
Measuring Interprocess Communications in
Distributed Systems

Xiaoqin Fu
Washington State University, Pullman, WA

xiaoqin.fu@wsu.edu

Haipeng Cai
Washington State University, Pullman, WA

haipeng.cai@wsu.edu

Abstract—Due to the increasing demands for computational
scalability and performance, more distributed software systems
are being developed than single-process programs. As an impor-
tant step in software quality assurance, software measurement
provides essential means and evidences in quality assessment
hence incentives and guidance for quality improvement. However,
despite the rich literature on software measurement in general,
existing measures are mostly defined for single-process programs
only or limited to conventional metrics. In this paper, we propose
a novel set of metrics for common distributed systems, with a
focus on their interprocess communications (IPC), a vital aspect
of their run-time behaviors. We demonstrated the practicality of
characterizing IPC dynamics and complexity via the proposed
IPC metrics, by computing the measures against nine real-world
distributed systems and their varied executions. To demonstrate
the practical usefulness of IPC measurements, we extensively
investigated how the proposed metrics may help understand and
analyze various quality factors of distributed systems, ranging
from maintainability and stability to security and performance,
on the same nine distributed systems and their executions.
We found that higher IPC coupling tended to be generally
detrimental to most of the quality aspects while interprocess
sharing of common functionalities should be promoted due to
its understandability and security benefits.

Index Terms—Distributed system, dynamic measurement, in-
terprocess communication, coupling, quality factors

I. INTRODUCTION

Measuring software systems in terms of properly chosen
metrics is an integral step in software quality assurance [1].
Defining appropriate software metrics is essential for both
software process quality and product quality, throughout the
entire software development lifecycle [2]. Prior to the im-
plementation phase, software metrics provide a means for
specifying quality requirements with respect to relevant quality
factors. After implementation, the metrics further serve as
crucial guidance for evaluating the software product with
respect to the specification of quality requirements. Software
metrics also play a vital role in software project management
as a whole (e.g., for cost and effort estimation) [3].

Two main classes of metrics can be used in software
measurement: static and dynamic [4]. In comparison, static
metrics are generally easier to compute relative to dynamic
counterparts [5], [6]. Additionally, static metrics are not sub-
ject to limited code coverage or generalizability as are dynamic
metrics. On the other hand, static metrics are not sufficient
for measuring and interpreting dynamic behaviors of software,
for which dynamic metrics offer much more precise indica-
tors. In fact, concerning quality factors that are ultimately
attested at runtime (e.g., performance [6], reliability [7], and
testability [8]), dynamic metrics are much more preferable.

Meanwhile, understanding software behaviors does not always
need complete code coverage [9], thus the limited executions
that dynamic metrics address does not necessarily constitute a
constraint of dynamic measurement. Dynamic metrics cannot
simply be (over-)approximated by corresponding static metrics
either—in some cases, they are not even correlated [10].

Intuitively, distributed software systems could benefit from
dynamic metrics for understanding and quality assessmen-
t/improvement as well. In fact, such benefits would be of
peculiar significance for two reasons. First, understanding and
quality assurance (e.g., testing and debugging) of distributed
systems are especially difficult [11], due to their typically
great size and complexity along with intrinsic concurrency and
non-determinism [12]. Dynamic measurements would provide
an avenue to overcoming such difficulties. Second, most
real-world, industry-scale software systems are distributed by
design, to accommodate increasing demands for performance
and scalability. Addressing distributed software is thus of a
high priority in the field of software quality assurance. In this
context, it is crucial to develop and exercise well-informed me-
asurements of distributed systems, especially those regarding
the unique challenges (e.g., understanding their communica-
tion topology) posed by their distributed architecture.

Yet despite the rich literature on software metrics in general,
the majority of existing metrics only concern centralized
(mostly single-process) software [3], [5], [8], [13], [14]. A
few works address distributed systems measurement, yet with
a scope other than the software itself (e.g., monitoring system
environments [15] or user dynamics [16]). In particular, a key
facet of the run-time behaviors of distributed systems lies in
those induced by interprocess communications (IPC), which
has not been well addressed in software measurement [17].

In this paper, we develop a novel suite of IPC metrics aiming
to measure the run-time communication structure, complexity,
and reusability of common distributed systems [12], where
constituent components1 run concurrently on physically sepa-
rated locations (nodes) while communicating and coordinating
via message passing without a global clock (i.e., the timing
mechanism). Specifically, we measure the coupling between
concurrent, distributed processes at method, class, componen-
t/process, and whole-system levels, in terms of messaging
and method-level dynamic dependencies across process boun-
daries. While coupling has been extensively studied among
various types of software metrics [4], static or dynamic, it has
not yet been addressed as regards the communication among
processes during the execution of distributed systems.

1We define a component as the code entities that run in a separate process.

1

Measuring interprocess coupling in distributed systems, ho-
wever, is challenging [18]. Coupling metrics are often defined
on the basis of certain relationships (e.g., dependency and
inheritance) [4]. However, deriving the interprocess dependen-
cies, from which our metrics are computed, is not trivial in the
context of distributed system executions. The main reason lies
in the lack of global timing across the system together with
the lack of explicit references/invocations across distributed
components. To overcome this challenge, we leverage a frame-
work for dynamic dependence analysis of distributed programs
we recently developed [19]. Using this framework, we reason
about interprocess dependencies through the happens-before
relation between executing methods across processes, derived
from a global partial ordering of method execution events. We
further exploit the semantics of message passing to improve
the precision of such derived dependencies, so as to enhance
the validity of our IPC coupling metrics.

Using the proposed metrics, we measured the IPC traits
of nine real-world distributed software projects, mostly
enterprise-scale systems, in varied operation scenarios (with
respect to different types of tests). To demonstrate the useful-
ness of the coupling measurement in aiding the analysis of dis-
tributed systems quality, we explored the relationships between
coupling measures and six quality factors quantified through
respective direct metrics, including maintainability, correct-
ness, stability, understandability, security, and performance.
We then conduct extensive statistical analyses to discover
significant associations between our coupling metrics and the
quality factors, via a non-parametric correlation analysis (with
Spearman’s method [20]). We showed, through empirically
validated correlations, positive or negative, promising applica-
tions of our metrics in understanding the run-time behaviors
of complicated distributed systems executions, and in studying
various aspects of distributed software quality.

In summary, this paper makes the following contributions:
• We proposed a novel set of metrics for measuring IPC at

varied (from method through system) levels in distributed
systems executions, based on message-passing semantics
and method-level dynamic dependencies.

• We applied the IPC metrics to nine real-world distributed
systems, and hence characterized various aspects of run-
time behaviors of these systems with respect to IPC.

• We extensively investigated the correlation between IPC
measures and six quality factors of distributed software,
and hence validated the usefulness of these IPC metrics.

• We made our study utilities and datasets publicly accessi-
ble [21] to facilitate future research on distributed systems
measurement and quality assessment.

To the best of our knowledge, this is the first comprehensive
study of dynamic coupling measurement in distributed systems
in relation to various quality factors. Notably, since each pro-
cess is the run-time instance of its corresponding component
and components in distributed software are decoupled, by me-
asuring the IPC coupling we essentially reveal the hidden/im-
plicit coupling among distributed components. Beyond our
technical approach and empirical results, we also distill major
lessons learned from our study and provide recommendations
for quality enhancement to distributed systems developers.

1 // The Server component
2 public class SC {
3 Datastore ds=null; Socket ssock=null;
4 void setup (int port) {ssock=new Socket(port); ds=dlDB(...);}
5 int serve() {long dataid=Long.valueOf(ssock.readLine());
6 return ssock.write(ds.retrieve(dataid));}
7 public static int main(String[] args) {S s=new S();
8 s.setup(Long.valueOf(args[1])); return s.serve();}}
9 // The Client component

10 public class CC1 {
11 public static int main(String[] args) {
12 CC2 conn=new CC2(); CC1 c=new CC1();
13 long dataid=Long.valueOf(args[1]);
14 System.out.println(c.lookup(conn,dataid)); return 0;}
15 String lookup(CC2 conn,long id) {return conn.getD(id);}}
16 public class CC2 {
17 Socket csock=connectServer(...);
18 String getD(long id) {csock.write(id); return csock.read();}}

Fig. 1. A distributed system as an illustrating/working example.

II. MOTIVATING/WORKING EXAMPLE

By design, a distributed system consists of multiple collabo-
rating components each running in a process typically located
at a separate computing node. Since these components interact
primarily through IPC [22], understanding (measuring) IPC
is essential for understanding (measuring) the behaviors of
distributed systems. To illustrate, consider the simple example
of Figure 1, where the system includes two components.
The Sever component, implemented in class SC, provides the
service for querying a database ds (line 4) according to the
dataid sent by the client (lines 5–6). The Client component,
implemented in classes CC1 (for data querying) and CC2 (for
managing connections), prepares a query from user inputs (line
13) and then looks up the database server (line 14) through
IPC (line 18). Apparently, IPC dominates the activities of
this system, excluding which each component alone would be
largely trivial. Thus, the complexity of this system’s execution
essentially lies in the complexity of its IPC.

Suppose the developer now wants to diagnose the communi-
cation security issues of this system reported by users who also
provided the inputs that can reproduce the issues. A rewarding
first step would be to understand how the communication
currently works in terms of the IPC with respect to the user
inputs. Measuring IPC would help in this scenario. Moreover,
the IPC measurements may help the developer assess quality
aspects other than security. For instance, if the IPC coupling
is very high, intuitively the system might be difficult to
update. Thus, its maintenance cost may be quite high also.
Unfortunately, there is a lack of tool support for measuring
distributed systems executions with respect to IPC, and it is
unknown which quality factors might be analyzable through
the IPC measures. In the rest of this paper, we address these
questions by developing new IPC metrics and applying them
to distributed software quality assessment.
Application scope. While our focus in this paper is on
distributed systems, the proposed metrics apply to any systems
that are similar to distributed systems in terms of the decoupled
structure. For example, systems adopting microservice archi-
tectures or IPC-based inter-component communication [23]
can also be measured using our IPC metrics.

2

III. PROPOSED IPC METRICS

This section presents our approach to IPC measurement.
We first give the preliminaries underlying the definition of our
IPC coupling metrics, summarizing the core rationales of our
method-level dynamic dependence approximation. Then, we
elaborate each of the metrics with justification and illustration,
which measure run-time message coupling (RMC), run-time
class coupling (RCC), class central coupling (CCC), and inter-
process reuse (IPR). We motivate each metric by discussing
its potential use for evaluating relevant quality factors.

A. Preliminaries

All of our proposed metrics are based on dynamic depen-
dencies at method level across processes. Given a method Pi

m

in one process Pi, all methods in any another process Pj ,
j 6= i in the systems execution that depends on Pi

m form a
set, referred to as the dependence set of Pi

m. Next, we outline
below the two core steps of our approach for determining the
dynamic dependence between two methods across processes.
Further relevant details can be found in [24].
Step 1: partial ordering of method execution events. The
basis of our dynamic method-level dependence approximation
is happens-before relations between method entrance and
exit events [25]. These events are partially ordered using
the Lamport timestamps (LTS) algorithm [26], realized in
dedicated runtime monitors for those method execution events.
In addition, two types of communication events, message
sending and message receiving, are monitored to update the
per-process logic clocks in the LTS algorithm. Then, a method
m2 is considered dependent on m1 if the first execution
event of m1 happens before the last execution event of m2,
according to the global partial ordering.
Step 2: pruning based on message-passing semantics For
a more precise dynamic dependence approximation, we furt-
her leverage the semantics of message-passing events across
processes. Suppose methods m1 and m2 are executed in
two processes Pi and Pj respectively, and m2 is considered
dependent on m1 according to the purely control-flow-based
approximation described above (i.e., Step 1). From a data-flow
perspective, m1 would not affect m2 if during the systems
execution (1) Pi never sends any messages to Pj , or (2)
the event that Pj receives the first message from Pi never
happens before the last execution event of m2. The rationale is
intuitive: for a method in one process to influence (i.e., causing
dependence to) a method in another process, the two processes
must have actually communicated (by passing messages from
one to the other), and the possible dependence between the two
methods again relies on their happens-before relation. Spurious
dependencies as a result of Step 1 are pruned using these two
intuitive rules. Then, with this significantly more precise [24]
dependence computation, we compute the dependence set
underlying our IPC coupling metrics, as detailed next.

B. RMC (Runtime Message Coupling)

Definition/computation. We define interprocess message
coupling at both process and system levels. First, given
two different processes Pi and Pj , their message coupling
RMC(Pi, Pj) is intuitively defined as the number of messages

sent from Pi to Pj . This process-level metric can be computed
according to the communication events monitored in our
framework (Section III-A). Then, the system-level RMC is
defined as the average of such process-level measures overall
all communicating pairs of processes as (hereafter, we suppose
the system runs in N processes in total)

RMC =

∑N
j=1

∑N
i=1 RMC(Pi, Pj)

N(N − 1)
, i 6= j, i, j ∈ [1, N] (1)

Rationale/justification. At a high level, processes in distri-
buted systems executions interact through passing messages.
Thus, the value of the RMC metric indicates the extent of
run-time interactivity among system components. A higher
RMC implies greater reliance of a component on (i.e., sending
more messages to) others in the execution considered. Since
these components are distributed over separate locations, larger
RMC values also indicate higher communication costs (e.g.,
for greater network bandwidth use). Finally, a higher RMC
suggests greater effort for systems understanding (even at
a very-high level) [27]. Thus, RMC can be used as an
understandability and cost-of-quality [1] metric. In essence,
RMC measures the implicit coupling between (statically)
decoupled components because the two processes involved in
the definition correspond to two components of the system.
Illustration. Consider the example system of Figure 1.
Suppose during the system execution under analysis the
client process (Pclient) sends the server process (Pserver)
two messages—the first for authentication (line 12) and the
second for querying (line 18), and the server then sends back
to the client the querying result in three messages. Thus,
RMC(Pserver, Pclient)=3 and RMC(Pclient, Pserver)=2.
Since we have two processes (N=2), the system-level message
coupling is RMC=(2+3)/(2(2-1))=2.5. For a second example,
consider ZooKeeper [28], an enterprise-scale distributed
system that consists of three major components each running
in one or multiple processes. Further, consider its built-in
integration test for an example execution, during which
only one server and one client process are involved and
they exchanged 13 messages during the test. Thus, both
process-level RMC measures are 13 and the system-level
RMC=(13+13)/(2(2-1))=13.

C. RCC (Runtime Class Coupling)
Definition/computation. We measure finer-grained interpro-
cess coupling at class level, from which we define the class
coupling between two processes hence further the system-
level class coupling. Specifically, the coupling metric for two
classes, PA

i in process Pi and PB
j in process Pj , is defined

as the ratio of the total number of methods in PB
j that are

dependent on any method in PA
i , to the total number of

methods in any process other than Pj that are dependent on
any method in PA

i . Let DS(m) denotes the dependence set
of method m, the class-level RCC metric is defined as

RCC(PA
i , PB

j) =
|
⋃

m∈PA
i
{f |f ∈ DS(m) ∧ f ∈ PB

j }|
|
⋃

m∈PA
i
DS(m)|

(2)

Given a query m, the entire dependence set DS(m) includes
all methods that dynamically depend on m for the execution
being analyzed [29], regardless of the dependant methods

3

being executed in the same process as the query m (i.e.,
local process) or in other processes (i.e., remote processes).
Accordingly, the dependant methods in the local and remote
processes form the local dependence set and remote depen-
dence set, respectively. The denominator in Equation 2 is the
size of the union set of entire dependence sets of all methods
in PA

i , while the numerator is the size of the union set of
remote dependence sets of those methods.

Next, the process-level RCC metric is defined as

RCC(Pi, Pj) =
∑
A∈Pi

∑
B∈Pj

RCC(PA
i , PB

j),

where RCC(PA
i , PB

j) 6= 0

(3)

While the constraint RCC(PA
i , PB

j) 6=0 is trivial for compu-
tation, it is not for the definition which only considers the
pairs of classes that are actually coupled—a zero RCC would
indicates they are not coupled.

Finally, the system-level RCC metric is defined as

RCC =

∑N
j=1

∑N
i=1 RCC(Pi, Pj)

N(N − 1)
, i 6= j, i, j ∈ [1, N] (4)

Rationale/justification. The rationale for RCC is that its value
indicates how methods from a class in one process access
methods from a class in another process. In contrast to RMC
which is a message coupling metric, RCC measures functi-
onality coupling. A higher RCC implies greater functional
interdependency among system components in the execution
considered. From a change management perspective, this
higher RCC suggests that making changes for the associated
system use case would be more difficult and costlier. Also, the
denser interprocess dependence associated with a greater RCC
makes it harder to test and debug the system with respect to
the use case. Thus, RCC may inform about maintainability [1].

TABLE I
ILLUSTRATING DEPENDENCE SETS OF THE SYSTEM OF FIGURE 1

Method m Dependence set DS(m)
SC::main {SC::main, SC::setup, SC::serve,

CC1::main, CC1::lookup, CC2::getD}
SC::setup {SC::setup,SC:serve, CC2::getD}
SC::serve {SC::serve, CC2::getD}
CC1::main {CC1::main,CC1::lookup,CC2::getD,

SC::setup,SC::serve}
CC1::lookup {CC1::lookup,CC2::getD,

SC::serve}
CC2::getD {CC2::getD}

Illustration. For example, consider an operation profile of the
system of Figure 1, in which the method-level dependencies2

are listed in Table I. For each query (first column), the entire
dependence set is given in the second column, including
methods executed in remote processes as marked in boldface.
Based on these local/remote dependencies, for class PSC

server,
the union set of all its methods’ entire dependence sets is
{SC::main, SC::setup, SC::serve, C1::lookup,
C2::getD} while the union set of all the methods’ remote
dependence sets that belong to PCC1

client is {CC1::main,
CC1::lookup}. Thus, RCC(PSC

server, PCC1
client)=2/5=0.4.

Similarly, RCC(PSC
server, PCC2

client)=1/5=0.2, RCC(PCC1
client,

2For the simplicity of our illustrations, we dismissed methods dlDB and
connectServer, which are both library routines.

PSC
server)=2/5=0.4, and RCC(PCC2

client, PSC
server)=0/1=0.

Then, the process-level RCC measures are RCC(Pserver,
Pclient)=0.4+0.2=0.6, RCC(Pclient, Pserver)=0.4. Finally,
the system-level RCC is computed as (0.6+0.4)/(2(2-1))=0.5.

D. CCC (Class Central Coupling)
Definition/computation. On the basis of the RCC metric,
we further measure the aggregate coupling as regards an
individual class executed in a local process with respect to
classes in all possible remote processes. Specifically, given a
class PA

i in process Pi, the CCC metric is defined as

CCC(PA
i) =

N∑
j=1

∑
B∈Pj

RCC(PA
i , PB

j),

where RCC(PA
i , PB

j) 6= 0, i 6= j, i, j ∈ [1, N]

(5)

Again, the constraint RCC(PA
i , PB

j)6=0 is given for the rigor
of the definition despite its triviality in the metric computation.
The system-level CCC is then defined as the mean of class-
level CCC measures over all classes executed (in any process).
Rationale/justification. Intuitively, the CCC metric of a class
c characterizes the importance of c in terms of its influence
(coupling strength) on all classes in remote processes by being
coupled with them. If we construct a coupling graph where
each node is a class and each edge represents RCC between
two classes, the CCC metric is akin to the centrality metric
in network measurement [30]. Our definition of CCC was
originally motivated by the centrality metric indeed, which
has been widely used in network analysis to identify the
most important vertices in a graph (network). Thus, the CCC
metric can be used to understand key classes in IPC, which
could potentially inform about localizing quality issues (e.g.,
identifying faulty classes). Further, this metric may be utilized
to assess functional correctness and other quality factors of the
distributed system under measurement at class level.
Illustration. Let us consider the same example system
(Figure 1) and execution scenario as used for illustrating the
RCC metric. Given all those class-level RCC measures, we
can readily compute the CCC measures for the three classes:
CCC(PSC

server)=RCC(PSC
server,PCC1

client)+RCC(PSC
server,PCC2

client)
=0.4+0.2=0.6, CCC(PCC1

client)=RCC(PCC1
client,P

SC
server)=0.4, and

CCC(PCC2
client)=0. The system-level CCC measure is thus

computed as (0.6+0.4+0)/3=0.33.

E. IPR (InterProcess Reuse)
Definition/computation. Complementing the previous three
forms of coupling metric, we further propose a metric of
interprocess coupling at method level. And the system-level
metric is derived from the method-level measures. Specifically,
given a method Pm

i in any process Pi, let LDS(Pm
i) and

RDS(Pm
i) denote the local dependence set (set of methods

in Pi that depends on Pm
i) and remote dependence set (set of

methods that depends on Pm
i but are in any process other than

Pi) of Pm
i , respectively. Also, we denote as M the entire set

of methods covered in the system execution under analysis—
M is the union set of methods executed in any process during
the execution: M =

⋃
i∈[1,N]{Pm

i |Pm
i ∈ Pi}.

First, the method-level IPR metric with respect to an indi-
vidual method Pm

i in a process Pi is defined as

4

IPR(Pm
i) =

|LDS(Pm
i)

⋂
RDS(Pm

i)|
|M |

(6)

Then, the system-level IPR metric is defined as

IPR =

∑
Pm

i ∈M
IPR(Pm

i)

|M |
, i ∈ [1, N] (7)

Rationale/justification. The IPR metric measures functiona-
lity overlapping and code reuse at method level, across the
processes in the system execution under analysis. The key
rationale for this metric is that its value indicates the size
of functionalities shared between system components. Real-
world distributed systems are usually found to have common
code modules used by two or more distributed components.
As a typical example, the process-level common functionalities
exercised reflect the fact that multiple components of the distri-
buted system use the same third-party libraries. Therefore, IPR
can serve as an intuitive metric measuring component-level
code reusability [18]. On the other hand, despite the name
of this metric suggesting code reuse, IPR is essentially still
an (albeit derivative/variant) metric of interprocess coupling.
Intuitively, a higher IPR metric value of a system indicates
more dynamically coupled processes of the system.
Illustration. For the same example system and execution
as used for illustrating other metrics and in reference to
the dependence sets of Table I, the method-level IPR for
any of the six methods covered by the execution is zero.
Thus, the system-level IPR is also zero. (Note that the
methods in boldface form the remote dependence set of
each query.) For an alternative example, let us consider
the library functions dlDB and connectServer. Now
suppose these two functions both invoked another library
function libHttpConn (for managing HTTP connections).
Then, LDS(SC::main) and RDS(SC::main) would be
{SC::main, SC::setup, libHttpConn, SC::serve}
and {CC1::main, CC1::lookup, libHttpConn,
CC2::getD}, respectively. Thus, IPR(SC::main) would
be 1/7. Similarly, we may obtain IPR(SC::setup)=1/7,
IPR(CC1::main)=1/7, and the IPR of other methods
remain zero. Accordingly, the system-level would be
(1/7+1/7+1/7)/7=3/49.

In sum, we defined four IPC metrics, covering four levels
of granularity of measurement: method (IPR), class (RCC,
CCC), component/process (RMC, RCC), and whole system
(RMC, RCC, CCC, IPR). Some of these metrics (RMC,
RCC) explicitly measure interprocess coupling, while others
(CCC, IPR) are in essence derivatives/variants of coupling
metrics. Note that IPR complements the other three metrics in
that it measures the common dependencies of two processes
while the other three measure mutual dependencies of one
process on the other. It is also important to note that, for each
of the proposed metrics, a metric value is not supposed to be
examined on its own or in absolute terms. Instead, the metric
value should be best interpreted in the context of comparable
values obtained from a group of compatible measurement
objects [2] (e.g., measurements with the same metrics against
peer distributed system subjects). Next, we present our em-
pirical experiments measuring real-world distributed systems
and their executions using these IPC metrics. To make sure
that each of the proposed metrics is appropriate for empirical

TABLE II
STATISTICS OF EXPERIMENTAL SUBJECTS

Subject (version) #SLOC #Methods Test type #Cov.M.
OpenChord (1.0.5) 9,244 736 integration 382
Thrift (0.11.0) 14,510 1,941 integration 266
xSocket (2.8.15) 15,760 2,209 integration 466

ZooKeeper (3.4.11) 62,194 5,383
integration 979

load 750
system 797

Voldemort (1.9.6) 115,310 20,406 integration 715
Netty (4.1.19) 162,923 12,389 integration 1,325
Derby (13.1.1) 688,376 7,460 integration 291
Karaf (2.4.4) 60,978 1,012 integration 223
XNIO (2.0.0) 5,282 1,164 integration 113

studies, we have validated these metrics with respect to, and
confirmed satisfaction of, their representation conditions [3].

IV. EXPERIMENT METHODOLOGY

The goal of our empirical studies is two-fold. First, we aim
at characterizing the IPC in real-world distributed systems and
their executions, in order to demonstrate the practicality of
measuring distributed-system IPC using the proposed metrics.
Second, we aim at investigating the implications of IPC
characteristics (in terms of the IPC metrics) to the quality of
distributed software in terms of various quality factors, in order
to demonstrate the practical usefulness of measuring IPC for
understanding, analyzing, and even predicting those quality
factors. This section focuses on clarifying our experimental
design, including our study subjects, datasets on the quality
factors of interest, guiding research questions, and procedure.

A. Measured Systems and Executions

Table II lists the nine Java subjects used in our study,
including the subject name and version (first column), subject
size in terms of the number of non-comment non-blank code
lines (second column) and the number of methods (third
column). For generating the executions needed for computing
our dynamic metrics, one or more types of test case (one test
per type) were used used (the fourth column). The last column
gives the number of methods covered by each test case.
Subject description. OpenChord is a distributed hash table
used as a peer-to-peer network service [31]. Thrift is a sca-
lable development framework for developing cross-language
services [32]. xSocket is an NIO-based library for the de-
velopment of high-performance network applications [33].
ZooKeeper [28], [34] is a widely used distributed coordination
service for consistency and synchronization. Voldemort [35] is
a distributed database (key-value store) used at LinkedIn. Netty
is a non-blocking I/O event-driven framework used for rapid
development of Java network protocol servers and clients [36].
Derby is an open source relational database developed under
the Apache License, Version 2.0 [37] [38]. Karaf is a modular
container as an open source runtime environment supporting
the standard OSGi [39]. XNIO is a non-blocking I/O layer and
library used to build efficient networking applications [40].
Test inputs. For measuring IPC of the chosen subjects, we had
to execute them against varied test inputs. For all subjects, we
constructed an integration test case according to the official
user guide available on respective project website, as elabo-
rated below. Creation of these integration tests did not need

5

deep knowledge about each system because the descriptions
on respective user guides are straightforward and clear. In
addition, we utilized two types of test for ZooKeeper that
came within the project package: load test and system test. For
each integration test, we started two to five server and client
nodes on different machines, except for ZooKeeper we started
an additional node as a container. For peer-to-peer systems
(e.g., OpenChord), we operated on all nodes; for others, we
operated only on the client (which then automatically triggered
operations on other nodes).

Specifically, for OpenChord, the operations were: we first
created an overlay network on the first node; next, we joined
the network on other two nodes, inserted a new data entry
to the network on the third node, looked up and deleted the
data entry on the first node; lastly, we listed all data entries
on second node. For ZooKeeper, we first created two nodes,
looked up for both, checked their attributes, changed the data
association between them, and then deleted both nodes. For
Voldemort, the client operations were adding a key-value pair,
querying the value of the key, deleting the key, and retrieving
the pair again. For Derby, we searched all the data records
(SELECT *) from a relational database (one table) created
beforehand. For Karaf, we created a container hosted by the
server and then executed two operations in order: list all
packages (la), listing OSGi bundles (list).

The four remaining subjects, Thrift, xSocket, Netty and
XNIO, are all libraries/frameworks, for which we needed
to instantiate them by developing applications. For Thrift,
we used its libraries to develop a calculator consisting of
a server and a client component. (The Thrift file must be
transferred to Java programs first.) We performed against
the calculator (from its client) basic arithmetics (addition,
subtraction, multiplication, and division). For xSocket, we first
started one server instance and two client instances. Next, we
sent one text message from one client, and a different message
from the other client, to the server. For both Netty and XNIO,
we started one server and one client instance, and then sent
one message from the client to the server.

B. Quality Factors

We hypothesized that six quality factors might be infor-
med by IPC measurement: maintainability, correctness, (code)
stability, understandability, security, and performance [1]. To
enable our investigation of how these quality factors may be
related to our IPC metrics, we needed to for each quality
factor (1) identify a direct measure to quantify it, and (2)
actually measure it directly by computing the quantity. Next,
we elaborate each of these factors regarding both needs.
Maintainability. We characterize maintainability of a system
via the average interval of a maintenance cycle of the system,
referred to as release interval. The rationale is that release
interval can directly measure maintainability—intuitively, a
shorter (longer) interval means a higher (lower) frequency of
changes, suggesting that the system needs more (less) main-
tenance efforts hence lower (higher) maturity of the software.
The quantity is computed as the average time span (number
of days) between two consecutive software versions (releases).
To account for the effect of software size on maintainability,

we further normalize it by computing the release interval per
source line of code (SLOC)—dividing the average release
interval by the average SLOC across all the historical versions.

To compute the (normalized) release interval for each of the
nine subjects, we collected the entire release history accessi-
ble to us through respective online resources, including the
release date and source code of each version. Specifically, the
history of OpenChord was obtained from SourceForge [41],
the history of Thrift [42] and Derby [43] both from Apache
Projects, the history of xSocket [44], Netty [45], Karaf [46]
and XNIO [47] all from respective Maven repository, and
the history of Voldemort [48] and ZooKeeper [49] from their
GitHub repository. As an example of quantifying maintaina-
bility via release interval, Table III shows the version history
of OpenChord, the size of each version, and accordingly the
normalized release interval (0.024).

TABLE III
VERSION HISTORY AND MAINTAINABILITY OF OPENCHORD

Version Release date Time span #SLOC
1.0 1/31/2006 - (initial release) 7,792
1.0.1 1/5/2007 339 7,839
1.0.2 1/12/2007 7 8,213
1.0.3 7/18/2007 187 8,343
1.0.4 10/25/2007 99 8,364
1.0.5 11/4/2008 376 9,244

Average 201.6 8,299.2
Release interval=201.6/8,299.2=0.024

Correctness. We quantify the functional correctness of a
system via defect density of the system—the number of defects
normalized by the system’s size in terms of KSLOC. This is
an intuitive/immediate, reverse measure of correctness, a key
qualify factor in almost all quality models [1]: the higher the
defect density, the lower the correctness of the system.

To compute the defect density for each of our subjects,
we collected the data on defects throughout the same version
history we referred to for computing the release intervals.
For OpenChord [50] and xSocket [51], the defects were
collected from SourceForge. For Thrift [52], ZooKeeper [53],
Derby [54] and Karaf [55], we found the defects in the Jira
database. The defects of Volemort [56] and Netty [57] were
obtained from respective Github issue collection. We gathered
defect data for XNIO [58] from the JBoss project’s Maven
repository. We accumulated the total number of defects both
for the entire subject and per relevant classes, according
to varied bug repositories of each version of the subject.
The system-level defect density was then obtained from the
defect total and the average SLOC of the versions in the
history. For example, we found 40 defects in the version
history of Voldemort (81 releases in 5 years), of which 1 was
in class voldemort.client.ClientThreadPool
and 3 in total was responsible by class
voldemort.client.protocol.admin. The average
KSLOC of the subject is 103.185, thus the defect density is
40/103.185=0.388 (0.388 bugs in every thousand SLOC).
Stability. We define stability as a quality factor concerning
how stable the codebase of a system is, which is quantified as
the average number of source lines of code changed between
two consecutive versions of the system, referred to as code
churn [59]. It is then normalized by the size (SLOC) of the
latter version. The system-level stability is measured as the

6

TABLE IV
CODE CHANGE HISTORY AND CODE-STABILITY (QUANTIFIED THROUGH CODE CHURN) OF THRIFT

Version 0.2.0 0.3.0 0.4.0 0.5.0 0.6.0 0.6.1 0.7.0 0.8.0 0.9.0 0.9.1 0.9.2 0.9.3 0.10.0 0.11.0
SLOC 6417 6,830 7,903 8,913 10,093 10,093 10,230 11,163 11,661 12,635 13,341 14,094 14,217 14,510
Diff size - 984 909 296 1,828 126 179 650 189 543 596 179 749 209
Per-pair churn 0.1441 0.1150 0.0332 0.1811 0.0125 0.0175 0.0582 0.0162 0.0430 0.0447 0.0127 0.0527 0.0144

TABLE V
DIRECT MEASURES OF UNDERSTANDABILITY FOR ALL SUBJECTS

Subject OpenChord Thrift xSocket Voldemort ZooKeeper Netty Derby Karaf XNIO
Cyclomatic Complexity 4,688 5,701 10,739 74,042 35,229 67,252 118,622 6,306 2,972
Understability 0.5071 0.3929 0.6814 0.7248 0.5664 0.4128 0.1723 0.1034 0.5627

average code churn over all pairs of consecutive versions in the
release history of the system considered. This direct measure
of stability is similar and complementary to release interval
in that both look at the changes between consecutive software
versions, but the former focuses on the scale of the changes
(i.e., in the perspective of software itself) while the latter on the
time spent for making those changes (i.e., in the perspective
of human/developer cost). Accordingly, the same dataset used
for quantifying release interval was used for computing the
code churn of each subject. To illustrate our direct measure
of stability, Table IV shows the change history of Thrift,
including the version number (first row), size (SLOC) of each
version (second row), number of changed lines of code relative
to the previous version (third row), and the code churn for each
pair of versions. The system-level code churn is the average
of the per-pair churns, which is 0.0573 in this example.
Understandability. We quantify understandability of a system
using the McCabe’s cyclomatic complexity metric [60], nor-
malized by the size (SLOC) of the system. We used the same
dataset as used for computing the dynamic IPC metrics—only
one version of each subject (as listed in Table II) was mea-
sured. Table V gives the direct measure of understandability
of all the nine subjects studied, including the raw cyclomatic
complexity (second row) and the normalized complexity as
the direct measure (last row).
Security. We directly measure the dynamic information flow
security, a critical aspect of system security, in terms of two
characteristics (metrics) of taint flow paths in the analyzed
execution: path count, which is the total number of such paths,
and path length, which is the average length of the paths. The
length of a taint flow path is the number of statements on
the path. As for quantifying understandability, we computed
these two security metrics for a single version of each of the
nine subjects (see Table II). We also normalized both metrics
by the subject size in terms of KSLOC. Table VI gives our
security measures of all subjects with respect to the executions
generated using the chosen test inputs (Table II). For subjects
(e.g., Derby) and test types (e.g., system test of ZooKeeper)
not listed in the Table VI, we found no taint flow paths (thus
their security measures were all zeros).

TABLE VI
DIRECT MEASURES OF SECURITY FOR ALL SUBJECTS

Subject Thrift xSocket Voldemort ZooKeeper-load Netty
raw path count 3 2 42 64 2
normalized path count 0.207 0.127 0.411 1.029 0.012
raw path length 171.0 54.5 362.2 466.5 2,476.5
normalized path length 11.785 3.458 3.545 7.501 15.200

Performance. IPC characteristics might be connected to sy-
stem performance. We characterize the performance of a

system in terms of operation speed, quantified as the number
of operations the system can perform per second, normalized
by the subject size in terms of SLOC. Instead of computing
these direct measures, we collected the performance data from
relevant online sources of each subject. For xSocket, the
relative performance data, compared to Netty’s performance
data [61], came from [62]. We then derived the performance
data of xSocket in absolute terms from these sources together.
For other subjects, we obtained the data immediately from [63]
for OpenChord, from GitHub [64] for Thrift, from its project
website [65] for Voldemort, from the Confluence site [66] for
Zookeeper, from [67] for Derby, and from [68] for Karaf. We
did not find performance data for XNIO, thus omitted this
subject in our correlation analysis between IPC metrics and
performance. The direct measures of system performance (via
operation speed) for other subjects are listed in Table VIII.

C. Research Questions and Procedure
We list the research questions that guided our study and

outline experimental procedures for answering the questions.
• RQ1: How are the processes coupled in distributed

systems with respect to the proposed IPC metrics?
We characterize the IPC coupling and relevant other traits
of distributed systems in their typical operation profiles,
by measuring IPC in those executions with respect to the
proposed IPC metrics. We computed all the IPC metrics
(§ III) against all the subjects and tests (Table II), using our
dynamic dependence abstraction framework [19]. The goal
of answering this question is to demonstrate the practicality
of IPC measurement with our approach.

• RQ2: Are the proposed IPC metrics related to any of the
six quality factors? With the IPC measures computed for
RQ1 and the direct measures of these quality factors com-
puted as detailed above (§ IV-B), we performed extensive
correlation analysis to examine the correlation between each
of the four IPC metrics and each of the six quality factors.
We used Spearman’s correlation coefficients [20] to quantify
the correlation, a non-parametric method making no as-
sumptions about the relationship between the two variables
involved (which is the reason we chose Spearman’s method
over alternatives like Kendall’s [69] and Pearson’s [70] met-
hods). Further, we adopted the interpretations of correlation
strength according to varied value ranges of the Spearman
coefficient r in [71]: the correlation is very weak if |r| is
below 0.20, weak if |r| is between 0.20 and 0.39, moderate
if |r| is between 0.40 and 0.59, strong if |r| is between 0.60
and 0.79, very strong if |r| is 0.8 or above.

In addition, we used the cloc tool [72] to compute the size of
a system (SLOC) and the diff tool [73] to compute the code

7

differences between two versions. When quantifying a quality
factor, we choose SLOC or KSLOC as the normalizing unit
according to the value range of the quality factor’s measure to
avoid the metric value to be too small thus seem negligible.
To compute the two security measures, we used our dynamic
taint analysis tool for distributed programs [74] to produce
taint flow paths, for which the lists of taint sources and sinks
were curated based on the documentation of Java security/-
cryptography APIs. We used a Java source code measurement
tool JavaNCSS [75] to compute the cyclomatic complexity
as a reversed metric of understandability (higher complexity
implies lower understandability). All the machines used in our
study were Ubuntu Linux 16.04.3 LTS workstations with an
Intel E7-4860 2.27GHz CPU and 16GB DRAM.

V. RESULTS AND ANALYSIS

This section presents our major results and conclusions in
response to the two major research questions.

A. RQ1: IPC Measurements

TABLE VII
IPC MEASUREMENT RESULTS (WITH SYSTEM-LEVEL IPC METRICS)

Subject+test type RMC RCC CCC IPR
OpenChord 3.89 41.12 0.72 0.1
Thrift 0.5 20.26 0.44 0.27
xSocket 0.33 35.27 0.61 0.14
Zookeeper-integration 13 84.5 0.49 0.09
Zookeeper-load 815.17 83 0.76 0.19
Zookeeper-system 71.67 26.67 0.72 0.32
Voldemort 25.50 119.00 0.79 0.11
Netty 0.67 148.04 0.70 0.43
Derby 1 49.7 1.25 0.28
Karaf 1 12 1.00 0.82
XNIO 1 44.98 0.86 0.43

Our results on IPC measurements are summarized in Ta-
ble VII. Each number represents one of the four proposed
IPC metrics computed for one subject and one type of test.
For all subjects but ZooKeeper, the test type is omitted (first
column) as only one integration test was considered for them.

The RMC results show that the two enterprise-scale sys-
tems, ZooKeeper and Voldemort, had medium to high degrees
of message coupling among the distributed processes. In
particular, with the executions against system and load tests,
ZooKeeper saw an overwhelmingly higher RMC than did other
subjects. A main reason is that for all other cases, the execution
was driven by an integration test, which was relatively simple
(mainly just between client and server processes). Especially,
during the load test, ZooKeeper took an extraordinary level of
workload leading to a large number of message exchanges
among the processes; further, the load test needed all the
processes to collaborate closely, hence a high RMC as a
result. Intuitively, the RMC measures immediately indicate
the complexity of IPC in terms of message passing among
processes. The higher RMC metric values also implied heavier
network communication costs. We also observed that the RMC
values did not seem to be related to the system size (in terms
of SLOC)—the processes in the largest system (Derby) were
very lightly coupled, less than those in one of the smallest
system (xSocket), despite both being with respect to the same
type of test (i.e., integration test).

TABLE VIII
DIRECT MEASURES OF OTHER QUALITY FACTORS

Subject Maintainability Correctness Stability Performance
OpenChord 2.43E-02 6.14E-02 6.14E-02 1.32E-01
Thrift 2.54E-02 4.00E-03 6.15E-02 2.12E+00
xSocket 2.23E-03 3.81E-04 3.63E-02 8.70E-01
Zookeeper 1.85E-04 3.23E-04 2.41E-03 1.56E-01
Voldemort 3.56E-03 6.03E-03 1.01E-02 1.71E-01
Netty 4.38E-04 3.27E-03 9.19E-03 1.47E-01
Derby 4.18E-04 5.96E-03 2.28E-02 2.00E-02
Karaf 1.29E-03 3.56E-03 1.99E-02 1.75E-01
XNIO 3.24E-02 4.27E-03 6.93E-02 -

The RCC measures appeared to be independent of RMC,
evidenced by the absence of association between the two
metrics: the RCC of ZooKeeper-load, which had the highest
RMC, had a relatively low yet not the lowest RCC; overall,
higher/lower RCC was not associated with higher/lower RMC.
Similarly to RMC, RCC saw no correlation with system size
either. The numbers revealed that during the integration test,
Netty had the most highly coupled processes at class level,
followed by Voldemort, while in Karaf a class in one process
generally did not influence much the classes in other processes.

Like RMC and RCC, CCC and IPR saw no correlation with
subject size nor with any other IPC metrics. An implication
of the lack of association among the four metrics is that
each of them is uniquely informative/significant—none of
them subsumed any others. What was obviously different
between RMC/RCC and CCC/IPR was that the 11 measu-
res saw substantial variations in RMC/RCC, yet very small
variations in CCC/IPR were observed. This contrast suggests
that RMC/RCC can vary widely from system to system, while
CCC/IPR may be mostly in a narrow range. In terms of
the numbers, the mean CCC was mostly around 1, meaning
that every class collaborated with about one other class in
a remote process. Complementary to the other three metrics
that concern the dependence/reliance of one process on others
(albeit at varied levels of granularity), IPR informs the common
dependence of processes, That said, Karaf’s processes had
much higher degree of common functionalities shared among
them than other systems; in contrast, the two processes in
ZooKeeper’s integration test had very little sharing.
Conclusion. The four IPC metrics each measured/characte-
rized the IPC coupling in a uniquely informative/significant
perspective—no one metric subsumes/implies another. Mean-
while, RCC and RMC can be sharply different among different
systems while CCC and IPR seem to be relatively stable across
systems. Even with the same type of execution scenarios, the
coupling among distributed processes had no correlation with
system sizes. The degree of coupling seems to generally follow
a normal distribution: few systems saw extremely high or low
coupling, and most systems had moderately coupled processes.

B. RQ2: Relation to Quality Factors
The data groups underlying our correlation analysis include

(1) the dynamic measures with respect to each of the 4 IPC
metrics over all subjects (all shown in Table VII) and (2)
the direct measures of each of the six quality factors (in 7
metrics—security has two metrics and other factors each has
one metric) over all subjects. Part of (2), on understandability
and security, is shown in Table V and Table VI, respectively.

8

TABLE IX
CORRELATIONS BETWEEN IPC METRICS AND QUALITY FACTORS

IPC metrics
RMC RCC CCC (mean) IPR

Q
uality

factors

Maintainability -0.237 -0.383 -0.133 -0.151
Correctness 0.017 0.167 0.483 0.276
Stability -0.424 -0.583 -0.017 -0.025
Understandability 0.305 0.383 0.467 -0.586
Security (path count) 0.159 0.348 0.618 -0.450
Security (path length) 0.195 0.453 0.583 -0.371
Performance -0.390 -0.467 -0.619 -0.142

The remaining parts of (2) are summarized in Table VIII. Since
we examine the correlation between each IPC metric and each
quality factor, we performed the correlation analysis for 28
pairs of (1) and (2) data groups.

Note that the two groups in each pair need to be of equal
sizes. Regarding the security factor, each group had 11 data
points since we had the dynamic measures of security for
each of the 11 cases (corresponding to the Rows 2–12 of
Table VII). For other quality factors, since the measures were
static (one measure per subject), the group on each of these
factors had 9 data points, we had to use one aggregate IPC
measure for each subject as well. To that end, we took the
mean of the measures per IPC metric over the three executions
of ZooKeeper (corresponding to the three test types). There
was still an exception with the performance factor, though:
we omitted XNIO as we did not have the performance data
available for this subject, thus we simply took this subject out
from both groups hence each group had 8 data points. Table IX
lists the 28 resulting Spearman coefficients.

Our results show widely varying relations of our IPC
metrics to the six quality factors. We regard a moderate or
stronger correlation as significant, and marked such cases in
boldface. All the four IPC metrics were negatively correlated
with maintainability (quantified via release interval), which
indicates higher IPC coupling being associated with lower
maintainability. Recall that the IPC coupling is an indicator
of implicit coupling among distributed components (which are
decoupled by design). Among more coupled components/pro-
cesses, changing one more likely affects others, contributing
to more frequent maintenance (hence shorter release interval).
Yet the correlation was mostly very weak and only RCC was
close to a significant correlation with maintainability.

CCC was the only IPC metric that was significantly corre-
lated to correctness, quantified by a reverse measure (defect
density)—the higher the measure the lower the correctness.
The correlation was positive because when a system has more
classes in one component/process more coupled with classes
in other components/processes, defects in one potentially
propagate more broadly, hence a higher defect density.

Regarding stability (in terms of code churn size), the
significant correlation with RMC and RCC implies that inter-
process coupling may well indicate the size of code changes in
each maintenance iteration. The negativity of the correlations
further suggests that having components more coupled may
actually reduce the amount of code changes. A plausible
reason is that more changes in one component/process may
more readily propagate to other components/processes auto-
matically, hence less changes needed for the entire system

in one maintenance cycle. The other two IPC metrics were
negligible in terms of their relation to stability.

We observed that higher coupling in terms of one pro-
cess/component’s dependencies on others (i.e., RMC, RCC,
and CCC) was consistently associated with higher cyclomatic
complexity hence lower understandability, as evidenced by
the positive correlations between this quality factor and the
three metrics (especially CCC, with which the correlation was
significant). The reason is that those dependencies intuitively
made the system more complicated, hence more difficult, to
understand. Interestingly, having more common functionalities
among components/processes reduced the complexity hence
enhanced understandability, according to the significant, ne-
gative correlation with IPR. The IPC metrics were similarly
informative of security, with respect to both direct security
measures: the more interprocess dependencies (measured by
RMC/RCC/CCC) were related to more and longer taint flow
paths (lower security), yet more sharing of functionalities (me-
asured by IPR) related to fewer and shorted vulnerable paths
(higher security). In particular, CCC was strongly informative
about security as measured by the number of vulnerable paths.

The negative correlations of all the IPC metrics with per-
formance indicate that a higher degree of interactivity among
processes/components, in terms of either dependencies on
one another (RMC/RCC/CCC) or dependencies in common
(IPR), was consistently related to a lower operation speed
(hence a lower level of performance). Justifiably, given that a
system needs collaborations among its processes/components
to finish a task, when one class/component has to communicate
with more others across processes (as implied by the higher
interactivity), it takes longer to carry out the task. ICCC was
again the most informative metric for performance, as per its
strongest correlation with this quality factor.
Conclusion. All the four IPC metrics were related to and
informative of all the six quality factors, despite the variations
in correlation strengths. In particular, higher IPC coupling in
terms of dependencies of one process/component on others
(via higher RMC/RCC/CCC) was significantly associated with
higher defect density (lower correctness), smaller code churn
(higher stability), higher complexity (lower understandability),
more/longer vulnerable execution paths (lower security), and
lower operation speed (lower performance). More sharing of
functionalities among processes (via higher IPR) was signifi-
cantly associated with higher understandability and security.

C. Threats to Validity

The main threat to internal validity lies in possible imple-
mentation errors in our computation for IPC metrics, direct
measures of quality factors, and correlation analysis. To reduce
this threat, we did a careful review for all our tools and
used the two smallest subjects to manually validate their
functionalities and analysis results. In addition, the validity of
our results rely on that of the data we collected from various
sources used for quantifying the six quality factors.

The main threat to external validity is that our study results
may not generalize to other distributed systems and executions.
To reduce this threat, we have chosen subjects of various sizes
and application domains, focusing on real-world/industry-scale

9

systems of varied architectures. We also considered different
types of inputs, including integration, system, and load tests.
Nevertheless, our results are best interpreted with respect to
the systems and executions actually studied. Also, the number
of subjects we considered immediately limited the number of
data points included in each group in our correlation analyses
hence the validity of the analysis results.

The main threat to construct validity lies in our use of
statistical analysis for drawing our conclusions. In computing
the system-level IPC metrics, we took the means of lower-level
metrics without accounting for the variations (e.g., standard
deviations), which would need to be considered in more
thorough measurement schemes. To reduce the threat as re-
gards our correlation analysis, we carefully chose Spearman’s
method over alternatives as it is a non-parametric method
without assuming normality of underlying data’s distribution
or relationships between the data groups. Meanwhile, our
correlation analysis looked at system-level measures; as a
result, it involved a relatively small number of data points,
which constitutes another threat to the validity of our results.

D. Lessons Learned And Recommendations
Our exploration of IPC metrics not only demonstrated the

practicality of measuring IPC in large, real-world distributed
systems, but also revealed the substantial presence (albeit
with varying degrees) of implicit coupling among distributed
components (that are generally decoupled in architectural
design). And we showed that one way to reveal such implicit
coupling is through measuring interprocess coupling.

Our results on IPC measurements revealed that higher
coupling in terms of inter-process/component dependencies is
generally bad for quality (by being significantly indicative of
lower quality with respect to five out of the six factors conside-
red). This largely confirmed the drawbacks of high coupling in
general [2]. On the other hand, functional overlapping among
distributed components can benefit quality by enhancing un-
derstandability and lowering security vulnerabilities. Note that
CCC, RCC, IPR, and RMC was significantly correlated to four,
three, two, and one out of the six quality factors, respectively,
while this is also nearly a non-ascending order of granularity
for the IPC measurement. Thus, our study suggests that a finer-
grained metric may be more indicative of varied quality factors
hence more useful for analyzing distributed system quality.

Based on our investigations, distributed system developers
are recommended to attain and maintain a low degree of
(implicit) coupling among systems components in order to
achieve and sustain high quality. Developers should also
promote code reuse among distributed components in light
of its benefits for understandability and security of distributed
software. Meanwhile, developers can leverage IPC measure-
ments to understand/analyze hence improve various quality
factors. IPC metrics can also be used to predict direct quality
measures according to their correlation (we have validated this
on Thrift for predicting maintainability and understandability
using RCC metric, and omitted the details for space limit).

VI. RELATED WORK

Dynamic coupling metrics have been well studied for cen-
tralized systems [2], [4], [5]. Arisholm et al. [13] defined a set

of dynamic coupling metrics for object-oriented software and
studied the relationship between dynamic coupling measures
and software change-proneness. Their dynamic class expor-
t/import coupling (IC CD and EC CD) metrics initially
motivated the definition of our RMC metric. Compared to
their coupling measurement between classes, the RMC metric
measures the coupling between processes.

Dynamic coupling metrics also have been used to estimate
architectural risks [7] and complexity [14] in relation to quality
factors such as maintainability [8], [76]. Most of these metrics
were defined under the assumption that there exists an explicit
reference/invocation between the entities (e.g., object, method,
class, etc.) involved in the coupling measure, thus they are not
suitable for measuring interprocess communication in distri-
buted systems. On the other hand, however, our IPC metrics
can also be used as complexity metrics and as indicators of a
variety of quality factors.

In [17], the authors defined a dynamic component coupling
metric (CP) directly based on inter-component dependencies
derived from method executions with timing information. Con-
ceptually, the CP metric is closely related to our IPR metric,
in that both are based on approximated dynamic dependencies
across components. However, the interprocess dependencies
on which our IPR computation is based are significantly
more precise than the purely control-flow-based dependencies
approximated in [17], according to our previous study [24]. In
addition, CP was defined for measuring structural complexity,
while IPR is proposed primarily as a reusability metric. Pre-
vious reuse metrics mainly concern reusing library code and
connectivity between server and client nodes as a whole [77].
Instead, we measure interprocess reusability at code level.

VII. CONCLUSION

This paper contributed to dynamic software measurement
with a novel set of four metrics for distributed systems that
characterize their IPC, a vital aspect of distributed systems’
run-time behaviors, at various levels (whole-system, process/-
component, class, and method). In addition, with these metrics,
we measured the IPC in nine real-world distributed systems
with respect to varied execution scenarios, and demonstrated
that each of the metrics was uniquely informative of IPC traits
in those systems and their executions. We further demonstra-
ted the implications of the IPC measurements to distributed
software quality and their practical usefulness for understan-
ding six quality factors, which were quantified through direct
measures computed from relevant datasets we collected from
diverse sources. Our study revealed that IPC measures can be
significantly indicative of the various quality aspects of dis-
tributed systems hence potentially help developers understand,
assess, and hence improve the quality of these systems. Future
work will focus on exploring how IPC coupling measures can
be leveraged for predicting different quality factors that are
difficult to measure directly, while expanding the scope to
include cohesion metrics of distributed systems.

VIII. ACKNOWLEDGMENT

We thank the anonymous reviewers for their thoughtful
comments, which greatly helped us improve this paper.

10

REFERENCES

[1] D. Galin, Software quality assurance: from theory to implementation.

Pearson Education India, 2004.

[2] S. H. Kan, Metrics and models in software quality engineering.

Addison-Wesley Longman Publishing Co., Inc., 2002.

[3] N. Fenton and J. Bieman, Software Metrics: A Rigorous and Practical

Approach. CRC Press, 2014.

[4] A. Tahir and S. G. MacDonell, “A systematic mapping study on dynamic

metrics and software quality,” in Proceedings of IEEE International

Conference on Software Maintenance. IEEE, 2012, pp. 326–335.

[5] J. K. Chhabra and V. Gupta, “A survey of dynamic software metrics,”

Journal of Computer Science and Technology, vol. 25, no. 5, pp. 1016–

1029, 2010.

[6] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge, “Dynamic metrics

for Java,” in ACM SIGPLAN Notices, vol. 38, no. 11. ACM, 2003, pp.

149–168.

[7] S. M. Yacoub and H. H. Ammar, “A methodology for architecture-level

reliability risk analysis,” IEEE Transactions on Software Engineering,

vol. 28, no. 6, pp. 529–547, 2002.

[8] A. Gosain and G. Sharma, “Predicting software maintainability using

object oriented dynamic complexity measures,” in International Con-

ference on Smart Trends for Information Technology and Computer

Communications. Springer, 2016, pp. 218–230.

[9] T. Richner and S. Ducasse, “Recovering high-level views of object-

oriented applications from static and dynamic information,” in Pro-

ceedings of IEEE International Conference on Software Maintenance.

IEEE, 1999, pp. 13–22.

[10] R. Geetika and P. Singh, “Empirical investigation into static and dynamic

coupling metrics,” ACM SIGSOFT Software Engineering Notes, vol. 39,

no. 1, pp. 1–8, 2014.

[11] I. Beschastnikh, P. Wang, Y. Brun, and M. D. Ernst, “Debugging

distributed systems,” Queue, vol. 14, no. 2, p. 50, 2016.

[12] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed

Systems: Concepts and Design, 5th ed. Addison-Wesley Publishing

Company, 2011.

[13] E. Arisholm, L. C. Briand, and A. Foyen, “Dynamic coupling measu-

rement for object-oriented software,” IEEE Transactions on Software

Engineering, vol. 30, no. 8, pp. 491–506, 2004.

[14] A. Gosain and G. Sharma, “Object-oriented dynamic complexity measu-

res for software understandability,” Innovations in Systems and Software

Engineering, vol. 13, no. 2-3, pp. 177–190, 2017.

[15] D. Wybranietz and D. Haban, “Monitoring and performance measuring

distributed systems during operation,” ACM SIGMETRICS Performance

Evaluation Review, vol. 16, no. 1, pp. 197–206, 1988.

[16] L. Wang and J. Kangasharju, “Measuring large-scale distributed systems:

case of bittorrent mainline dht,” in Peer-to-Peer Computing (P2P), 2013

IEEE Thirteenth International Conference on. IEEE, 2013, pp. 1–10.
[17] W. Jin, T. Liu, Y. Qu, Q. Zheng, D. Cui, and J. Chi, “Dynamic structure

measurement for distributed software,” Software Quality Journal, pp.

1–27, 2017.

[18] H. Cai and D. Thain, “Distea: Efficient dynamic impact analysis for

distributed systems,” arXiv preprint arXiv:1604.04638, 2016.

[19] H. Cai and X. Fu, “D2ABS: A framework for dynamic dependence ab-

straction of distributed programs,” Washington State University, techni-

cal report EECS-2019-01-19, January 2019.

[20] Wikipedia, “Spearman’s rank correlation coefficient,” https://en.

wikipedia.org/wiki/Spearman%27s rank correlation coefficient, 2019.

[21] X. Fu and H. Cai, “Artefact package on IPC measurement of distribu-

ted systems,” https://www.dropbox.com/s/oddfgntbkjrf69l/DistMeasure

artefact.zip?dl=0, 2019.

[22] M. Sharifi, E. M. Khaneghah, M. Kashyian, and S. L. Mirtaheri, “A plat-

form independent distributed ipc mechanism in support of programming

heterogeneous distributed systems,” The Journal of Supercomputing,

vol. 59, no. 1, pp. 548–567, 2012.

[23] J. Jenkins and H. Cai, “ICC-Inspect: supporting runtime inspection of

Android inter-component communications,” in Proceedings of the 5th

International Conference on Mobile Software Engineering and Systems.

ACM, 2018, pp. 80–83.

[24] H. Cai and D. Thain, “DistIA: A cost-effective dynamic impact ana-

lysis for distributed programs,” in Proceedings of the 31st IEEE/ACM

International Conference on Automated Software Engineering, 2016, pp.

344–355.

[25] H. Cai and R. Santelices, “Diver: Precise dynamic impact analysis

using dependence-based trace pruning,” in Proceedings of International

Conference on Automated Software Engineering, 2014, pp. 343–348.

[26] L. Lamport, “Time, clocks, and the ordering of events in a distributed

system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[27] J. Jenkins and H. Cai, “Dissecting Android inter-component communi-

cations via interactive visual explorations,” in 2017 IEEE International

Conference on Software Maintenance and Evolution (ICSME). IEEE,

2017, pp. 519–523.

[28] Apache, “ZooKeeper,” https://zookeeper.apache.org/, 2015.

[29] H. Cai, “Hybrid program dependence approximation for effective dyn-

amic impact prediction,” IEEE Transactions on Software Engineering,

vol. 44, no. 4, pp. 334–364, 2018.

[30] P. V. Marsden, “Recent developments in network measurement,” Models

and Methods in Social Network Analysis, vol. 8, p. 30, 2005.

[31] Bamberg University, “Open Chord,” http://sourceforge.net/projects/

open-chord/, 2015.

[32] Apache, “Thrift,” https://thrift.apache.org/, 2018.

[33] Vice, “xSocket,” http://xsocket.org/, 2018.

[34] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-

free coordination for internet-scale systems.” in Proceedings of USENIX

Annual Technical Conference, vol. 8, 2010, p. 9.

[35] Apache, “Voldemort,” https://github.com/voldemort, 2015.

[36] Wikipedia, “Netty(software),” https://en.wikipedia.org/wiki/Netty

(software), 2018.

[37] ——, “Apache Derby,” https://en.wikipedia.org/wiki/Apache Derby,

2018.

11

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://www.dropbox.com/s/oddfgntbkjrf69l/DistMeasure_artefact.zip?dl=0
https://www.dropbox.com/s/oddfgntbkjrf69l/DistMeasure_artefact.zip?dl=0
https://zookeeper.apache.org/
http://sourceforge.net/projects/open-chord/
http://sourceforge.net/projects/open-chord/
https://thrift.apache.org/
http://xsocket.org/
https://github.com/voldemort
https://en.wikipedia.org/wiki/Netty_(software)
https://en.wikipedia.org/wiki/Netty_(software)
https://en.wikipedia.org/wiki/Apache_Derby

[38] Apache, “Apache Derby,” https://db.apache.org/derby/, 2018.

[39] Karaf, “Apache Karaf,” https://karaf.apache.org/, 2019.

[40] XNIO - JBoss Community, “XNIO,” http://xnio.jboss.org/, 2012.

[41] SourceForge, “Open Chord,” https://sourceforge.net/projects/

open-chord/files/Open%20Chord%201.0/, 2008.

[42] Apache, “Index of /dist/thrift,” http://archive.apache.org/dist/thrift/,

2018.

[43] ——, “Apache Derby,” https://db.apache.org/derby/derby downloads.

html, 2019.

[44] Maven Repository, “XSocket,” https://mvnrepository.com/artifact/org.

xsocket/xSocket, 2008.

[45] ——, “Netty All In One,” https://mvnrepository.com/artifact/io.netty/

netty-all, 2019.

[46] ——, “Apache Karaf,” https://mvnrepository.com/artifact/org.apache.

karaf/karaf, 2018.

[47] ——, “XNIO API,” https://mvnrepository.com/artifact/org.jboss.xnio/

xnio-api, 2018.

[48] Github, “Voldemort,” http://https://github.com/voldemort/voldemort/

releases, 2017.

[49] Apache, “Apache Zookeeper,” https://github.com/apache/zookeeper/

releases, 2019.

[50] SourceForge, “Open Chord bugs,” https://sourceforge.net/p/open-chord/

bugs/, 2008.

[51] Maven Repository, “XSocket bugs,” https://mvnrepository.com/artifact/

org.xsocket/xSocket, 2008.

[52] Apache, “Thrift bugs,” http://archive.apache.org/dist/thrift/, 2018.

[53] ——, “Zookeeper bugs,” https://github.com/apache/zookeeper/releases,

2019.

[54] ——, “Derby bugs,” https://db.apache.org/derby/derby downloads.html,

2019.

[55] Maven Repository, “Apache Karaf bugs,” https://mvnrepository.com/

artifact/org.apache.karaf/karaf, 2018.

[56] Github, “Voldemort bugs,” http://https://github.com/voldemort/

voldemort/releases, 2017.

[57] Maven Repository, “Netty bugs,” https://mvnrepository.com/artifact/io.

netty/netty-all, 2019.

[58] ——, “XNIO API bugs,” https://mvnrepository.com/artifact/org.jboss.

xnio/xnio-api, 2018.

[59] G. A. Hall and J. C. Munson, “Software evolution: code delta and code

churn,” Journal of Systems and Software, vol. 54, no. 2, pp. 111–118,

2000.

[60] T. J. McCabe, “A complexity measure,” IEEE Transactions on Software

Engineering, no. 4, pp. 308–320, 1976.

[61] Y. Wang, L. Huang, X. Liu, T. Sun, and K. Lei, “Performance compari-

son and evaluation of websocket frameworks: Netty, undertow, vert. x,

grizzly and jetty,” in 2018 1st IEEE International Conference on Hot

Information-Centric Networking (HotICN). IEEE, 2018, pp. 13–17.
[62] M. Hammerton, J. Trevathan, T. Myers, and W. Read, “Optimising data

transmission in heterogeneous sensor networks,” International Journal

of Information, vol. 7, no. 9, 2013.

[63] K. Waagan, “Building a replicated data store using berkeley db and the

chord dht,” Master’s thesis, Institutt for datateknikk og informasjonsvi-

tenskap, 2005.

[64] Github, “smallnest/RPC-TEST,” https://github.com/smallnest/

RPC-TEST, 2015.

[65] “Project Voldemort,” https://www.project-voldemort.com/voldemort/

performance.html, 2017.

[66] Confluence, “ServiceLatencyOverview,” https://cwiki.apache.org/

confluence/display/ZOOKEEPER/ServiceLatencyOverview, 2019.

[67] D. Oracle Berkeley, “Java edition vs. apache derby: A performance

comparison,” 2006.

[68] E. Medvedeva, “Performance comparison of jboss integration platform

implementations,” Ph.D. dissertation, Masarykova univerzita, Fakulta

informatiky, 2014.

[69] Wikipedia, “Kendall rank correlation coefficient,” https://en.wikipedia.

org/wiki/Kendall rank correlation coefficient, 2018.

[70] ——, “Pearson correlation coefficient,” https://en.wikipedia.org/wiki/

Pearson correlation coefficient, 2019.

[71] I. Weir, “Spearmans correlation,” vol. 29, 2016, http://www.statstutor.ac.

uk/resources/uploaded/spearmans.pdf.

[72] cloc.org, “Counting source lines of code,” cloc.sourceforge.net/, 2019.

[73] GNU, “compare files line by line,” man7.org/linux/man-pages/man1/

diff.1.html/, 2019.

[74] X. Fu and H. Cai, “DistTaint: Application-level dynamic information

flow analysis for distributed systems,” Washington State University,

technical report EECS-2019-02-20, February 2019.

[75] “JavaNCSS - A Source Measurement Suite for Java,” https:

//www2.informatik.hu-berlin.de/swt/intkoop/jcse/tools/JavaNCSS%

20-%20A%20Source%20Measurement%20Suite%20for%20Java.html,

2012.

[76] M. Perepletchikov and C. Ryan, “A controlled experiment for evalua-

ting the impact of coupling on the maintainability of service-oriented

software,” IEEE Transactions on Software Engineering, vol. 37, no. 4,

pp. 449–465, 2011.

[77] W. Frakes and C. Terry, “Software reuse: metrics and models,” ACM

Computing Surveys (CSUR), vol. 28, no. 2, pp. 415–435, 1996.

12

https://db.apache.org/derby/
https://karaf.apache.org/
http://xnio.jboss.org/
https://sourceforge.net/projects/open-chord/files/Open%20Chord%201.0/
https://sourceforge.net/projects/open-chord/files/Open%20Chord%201.0/
http://archive.apache.org/dist/thrift/
https://db.apache.org/derby/derby_downloads.html
https://db.apache.org/derby/derby_downloads.html
https://mvnrepository.com/artifact/org.xsocket/xSocket
https://mvnrepository.com/artifact/org.xsocket/xSocket
https://mvnrepository.com/artifact/io.netty/netty-all
https://mvnrepository.com/artifact/io.netty/netty-all
https://mvnrepository.com/artifact/org.apache.karaf/karaf
https://mvnrepository.com/artifact/org.apache.karaf/karaf
https://mvnrepository.com/artifact/org.jboss.xnio/xnio-api
https://mvnrepository.com/artifact/org.jboss.xnio/xnio-api
http://https://github.com/voldemort/voldemort/releases
http://https://github.com/voldemort/voldemort/releases
https://github.com/apache/zookeeper/releases
https://github.com/apache/zookeeper/releases
https://sourceforge.net/p/open-chord/bugs/
https://sourceforge.net/p/open-chord/bugs/
https://mvnrepository.com/artifact/org.xsocket/xSocket
https://mvnrepository.com/artifact/org.xsocket/xSocket
http://archive.apache.org/dist/thrift/
https://github.com/apache/zookeeper/releases
https://db.apache.org/derby/derby_downloads.html
https://mvnrepository.com/artifact/org.apache.karaf/karaf
https://mvnrepository.com/artifact/org.apache.karaf/karaf
http://https://github.com/voldemort/voldemort/releases
http://https://github.com/voldemort/voldemort/releases
https://mvnrepository.com/artifact/io.netty/netty-all
https://mvnrepository.com/artifact/io.netty/netty-all
https://mvnrepository.com/artifact/org.jboss.xnio/xnio-api
https://mvnrepository.com/artifact/org.jboss.xnio/xnio-api
https://github.com/smallnest/RPC-TEST
https://github.com/smallnest/RPC-TEST
https://www.project-voldemort.com/voldemort/performance.html
https://www.project-voldemort.com/voldemort/performance.html
https://cwiki.apache.org/confluence/display/ZOOKEEPER/ServiceLatencyOverview
https://cwiki.apache.org/confluence/display/ZOOKEEPER/ServiceLatencyOverview
https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
http://www.statstutor.ac.uk/resources/uploaded/spearmans.pdf
http://www.statstutor.ac.uk/resources/uploaded/spearmans.pdf
cloc.sourceforge.net/
man7.org/linux/man-pages/man1/diff.1.html/
man7.org/linux/man-pages/man1/diff.1.html/
https://www2.informatik.hu-berlin.de/swt/intkoop/jcse/tools/JavaNCSS%20-%20A%20Source%20Measurement%20Suite%20for%20Java.html
https://www2.informatik.hu-berlin.de/swt/intkoop/jcse/tools/JavaNCSS%20-%20A%20Source%20Measurement%20Suite%20for%20Java.html
https://www2.informatik.hu-berlin.de/swt/intkoop/jcse/tools/JavaNCSS%20-%20A%20Source%20Measurement%20Suite%20for%20Java.html

	Introduction
	Motivating/Working Example
	Proposed IPC Metrics
	Preliminaries
	RMC (Runtime Message Coupling)
	RCC (Runtime Class Coupling)
	CCC (Class Central Coupling)
	IPR (InterProcess Reuse)

	Experiment Methodology
	Measured Systems and Executions
	Quality Factors
	Research Questions and Procedure

	Results And Analysis
	RQ1: IPC Measurements
	RQ2: Relation to Quality Factors
	Threats to Validity
	Lessons Learned And Recommendations

	Related Work
	Conclusion
	Acknowledgment
	References

