates low-level event data into higher meaningful
activities. In our case, the latter is being done by another part of the di.me framework,
whilst for the former we do pattern matching using SPARQL6 queries, since the event
data we perceive in the userware is in RDF format. Using SPARQL for pattern matching
allow instances of the DRMO ontology to execute on any triple store. Such technique
was used by Teymourian and Paschke [16], where by using SPARQL to represent event
patterns, they show how semantic events can be used in event detection. When an event
is perceived, the system infers new triples using the system’s event knowledge base.
When the new inferred triples are created, they are sent to a rule-based inference engine
and the engine decides if these triples should be stored in the system or discarded. In

6 http://www.w3.org/TR/rdf-sparql-query/



4 Lecture Notes in Computer Science

di.me, SPARQL queries would not infer new knowledge, but indicate that rules should
be triggered.

The proposed ontology (DRMO) can be used for automatic rule discovery in a
context-aware environment. Similar approaches use ontologies as context models in
Case-Base Reasoning (CBR) techniques [1, 8]. Bai et al. [1] proposed an ontology-
based CBR (OntoCBR) to compare similarity between contexts, in order to reason and
learn rules from a user’s environment rather than rely on pre-defined or user-defined
rules. In OntoCBR, user context is transformed into a situation case and is compared
with other situations which are in the case-base using a semantic similarity measure.
Thus recommendations are given if a situation has a match, in order to propose an ac-
tion which has been carried out in similar situations. Knox et al. [8] make use of sensor
data and CBR for activity recognition in a home environment. Cases are represented by
an ontology which acts as a relationship between sensor data and resulting activities.
The authors show that using CBR, various user activities can be learnt incrementally
without having the need of training data. Similar to these two works, we intend to cre-
ate a case-base from context data using the technique in [8], whilst learning new rules
using similarity measures techniques as outlined in [1]. In order to ensure system scal-
ability, we consider the work presented by Bergmann and Vollrath in [3], in which they
discuss the idea of having a generalised CBR, where similar cases are generalised into
one case in order to reduce the size of the case base.

3 Approach

In this section we first discuss how raw data from sensors and smart devices are inte-
grated within the personal data cloud. We also discuss how linked open datasets such
as LinkedGeoData and data source providers such as Sindice can be utilised to provide
recommendations for the user, based on their current situation. We then introduce the
di.me Rule Management ontology, before exploring how DRMO instances are mapped
into SPARQL queries to simulate production rules. These rules are processed, and if
their conditions are satisfied, the instructed actions are triggered to provide recommen-
dations and automation in the di.me userware. Finally we discuss how we can learn and
define DRMO rules automatically.

3.1 Exploiting Personal and Open Data Cloud for Intelligent Recommendation

The basic goal of the di.me userware is to learn about, gather and integrate the user’s
information and activities through their personal devices and online accounts, in or-
der to provide a single-entry point to their personal data management and to provide
context-aware recommendation and automation. di.me extends an interoperable knowl-
edge representation format based on ontologies for the representation of personal infor-
mation presented in [14], which also covers context-related personal knowledge. The
use of this format allows interoperability with other applications that also utilise the
RDF standard. Strang et al. recommends ontology-based modelling as the most appro-
priate way to engineer the core concepts in a context-aware environment [15]. After



Lecture Notes in Computer Science 5

having such personal information crawled and extracted from devices, it is semanti-
cally lifted onto the ontology-based PIM representation. The latter can then be used as
a knowledge base for defining rules to provide recommendation and automation in the
di.me userware.

Even though our primary focus is that of creating a big personal data cloud, external
linked open data sources can be used to provide richer recommendations based on the
user’s current situation. LinkedGeoData could be utilised to, for example recommend a
nearby restaurant for a user who is in a situation “Out of Office” during “lunch time”.
By gathering user context data surrounding the user, the system can invoke the Linked-
GeoData SPARQL Endpoint to find restaurants located nearby to the current location
of the user. When the data is returned, the userware might make use of a data source
crawler such as Sindice to enrich the retrieved data by adding other information which
might not be provided by the LinkedGeoData, such as restaurant ratings. Sindice is a
web crawler which indexes statements in linked-data resources. This service helps users
find certain resources and allows developers to integrate data from various datasources.
LinkedGeoData and Sindice data sources can be combined with data in the personal
cloud to provide better recommendation. The use of other datasets is also being inves-
tigated.

3.2 di.me Rule Management Ontology (DRMO)

The Rule Management Ontology (Figure 1) is inspired by approaches such as [10].
Rules are modelled on the Event-Condition-Action (ECA) pattern concepts. The ECA
pattern is a structure used in event driven architectures, where the event part specifies on
what event this rule might be triggered, the condition specifies under which conditions
the actions should be triggered and the action part contains what is executed to lead the
system to a new state, causing data to be changed [6]. Unlike the traditional architec-
tures, DRMO rules are not specific to events (such as “on update” or “on delete”), but
all rules can trigger actions if all of their conditions are satisfied. Thus, our pattern is
defined as:

if E[c1, .., cm] =⇒ [a1, .., an] (1)

where event E represents a rule that consists of a combination of conditions c, triggering
one or more resulting actions a.

A rule is represented as a drmo:Event, which is composed (drmo:isComposedOf )
of a number of drmo:Condition ‘blocks’ and triggers (drmo:triggers) one or more
drmo:Action instances (Figure 1), similar to the work presented in [2, 4]. Thus, a DRMO
event corresponds to an antecedent, whereas an action corresponds to the consequent
part of a production rule.

In the ontology we define a number of different condition categories as subclasses
of drmo:Condition. Since our focus is on the personal data cloud, the latter cate-
gories (drmo:ResourceCreated, drmo:ResourceModified, drmo:ResourceDeleted) rep-
resent the different changes affected in the Personal Information Model (PIM), such
as receiving a new email (Resource Created), adding access control to peers on files
(Resource Modified), and deleting a file (Resource Deleted). In the di.me userware we



6 Lecture Notes in Computer Science

Fig. 1. The Rule Management Ontology

also allow for users to save personal activity context. A change in known user situations
can be represented as an instance of drmo:SituationActivated, e.g. a change from situ-
ation “AtWork” to situation “AtHome”. The different subclasses help the rule filtering
mechanism according to the perceived system and user events.

Condition blocks can be composed of any information element (resource or class)
on the Semantic Web. In di.me, condition blocks are restricted to elements from the
OSCAF7 ontologies and their attributes, and resources from the user’s PIM. Multiple
conditions are combined together using a number of logical (drmo:and, drmo:or) and
event operators (drmo:succeededBy, drmo:precededBy). The set of operators are de-
fined as properties in the DRMO (Figure 1) and are a subset of the operators used in [9]
and defined in [5]. To explain these operators better, suppose conditions [C1,C2] occur
at an instance of time t:

– Condition C1 AND Condition C2. Both conditions have to occur independent of
time and order for the actions to trigger.

(C1 ∧ C2)(t) = (∃t1)(((C1(t1) ∧ C2(t)) ∨ (C2(t1) ∧ C1(t))) ∧ t1 ≤ t) (2)

– Condition C1 OR Condition C2. For the rule to trigger its actions, only one of the
conditions have to be true at any given time.

(C1 ∨ C2)(t) = (C1(t) ∨ C2(t)) (3)

– SUCCEEDEDBY(Condition C1, Condition C2). The actions are only triggered if
Condition C2 happens at any time after Condition C1.

SUCCEEDEDBY (C1, C2)(t) = (∃t1)(C1(t1) ∧ C2(t) ∧ (t1 < t)) (4)

– PRECEDEDBY(Condition C2, Condition C1). The actions are only triggered if
Condition C1 has happened at any time before Condition C2.

PRECEDEDBY (C2, C1)(t) = (∃t1)(C1(t1) ∧ C2(t) ∧ (t1 < t)) (5)
7 http://www.oscaf.net



Lecture Notes in Computer Science 7

Each condition might also be negated using the drmo:hasNegation property. This
property has a value range of either true or false. A condition may have one or more
constraints (drmo:hasConstraint), for example ‘if I receive an email from Anna’ the
constraint here is that the rule will trigger only when an email from Anna is received.
On the other hand, if a rule condition has a PIM resource such as a saved situation, then
there might be no constraints, for example ‘if I am AtWork’. Generic conditions can also
be defined without constraints, for example the rule ‘if I receive an email’ would trigger
always whenever a new email is received, irrelevant of the sender.

A condition can have three types of constraints: drmo:hasConstraintOnProperty,
drmo:hasConstraintOnSubject, drmo:hasConstraintOnObject. These are used to de-
fine constraints on the event properties, for example the rule ‘If I receive an email
from anna@email.com’, the value ‘anna@email.com’ is a constraint on the property
‘nmo:messageFrom’. To understand the DRMO constraint properties better we demon-
strate the mentioned example as an instance in Listing 1.1:

... #prefix definitions

juan:event1 a drmo:Event ;
drmo:isComposedOf juan:condition1 ; drmo:triggers juan:action1 .

juan:condition1 a drmo:Condition , nmo:Email ;
drmo:hasConstraint juan:constraint1 .

juan:constraint1 a drmo:Condition ;
drmo:hasConstraintOnProperty nmo:messageFrom;
drmo:hasConstraintOnObject juan:constraint1:email1 .

juan:constraint1:email1 a nco:EmailAddress , drmo:Condition ;
drmo:hasConstraintOnProperty nco:emailAddress;
drmo:hasConstraintOnObject "anna@email.com" .

... #action definitions

Listing 1.1. An example of a user-defined rule

In Listing 1.1 the rule (juan:event1) is composed of juan:condition1, which is of type
drmo:Condition and nmo:Email. juan:contraint1 is added to the condition to repre-
sent the constraint given by the rule ‘if I receive an email from anna@email.com’.
This is described in the rule instance as a drmo:hasConstraintOnProperty
‘nmo:messageFrom’ and as a drmo:hasConstraintOnObject ‘anna@email.com’. The
URI ‘juan:constraint1:email1’ is not a resource from the PIM, but it is a generated re-
source of type drmo:Condition since nmo:messageFrom would be expecting a URI of a
resource (e.g. ‘mailto:anna@email.com’) rather than the value itself. These properties
help to transform rules from a DRMO instance into SPARQL queries, as we discuss
in Section 3.3. The drmo:hasConstraintOnSubject property allows for implicit values
such as resources from the PIM, for example ‘PIM:Anna’ to be used in rule constraints.
This allow the rule to be triggered every time an email from Anna is received, if her
email address is in the user’s PIM.

A constraint might also have relational operators in order to compare the perceived
event values with the value of the rule’s condition (e.g. “if I receive an email and the
subject contains di.me”). In di.me, “contains” and “similar” can be used as string oper-
ators,whereas we define operator instances for numeric datatypes such as ≤, ≥, <, and
>.



8 Lecture Notes in Computer Science

The drmo:Action class specifies an action instance (e.g. Recommend), whose
semantics are understood by the system and result in specific actions. The
drmo:hasSubject specifies the receiver of the action whilst the drmo:hasObject spec-
ifies what parameters need to be passed to the executed actions. The parametrisation
of action subjects and objects is similar to that defined in [13], where action instances
are used to classify emails. Examples of action instances could be recommending a
nearby restaurant, where the action instance ‘Recommend’ would have “Restaurant” as
a subject and pimo:Location as an object.

3.3 A Context Listener for Rule Activation

A context listener is required to register defined rules and to activate them when their
conditions are satisfied by the perceived events. Rule instances are transformed into
SPARQL queries and registered to a rule pool in the context-listener. In this section we
will first explain how rules are transformed from DRMO instances into SPARQL. Then
we show how event processing in the context-listener is done.

Transforming rules from DRMO instances to SPARQL - Rules are defined
as instances of the DRMO. As part of the event processing mechanism, the
condition part of the rule is transformed into SPARQL queries which might
be executed at a specific time window, or each time an event is registered
in the PIM. Since we also have logic operators, we discuss how these will
be parsed using an infix to postfix technique. For each rule instance in the
user’s PIM, the transformer maps the drmo:Condition blocks to SPARQL queries.
The properties drmo:hasConstraintOnSubject, drmo:hasConstraintOnProperty and
drmo:hasConstraintOnObject are mapped to a SPARQL triple pattern {?subject ?pred-
icate ?object . } respectively. A negated condition block (drmo:hasNegation) is mapped
into the SPARQL query combining8 ‘OPTIONAL’, ‘FILTER’ and ‘BOUND’. The
negation function is still a feature recommendation for SPARQL 1.19. The transformer
parse logical operators drmo:and and drmo:or in precedence ordering. We decided to
implement a postfix technique since it allows us to define the order of execution from
an infix notation. Multiple conditions composed with the drmo:or property have the
condition triples separated with the ‘UNION’ keyword, whilst those with the drmo:and
have their condition triples joined in one query. SPARQL ‘FILTER’s are used when a
constraint has the drmo:hasPropertyOperator defined. Filters are also used when multi-
ple conditions are composed together using succeededBy and precededBy (Section 3.2),
by restricting patterns using timestamps. The action instances are stored in a separate
object together with the rule instance URI, and not part of the SPARQL query. Listing
1.2 shows how the rule instance in Listing 1.1 is transformed into a SPARQL query.

SELECT * WHERE {
?_cn61 a nmo:Email .
?_cn61 nmo:messageFrom ?_varFE2O8 .
?_varFE2O8 a nco:EmailAddress .

8 http://www.w3.org/TR/rdf-sparql-query/#func-bound
9 http://www.w3.org/TR/sparql-features/



Lecture Notes in Computer Science 9

?_varFE2O8 nco:emailAddress ‘anna@email.com’ .
}

Listing 1.2. SPARQL Transformation for rule in Listing 1.1

Event Processing and Pattern Matching - When a rule is transformed to a SPARQL
pattern, it is then registered to a rule pool in the context listener (Figure 2). The trans-
formation of DRMO instances into SPARQL queries help us in the pattern matching
process. Triple patterns can be considered as the antecedents of a production rule, since
instance conditions are transformed into triple patterns that have to be matched in the
working memory. Our working memory consists of an event-set which holds events
perceived by the userware and the PIM. Each time an event is perceived, the event
data is timestamped and stored in the event-set. Using the new perceived information,

Fig. 2. Context Listener

the context listener will then filter rules by category (see Section 3.2) and type (for
example ‘nmo:Email’) to keep only the ones that might be triggered from the perceived
events stored in the set. From these filtered rules, SPARQL queries are executed and
results are returned, triggering satisfied rules and thus performing the specified actions.
Since this is a real-time listener and events are continuously perceived, we need to cater
for events which happened in the past and are no longer required in the Event-Set. The
use of a time window helps us keep the listener scalable by removing past perceived
events, for example, keeping in memory only events that happened in the last hour.
An evaluation will be carried out to find the most appropriate time-window limit for
our usecases. To improve the scalability and efficiency of our context-listener, we are
currently investigating how algorithms such as Rete [7], which speeds up the matching
process, can be integrated in this module for optimisation purposes.

3.4 Learning Rules from Context Data

As discussed in previous sections, the semantic framework in the di.me userware gath-
ers context-related information about the user. Perceived context data is semantically
lifted onto a unique ‘live context’ instance of the Context Ontology (DCON)10 [12]. In
10 http://www.semanticdesktop.org/ontologies/dcon/



10 Lecture Notes in Computer Science

addition, past context snapshots can be timestamped and made persistent as instances
of the User History Ontology (DUHO)11. Thus it is possible to construct a timeline of
events and corresponding actions, as part of a user’s history. Using CBR techniques
mentioned in the related work section, these instances will be analysed to find simi-
lar situation-action patterns, in order to learn and define rule instances automatically.
As a simple example, user John frequently forwards emails with a subject containing
“ISWC” to his student Mary. By analysing the context logs, the system could identify
this pattern and learn this rule. From then onwards, whenever John receives an email
with the subject containing “ISWC”, the system will recommend John to automatically
forward it to Mary.

4 A Rule Scenario

In this section we provide a practical scenario of how a rule instance is defined in
the PIM. We show how our ontologies can represent rules for context-aware recom-
mendation. Listing 1.3 provides an example of a rule, represented as an instance of
DRMO. The rule represents the scenario If I find myself in situation “Out of Office”,
and it is “Lunch Time”, recommend me a nearby restaurant. In this rule we see that
juan:event34, which is an existing resource in the PIM, is composed of two conditions,
juan:condition8 and juan:condition9. The former refers to the previously saved situation
“Out of Office” (<urn:juan:graph:situation14>), and the latter refers to a more complex
condition. Here, the LiveContext is queried to get the current time. Both condition items
are existing resources in the PIM. If the current time instance points at Lunch Time (de-
fined in the PIM), then the action is triggered. “Recommend” is a system defined action
that is used by Juan. The action has two properties, juan:subject1 and juan:object1. The
former defines the type of recommendation needed and the latter passes any parameters
to satisfy the recommendation. The system will transform the instance and parame-
ters into a SPARQL query to an open data endpoint such as the LinkedGeoData which
returns a list of possible restaurants near the user’s current location.

@prefix drmo: <http://www.semanticdesktop.org/ontologies/2012/03/06/drmo#> .
@prefix pimo: <http://www.semanticdesktop.org/ontologies/2007/11/01/pimo#> .

juan:event34 a drmo:Event ;
drmo:isComposedOf juan:condition8, juan:condition9 ; drmo:triggers juan:action4

.

juan:condition8 a drmo:Condition ;
drmo:hasConstraint <urn:juan:graph:situation14> ;
drmo:and juan:condition9 .

juan:condition9 a drmo:Condition , dcon:LiveContext ;
drmo:hasConstraint juan:constraint12 ;
drmo:and juan:condition8 .

juan:constraint12 a drmo:Condition ;
drmo:hasConstraintOnProperty dcon:currentTime ; drmo:hasConstraintOnObject <urn:

juan:PIM:LunchHours> .

juan:recommend a drmo:Action ;
drmo:hasSubject juan:subject1 ;

11 http://www.semanticdesktop.org/ontologies/duho/



Lecture Notes in Computer Science 11

drmo:hasObject juan:object1 .

juan:subject1 a rdfs:Literal ;
rdf:value "Restaurants"ˆˆxsd:string .

juan:object1 a pimo:Location ;
pimo:hasLocation <urn:juan:PIM:CurrentLocation1> .

Listing 1.3. An example of a user-defined rule

5 Future Work and Concluding Remarks

In this paper we described our approach for an ontology-driven recommender system
that suggests actions to the user, driven by context and knowledge from their aggregated
personal data cloud. We described how personal data from various sources can be com-
bined with the user’s sensed situational context in order to detect recurring situations
and a vast range of associated actions that can be fully or partly automated. We also
explained how open link data services like Sindice, and data sources such as Linked-
GeoData, can also be exploited by the system to recommend items that are not part of
the user’s personal data cloud, i.e. suggest new, possibly unknown items, to the user.
A rule management ontology, integrated with existing standard ontologies for the com-
prehensive modelling of distributed personal information, is proposed. The ontology
supports the definition of context-driven recommendation rules that are learnt by an in-
telligent system, or defined semi-automatically by the user. The rules are converted from
RDF to SPARQL queries at runtime by a context listener, which continously matches
them against perceived user activities and system events. A matched rule results in a
recommendation being provided to the user.

Currently the implemented protoype only caters for user-defined rules, that can be
intuitively constructed through an intelligent UI. In the future, techniques to enable
the automatic discovery of rules will be further investigated. Further enhancements un-
der consideration are techniques such as the Rete algorithm for a more efficient con-
text listener (performance-wise), and the investigation and evaluation of techniques for
managing rule conflicts. To determine the effectiveness and usability of the proposed
system, we will perform evaluation to determine i) how many different kinds of use-
cases the DRMO ontology is able to cover, ii) the ideal time-window to ensure the
context-listener’s scalability and efficiency, iii) the user’s own assessment of the sys-
tem’s usability and the adequacy of the resulting in-context recommendations.

Acknowledgments. This work is supported in part by the European Commission under the
Seventh Framework Program FP7/2007-2013 (digital.me – ICT-257787) and in part by Science
Foundation Ireland under Grant No. SFI/08/CE/I1380 (Lı́on-2).

References

1. Y. Bai, J. Yang, and Y. Qiu. Ontocbr: Ontology-based cbr in context-aware applications. In
Proceedings of the 2008 International Conference on Multimedia and Ubiquitous Engineer-
ing, MUE ’08, pages 164–169, Washington, DC, USA, 2008. IEEE Computer Society.



12 Lecture Notes in Computer Science

2. V. Beltran, K. Arabshian, and H. Schulzrinne. Ontology-based user-defined rules and
context-aware service composition system. In Proceedings of the 8th international confer-
ence on The Semantic Web, ESWC’11, pages 139–155, Berlin, Heidelberg, 2012. Springer-
Verlag.

3. R. Bergmann and I. Vollrath. Generalized cases: Representation and steps towards efficient
similarity assessment. In Proceedings of the 23rd Annual German Conference on Artificial
Intelligence: Advances in Artificial Intelligence, KI ’99, pages 195–206, London, UK, UK,
1999. Springer-Verlag.

4. O. Boyaci, V. Beltran, and H. Schulzrinne. Bridging communications and the physical world:
sense everything, control everything. In Proceedings of the 5th International Conference on
Principles, Systems and Applications of IP Telecommunications, IPTcomm ’11, pages 14:1–
14:6, New York, NY, USA, 2011. ACM.

5. S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite events for active
databases: Semantics, contexts and detection. In Proceedings of the 20th International Con-
ference on Very Large Data Bases, VLDB ’94, pages 606–617, San Francisco, CA, USA,
1994. Morgan Kaufmann Publishers Inc.

6. K. R. Dittrich, S. Gatziu, and A. Geppert. The active database management system mani-
festo: A rulebase of adbms features. In Proceedings of the Second International Workshop on
Rules in Database Systems, RIDS ’95, pages 3–20, London, UK, UK, 1995. Springer-Verlag.

7. C. L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match problem.
Artificial Intelligence, 19(1):17 – 37, 1982.

8. S. Knox, L. Coyle, and S. Dobson. Using ontologies in case-based activity recognition. In
FLAIRS Conference, 2010.

9. Z. Li, C.-H. Chu, W. Yao, and R. A. Behr. Ontology-driven event detection and indexing in
smart spaces. In Proceedings of the 2010 IEEE Fourth International Conference on Seman-
tic Computing, ICSC ’10, pages 285–292, Washington, DC, USA, 2010. IEEE Computer
Society.

10. W. May, J. J. Alferes, and R. Amador. An ontology- and resources-based approach to evo-
lution and reactivity in the semantic web. In Proceedings of the 2005 OTM Confederated
international conference on On the Move to Meaningful Internet Systems: CoopIS, COA, and
ODBASE - Volume Part II, OTM’05, pages 1553–1570, Berlin, Heidelberg, 2005. Springer-
Verlag.

11. D. McDonald. Ubiquitous recommendation systems. Computer, 36(10):111 – 112, oct.
2003.

12. S. Scerri, J. Attard, I. Rivera, M. Valla, and S. Handschuh. Dcon: Interoperable context
representation for pervasive environments. In In Proceedings of the Activity Context Repre-
sentation Workshop at AAAI 2012, 2012.

13. S. Scerri, G. Gossen, B. Davis, and S. Handschuh. Classifying action items for semantic
email. In LREC, 2010.

14. M. Sintek, S. Handschuh, S. Scerri, and L. van Elst. Technologies for the social semantic
desktop. In Reasoning Web. Semantic Technologies for Information Systems, volume 5689
of Lecture Notes in Computer Science, pages 222–254. Springer Berlin / Heidelberg, 2009.

15. T. Strang and C. L. Popien. A context modeling survey. In UbiComp 1st International
Workshop on Advanced Context Modelling, Reasoning and Management, pages 31–41, Not-
tingham, September 2004.

16. K. Teymourian and A. Paschke. Semantic rule-based complex event processing. In Proceed-
ings of the 2009 International Symposium on Rule Interchange and Applications, RuleML
’09, pages 82–92, Berlin, Heidelberg, 2009. Springer-Verlag.


