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Abstract. Evidence retrieval is a key component of explainable question
answering (QA). We argue that, despite recent progress, transformer
network-based approaches such as universal sentence encoder (USE-
QA) do not always outperform traditional information retrieval (IR)
methods such as BM25 for evidence retrieval for QA. We introduce
a lexical probing task that validates this observation: we demonstrate
that neural IR methods have the capacity to capture lexical differences
between questions and answers, but miss obvious lexical overlap signal.
Learning from this probing analysis, we introduce a hybrid approach for
representation-based evidence retrieval that combines the advantages of
both IR directions. Our approach uses a routing classifier that learns
when to direct incoming questions to BM25 vs. USE-QA for evidence
retrieval using very simple statistics, which can be efficiently extracted
from the top candidate evidence sentences produced by a BM25 model.
We demonstrate that this hybrid evidence retrieval generally performs
better than either individual retrieval strategy on three QA datasets:
OpenBookQA, ReQA SQuAD, and ReQA NQ. Furthermore, we show
that the proposed routing strategy is considerably faster than neural
methods, with a runtime that is up to 5 times faster than USE-QA.3
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1 Introduction

Open-domain question answering (QA) systems traditionally have three compo-
nents: evidence retrieval, evidence reranking, and answer classification/extraction.
In evidence retrieval, the model retrieves a smaller set of possibly useful evidence
texts from a large knowledge base (KB), which are then reranked by the following
component to push the most useful information to the top. Traditional directions

? This work was supported by the DARPA, grant number HR00111990011.
3 Code is available at: https://github.com/clulab/releases/tree/master/ecir2021-hybrid-
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use word-overlap based models for evidence retrieval such as tf-idf and BM25.
However, this can potentially cause the missing of useful information due to the
“lexical chasm” [2] between the question and the answer. A potential remedy
for this is to use neural networks for evidence retrieval, such as transformer
network-based contextualized embedding methods [7, 28, 29].

Focusing on this evidence retrieval stage of a QA system, we argue that,
for this component, transformer networks should not always be preferred over
standard information retrieval (IR) methods. First, due to their reliance on
continuous representations, transformer methods do not take direct advantage of
obvious lexical evidence. This is a drawback in long-text retrieval, which tends to
be affected less by the lexical chasm problem than short-text retrieval. Second,
transformer-based methods are expensive to run, which makes them a less than
ideal choice for end-user NLP applications with temporal constraints.

In this paper we introduce a hybrid approach for evidence retrieval for question
answering. Our approach uses a routing classifier that routes an incoming question
to either an IR method or a supervised transformer method for evidence retrieval,
using solely shallow statistics sampled from the knowledge base of explanatory
texts for each question. This strategy has two benefits: first, evidence retrieval
performance improves overall because each question is handled by the appropriate
retrieval method. Second, this method reduces computational overhead because
for a considerable number of questions it does not use the more expensive neural
component. In particular, our contributions are:

(1) We design and conduct a series of supervised lexical probing tasks on two
QA datasets, which are trained to predict the terms in the query and the gold
evidence text from the entire vocabulary, using as input either the tf-idf vector
of the query, or the neural embedding of the same query. The comparison of the
two probes indicates that the probe trained from the tf-idf vector of the query
tends to predict terms that exist in the original query (thus emphasizing lexical
overlap), whereas the probe trained on top of the query’s neural embedding
predicts more terms in the evidence text that do not exist in the query (thus
bridging the lexical chasm). This validates our hypothesis that different retrieval
strategies should be used in different scenarios.

(2) Learning from this observation, we propose a hybrid retrieval method,
which routes queries to either an information retrieval method (BM25 [24])
or a transformer-based one (USE-QA [28]). We show that this routing decision
is learnable from simple statistics that can be efficiently extracted from the top
documents retrieved by an IR method.

(3) We show that using this hybrid strategy generally improves evidence retrieval
performance in three QA datasets: OpenBookQA [16], ReQA SQUAD, and ReQA
Natural Questions (NQ) [1]. The hybrid approach performs significantly better
than either individual model on ReQA SQUAD and NQ, with improvements in
the mean reciprocal rank (MRR) of the correct evidence sentence ranging from
1% to 7.4% (depending on the dataset). On OpenBookQA the difference between
the hybrid method and USE-QA is not statistically significant.



(4) Our analysis indicates that the hybrid method is significantly faster than
neural IR methods. For example, the hybrid method is 2.2 times faster than
USE-QA in OpenBookQA, and 5.2 times faster in ReQA SQUAD.

2 Related Work

Neural IR methods provide an exciting potential direction to mitigate the lexical
chasm in QA [6]. Neural IR approaches can be broadly divided into two categories:
representation-based and interaction-based [8]. Representation-based neural IR
directions pre-encode the query and the document into a continuous representation
learned using a subsample of the data, and use a shallow method to compute
relevance scores at runtime (e.g., dot product) [12, 15]. Representation-based
neural IR methods have low runtime overhead because all documents can be
pre-computed as vectors, so that at test time the embeddings of the documents
do not have to be recomputed for each query (i.e., the neural model is run for
Nq times at test time, where Nq is the number of queries).

Interaction-based methods learn a query-specific representation of the doc-
uments at runtime [11, 19, 22]. Usually the query and the candidate document
are concatenated and processed by a neural model jointly, so that complex in-
teractions of the terms in the query and the document can be better captured.
However, this requires running the neural model for Nq ·Nd times at test time
(where Nq is the number queries and Nd is the number of docs). Therefore
interaction-based methods are not suitable for large-scale first stage retrieval and
are usually used for second-stage retrieval (reranking). In this paper we focus on
the representation-based method in the first stage retrieval.

Empirical evidence has shown that neural IR methods perform better in
short-text retrieval, where the word-overlap-based IR methods are more likely to
suffer from the lexical chasm problem. However, not much work has been done
to show why neural IR methods are able to reduce the lexical chasm problem [8],
partly because it is hard to explain the meaning of neural embeddings. Recently,
probing tasks have been widely used to help understand the properties of neural
networks [5, 9, 10]. In probing tasks, a shallow model is placed on top of the
large neural model, and the shallow model is trained to show some properties
of the large model. For example, in [10], the authors show that some syntactic
information is encoded in the embeddings of the intermediate layers of BERT.
Inspired by this, we design and conduct a series of lexical probing tasks to
compare the abilities of traditional IR methods and neural IR methods to predict
the terms that are indicative of lexical chasm, i.e., they exist in the evidence
sentences but not in the original query.

Although they do not rely on explicit word overlaps, neural IR methods do
not always outperform traditional IR. For instance, it has been shown that neural
IR models usually work better on short text retrieval [4], and when training data
is abundant [8], but not in other situations [13].

Efforts have been made to use traditional IR for evidence retrieval and neural
IR for evidence reranking [3, 18, 21, 27]. However, always relying on traditional IR



Table 1. Statistics of the three datasets used throughout this paper, including the
number of queries in the train/dev/test set, the number of candidate documents, and
the average number of tokens per query/document.

Dataset N train N dev N test N doc Avg. Q len. Avg. D len.

OBQA 4,957 500 500 1,326 13.71 9.49
ReSQ 87,599 11,426 N/A 101,957 10.38 160.62
ReNQ N/A N/A 74,097 239,013 9.09 146.16

Table 2. Examples of queries, answer sentences, and contexts in the three datasets.

Dataset Query Answer Sentence Context

ReSQ To whom did the Vir-
gin Mary allegedly ap-
pear in 1858 in Lour-
des France?

It is a replica of the grotto at
Lourdes, France where the Virgin
Mary reputedly appeared to Saint
Bernadette Soubirous in 1858.

... a Marian place of prayer and reflection. It
is a replica of the grotto at Lourdes, France
where the Virgin Mary reputedly appeared to
Saint Bernadette Soubirous in 1858. At the
end of the main drive ...

ReNQ Who sings the song i
don’t care i love it

In its chorus, Icona Pop and Charli
XCX shout in unison “I don’t care
/ I love it”.

... breaking up with an older boyfriend. In its
chorus, Icona Pop and Charli XCX shout in
unison “I don’t care / I love it”. Critics com-
pared the song’s breakup ...

OBQA Tadpoles start their
lives as Water animals

Tadpole changes into a frog N/A

for evidence retrieval may miss useful evidence that does not have large lexical
overlap with the query.

Motivated by these works, in this paper we propose a hybrid evidence retrieval
direction for first-stage retrieval, in which we learn when to use traditional IR vs.
neural IR. As our results show, this yields a more accurate retrieval component
that also has a lower runtime overhead than neural methods.

3 Datasets and Evaluation Measures

We conduct our probing analyses and retrieval experiments on three QA-related
retrieval datasets. One of these datasets comes from the science domain; the
other two are open domain. More statistics and examples of these datasets are
shown in table 1 and 2, and we describe them below.

OpenBookQA: The OpenBookQA dataset [16] (abbreviated to OBQA from
now on) addresses a multiple-choice QA task in the science domain. Each correct
answer is jointly annotated with one key evidence sentence (or justification) that
supports its correctness. The justification comes from a knowledge base of 1326
sentences. In this paper, we construct a corpus of 1326 documents from these
sentences. Further, for each question, we concatenate the question and the correct
answer choice to form the query, and retrieve the gold justification (or target
document) for that query from the corpus of 1326 documents.

ReQA SQuAD: The ReQA SQuAD dataset [1] (abbreviated to ReSQ) is a
sentence-level retrieval dataset converted from the SQuAD reading comprehension
dataset [23]. In the original SQuAD reading comprehension task, the answers to
questions must be extracted from sentences in a set of provided paragraphs. The
ReQA SQuAD dataset uses the questions in SQuAD as the queries, and converts
all paragraphs to single sentences. The goal of this retrieval task is to retrieve



Table 3. Results of the probing tasks on two datasets. We report mean average precision
(MAP) (higher is better) and perplexity (PPL) (lower is better) scores for the gold
terms to be predicted. We report separate scores for terms in the query, and terms that
occur only in the justification fact (mean and stdev across 5 random seeds).

Dataset Task Query
MAP

Query
PPL

Fact
MAP

Fact PPL

OBQA USE-QA embd, gold label 0.306 ±0.01 1.709 ±0.02 0.154 ±0.01 1.188 ±0.01

tf-idf embd, gold label 0.458 ±0.01 1.558 ±0.01 0.098 ±0.00 1.334 ±0.01

Random embd, gold label 0.053 ±0.02 3.640 ±0.10 0.031 ±0.01 3.294 ±1.63

USE-QA embd, rand label 0.085 ±0.00 1.974 ±0.02 0.043 ±0.00 1.557 ±0.02

ReSQ USE-QA embd, gold label 0.139 ±0.01 1.944 ±0.01 0.147 ±0.00 2.134 ±0.00

tf-idf embd, gold label 0.142 ±0.04 1.828 ±0.00 0.127 ±0.01 2.043 ±0.00

Random embd, gold label 0.091 ±0.00 7.419 ±3.50 0.093 ±0.00 3.478 ±0.15

USE-QA embd, rand label 0.122 ±0.02 1.909 ±0.00 0.124 ±0.00 2.013 ±0.00

the sentence that contains the correct answer from all the sentences generated
from all the paragraphs. Since some answer sentences are meaningless without
the surrounding context, each candidate sentence is accompanied by its original
paragraph as the context.

ReQA NQ: The ReQA NQ dataset [1] (abbreviated to ReNQ) is similarly
converted from another reading comprehension task – Natural Questions [14] –
following the same process as ReQA SQuAD. Similarly, each query is a question
and each target document is a sentence/context pair, where the context is the
paragraph that contains the gold justification.

4 Understanding the Behavior of Neural IR through
Lexical Probing

Our key hypothesis is that neural IR methods are better at modeling the lexical
chasm between queries and evidence sentences than traditional IR, whereas
traditional IR captures explicit lexical overlap better. We design a lexical probe
and control tasks to investigate this.

4.1 Task Overview

Figure 1 summarizes our lexical probe, with an example from OBQA.

Probe input: The probe starts by generating a representation of the input
query. This representation is either: (a) the tf-idf vector of the query, generated
using scikit-learn [20], or (b) the query embedding generated by USE-QA [28].

Linear layer: This vector is fed to a linear layer, with input size Nd and output
size Nv, to predict the terms (i.e., unique words) in the query and in the gold fact.
Nv is the size of vocabulary V , where V is the set of all terms in the dataset. Each



loss mask 1 1 1 1 1 1 0 1 1 1 0

label 1 1 1 1 1 1 X 0 0 0 X

term bird … genetically instinctive … behavior … car … gas …

probability 0.9 … 0.8 0.7 … 0.8 … 0.1 … 0.2 …

Dense embedding or tf-idf vector of query

Linear layer

One-hot lexical predictions

'when', 'bird', 'migrate', 'south', 'for', 'the', 'winter', ',', 'they', 'do', 'it', 
'because', 'they', 'are', 'genetically', 'called', 'to'

query terms
terms in the gold fact
but not in the query negative terms

Fig. 1. Probe task overview: the linear probe is trained to predict the terms in the
query and in the gold fact from the entire vocabulary, given either the input embedding
or the tf-idf vector of the query. This probe investigates the capability of the query
representation to predict both lexical overlap (i.e., terms from the query), as well as its
ability to bridge the lexical chasm between queries and supporting facts (i.e., predict
terms that exist in the fact and not in the query). A loss mask is used to make sure the
loss is only computed on certain terms during training.

number in the output is the predicted probability of that particular term being
in the query/gold fact. Note that the input embedding/vector is not changed
during the training of the probe task. Thus, if the neural embedding contains
meaningful information about the gold fact, it should perform better than tf-idf
on predicting the terms that are only in the gold fact.

Training label and loss: For each query qi, we use Pi to indicate the set of
all terms in {qi, gold fact(qi)}. The training label is a one-hot vector of size Nv,
where the values for the terms in Pi are 1, and the rest of the entries are 0.
However, since the terms in Pi are considerably fewer than the whole vocabulary,
there will be many more 0s than 1s in this label vector, causing label imbalance.
Therefore, we construct a set of negative terms Ni, which contains terms that
are randomly sampled from the vocabulary V but not in Pi. The size of Ni also
equals to the size of Pi. The loss is only computed on the terms in Pi∪Ni instead
of the whole vocabulary V. The total loss of each query qi is summarized by:
L = −

∑
j∈Pi∪Ni

[yj log ŷj + (1− yj) log(1− ŷj)], where yj ∈ {0, 1} is the label,
and ŷj ∈ (0, 1) is the predicted probability of the corresponding term.

4.2 Control Tasks

We designed two control tasks to check whether the information necessary for
prediction is contained in the query representation and not in the linear layer [9]:

Random embedding (rand embd): This probe replaces the neural embedding
with a randomly-generated embedding. If the query representation encodes useful



information, this probe should perform much worse than the one using the neural
representation.

Rand label (rand label): In this experiment we randomly replace the target
terms in both training and testing. For example, we replace the terms to be pre-
dicted for query i with terms from a randomly-selected query j: {qj , gold fact(qj)}.
This is to examine whether it is possible for the linear probe to learn non-sensical
associations between random (embedding, target terms) pairs.

4.3 Probe Results

Table 3 lists the results of these probing tasks. We draw several observations:

(1) With minor exceptions, the two actual probes perform better than the two
control tasks. This confirms that there is indeed signal that is encoded in the
query representations, and this is what the linear probe classifier exploits.

(2) The probe that relies on the neural query representation obtains higher fact
MAP (and lower fact PPL) than the probe that uses the tf-idf representation.
This indicates that the neural representation does indeed contain information
that helps bridge queries, answers, and supporting facts. On the other hand, the
tf-idf probe has higher query MAP (and lower query PPL) than the neural probe.
This confirms that the traditional IR representation is better at capturing explicit
lexical overlap with the query than the neural one. All in all, these observations
suggest that these two retrieval directions are better at different things.

5 Hybrid Retrieval Approach

5.1 Individual IR Models

The hybrid approach proposed builds from (and is compared against) the following
individual retrieval models. Note that these approaches were chosen because they
had the best performance on these datasets. For example, USE-QA consistently
performed better than BERT.

BM25: We use the Lucene 6.4.04 Java implementation of BM25 [24] as the
“traditional” IR method. For OBQA, each document is one sentence in the
knowledge base corpus (1326 sentences in total). In ReSQ and ReNQ, each
document is constructed by concatenating the candidate answer sentence and its
context (so that each candidate answer sentence appears twice in the document).

BERT: For this method we fine-tune a pretrained BERT-base model [7, 26]. We
use the BERT retriever in the representation-based manner: the query qi and
the document dj are encoded using the [CLS] embedding of BERT as hq

i and hd
j .

Then the relevance score of qi and dj are obtained by Rel(qi, fj) = hq
i · hd

j . For

4 https://lucene.apache.org



ReSQ and ReNQ, each document is composed of the candidate answer sentence
and its context. We concatenate them and separate them with the [SEP] token.
Therefore, the input of each document is “[CLS] candidate answer sentence [SEP]
context sentences [SEP]”.

USE-QA: The USE-QA retriever [28] has separate encoders for the query and
document. The query encoder is a transformer-based model, producing a 512-
dimension embedding as the query representation. The document encoder has a
transformer-based model to encode the answer sentence and a Convolutional Neu-
ral Network (CNN)-based model to encode the context. A single 512-dimension
embedding is produced as the document representation. Finally, the relevance
score is computed as the dot product of the query embedding and the document
embedding. USE-QA is pre-trained on large scale retrieval tasks and, as used in
[1], we do not fine-tune it in the retrieval tasks.

5.2 Are Neural IR Methods Generally Better than Traditional IR?

The probe introduced in Section 4 indicates that neural and traditional IR
methods have different behaviors. But what impact does that have in practice,
with respect to overall performance? To answer this question, we performed
a comparison that aims to understand if transformer-based retrieval methods
are better overall than traditional IR. Due to space limitations, we discuss here
results from the best individual models in each class: BM25 for traditional IR,
and USE-QA for neural IR (We observed similar behavior from tf-idf and BERT.).
We use two datasets: one domain-specific (OBQA) and one open-domain (ReSQ).

Figure 2 summarizes this comparison between BM25 and USE-QA on the
dev partitions of OBQA and on a 10,000-query subset of ReSQ training partition.
Here, we consider a model better than the other when it yields a better ranking
for the correct justification. We draw two observations from this analysis:

(1) No approach is consistently better than the other. Overall, BM25 is at least
as good as USE-QA in 293 queries out of 500 queries in OBQA dev set, and 7603
queries out of 10000 randomly sampled queries in ReSQ train set. This is further
motivation for a hybrid approach.

(2) Importantly, there is immediate signal to differentiate between the two
situations. When BM25 performs better than or similarly to USE-QA, the top
BM25 score (after the softmax normalization) tends to be in the 0.8 to 1 range.
In contrast, when there is little lexical overlap between question and justification
indicated by low BM25 scores, e.g., below 0.2, USE-QA performs considerably
better. This supports the intuition that USE-QA can capture lexical differences
between question and justification when present.

5.3 Hybrid Retrieval Model

Motivated by the previous observations, we propose a hybrid evidence retrieval
method that uses a routing classifier to direct an incoming question to either



Fig. 2. Histograms of queries in OBQA dev (left) and a randomly sampled subset of
ReSQ train (right) where BM25 is no worse than USE-QA (blue) or where USE-QA
is better (orange). The x axis is the top BM25 score after a softmax is applied to the
BM25 scores of the top 64 sentences.

the BM25 retriever or the USE-QA retriever based on simple statistics that can
be extracted efficiently. The key intuition behind our hybrid strategy is that we
can estimate the optimal retrieval method based on the top answers retrieved
by traditional IR. In particular, if these answers receive a high score from the
traditional IR method, it indicates that the current scenario is driven by lexical
overlap, and traditional IR is likely to do better; the opposite is true otherwise.

We propose two variants for the routing classifier:

Hybrid (1-param): This classifier uses a single parameter: a threshold on the
normalized BM25 score of top document retrieved by the BM25 method.5 If
the top 1 score is higher than this threshold, the classifier routes the question
to BM25; otherwise it sends it to USE-QA. This is a simple implementation of
the intuition above – if the top normalized BM25 score is high, then it is likely
that there is a candidate document that has a large lexical overlap with the
query, and which is probably a correct justification. On the other hand, if the
top normalized BM25 score is low, it is either because: (a) there is no document
that has a large lexical overlap with the query, or (b) because there are multiple
candidate documents that have high BM25 scores (and they are squished during
normalization). In either of these scenarios BM25 is unlikely to identify the
gold document, and, therefore, USE-QA should be selected. The value of this
threshold is determined by performing a grid search on the dev partition, with
the threshold ranging from 0 to 1 with an interval of 0.1.

Hybrid (BM25): This classifier is a generalization of the above. That is, instead
of relying solely on the top retrieved document, this classifier extracts features
from the top k. In particular, for each query, we construct a feature vector f
and use a logistic regression (LR) classifier that takes f to predict whether to
use BM25 or USE-QA. The ith feature of f is computed as fi = mean(S[0 : 2i]),
where S are the top BM25 scores ranked in the descending order (after softmax
normalization). In this paper we use i up to 6 (i.e., use up to top 64 BM25

5 We normalize this score by applying a softmax layer to the BM25 scores of the top k
(k = 64 in this paper) documents.



scores). For example, feature 2 averages the BM25 scores of the top 4 documents
retrieved by the traditional IR method. This strategy allows the classifier to take
advantage of more documents when needed, but also focus on the top result(s)
when they are sufficiently predictive.

Note that all Hybrid approaches choose either one of the individual models.
USE-QA is not used as a reranking method on top of BM25, because USE-QA is
applied to all documents instead of the top documents retrieved by BM25.

6 Results

In this section, we empirically evaluate the proposed evidence retrieval methods.
We use the mean reciprocal rank (MRR) score [25] of the correct evidence sentence
(or target document) in the test dataset as the evaluation measure.

Since ReSQ only provides training and developments partitions, we randomly
sample 10,000 queries from the training data and use them for development, and
use the original development set of ReSQ as test. ReNQ does not provide train-
ing/development/test partitions; for this dataset we use 5-fold cross-validation,
sampling 10,000 queries from one fold as the development data in each split, and
using the remaining folds as test.

For all datasets, USE-QA is used without fine-tuning as proposed in [1].
For the BERT retriever, we fine-tune it on the training data of OBQA and
ReSQ. For all hybrid retrievers, we tune their routing classifiers on the respective
development partitions. For ReSQ, we further divide the development set into
5 splits (2,000 queries in each split) and tune 5 routing classifiers and evaluate
them separately on the full test set to make sure the results are robust to different
development sets.

6.1 Individual vs Hybrid Retrievers

Table 4 shows the MRR scores of the individual retrieval methods compared to
the hybrid ones, on the three datasets. We draw several observations from this:

(1) Most hybrid strategies outperform the individual retrieval methods, as well as
the naive strategy that simply sums up the scores of two individual models, and
uses the sum for ranking. Hybrid (1-param) and Hybrid (BM25) are statistically
significantly better than BM25 and USE-QA on ReSQ and ReNQ under a
bootstrap resampling significance analysis (10,000 samples, p-value < 10−5).
On OBQA, Hybrid (1-param) and Hybrid (BM25) are statistically significantly
better than BM25 under the same bootstrap resampling significance analysis,
but there is no significant difference between the hybrid methods and USE-
QA. This demonstrates that transformer-based and IR-based methods capture
complementary information, and the distinction of when to use one vs. another
is learnable. Table 5 lists several runtime statistics of our best classifier, Hybrid
(BM25), which support this observation. The first two rows indicate that the
routing classifier uses both individual retrievers, with around 60% (OBQA) or



Table 4. Mean reciprocal rank (MRR) scores of the retrieval methods investigated on
the three QA datasets. The BM25 + USE-QA method sums up the scores produced by
BM25 and USE-QA, and uses that score for ranking. ∗ indicates that Hybrid (BM25) is
statistically significantly better than both USE-QA and BM25 (bootstrap resampling
with 10,000 iterations; p-value < 10−5). Hybrid-NN (BM25) uses approximate Nearest
Neighbor for USE-QA in the hybrid method with 20 search trees. The Ceiling method
always selects the best individual model (USE-QA or BM25) for each query by their
ranking of the gold justification.

BM25 BERT USE-QA
BM25 + Hybrid Hybrid Hybrid-NN

Ceiling
USE-QA (1-param) (BM25) (BM25)

OBQA 0.522 0.557 0.610 0.550 0.611 0.596 N/A 0.69
ReSQ 0.645 0.260 0.520 0.647 0.656 0.657∗ 0.656∗ 0.71
ReNQ 0.293 N/A 0.223 0.290 0.301 0.303∗ 0.298∗ 0.39

Table 5. Routing statistics for the routing classifier that trains a logistic regression
model using features extracted from the top 64 BM25 documents.

OBQA ReSQ ReNQ

n samples routed to BM25 306 49,270 260,640
n samples routed to useQA 194 7,860 59,845

Samples w/ improved rankings vs. BM25 129 4,095 33,078
Samples w/ worse rankings vs. BM25 47 3,257 25,562
Samples w/ improved rankings vs. useQA 61 21,488 146,020
Samples w/ worse rankings vs. useQA 93 8,640 84,839

86% (ReSQ) of questions being routed to BM25. The next four rows indicate
that, on average, the hybrid approach improves over both individual methods
especially on ReSQ and ReNQ.

(2) While Hybrid (BM25) outperforms the simpler Hybrid (1-param), the differ-
ence is not statistically significant.6 This further suggests that simpler approaches
work in this case. The routing decision can be approximated with a single pa-
rameter (a threshold on the BM25 score), applied to a single justification that is
efficiently extracted by IR.

6.2 Runtime Analysis

A further advantage of our hybrid approach is improved runtime over neural
methods, because a considerable number of queries are routed to a traditional,
fast IR engine. To investigate this, we measure the processing time per query
using BM25, USE-QA and various hybrid retrievers and calculate the total time
usage of these retrieval methods. The processing time per query is measured as:

(1) For BM25, we measure the time of parsing the query, searching the top k
(k = 1400 for OBQA, and 2000 for ReSQ and ReNQ) documents, and sorting
the retrieved documents by the BM25 scores.

6 Bootstrap resampling with 10,000 samples, p-value < 0.13



Table 6. Runtime comparison of BM25, USE-QA and hybrid retrievers on the corre-
sponding test partitions. All times are the total times in seconds on all test queries.

BM25 USE-QA
BM25 + Hybrid Hybrid Hybrid-NN
USE-QA (1-param) (BM25) (BM25)

OBQA 1.38 19.74 21.23 20.85 8.95 N/A
ReSQ 179.56 3241.73 3476.99 922.28 625.74 593.82
ReNQ 1547.56 26722.63 28929.47 9513.97 6565.21 3696.11

(2) For USE-QA, we measure the query processing time (including query tok-
enization and the embedding generation of USE-QA7), searching the top k (1326
for OBQA and 2000 for ReSQ and ReNQ) documents, and sorting them by the
scores. We run this experiment using Tensorflow on Google Colab with GPU.

(3) For hybrid models, the processing time of each query is the sum of: (1)
the BM25 processing time (2) the runtime of the routing classifier and (3) the
processing time of USE-QA if USE-QA is selected for that query.

Table 6 shows the total processing time of all queries using different retrieval
methods. The table indicates that USE-QA is more than 15 times slower than
BM25 on all datasets. Further, the hybrid approach reduces that gap while still
allowing for the benefits of the neural IR when needed: Hybrid (BM25) is 2.2
times faster than USE-QA in OBQA, and 5.2 times faster in ReSQ. Our hybrid
method is also significantly faster than BM25 + USE-QA, which uses both BM25
and the neural retriever on every query [17].

7 Conclusion

We argue that transformer network-based approaches do not always outperform
IR methods for evidence retrieval for QA. We validate this observation with an
empirical analysis, and with a lexical probing task where two probes were trained
to predict words in the gold evidence texts. The first probe, trained on the tf-idf
vector of the query, tends to predict words that exist in the original query (thus
emphasizing lexical overlap), whereas the second probe, trained on top of the
query’s neural embedding, predicts more words in the evidence text that do not
exist in the query (bridging the lexical differences between these texts).

Learning from this analysis, we introduced a routing classifier that learns when
to direct incoming questions to traditional or neural IR methods for evidence
retrieval. The routing classifier is trained using very simple statistics, which can
be extracted from the top candidate evidence sentences produced by traditional
IR. We showed that this hybrid evidence retrieval generally performs better than
either individual retrieval strategy on three QA datasets. Further, we showed that
this routing classifier can be approximated with nearly the same performance
with a 1-parameter model (a threshold over the IR score of the top evidence
sentence retrieved by BM25), which simplifies real-world applications of our
approach. Lastly, we show that our routing classifier is considerably faster than
USE-QA, with runtime improvements of up to 5 times.

7 The batch size is set to 1 when generating the embedding, for a fair comparison with
BM25, and because in a real use case the queries may not arrive in batch.
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