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1 Abstract
PubMed, a repository and search engine for biomedical literature, now indexes more than 1 million articles each year.
This exceeds the processing capacity of human domain experts, limiting our ability to truly understand many diseases.
We present Reach, a system for automated, large-scale machine reading of biomedical papers that can extract mechanistic
descriptions of biological processes with relatively high precision at high throughput. We demonstrate that combining the
extracted pathway fragments with existing biological data analysis algorithms that rely on curated models helps identify
and explain a large number of previously unidentified mutually exclusive altered signaling pathways in seven different
cancer types. This work shows that combining human-curated “big mechanisms” with extracted “big data” can lead to a
causal, predictive understanding of cellular processes and unlock important downstream applications.

2 Introduction

In the past seven years, over one million publications
were added to PubMed each year (43) (see Fig. 1). At
the same time, a typical large-scale patient profiling ef-
fort now produces petabyte of data – and is expected to
reach exabytes within the near future (38). Combining
these large data sets with mechanistic biological informa-
tion can lead to a causal, predictive understanding of cel-
lular processes, and can unlock important downstream ap-
plications in medicine and biology.

Unfortunately, most of the mechanistic knowledge in
the literature is not in a computable form and mostly re-
mains hidden. Existing biocuration efforts are extremely
valuable for solving this problem, but, unfortunately, they
are out-scaled by the explosive growth of the literature.
For example, we estimate that public pathway databases
such as Pathway Commons1 capture only 1–3% of the lit-
erature and the gap widens everyday.2

Figure 1. The annual rate of publications in the biomedical domain,
as indexed by PubMed. The darker blue highlights that publications
have exceeded 1 million per year starting in 2011.

This gap severely limits the value of big data in bi-
ology. As a concrete example, consider the detection of
“driver” mutations in cancer. One widely recognized ob-
servation is that, given a cohort of patients, some driver

1www.pathwaycommons.org
2Internal analysis of the Pathway Commons team.
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alterations will exhibit a mutually exclusive pattern. That
is, the number of patients that have both alterations will
be smaller than what is expected by chance. This often
happens because these alterations unlock the same can-
cer driving pathways and the positive selection of one di-
minishes substantially when the other is present. In other
words, “one is enough.” Prior pathway knowledge can
be used to improve the accuracy of these methods by
limiting the search space and reducing the loss of sta-
tistical power due to multiple hypothesis testing correc-
tion. It also provides mechanistic explanations of the
observed correlations (5). Recall, however, can be low
due to the aforementioned database coverage issues. Re-
searchers are thus faced with a choice between no-prior,
high-coverage methods that do not provide mechanistic
explanations or low-coverage, prior-based methods that
may overlook some key events.

To fully answer such complex biological questions,
we propose a natural language processing (NLP) approach
that captures a system-scale, mechanistic understanding of
cellular processes through automated, large-scale reading
of scientific literature, and demonstrate that this approach
leads to the discovery of novel biological hypotheses for
multiple cancers. We call our approach Reach (REad-
ing and Assembling Contextual and Holistic mechanisms
from text).

Our approach has two important contributions. The
first contribution is the demonstration that the combina-
tion of “big data” that is produced by machines and “big
mechanisms” that were manually curated yields novel
knowledge that is otherwise missed. In particular, we
show that Reach can substantially improve the inference
capacity of existing biological data analysis algorithms
that previously relied solely on manually-curated pathway
databases such as Pathway Commons (PC). Here, we ex-
tended the Pathway Commons human-curated pathways
with over one million biochemical interactions extracted
by Reach from all papers in the Open Access subset of
PubMed (as of June 2015). Using this combined prior
network we were able to identify a large number of previ-
ously unidentified, but highly statistically significant mu-
tually exclusively altered signaling modules in TCGA can-
cer datasets using the Mutex algorithm (5). A manual eval-
uation of these modules reveals that between 65 and 80%
of the pathway fragments discovered by Reach are correct,
and they indeed help elucidate novel biological hypothe-
ses within the corresponding cancer context.

Our second contribution is the machine reading ap-
proach itself. The core of Reach is a cascade of automata

that relies on compact and interpretable grammars that ex-
tract entities (e.g., proteins) and events (e.g., biochemical
interactions) of interest. This guarantees that the reading
model can be understood, modified, and extended by do-
main experts. This compact grammar is efficiently ap-
plied at runtime, an important benefit in our “big data”
setup. On average, we process a single paper in 4.5 sec-
onds, though our software can be easily parallelized to
take advantage of cluster computing and multi-core hard-
ware. Additionally, Reach captures complex natural lan-
guage phenomena such as coreference, and can interpret
event polarity in statements with nested contrasts (for ex-
ample, “a reduction of increased phosphorylation led to
. . . ”). An independently administered evaluation found
that Reach extracts cancer signaling pathways at relatively
high precision and at a throughput capable of reading the
whole biological literature in short order.

The inherent inter-disciplinarity of this work has
yielded an unorthodox paper structure. We dedicate the
first half of the paper to the introduction of our machine
reading approach and its intrinsic evaluation (sections 3
and 4). The second half of the paper then provides a brief
summary of the biological data analysis algorithm used in
this work (section 5), followed by an extrinsic evaluation
of machine reading, which measures the contribution of
machine reading to the detection of novel biological hy-
potheses (section 6).

3 Machine reading approach
At a high level, Reach uses a cascade of rule-based and
statistical techniques to read the content of a paper and
identify mentions of molecular events that describe frag-
ments of a signaling pathway. The steps of this se-
quence, as shown in Figure 2, proceed from low- to high-
complexity representations, each building on the output of
the previous steps.

The representation of these mentions is constructed in-
ternally in a format inspired by the BioPAX standard lan-
guage (16). Notably, Reach can represent detailed bio-
chemical conversions where entities go through “state”
changes, such as becoming phosphorylated or changing
their sub-cellular location. Reach also represents con-
trollers or catalysts of these conversions when they are
mentioned in text. Similar to BioPAX, these mentions
are represented using a composite structure where events
can have other events as their participants, allowing for
arbitrarily complex logic. An important extension of
BioPAX that Reach implements is the extraction of higher-



Figure 2. Architecture of the Reach system together with a walk-through example.

level control relations between entities (e.g., “KRAS acti-
vates p53”). Although such relations are biologically am-
biguous relative to a mechanistic conversion representa-
tion (e.g., the above example summarizes the biological
mechanism “KRAS promotes phosphorylation of p53 on
Ser37”), they provide valuable information to domain ex-
perts.

In the following sections we describe details of the
Reach architecture components in Figure 2 that are re-
sponsible for the extraction of these mechanism frag-
ments.

3.1 Preprocessing
Reach first preprocesses the text with NLP tools specifi-
cally modified for the biomedical domain. Preprocessing
includes sentence and word segmentation, part-of-speech
(POS) tagging, and syntactic parsing.

The sentence and word segmentation step detects both
sentence and word boundaries in the input text. There are
subtle but important differences between the tokenization
of open-domain text and biomedical content. For example,
dashes that occur within a word are not considered separa-
tors when segmenting open-domain text, but they tend to
function as word separators in biomedical texts. For ex-
ample, segmenting the text “GAP-mediated” at the dash
is crucial for the downstream components to understand

that this text contains a catalysis driven by GAP. Similarly,
not considering the dash as a separator would prohibit
the downstream components from recognizing members
of protein complexes, which typically appear as dash sep-
arated in text. To handle these phenomena, a custom seg-
menter was developed in-house, following the tokeniza-
tion specification of the GENIA corpus (21).

For POS tagging and syntactic parsing, Reach uses
Stanford’s CoreNLP toolkit (28), which has been trained
using a combination of two corpora: the Penn Treebank,
a corpus that merges several non-biomedical genres such
as IBM computer manuals and Wall Street Journal arti-
cles (29, 39), and the GENIA corpus, which is a manually
annotated corpus of 2000 MEDLINE abstracts (21). In-
cluding the GENIA annotated documents as part of the
parser’s training corpus makes the parser more robust to
syntactic structures often found in biomedical literature.

3.2 Entity extraction
Next, a custom named entity recognizer (NER) compo-
nent is used to recognize mentions of relevant physical
entities by type, such as protein family, cellular compo-
nent, simple chemical, site, and gene or gene product (this
last category includes genes and proteins). The complete
list of entities recognized by Reach as well as the bio-
chemical events described later, is listed in the taxonomy



in Figure 3.

Figure 3. Taxonomy of the entities and events recognized by
Reach. Though abbreviated, the Removal events mirror those listed
under Addition.

The custom NER uses a hybrid approach that com-
bines a rule-based component with a statistical one. The
rule-based component recognizes all mentions of known
entity names (and their synonyms) from the knowledge
bases (KBs) shown in Table 1. Additional grammar rules
were written to capture entities that are not adequately
covered by these KBs, such as cellular components or
sites of biochemical reactions. The statistical model is
implemented using CoreNLP’s conditional random field
(CRF) sequence classifier, trained on the BioCreative cor-
pus (19). This dataset supports only mentions of gene or
gene products. The hybrid NER combines the output of
the two components, prioritizing the rule-based compo-
nent when overlaps are detected.

Next, Reach “grounds” the biochemical entities dis-
covered by linking the textual mentions to ids of actual
entities in the knowledge bases shown in Table 1. For ex-
ample, the protein mention “MEK1” can be linked to the
id Q02750 in the Uniprot knowledge base.

Lastly, Reach detects mentions of gene mutations and
protein post-translational modifications (PTMs), and at-

taches them to the corresponding textual mentions of these
biochemical entities. This is implemented with a subse-
quent grammar that focuses on detecting changes of states
in the previously extracted entity mentions, e.g., from the
text “wild type EHR” Reach extracts the state Wild Type
(i.e., non mutated) and attached it to the previously ex-
tracted entity mention “EHR”.3

3.3 Event extraction

Once Reach has determined which entities are mentioned
in the text, it extracts the biochemical processes in which
they participate. We use a two-step bottom-up strategy
for event extraction, following biochemical semantics in-
spired by BioPAX. First, we identify biochemical reac-
tions that operate directly on entities, temporarily ignoring
their catalysts and other controllers (e.g., phosphorylation
of a protein). Following NLP terminology, we call these
events “simple”. Second, we find the processes that con-
trol these conversions (e.g., the catalysis of this phospho-
rylation by a kinase). We call these events “nested”, due
to the fact that they have other events as their targets (e.g.,
the above catalysis operates on a phosphorylation simple
event).

One notable contribution of this work is the small
number of rules used for event extraction. This is achieved
by first identifying several general syntactic variations
shared among event mentions, and then reusing the same
syntactic structures for all event types. Table 2 describes
10 syntactic variations used in this work, together with ex-
amples for each.

We implement the above intuition using templates
expressed in the Odin information extraction rule lan-
guage (40, 42). Odin templates enable expression of rules
representing parameterized patterns. For example, we
used one template to describe the declarative syntactic pat-
tern in Table 2, but left the actual verb as a parameter to be
instantiated later. The particular verb to be used at runtime
is initialized with specific values for the different event
types (e.g., “phosphorylate” for phosphorylation events).

In all, we support 12 different types of simple events,
as highlighted in Figure 3. Nine of these are biochemical
reactions: phosphorylation, ubiquitination, hydroxylation,
sumoylation, glycosylation, acetylation, farnesylation, ri-
bosylation, and methylation. All of these reactions involve
the covalent modification of a protein. The difference be-
tween these events and the PTMs extracted in the previous
step is that these events refer to the actual act of modify-

3We will extend this component in future work to include binding sites and fragments.



Table 1. Knowledge bases used by the rule-based named entity recognizer, as well as for grounding.

Entity Type Database URL

Protein UniProt www.uniprot.org/

Protein families InterPro www.ebi.ac.uk/interpro/

Simple Chemicals HMDB www.hmdb.ca/

Simple Chemicals ChEBI www.ebi.ac.uk/chebi/

Sites InterPro www.ebi.ac.uk/interpro/

Table 2. Common syntactic variations shared among event types. Combinations of these syntactic variations are also considered. For
example, an appositive subject relative plus passivization: “Pde2, which has been found to hydrolyze Ras, activates MEK.”

Name Description Example

Declarative The theme (the thing acted on by the verb) is the
direct object of a verb.

“Smurf1 and Smurf2 degrade and ubiquitinate RhoA.”

Passive The theme is the syntactic subject of a verb phrase. “RhoA is ubiquitinated and degraded by Smurf1 and
Smurf2.”

Prepositional
Nominalization

The trigger is in noun form and entities are in prepo-
sitional phrases.

“The ubiquitination and degradation of RhoA by Smurf1
and Smurf2 increased.”

Object Nominalization The trigger is in noun form and with the theme
forms a noun-noun compound.

“RhoA ubiquitination and degradation by Smurf1 and
Smurf2 increased.”

Subject Nominalization The trigger is in noun form and with the cause forms
a noun-noun compound.

“Smurf1 ubiquitination and degradation of RhoA in-
creased.”

Subject Relative Clause
(+ optional Apposition)

The trigger and theme are located in a relative
clause which modifies the cause.

“Its many abnormal phenotypes can be rescued via Pde2,
which specifically hydrolyzes cAMP.”

Object Relative Clause
(+ optional Apposition)

The trigger and cause are located in a relative clause
which modifies the theme.

“We measured transcription activation in the presence of
cAMP, which is hydrolyzed by CRP.”

Subject Apposition The cause is in an appositive phrase. “Via yeast two-hybrid screening, we found that a novel pro-
tein, A20, binds to ABIN.”

Object Apposition The theme is in an appositive phrase. “Via yeast two-hybrid screening, we found that A20 binds
to a novel protein, ABIN”

Paraphrastic Causative The trigger is separated from an entity by a verb. “Smurf1 causes the degradation of RhoA.”

ing the protein by attaching a functional group to it, and
the PTMs described in the previous step refer to proteins
that have already been modified (potentially as a result of
simple events mentioned previously in the paper).

The three remaining simple events are translocation,
which refers to the act of transporting an entity between
two cellular locations; binding, which is the process of
assembling a complex from two or more proteins; and hy-
drolysis, the separation of chemical bonds by the addition
of water. Hydrolysis captures activities like cleavage and
degradation.

Nested events are processes that control other events,
such as catalysis and inhibition. Reach recognizes both
positive (e.g., “promotes”) and negative (e.g., “inhibits”)

controls. It is also possible to chain the control logic, e.g.,
the co-modulation of a catalysis. Following BioNLP ter-
minology (22), we collectively call these types of events
“regulations” for simplicity.

Reach also recognizes mentions of “activations”, i.e.,
higher-level interactions that describe the direct control of
an entity’s activity (e.g., “A activates B”, where A and B
are proteins). These are structurally very similar to regu-
lations with the exception that the “controlled” participant
is an implied downstream activity of a biochemical en-
tity. These are not supported in BioPAX by design due to
the inherent semantic ambiguity: proteins can have mul-
tiple, overlapping “activities”. Reach supports them be-
cause they are abstractions frequently used to summarize

www.uniprot.org/
www.ebi.ac.uk/interpro/
www.hmdb.ca/
www.ebi.ac.uk/chebi/
www.ebi.ac.uk/interpro/


the result of a sequence of steps in a signaling pathway.
These activations are not as useful as regulations when
considered in isolation, but they provide valuable informa-
tion, including the author’s high-level interpretation of the
discussed mechanism and indirect dependencies between
proteins. In the next section, we demonstrate how to use
this information to discover latent explanations for cancer
drivers.

Similar to simple events, nested events conform to the
syntactic patterns shown in Table 2. Capitalizing on these
patterns, the extraction system was implemented in Odin
using 154 unique rule templates, as shown in Table 3.

Table 3. Number of rule templates in Reach’s grammars.

Type Syntax Surface Total

Entities 0 15 15
Generic entities 0 2 2
Modifications 0 6 6
Mutants 0 9 9

Total 0 32 32

Simple events 15 11 26
Binding 30 7 37
Hydrolysis 8 2 10
Translocation 12 0 12
Positive regulation/activation 16 4 20
Negative regulation/activation 14 3 17

Total events 95 27 122

Total 95 59 154

3.4 Complex Natural Language Phenomena
In addition to the event and entity extraction grammars
described previously, Reach also recognizes complex phe-
nomena that are difficult to detect with rules alone, namely
polarity and coreference.

Polarity Special treatment is needed for statements that
involve nested controls with different polarities. For ex-
ample, in the text from Figure 2, “decreased PTPN13 ex-
pression enhances EphrinB1 phosphorylation”, the pred-
icate “enhances” seems to indicate that PTPN13 up-
regulates the phosphorylation of EphrinB1. A careful in-
spection of the context reveals that it is the “decrease” of
PTPN13 that enhances the phosphorylation. This is inter-
preted by Reach as a polarity flip for the regulation of the
phosphorylation (from positive to negative).

We handle polarity correction by traversing the syntac-
tic dependency path that connects the trigger of the corre-

sponding event and all its arguments in the syntactic de-
pendency graph, keeping track of polarity-reversal words.
Adjectival modifiers that connect to the path at any point
are also considered. For example, in the regulation event
depicted in Figure 2, the adjectival modifier “decreased”
signals the polarity reversal.

Coreference resolution Coreference, the ability for
different mentions in text to refer to the same real-world
entity or event, is common in the biomedical domain.
Resolving these coreference links leads to greater recall
in information extraction, but it is rarely pursued in the
biomedical domain. Coreference applies to both entities
and events, and often reaches across sentence boundaries,
as in the following examples, in which the bold text refers
back to the italicized text. The correct coreference resolu-
tion in each case allows a further event to be extracted.

• “In the current study, we describe the phosphoryla-
tion, localization, and genome-wide regulatory func-
tions of HP1γ in gonadal tissue, gametes, and the pre-
implantation embryo. We demonstrate that phosphory-
lation of this protein at S83, which occurs in response
to Aurora A, is necessary for supporting proper mitotic
cell division in cells from the sperm lineage.”

• “When Wnt signaling or Cdc42 activity was blocked,
the induced, but not the basal level of this interac-
tion, was lost, suggesting both Wnt and Cdc42 activities
are required to promote a Dvl2/aPKC interaction after
scratching. In contrast, aPKC inhibitors did not block
this interaction, suggesting aPKC activity was not re-
quired for Dvl2/aPKC complex formation.”

Inspired by Lee et al. (27), we adopted an archi-
tecture for resolving coreference in which deterministic
resolution rules (or “sieves”) are ordered from highest
to lowest precision and from lowest to highest recall.
The advantages of this approach are similar to those of
the previously-introduced rule-based architecture for en-
tity and event extraction, including stability, human inter-
pretability, and high overall performance.

However, though successful in the open domain, we
discovered that the system proposed by Lee et al. is not
well-suited to the biomedical domain, producing low-
precision results due to over-clustering. To account for
this, we adapted the sieves to the biomedical domain by
eliminating sieves that are redundant, uninformative in this
domain, or insufficiently restrictive, as well as by creat-



ing new, domain-specific sieves that capitalize on domain
knowledge.

For example, recognizing mutants (though the word
mutant may not appear) will allow linking in sen-
tences such as “. . . we prepared recombinant H2AX-
K134A. . . The intensity of the band corresponding to hi-
stone H2AX methylation was significantly diminished
in the K134A mutant compared with that of wild-type
H2AX (H2AX-WT). . . .”. Similarly, recognizing specific
protein reactions allows otherwise difficult resolution, as
in linking two dissimilar mentions of a single binding re-
action in “LL-37 forms a complex together with the IGF-
1R . . . and this binding results in IGF-1R activation . . . .”
We described this approach in detail in (8).

4 Intrinsic evaluation: machine read-
ing performance

4.1 Comparison with other reading systems
In an independently administered evaluation (36)4, Reach
was found to extract signaling pathways at relatively high
precision, at a throughput capable of reading the entire
open source biomedical literature within days. Participat-
ing systems extracted mechanistic information from 1,000
papers about the Ras signaling pathway over the course
of a week. Two metrics were used to evaluate the partic-
ipating systems: (1) precision, calculated as the propor-
tion of interactions that were considered “largely correct”,
i.e.: (a) the interaction had to match the text evidence, (b)
both participants (if present in the interaction) as well as
the interaction type had to be correct, and (c) the negative
information indicator (was the interaction negated or not
in text?), had to be correct; and (2) throughput, the esti-
mated number of “largely correct” interactions produced
from the 1,000 publications per day. Note that the correct-
ness of entity grounding (i.e., linking the textual mentions
of interaction participants to ids of actual entities in knowl-
edge bases) was not a factor in calculating this precision
measure. Further, in this evaluation, throughput was used
as a proxy for recall because true recall would be expen-
sive to compute on such a large dataset.

Four other teams participated in the evaluation. The
participating teams followed different approaches. For
anonymity, we do not identify the participating consor-

tia by name, but briefly describe their approaches. Team
1 implemented a pipeline of machine learning compo-
nents that addressed various aspects of the task, such as
identifying interaction types, interaction participants, etc.
Teams 2 and 3 implemented a hybrid approach, where they
used machine learning to construct semantic representa-
tions of the text (2, 7), and a rule-based component to ex-
tract domain-specific information from this open-domain
semantic representation. Team 4 used a rule-based ap-
proach, with rules that focused solely on surface patterns.
In this evaluation, Reach and Team 4 were part of the same
consortium and evaluated jointly. The results are summa-
rized in Table 4.5

Table 4. Machine reading results in the Big Mechanism evaluation.

Team Throughput Precision (%)

Team 1 62 59
Team 2 342 23
Team 3 110 63
Reach + Team 4 695 49

Reach 486 62

The table shows that the Reach + Team 4 consortium
obtains the best balance of precision and throughput, with
the highest throughput and relatively high precision. Team
2 had the next highest throughput, but both its through-
put and precision were more than twice as low as Reach
+ Team 4’s scores. Teams 1 and 3 had higher precision
scores, but their throughputs were considerably smaller:
11.2 and 6.3 times smaller than Reach + Team 4’s through-
put, respectively.

While this evaluation reports results for Reach and
Team 4 jointly, we aimed to tease out Reach’s contribution
in this consortium. To this end, we performed a post-hoc
internal analysis of the data generated for this submission,
separating the extractions produced by Reach from the ex-
tractions produced by Team 4. This analysis showed that
Reach alone has a precision of 62%, and is responsible for
approximately 70% of the consortium throughput. These
results, shown in the last row of Table 4, support the same
observations: Reach has a throughput considerably higher
than all the other teams, at precision approaching the high-
est precision value observed in the evaluation.

4Conducted by MITRE in the DARPA Big Mechanism program (www.darpa.mil/program/big-mechanism).
5Please note that the precision scores in the table are based on a slightly different composition of papers for each team. The reason MITRE did

this is that the number of interactions generated varied greatly among teams; the evaluation team had to score interactions from more papers to get
reasonable precision numbers for submissions with fewer extractions. In particular, all participants were scored on outputs from the same eight
papers; but Team 1, Team 3, and Reach + Team 4 were evaluated on two additional publications, and Team 3 was further evaluated on three more.

www.darpa.mil/program/big-mechanism


The high throughput observed for Reach has two
causes. First, the approach implemented in Reach, which
includes Odin grammars that cover both syntax and sur-
face patterns, coreference resolution, polarity handling,
etc. (see previous section), guarantees good coverage of
the various linguistic phenomena encountered in this data.
Second, the Reach grammar runtime system is fast: on av-
erage Reach processes a publication in less than five sec-
onds. This allowed the team to easily process the entire
dataset of 1,000 papers in the time allotted for this evalu-
ation. In fact, the Reach submission was completed in the
first few hours of the first of the seven days reserved for
the evaluation.

All in all, this analysis demonstrates that Reach man-
ages to maintain comparatively high precision without
considerably sacrificing throughput. As we show in Sec-
tion 6, this high throughput can be leveraged to increase
precision by taking advantage of redundancy, i.e., the
more times an interaction is extracted, the more likely it
is to be correct.

4.2 Other biomedical tasks
Note that, while other efforts on extracting biomedical

structures from free text certainly exist (22–24, inter alia),
they are not directly comparable to this work, for several
reasons:

1. There are differences in task definitions between
Big Mechanism and other existing efforts. For
example, the events covered in the BioNLP
datasets (22–24) include gene expression and
transcription interactions, whereas Reach focuses
strictly on post-translational modification (PTM)
events. On the other hand, the BioNLP datasets fo-
cus on molecular-level regulation events, whereas
Reach additionally extracts activation events that
describe interactions at a higher abstraction level.
Furthermore, there are differences in how interac-
tions were defined in BioNLP vs. Big Mecha-
nism. For example, Binding (i.e., complex assem-
bly) events in BioNLP can have an arbitrary number
of arguments, whereas in Big Mechanism Binding
events are binary (n-ary complex assembly interac-
tions are represented as a sequence of binary Bind-
ing events).

2. There are considerable tokenization differences be-
tween BioNLP annotations and Reach. Specifically,

BioNLP extracts subword events, e.g., where both
the predicate and the corresponding argument are
included in the same token, and subword arguments,
e.g., where only part of a word is the argument of a
predicate. For example, “phospho-p38” is labeled
as an event in which the p38 protein is phosphory-
lated. Reach generally does not extract such sub-
word events.

3. Most BioNLP datasets contain only text from pub-
lication abstracts (22), or a mixture of abstracts
and full publications, heavily biased towards ab-
stracts (23). The BioNLP 2013 dataset (24) is the
only one that contains solely text from full publica-
tions, but it is small (only 10 publications), which
introduces a bias risk. In contrast, Reach was de-
signed to robustly parse the full content of any
biomedical paper.

Nevertheless, in order to put this work in a larger con-
text, we implemented a simple comparative analysis in
which we evaluated Reach on Phosphorylation events in
the BioNLP 2013 dataset. Phosphorylation interactions
are the most frequent PTM simple event in the BioNLP
2013 dataset, and they generally align well with the Reach
definition. On the BioNLP 2013 development partition,
Reach obtains a precision of 92.9%, a recall of 56.0%,
and an F1 score of 69.9%.6 In contrast, the Turku Event
Extraction System (TEES) (9), the second best system in
the BioNLP 2013 evaluation, obtained 83.9% precision
and 83.5% recall on the development dataset. We find
Reach’s high precision encouraging, especially consider-
ing that Reach was never exposed to this dataset before
this exercise, whereas all the other BioNLP participants
used supervised learning, and tuned hyper parameters to
maximize performance on this development partition.

To understand the lower recall, we inspected the false
negatives (FN), i.e., phosphorylation events missed by
Reach on the development partition of the BioNLP 2013
dataset. Our analysis confirms that these were caused by
differences in task definition. In particular, 58% of the
FNs were caused by subword events such as the one shown
above in this subsection. Assuming Reach were modified
to handle such subword events, its ceiling performance
on phosphorylation events would be 92.9% precision, and
81.9% recall, for an F1 of 87.1% on the development par-
tition, demonstrating the possibility of a score consider-
ably higher than the one reported by the TEES system
(83.9% precision and 83.5% recall). The other FNs were

6Using the approximate span and recursive criteria scorer, the standard scorer configuration in the BioNLP challenge.



caused by faulty syntactic parsing (10%), misidentifying
causes (7%), unhandled errors in the input such as “phos-
phorlyation” (6%), latent arguments that are only supplied
by domain knowledge (3%), and missing rule coverage
(16%).

Lastly, please note that this difference in task defini-
tions works both ways: Team 1 in Table 4 trained and
tuned their components using the BioNLP datasets. As
the table shows, this yielded low throughput compared to
Reach in the Big Mechanism evaluation.

5 Identi�cation of mutually exclusive
alterations of cancer drivers

We applied this natural language processing frame-
work to multiple biological data analysis algorithms. The
biological data analysis algorithm we focus on in this work
identifies mutually exclusive alterations of “driver” muta-
tions in cancer. We observe that across a cohort of cancer
patients, some mutations cooccur within the same patient
less than expected by random chance. This often happens
because these alterations unlock the same cancer-driving
pathways, and the positive selection of one diminishes
substantially when the other is present. A simple analogy
for this problem is the following: consider a burglar that
aims to enter a building to reach valuable property. The
burglar may break in either through a window or a door
to enter, but likely not both, because one entry point is
enough to get inside the building. Across a sufficiently
large set of burglary cases, broken windows and doors
will overlap less than expected. In other words, “one is
enough.”

One brute-force, no-prior approach to detect mutually
exclusive (or mutex) relationships is simply to test all pairs
of genes using a hypergeometric test. However, we of-
ten see that three or more genes within a same pathway
exhibit a mutually exclusive pattern. In these cases, the
basic approach is less useful, simply because the number
of hypotheses increases exponentially as a function of the
module size7, decreasing statistical power because of cor-
rections for multiple comparisons. For larger modules, it
also becomes more important to explain why a particular
module is mutually exclusive mechanistically, as there are
more confounding factors.

To address this problem, we previously introduced the
Mutex algorithm (5), which combines large-scale omic
profiles with prior knowledge of pathway mechanisms.

Given a set of omic profiles, Mutex performs a graph
search on the prior networks derived from pathway infor-
mation, testing at each step for a network module that is
mutually exclusively altered and can explain, by the merit
of the underlying pathway structure, the observed pattern.
Prior pathway knowledge improves the accuracy of Mu-
tex by limiting the search space and reducing the loss of
statistical power. Such knowledge also provides mecha-
nistic explanations of the observed correlations. However,
when these pathways come from human-curated databases
such as Pathway Commons, recall is low due to the afore-
mentioned database coverage issues. Alternatively, Mu-
tex can operate over a fully connected network to produce
a no-prior model. This ability provides a basis to study
the trade-offs between no-prior, high-coverage methods
that do not provide mechanistic explanations and prior-
based, lower-coverage methods that may overlook some
key events.

In this work, we evaluate whether we can improve the
prior-based approach by expanding the knowledge of prior
pathways with information extracted by Reach. We com-
pare the results both with the prior-based approach and the
no-prior approach.

6 Extrinsic evaluation: discovery of bi-
ological hypotheses

This evaluation demonstrates that Reach-extracted path-
way fragments improve the inference capacity of the Mu-
tex algorithm, even when it already benefits from large
curated models (“big mechanisms”). Specifically, we ex-
tended the Pathway Commons8 human-curated pathways,
which were used by the previously-published instance of
Mutex, with fragments extracted by Reach from all papers
in the Open Access subset of PubMed (1,046,662 papers
as of June 2015) (Figure 4).

7Here, a module is a group of signaling pathways that impact the same downstream protein.
8http://www.pathwaycommons.org/

http://www.pathwaycommons.org/


Figure 4. The Reach output is about 12 times larger than the size of
Pathway Commons. We conjecture that the small overlap is caused
by the fact that the Reach interactions are extracted from
open-access publications, whereas Pathway Commons pathways
come mostly from other, paywalled publications. The
high-con�dence subset is of relations that were found in more than
one paper.

Using this combined prior network we were able to iden-
tify previously unidentified, but highly statistically sig-
nificant mutually exclusively altered signaling modules
in TCGA cancer datasets using the Mutex algorithm de-
scribed above. Figures 5 and 6 show Mutex groups for
TCGA breast cancer, and Table 5 summarizes the findings
for all enhanced cancer studies in TCGA. R represents the
Mutex configuration using the combined Reach + Path-
way Commons network, P denotes the Mutex configura-
tion using only the Pathway Commons network, and W
marks the Mutex configuration uninformed by any sup-
porting network. In Table 5 we also include ablation re-
sults, e.g., R−P−W is the output of the R configuration
without hypotheses discovered by either the P or W ap-
proaches. All in all, Table 5 highlights that machine read-
ing is responsible for the discovery of new hypotheses in
7 cancers.

Figure 5. Reach allows Mutex to detect 7 new candidate “driver”
genes for breast cancer which are not detected otherwise, when
using Pathway Commons alone, or without using any network. We
observed similar results for 6 other cancers in the TCGA dataset.

Table 5. Mutex + Reach analysis of TCGA. The R−P−W and RW−P
ablation experiments indicate that Reach extractions are responsible
for the discovery of new hypotheses in 7 cancers.

Cancer study R P W R−P−W RW−P

BLCA 2 2 6 0 0
BRCA 30 17 40 7 12
CESC 5 6 7 0 0
DLBC 0 5 0 0 0
GBM 23 14 40 3 7
HNSC 26 23 25 3 2
KICH 0 0 6 0 0
LAML 2 2 2 0 0
LGG 26 12 51 0 14
LIHC 12 17 16 0 0
LUAD 14 16 11 1 0
OV 7 11 7 2 0
PAAD 22 7 17 10 5
SARC 15 22 25 0 0
THCA 9 11 12 0 0
UVM 2 3 34 0 0

Table 6. Correctness of the hypotheses generated by Mutex +
Reach. The “With direction” column considers strict, directional
hypotheses, e.g., GATA3 activates PTEN. The “Ignoring direction”
column considers non-directional hypotheses, e.g., either GATA3
activates PTEN or PTEN activates GATA3.

Hypotheses With Ignoring
generated direction direction

Seen at least once 51 65% 71%
Seen at least twice 21 80% 80%

A manual evaluation of these modules by an external can-
cer researcher (Table 6) reveals that, despite the inherent
noise in machine reading, 65% of the hypotheses pro-
posed by the Mutex algorithm that had access to signaling
pathways extracted by Reach are indeed correct accord-
ing to the literature. Further, a simple redundancy filter
that keeps Reach extractions only if they are seen at least
twice in the literature increased this accuracy to 80%. This
demonstrates that our approach systematically and incre-
mentally increases coverage of prior, curated networks us-
ing NLP strategies, and, we believe, is valuable for molec-
ular tumor boards and other cases where one needs to com-
bine system-scale data with the knowledge in the litera-
ture.

However, a post-hoc error analysis of the incorrect hy-
potheses proposed by this approach (Table 7) indicates
that machine reading is not a solved problem: 39% of the
error are generated by incorrect syntactic analyses, 22%



Figure 6. Mutex groups for TCGA breast cancer. This graph shows the interactions of the genes in each Mutex group and their targets. The
highlighted relations exist in Reach data but not in Pathway Commons. Highlighted genes are not detectable without using Reach data.

Table 7. Error analysis of the incorrect hypotheses generated by Mutex+Reach.

Error type Frequency Example Incorrect output

Complex
syntax

39% (7) “In mouse models of leukemia and melanoma, IDH mu-
tants accelerated cell cycle transition by activation of the
MAPK and ERK pathway and repression of tumor sup-
pressors CDKN2A and CDKN2B (Chaturvedi et al., Shi-
bata et al.)”

CDKN2A controls IDH. The correct inter-
action to be extracted from this statement
is: IDH controls CDKN2A.

NER 22% (4) “At PND100, BPA significantly increased expression of
EGFR (p = 0.0132), phospho-IGF-1R (p = 0.007), . . . ”

BPA is-a Protein. In this paper, BPA refers
to the corresponding chemical not the pro-
tein with the same name.

Hedging 22% (4) “Therefore, we next investigated whether CIC promotes
mutant p53 GOF.”

CIC activates p53, which is unsupported
by the hedged statement.

Other 17% (3) —

by incorrect entity recognition or grounding (e.g., in the
example in the table “BPA” refers to the chemical Bysphe-

nol A not the protein with the same name), and 22% are
caused by hedged statements that were not supported by



experimental results.

6.1 Related work
Reach builds upon the tremendous body of work in lan-
guage technology applied to bioinformatics that was de-
veloped in the past two decades. We summarize the ma-
jor trends that influenced our work below, but for a more
comprehensive background we recommend reviews of the
field such as (14).

Due to the above-mentioned information explosion in
biomedical research, it is imperative to develop reliable,
automated methods to extract information from this liter-
ature and make it available in a structured fashion. The
BioNLP shared tasks and associated workshops were or-
ganized to advance research in this area (22, 23, 35). Many
systems have participated in this shared task, broadly rep-
resenting two directions: rule-based and machine learning
methods.

Rule-based information extraction systems have been
successful in the biomedical domain. Rule-based systems
took off with the advent of FASTUS (3), which was im-
plemented as a cascade of finite state automata (FSA),
where each FSA captured a “layer” in the task to be ad-
dressed (e.g., entities, events), and was defined through a
grammar that aggregated multiple rules. Systems such as
FASTUS tend to rely on shallow linguistic structure for
efficiency. Inspired by the ideas promoted by FASTUS,
one of the first rule-based information extraction systems
to target the biomedical domain was Blaschke et al. (11),
which focused on extracting protein-protein interactions.
Devised by biologists, the system searches for mentions
of proteins separated by a term known to signal their in-
teraction. The extracted protein-protein interactions were
then assembled into a small interaction graph with a high
degree of accuracy.

While Blaschke et al. (11) demonstrated the effec-
tiveness of lexicalized patterns, deeper linguistic analy-
sis affords certain advantages such as better generaliza-
tion. Kilicoglu and Bergler (20) used a concise set of rules
over deep linguistic structure (dependency parses) to de-
tect nine types of biochemical events. This system was
one of the top performers in the BioNLP 2009 shared task
on event extraction.

An important trend in information extraction is, of
course, the use of machine learning. These approaches
can be classified in two sub-classes: supervised learning,
where the machine learns from data manually annotated
by domain experts, and distant supervision, where train-
ing data is automatically generated by aligning a database

of known facts (e.g., protein-protein interactions) with rel-
evant texts (e.g., biomedical publications discussing such
interactions (31)). The first approach that applied ma-
chine learning to biomedical information extraction was
proposed by Craven and Kumlien (15). Notably, this is
also the first work to use distant supervision for informa-
tion extraction. Björne et al. (10) proposed a supervised
machine learning approach for biomedical IE, which ob-
tained the best results at the BioNLP 2009 shared task on
event extraction. Since then, several efforts have improved
upon its performance (13, 30, 33, 34, 44). Notably, the
top performers at the more recent editions of the BioNLP
shared task rely on machine learning (9, 32).

Reach builds upon this previous work in several ways.
First, we propose a declarative rule-based approach that
is inspired by and improves upon this body of work, us-
ing a framework designed to build grammars that are con-
cise, interpretable, and which can mix deep and shallow
syntactic analysis. Second, this work addresses additional
important phenomena that are generally ignored in previ-
ous work (e.g., coreference resolution and event polarity).
And third, our approach can be combined with machine
learning approaches to discover relevant grammars auto-
matically. Our experiments indicate that such hybrid ap-
proaches can be constructed at minimal cost and are suc-
cessful (41).

We and other groups have previously integrated cu-
rated priors into omic analysis and have shown that it im-
proves the accuracy and interpretability of the inferences
for a wide range of tasks (1, 4, 6, 12, 17, 26, 45). Of par-
ticular note is the DREAM network inference challenge
where prior-based methods took the top two positions in
an independent evaluation (18). Others have looked at
the overlap between curated models and literature-derived
networks (25, 37). Our work is the first to carefully ex-
amine whether the biochemical pathways extracted by
the machine can be successfully combined with human-
curated models in the context of a specific analytical task.

7 Conclusions
This work showed that the large-scale automated reading
of cancer literature ushers in novel cancer research that
combines “big data” automatically extracted from the lit-
erature with “big mechanisms”, i.e., large protein signal-
ing pathways curated by domain experts.

We introduced Reach, a machine reading system that
processes statements in the biomedical literature into
mechanistic information. An independently-administered



evaluation demonstrated that the proposed system outper-
forms other systems under a metric that combines preci-
sion and throughput. All in all, Reach achieved a rela-
tively high precision at high throughput, capable of pro-
cessing one paper in 4.5 seconds. The system is available
as open-source software at github.com/clulab/reach.

We used Reach to process a large number of PubMed
Central articles containing mechanistic information, and
demonstrated that this information improves biological
data analysis algorithms. Using a combination of informa-
tion produced by Reach and Pathway Commons, we dis-
covered new cancer driving mechanisms for seven cancers
in the TCGA dataset. An external biologist who analyzed
the hypotheses proposed by the algorithm found out that
65% of these are correct (i.e., they are supported by the
literature). If we consider only interactions seen at least
twice in the literature, 80% of the resulting hypotheses are
correct.

Beyond the use case discussed in this paper, this ap-
proach proposes a pipeline for information analysis in the
biomedical domain that we believe generalizes beyond the
domain addressed here. In this pipeline, machine read-
ing is used to process a very large number of publications.
This has the advantage of scalability beyond human capac-
ity, but the drawback that it introduces noise. To mitigate
the latter issue, biological data analysis algorithms (Mutex
in this work) filter out the noise by identifying strong asso-
ciations between machine data and patient data, and syn-
thesize the information produced through machine reading
into a small number of strong hypotheses. This approach,
we believe, is valuable for molecular tumor boards or other
cases where one needs to combine system-scale data with
the knowledge in the literature.
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