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Abstract

We present a proof step diagnosis module based on the mathematical as-

sistant system Ωmega. The task of this module is to evaluate proof steps as

typically uttered by students in tutoring sessions on mathematical proofs. In

particular, we categorise the step size of proof steps performed by the stu-

dent, in order to recognise if they are appropriate with respect to the student

model. We propose an approach which builds on reconstructions of the proof

in question via automated proof search using a cognitively motivated proof

calculus. Our approach employs learning techniques and incorporates a stu-

dent model, and our diagnosis module can be adjusted to different domains

and users. We present a first evaluation based on empirical data.

Keywords: Proof tutoring, automated reasoning, machine learning

1 Introduction: Mathematical Assistant System

Support for Teaching Proofs

The Dialog project [7] studies natural language-based tutorial dialogue on proofs.
Within a tutorial dialogue, the student is given a proof exercise to be solved inter-
actively with the dialogue system. The system provides feedback to the student’s
solution attempts and aids him in finding a solution, with the overall goal to con-
vey specific concepts and techniques of a given mathematical domain. Due to the
flexible and unpredictable nature of tutorial dialogue it is necessary to dynamically
process and analyse the informal input to the system, including linguistic analysis
of the informal input, evaluation of utterances in terms of soundness, granularity

∗This work has been funded by the DFG Collaborative Research Center on Resource-Adaptive
Cognitive Processes, SFB 378 (http://www.coli.uni-saarland.de/projects/sfb378/), and was
supported by a grant from Studienstiftung des Deutschen Volkes e.V.
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and relevance, and ambiguity resolution at all levels of processing. For the do-
main reasoning, the Dialog project employs the mathematical assistant system
Ωmega [27]. It allows the system to reconstruct students’ proof steps [14]. These
reconstructions serve as the basis for further analysis, in particular, whether a given
step presented by the student is correct, but also whether it is of appropriate step
size (i.e. “granularity”), and whether it is relevant.

Overall, a number of different tutorial systems for teaching mathematics have
emerged. For propositional and first-order logic there are the CMU proof tutor [26],
ProofEasy [11], the HTML-based editor alfie [30], Proofweb [17], Jape [29] and
WinKE [12]. For higher-order logic there is ETPS [2]. These systems focus on pure
logic and support proof construction using, for example, Fitch-style diagrams or
trees. To verify a proof step no search is required. Systems for teaching mathemat-
ics at a more abstract level are the EPGY Theorem Proving Environment [28, 20],
the Geometry Tutors [18] and Tutch [1]. Those systems allow the user to per-
form abstract steps and use proof search in a machine-oriented calculus such as
resolution to verify them. Huang [16] argues in favor of the assertion level as a
suitable abstraction layer to represent human proofs. Assertion level proofs justify
proof steps by the application of axioms, definitions, or theorems, or on the proof
level, such as “by analogy”. The notion of assertion level proof competes with
other human-oriented calculi, such as the natural deduction calculus [15] and its
more refined variations (e.g. PSYCOP [24]). A recent investigation [25] into the
correspondence between human proofs and their counterparts in natural deduction
points out a mismatch with respect to their granularity. Similar observations have
been reported for EPGY in [20], where the resolution- and paramodulation-based
theorem prover Otter was used to reconstruct human proofs. Limiting the use of
Otter to a fixed time interval – in order not to allow unreasonably large chains of
thinking – turned out to be uninformative of whether a given human proof step
was indeed perceived as too complex or not.

In this paper, we argue for an approach that employs assertion level proof
search to reconstruct human-made proof steps in the system. Proofs at the assertion
level enable the dialogue system to suitably analyse the granularity of human proof
steps, which in turn provides useful information for determining an appropriate
reaction of the dialogue system to the student. The structure of this paper is
as follows: In Sect. 2 we present an empirical study which illustrates the role
of granularity in tutorial dialogues about proofs. In Sect. 3 we briefly present
the mathematical assistant system Ωmega, which is the basis for analysing proof
steps in the Dialog project. In Sect. 4 we identify criteria that are relevant
for determining different levels of granularity. In Sections 5 and 6 we present our
granularity analysis module and some first results obtained with a corpus of tutorial
dialogues.
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2 Evidence from an Experiment Corpus

Research in the Dialog project is guided by empirical studies [10, 8], which include
two studies in the Wizard-of-Oz paradigm, where human experts (with the help of
a special computer interface [9]) simulated the behaviour of a tutoring system for
mathematical proofs. These studies highlight the requirements for the modules of
the system under development, including the analysis tasks that have to be mas-
tered by the domain reasoner. While the first series of experiments led to the
identification of the different domain reasoning tasks, the second series of experi-
ments required the tutors to annotate all domain contributions from the students
with judgements concerning correctness (i.e., correct, partially correct, or incorrect),
granularity (i.e., too detailed, appropriate, or too coarse-grained) and relevance (i.e.,
relevant, limited relevance or irrelevant). Both experiments were conducted with
students from Saarland University and four experts with teaching experience as
the wizards1. The exercises were taken from the domains of naive set theory (first
experiment series) and binary relations (second experiment series). The second se-
ries of experiments involved 37 students, who spent approximately two hours each
during an experiment session (including an introduction phase, interaction with the
Wizard-of-Oz system and questionnaires).

2.1 Correctness

Most importantly, proof step analysis includes the task of checking whether a proof
step is logically correct. An example of such a situation is given in Fig. 1.

student 1: (x, y) ∈ (R ◦ S)−1

tutor: Now try to draw inferences from that!

correct appropriate relevant
student 2: hence (y, x) ∈ (S ◦ R)
tutor: This step is not correct!

incorrect - -

Figure 1: Dialogue fragment exhibiting an incorrect step

Correctness – in contrast to granularity and relevance – is relatively simple to verify.
EPGY [20], for example, employs proof search in Otter. Our solution to checking
proof steps employs assertion level proof search and will be presented in Sect. 3.

2.2 Granularity

Tutors in the Wizard-of-Oz studies were observed to reject proof steps for other
reasons than correctness. An example is the dialogue fragment displayed in Fig. 2,

1The experts consisted of the lecturer of a course Foundations of Mathematics, a maths teacher,
and two maths graduates with teaching experience.
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where the student’s task is to show that in the domain of binary relations (where ◦
denotes relation composition, and −1 denotes inversion), the equality (R ◦ S)−1 =
S−1 ◦ R−1 holds.

student 1: (x, y) ∈ (R ◦ S)−1

tutor: Now try to draw inferences from that!

correct appropriate relevant
student 2: (x, y) ∈ S−1 ◦ R−1

tutor: One cannot directly deduce that.

You need some intermediate steps!

correct too coarse-grained relevant

Figure 2: Dialogue fragment exhibiting inappropriate step size

The student (tacitly) tries to show that (R ◦ S)−1 ⊆ S−1 ◦ R−1 by assuming that
(x, y) ∈ (R ◦ S)−1 (marked as student 1 in Fig. 2). However, the tutor notices
that the statement student 2 requires further elaboration. He explicitly asks the
student to subdivide this step into intermediate steps (and indeed, this step is not
completely obvious, since it is not the case that (R◦S)−1 = R−1◦S−1 = S−1◦R−1,
which relies on the misconception that ◦ is commutative, which it is not). However,
if we restricted proof step analysis to correctness checking, we would fail to detect
any difference between this student step and other more trivial steps.

The developers of the EPGY theorem proving environment [20] encountered
similar problems when they used the automated theorem prover Otter to check
conjectured proof steps from the user. The use of Otter was restricted to five sec-
onds, in order not to allow too large “leaps of logic”. Still, this allowed Otter to
sometimes accept seemingly large steps, whereas seemingly easy steps were some-
times not validated. This shows that counting the seconds of using Otter is not a
suitable measure for granularity.

We develop a more refined measure for granularity in Sect. 4.

2.3 Relevance

Proof steps which did not advance the proof state with respect to the proof goal
were often identified as “irrelevant” by the tutors, for example the step displayed
in Fig. 3.

student 2: (a, b) ∈ S−1 ⇔ (b, a) ∈ S

tutor: This step is not relevant

correct appropriate irrelevant

Figure 3: Dialogue step lacking relevance (for proof problem: (R◦S)−1 = S−1◦R−1)

Relevance, like granularity, is a challenging topic for the dialogue-based teaching
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of proofs. In the remainder of this paper we focus on the problem of identifying
appropriate levels of granularity of human-made proof steps. We address the prob-
lem by using proof constructions at the assertion level, as supported in the Ωmega

system.

3 The Domain Reasoner: Ωmega

The Dialog project employs the mathematical assistant system Ωmega [27] (i) to
represent the mathematical theory in which the proof exercise is carried out, that is,
definitions, axioms, and theorems of a certain domain (ii) to represent the ongoing
proof attempts of the student using Ωmega’s proof data structure [4], and (iii) to
dynamically reconstruct intermediate steps necessary to verify each step entered by
the student (see [14]). This allows us to support tutoring in the spirit of cognitive
constructivism [19], such that for a given proof problem, a large variety of solutions
can be reconstructed and analysed. In particular, given a proof problem including
the to-be-proven statement and the required definitions and facts, any valid deduc-
tion up to a predefined number of assertion level steps can be reconstructed (cf.
[14]). These reconstructed proofs serve as the basis for the further analysis of the
students’ proof steps with respect to correctness, granularity and relevance.

Different from other approaches to automated theorem proving, Ωmega uses
an assertion application mechanism [13], which is based upon Serge Autexier’s
CoRe calculus [3], as its logical kernel. The notion of assertion level proofs is due
to Huang [16], and characterises a proof representation where all inference steps
are justified by a mathematical fact from the knowledge base, such as definitions,
theorems and lemmata. Whereas originally, the assertion level was only the tar-
get language for the presentation of machine-generated proofs (e.g. in a natural
deduction calculus), Ωmega now directly constructs proofs at the assertion level.

CoRe and our assertion level inference mechanism are (higher-order) variants
of the deep inference approach2, that is, they support deductions deeply inside a
given formula without requiring preceding structural decompositions as needed in
natural deduction (or sequent calculus). As a result, we obtain proofs where each
inference step is justified by a mathematical fact, such as a definition, a theorem or
a lemma. To illustrate the difference between a typical proof step from a textbook
and its formal counterpart in natural deduction consider the following example:

Given the definition of subset

∀U, V . U ⊂ V ⇔ ∀x.x ∈ U ⇒ x ∈ V

an assertion step consists of deriving a1 ∈ V1 from U1 ⊂ V1 and a1 ∈ U1. The
corresponding natural deduction proof is shown below:

2http://alessio.guglielmi.name/res/cos/index.html
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∀U, V. U ⊂ V ⇔ ∀x.x ∈ U ⇒ x ∈ V

∀V. U1 ⊂ V ⇔ ∀x.x ∈ U1 ⇒ x ∈ V
∀E

U1 ⊂ V1 ⇔ ∀x.x ∈ U1 ⇒ x ∈ V1

∀E

U1 ⊂ V1 ⇒ ∀x.x ∈ U1 ⇒ x ∈ V1

⇔E

U1 ⊂ V1

∀x.x ∈ U1 ⇒ x ∈ V1

⇒E

a1 ∈ U1 ⇒ a1 ∈ V1

∀E
a1 ∈ U1

a1 ∈ V1

⇒E

Even though natural deduction proofs are far more readable than proofs in machine-
oriented formalisms such as resolution, we see that they are at a much lower level
than proofs typically found in mathematical textbooks. In the example above, a
single assertion step corresponds to six steps in the natural deduction calculus. This
is mainly because each natural deduction rule stands for a simple manipulation of
the logical structure of a formula. Assertion level inference rules in Ωmega are
automatically generated from the axioms of the problem statement (cf. [5]).

The reconstruction of a student proof step in Ωmega is achieved by using a
depth-limited breadth-first search (with pruning of superfluous branches). For a
given proof state and one utterance, all possible successor states up to a specified
depth limit are constructed. From these, those successor states that match the
given utterance with respect to some filter function (analysing whether a successor
state is a possible reading of the student proof step) are selected. An utterance that
leads to at least one such successor state is reported by the module to be correct,
otherwise it is reported to be incorrect. It is possible that a proof step is wrongly
rejected because of a too restrictive depth limit. However, a first case study shows
that even with a depth limit of four assertion level steps, the vast majority of
steps (95.6%) taken from a sample of proofs obtained in the second Wizard-of-Oz
experiment can be correctly identified as correct or incorrect (cf. [6]).

4 Granularity Criteria

In order to develop an algorithm that judges the granularity of individual (human-
made) proof steps, we have started with the simple approach of reconstructing these
proof steps in a suitable calculus (which generally resulted in several calculus level
proof steps corresponding to one single utterance), and identifying the step size of
a given proof step with the number of calculus level proof steps that correspond
to it. A case study (reported in [25]) was undertaken with both Gentzen’s natural
deduction calculus [15] and the psychologically motivated PSYCOP calculus [24]
as the base calculus for the proof reconstruction. However, the study provided
evidence that counting calculus level steps in neither of the two calculi provided a
sufficient means for characterising granularity, and that more sophisticated criteria
for measuring granularity are required. In particular, the approach did not account
for all the different granularity-related phenomena we could observe in the corpora
obtained in the Wizard-of-Oz experiments. We list some of them below.
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student 4: ∃ z , such that (b, z) ∈ R and (z, a) ∈ S

tutor: Right. correct appropriate relevant
student 5: Then (z, b) ∈ R−1 and (a, z) ∈ S−1

tutor: Correct. correct appropriate relevant

Figure 4: Dialogue fragment illustrating two applications of the concept of relation
inverse

Merging Different Concepts The combination of several applications of the
same definition or theorem (relating to the same concept) into one proof step was
observed frequently, consider the example in Fig. 4.
Here, the fact that (x, y) ∈ R iff (y, x) ∈ R−1 for any x,y is applied twice. This
was never subject to criticism by the tutors. In fact, from a cognitive viewpoint,
applying the same mathematical fact several times requires retrieving the relevant
concept in memory only once, where it is readily available for subsequent applica-
tions. The same is not true for using several different concepts in one step, which
was sometimes subject of criticism from the tutors. Therefore, we consider the
number of different concepts required to justify a given proof step as one criterion
for its granularity (rather than the mere number of calculus level steps).

Note that this is easily possible in our approach, as we reconstruct and main-
tain a student’s proof attempt at the assertion level. Here, a single deduction
step corresponds to a concept application. Consequently the information about
what concepts are involved is directly available. This this not the case in natural
deduction or resolution, where this information is generally more difficult to obtain.

Verbal Explanation Whether students explicitly referred to the concepts that
they used in their proofs was also a criterion for the tutors in the experiment. Con-
sider the dialogue fragment in Fig. 5, where the tutor considers the step leading
to utterance student 9 as too coarse-grained unless the student provides further
verbal evidence that he can justify this step. Therefore, when judging about gran-
ularity, it is of interest to consider how many (and probably which) concepts were
applied in a student’s step without mentioning them verbally.

To detect the concepts mentioned by the student we currently employ key
words extracted from the student’s utterance. However, we plan to integrate a
more sophisticated analysis in the near future, based on linguistic investigations
within the scope of the Dialog project.

Introducing Hypotheses In the experiment corpus, steps that introduced new
hypotheses (for example, when an implication was shown by assuming the premise,
in order to derive the implication’s conclusion) generally stood on their own, and
were not combined into much larger steps. Indeed, introducing a new hypothesis
to the proof can be a crucial step towards the solution. Thus, steps that introduce
new assumptions have a special status, they need to be spelled out explicitly.
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student 8: However, this means: (z, y) ∈ R−1 and (x, z) ∈ S−1

tutor: Now it is correct. correct appropriate relevant
student 9: Therefore it follows: (x, y) ∈ S−1 ◦ R−1, what was to

be shown.
tutor: Correct.

Please give a (simple) justification for this last

step of the proof. correct too coarse-grained relevant
student 10: This follows immediately from the definition of the

relation product.
tutor: Right. With this, you have solved the exercise.

correct appropriate relevant

Figure 5: Dialogue fragment involving verbal explanation

Introducing Subgoals The corpus also showed that steps which split the current
goal into several (independent) subgoals have a special status, and should hence
be taken into account for the granularity analysis. For example, splitting the proof
of showing set equality between two relations into two directions ⊂ and ⊃ is an
important step. We also found that students implicitly introduced a subgoal by
only stating a hypothesis, as shown below:

student 1: let (a, b) ∈ (R ◦ S)−1

tutor: Right. correct appropriate relevant

Here, the proof task is to show that (R ◦ S)−1 = S−1 ◦ R−1, therefore we may
suppose that the student intends to show that (a, b) ∈ S−1 ◦ R−1 according to the
extensionality principle.

Learning Progress & Student Modelling The Wizard-of-Oz experiments
made use of a series of exercises which became gradually more advanced, where
previously proven statements could be used in subsequent proofs. The tutors en-
couraged the students to use these previously proven statements as lemmata, such
that they had the same status as those mathematical facts (e.g. definitions, prop-
erties) they were initially provided with as an introduction into the mathematical
domain. We model this in our dialogue system by making previously applied se-
quences of proof steps, and of course, the statement of the finished proof, a part
of the mathematical theory during the tutorial dialogue, such that each one sub-
sequently becomes an atomic inference rule at the assertion level. Furthermore,
we use a student model to keep track of those concepts a student has previously
mastered (these facts are recorded during the dialogue) and of those he possibly
does not know or has not applied before. This way, a sequence of novel steps can
be given a different status with respect to granularity than one that includes only
well-known steps. In the following, we consider only the sheer number of concepts
that are supposed to be known and supposed to be unknown, respectively, to be
relevant for judging granularity.
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We do not claim that the above criteria are exhaustive, since they are based on
a particular series of experiments in one mathematical domain only. Furthermore,
the question remains what weight to give to each of these criteria (for example,
does the verbal explanation counterbalance a high number of facts combined into
one step?). There is also the question of how to employ the observed criteria
for the actual generation of useful feedback to the user, which requires didactic
considerations beyond the scope of this paper.

5 Judging Granularity

The result of granularity analysis for an uttered proof step is a granularity judge-
ment, which can take one out of three possible values: appropriate, too detailed,
and too coarse-grained. This section illustrates how information from the proof
reconstructions with respect to the criteria discussed above is used to categorise
the to-be-analysed proof steps. Consider again the example proof step student 2

presented in Fig. 2. Ωmega reconstructs the following derivation for the student
input, shown in sequent notation (in this example, we assume that the student
model considers all concepts as not yet mastered by the student).

Γ, (x, y) ∈ S−1 ◦ R−1 ⊢ ∆

Γ, (z, y) ∈ R−1 ∧ (x, z) ∈ S−1 ⊢ ∆
Def ◦

Γ, (z, y) ∈ R−1 ∧ (z, x) ∈ S ⊢ ∆
Def −1

Γ, (y, z) ∈ R ∧ (z, x) ∈ S ⊢ ∆
Def −1

Γ, (y, x) ∈ R ◦ S ⊢ ∆
Def ◦

Γ, (x, y) ∈ (R ◦ S)−1 ⊢ ∆
Def −1

From this reconstruction, the following information can be extracted.

Total number of steps. This is simply the number of assertion level inference steps,
which yields a value of “5” in our case.

Number of different concepts. Since only two distinct assertions were used (the
definitions of the inverse relation −1 and relation composition ◦), this yields
a value of “2” in our case.

Number of previously used concepts. For each employed concept (here, the defini-
tions of ◦ and −1), we look up in the student model if they are already known
to the student. If we assume for our example that this is not the case, we
obtain a value of “0”.

Number of not previously used concepts. This is simply the difference of the total
number of concepts and the number of previously used concepts, in the case
of our example this will consequently indicate “2” new concepts.

Verbal explanation. This is extracted from the utterance via natural language
analysis. Since in the example, there is no accompanying explanation, we
report that “2” concepts rest unexplained.
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Introduced Hypotheses. None of the above steps introduces a new hypothesis,
therefore the result is “0” .

Number of introduced subgoals. In the absence of newly introduced subgoals, this
also yields a “0”.

As a result, we obtain a granularity observation tuple, where each entry represents
one of the evaluated granularity criteria for the given step: (5, 2, 0, 2, 0, 0).

A simple model, which we have implemented in our approach, is to formulate
the correspondence between such evaluation results and the final judgement as sim-
ple if-then rules, which provide a mapping between the values of the automatically
determined granularity criteria for a proof step and the corresponding granularity
labels appropriate, too coarse-grained and too detailed3. To formulate these rules,
we employ the LISA rule environment (see [31]), which provides the infrastructure
for building expert systems. This allows us to formulate rules such as:

IF number-of-different-concepts> 1 ∧ number-of-unexplained-concepts> 1

THEN result=too coarse-grained

This simple rule expresses that whenever we have a proof step that requires two
or more different assertions, and two or more of the required assertions are not
explained verbally, we classify the proof step as too coarse-grained. However, care
has to be taken in those cases where for a given proof step, more than one rule is
applicable with conflicting results. For the purpose of conflict resolution, rules can
be given different weights in order to decide which rule in the conflict set is given
priority. In the following, we consider the learning of decision rules from empirical
data.

6 A Machine Learning Approach to Granularity

Whereas the proof step evaluation with respect to granularity criteria as described
above can easily be computed given the proof reconstructions in Ωmega and a
description of the verbal input, it is not a priori clear how to turn this information
into an appropriate final judgement whether the proof step in question is of appro-
priate step size in the given context or not. The answer to that question may in
particular depend on the preferences of a particular human tutor and the particular
mathematical domain under consideration. Therefore, we turn the problem into a
machine learning problem in which individual preferences and domain dependency
in the granularity judgements can be learned. Training instances are pairs of the
granularity observation tuples as described in Sect. 5 together with a correspond-
ing class label in the form of a granularity judgement by the human tutor (one of
appropriate, too coarse-grained and too detailed).

Currently, we use the C5.0 data mining tools (see [23] and also [22]) – which
support the learning of decision trees and of rule sets – to obtain classifiers for gran-

3Ideally, the association between the criteria and the granularity judgements mimics the deci-
sions of the human tutors.
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ularity. A learned decision tree can be rewritten straightforwardly to an equivalent
rule set, which can be used in the same way as described in the previous section.
Nevertheless, rule sets generated by C5.0 can under circumstances be more accurate
predictors than decision trees, but these rule sets may not be conflict-free. C5.0
provides confidence values for the learned rules to aid conflict resolution.

Thus, we employ two modules for granularity analysis; one serves to obtain
training instances, from which the associations between granularity criteria and
granularity judgements can be learned. Using this, a judgement component can
then automatically perform granularity judgements. This architecture allows to
adapt to the way an individual human tutor makes granularity judgements (and
thus to gauge mathematical practice without asking explicit questions), but at the
price of requiring previous training of the granularity analysis. Training can be
performed either with the help of an annotated corpus of proofs (i.e., where each
proof step already carries a granularity label), or in an interactive session with the
human expert.

6.1 Setup

An overview on the setup for the training module for learning from an annotated
corpus is given in Fig. 6.

Annotated
Corpus

Proof
Step
Analysis

Decision
Tree/Rule
Set Learning

Ωmega

Proof
Assistant

Student
Model

Decision
Rules

evaluation results
w.r.t. criteria

query

query

formalised
steps

granularity
annotations

decision
rules

Figure 6: Overview over the architecture for learning granularity judgements from
an annotated corpus

Each proof step utterance in the corpus is formally represented in the logical
representation language of our system, sent to the analysis module and handed over
to the Ωmega system for verification. If successful, this yields an assertion level
proof, which can be analysed with respect to the granularity criteria with the help
of the student model (and possibly also keyword-based verbal content of the proof
step under consideration stored in the corpus). The training instances obtained
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this way are labelled with the corresponding granularity judgements stored in the
corpus and handed over to the learning algorithm, which produces a classifier, i.e., a
set of decision rules or a decision tree. In the interactive mode, the training module
computes the “corpus” on the fly. It steps through a given proof (which can be
automatically generated from a problem statement with Ωmega, or by hand) at a
variable (but bounded) step size in the number of inference steps at the assertion
level. That is, for a given proof state, and a random (but bounded) number n,
the module proceeds n assertion level inference applications further with the proof
and prints the associated formula to the expert who has to provide a granularity
judgement (note that the n−1 intermediate steps are skipped in the presentation).
The judgement module is displayed in Fig. 7. As part of the proof step analysis,

Proof Steps

Decision
Rules

Repository

Proof
Step
Analysis

Expert
System

Ωmega

Proof
Assistant

Student
Model

Granularity
Judgements

evaluation results
w.r.t. criteria

query

query

formalised
steps

granularity
judgements

decision
rules

Figure 7: Overview over the architecture for judging granularity

each attempted proof step is handed over to Ωmega. In case it can be verified,
the resulting assertion level proof is analysed in the light of the student model
and a description of the verbal input, yielding a granularity observation tuple with
respect to our granularity criteria. We finally use the set of decision rules previously
learned via machine learning to produce the corresponding granularity judgement.

6.2 Evaluation

We have performed an evaluation on a subset of the dialogues from the corpus of the
experiments reported in [8]. This subset of dialogues includes only dialogues which
contain at least one correct proof step labelled as too coarse-grained or too detailed
by the tutors. This excludes incorrect or partially correct steps, because – unlike
human tutors – the system is not able to guess the student’s intentions in such a
case. The sub-corpus of proof steps we obtain this way includes 47 steps, of which 11
are too coarse-grained and one is too detailed, the rest is of appropriate granularity.
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Using 10-fold cross validation4, we achieve a mean classification error of 13% and
an inter-rater reliability coefficient κ=0.65 with C5.0 decision tree learning. This
is considerably better than naively assigning all steps to be appropriate, knowing
that the majority is appropriate, which would still result in a classification error
of 27.5%. Nonetheless, using the classifier SMO [21], which implements a support
vector machine, we obtain a mean classification error of 6,4% and κ=0.84.

Even though at first glance, the support vector machine approach classifies
better in our example, the decision tree learning approach (as well as learning
rule sets) is more informative with respect to the question which of the criteria
mentioned above would be most useful for characterising the behaviour of the tutors
in the experiments. During the decision tree learning, two (extremely simplistic)
decision trees (producing approximately the same error rate) emerged, which we
express as rule sets for brevity:

Rule set 1: IF number-of-not-previously-used-concepts > 1

THEN result= too coarse-grained ELSE result= appropriate

Rule set 2: IF total-number-of-steps > 3

THEN result= too coarse-grained ELSE result= appropriate

The simplicity of these one-rule rule sets owes to the fact that our sample was
rather small. It shows that for the given examples, the role of verbal explanation
is negligible (otherwise this criterion would appear in the rules). Also, knowing
the number of different concepts that were employed at once is inferior to simply
knowing the total number of inference steps, which provides the more relevant
criterion according to the learned rules. Nevertheless, knowing how many of the
employed concepts are not familiar to the student according to the student model
provides a valid means to distinguish between appropriate and inappropriate proof
steps. Note that these observations only apply to the particular experiment sessions
reported in [8], which include judgements by different tutors. However, by the virtue
of being a learning approach, our granularity analysis can adapt to other domains,
teachers, etc.

7 Discussion and Conclusion

We have presented an approach to automating granularity judgements for human
proof steps, based on the identification of relevant criteria. The assertion level
proofs as produced by Ωmega are directly amenable to our granularity analysis
with respect to these criteria. Furthermore, we have demonstrated how machine
learning techniques can be used to obtain context-adapted granularity judgements.
The approach can easily be extended to other criteria than the ones exemplified in
Sect. 4. Our method does not require pre-authored solutions for the proof exercises,
but makes use of dynamic proof reconstructions at the assertion level in Ωmega.

4We use cross validation since 47 instances are a very small sample indeed. We concentrated on
this small sample because collection and processing of empirical data such as in our Wizard-of-Oz
experiments is in itself already a very work-intensive process.
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Furthermore, the granularity analysis can be trained interactively by human teach-
ers without requiring them to know the internals of the analysis module or to write
any classification rules by hand. As shown by our first evaluation, our method pro-
vides a means to evaluate how the granularity judgements of a teacher or a group
of teachers depend on different criteria (and also, which criteria are negligible).
Finally, we have gained some evidence that the student model and reconstructions
at the assertion level are useful ingredients for our granularity analysis.

Future work includes a study which is more focused on the evaluation of the
granularity analysis module than the previous experiments, for which the interac-
tive training module was not yet available.
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