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Abstract
Recent efforts in bioinformatics have achieved
tremendous progress in the machine reading of
biomedical literature and the assembly of the
extracted biochemical interactions into large-
scale models such as protein signaling pathways.
However, batch machine reading of literature at
today’s scale (PubMed alone indexes over 1 mil-
lion papers per year) is infeasible due to both cost
and processing overhead. In this work we pro-
pose focused reading as an alternative. Focused
reading casts machine reading as a search pro-
cess where queries are defined by pairs of enti-
ties, e.g., proteins, to be connected through the
models extracted from the literature. Our ap-
proach casts the task as an incremental search
over the graph of biochemical interactions, where
each focused reading step makes a choice be-
tween widening the search space (exploration),
or focusing on the most relevant documents (ex-
ploitation). We learn strategies that distinguish
between exploration and exploitation using rein-
forcement learning (RL), and demonstrate that
an RL-learned strategy is capable of answering
more queries while reading fewer papers than a
strong deterministic baseline.

1. Introduction
The millions of academic papers in the biomedical domain
contain a vast amount of information that may lead to new
hypotheses for disease treatment. However, scientists are
faced with a problem of “undiscovered public knowledge,”
as they struggle to read and assimilate all of this informa-
tion (Swanson, 1986). Furthermore, the literature is grow-
ing at an exponential rate (Pautasso, 2012); PubMed1 has
been adding more than a million papers per year since
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2011. We have surpassed our ability to keep up with and
integrate these findings through manual reading alone.

Large ongoing efforts, such as the BioNLP task commu-
nity (Nédellec et al., 2013; Kim et al., 2012; 2009) and the
DARPA Big Mechanism Program (Cohen, 2015), are mak-
ing progress in advancing methods for machine reading and
assembly of extracted biochemical interactions into large-
scale models. However, to date, these methods rely on ei-
ther manual retrieval of relevant documents by humans, or
processing large batches of documents that may or may not
be relevant to the model being constructed.

Batch machine reading of literature at this scale poses a
new, growing set of problems. First, access to some doc-
uments is costly. The PubMedCentral (PMC) Open Ac-
cess Subset2 (OA) is estimated3 to comprise 20%4 of the
total literature; the remaining full-text documents are only
available through paid access. Second, while there have
been great advances in quality, machine reading is still not
solved. Updates to our readers requires reprocessing the
documents. For large document corpora, this quickly be-
comes the chief bottleneck in information extraction for
model construction and analysis. Finally, even if we could
cache all reading results, the search for connections be-
tween concepts within the extracted results should not be
done blindly. At least in the biology domain, the many con-
nections between biological entities and processes leads to
a very high branching factor, making blind search for paths
intractable.

To effectively read at this scale, we need to incorporate
methods for focused reading: develop the ability to pose
queries about concepts of interest and perform targeted, in-
cremental search through the literature for connections be-
tween concepts while minimizing reading documents that
are likely irrelevant.

For example, suppose a biologist is interested in what the
literature has to say about how protein Pi3k affects pro-
tein KTF. Figure 1 gives a schematic representation of what
the focused reading search might look like: given the ini-
tial seed query entities, Pi3k and KTF, focused reading re-

2https://www.ncbi.nlm.nih.gov/pmc/tools/
openftlist/

3https://tinyurl.com/bachman-oa
4This includes 5% from PMC author manuscripts.
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Figure 1. Evolution of search for the directed path that connects
two proteins during focused reading.

trieves a set of papers that mention both, extracts interac-
tions that connect additional entities to the seed entities,
and adds them to an expanding graph of connected enti-
ties. The first pass adds new entities around Pi3k and KTF
(within the dashed circles in Fig. 1), and a second pass ex-
pands the graph further (to include all entities within the
solid circle boundaries). Eventually two entities on the pe-
riphery of the expanding subgraphs are linked (the orange
direct edge in the figure) and focused reading returns the
complete path from Pi3k to KTF. The key research chal-
lenge is then: how can focused reading search in a way that
finds these paths while minimizing the number of papers
that need to be read?

In this paper we present what we believe is the first algo-
rithm for focused reading. We make the following contri-
butions:
(1) Present a general framework for a family of possible fo-
cused reading algorithms along with a baseline instance.
(2) Cast the design of focused reading algorithms in a re-
inforcement learning (RL) setting, where the machine de-
cides if it should explore (i.e., cast a wider net) or exploit
(i.e., focus reading on a specific topic).
(3) Evaluate our focused reading policies in terms of search
efficiency and quality of information extracted. The eval-
uation demonstrates the effectiveness of the RL method:
this approach found more information than the baseline we
propose, while reading fewer documents.

2. Related Work
The past few years have seen a large body of work on infor-
mation extraction (IE), particularly in the biomedical do-
main. This work is too vast to be comprehensively dis-
cussed here. We refer the interested reader to the BioNLP
community (Nédellec et al., 2013; Kim et al., 2012; 2009)
for a starting point. However, most of this work focuses on
entity/relation/event extraction given a document, not on
what documents to read given a goal. To our knowledge,
we are the first to focus on the latter task.

Reinforcement learning has been used to achieve state of
the art performance in several natural language process-
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Figure 2. Graph edge encoding the relation extracted from: mTOR
triggers cellular apoptosis.

ing (NLP) and information retrieval (IR) tasks. For ex-
ample, RL has been used to guide IR and filter irrelevant
web content (Seo & Zhang, 2000; Zhang & Seo, 2001).
More recently, RL has been combined with deep learning
with great success, e.g., for improving coreference resolu-
tion (Clark & Manning, 2016). Finally, RL has been used to
improve the efficiency of IE by learning how to incremen-
tally reconcile new information and help choose what to
look for next (Narasimhan et al., 2016), a task close to ours.
This serves as an inspiration for the work we present here,
but with a critical difference: Narasimhan et al. (2016) fo-
cus on slot filling using a pre-existing template. This makes
both the information integration and stopping criteria well-
defined. On the other hand, in our focused reading domain
there is no well-defined template: we do not know ahead of
time which new pieces of information are necessarily rele-
vant and must consider this in the context of our search.

3. Focused Reading
In this paper we consider focused reading for the biomed-
ical domain, and we focus on binary promotion/inhibition
interactions between bio entities. Thus, the IE component
constructs a directed graph, where vertices represent en-
tities participating in an interaction (protein, gene, gene
product, or other biological process), and edges repre-
sent directed activation interactions. Edge labels indicate
whether the controller entity has a positive (promoting) or
negative (inhibitory) influence on the controlled entity. Fig-
ure 2 shows an example edge in this graph. Importantly,
this graph is constructed on the fly, as the IE system is in-
crementally exposed to more papers.

We use REACH5, an open source IE system (Valenzuela-
Escárcega et al., 2015), to extract interactions from unstruc-
tured biomedical text. We couple this IE system with a
Lucene6 index of biomedical publications to retrieve pa-
pers based on queries about entity mentions in the text (as
discussed below).

Importantly, we essentially use IE as a black box7, and fo-
cus on strategies that guide what the IE system reads for a
complex information need. In particular, we consider the
scenario where a biologist (or other model-building pro-
cess) queries the literature about how one entity (source)

5https://github.com/clulab/reach
6https://lucene.apache.org
7Thus, our method could potentially work with any IE system.
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Algorithm 1 Focused Reading
1: procedure FOCUSEDREADING(S,D)
2: G← {{S,D}, ∅}
3: repeat
4: Σ ← ENDPOINTSTRATEGY(G)
5: (A,B)← CHOOSEENDPOINTS(Σ , G)
6: Q← CHOOSEQUERY(A,B,G)
7: (V,E)← LUCENE+REACH(Q)
8: EXPAND(V,E,G)
9: until ISCONNECTED(S,D) OR STOPCONDITIONMET(G)

10: end procedure

affects another (destination), where the connection is typi-
cally indirect (as in the example in Figure 1).

Algorithm 1 outlines the general focused reading algorithm
for this task. In the algorithm, S, D, A, and B repre-
sent individual entities, where S and D are the source and
destination entities in the user query. G is the graph of in-
teractions that is iteratively constructed during the focused
reading procedure, with V being the set of vertices (enti-
ties), and E the set of edges (connecting entities participat-
ing in an interaction). Σ is a strategy for selecting entities,
while Q is a Lucene query constructed in each iteration to
retrieve new papers to read.

The algorithm initializes the search graph to contain the
two unconnected entities as vertices: {S,D} (line 2). The
algorithm then enters into its central loop (lines 3 through
9). The loop terminates when one or more directed paths
connecting S to D are found, or when a stopping condi-
tion is met: either G has not changed since the previous
run through the loop, or after exceeding some number of
iterations through the loop (in this work, ten).

At each pass through the loop the algorithm grows the
search graph as follows:

1. The graph G is initialized with two nodes, the source
(S) and destination (D) in the user’s query, and no
edges (because we have not read any papers yet to un-
derstand what interactions exist).

2. Given the current graph, choose a strategy, Σ , for se-
lecting which entities to query next: exploration or
exploitation (line 4). In general, exploration aims to
widen the search space by adding many more nodes
to the graph, whereas exploitation aims to narrow the
search by focusing on entities in a specific region of
the graph.

3. Using strategy Σ , choose the next entities to attempt
to link: (A,B) (line 5).

4. Choose a query, Q: again, exploration or exploitation,
following the same intuition as with the entity choice
strategy (line 6). Here exploration queries retrieve a

wider range of documents, while exploitation queries
are more restrictive.

5. Run the Lucene query to retrieve papers and process
the papers using the IE system. The result of this call
is a set of interactions, similar to the interaction in Fig-
ure 2 (line 7).

6. Add the new interaction participant entities (vertices
V ) and directed influences (edges E) to the search
graph (line 8).

7. If the source and destination entities are connected
in G, stop: the user’s query has been satisfied. Stop
with a failure if G has not changed since the last run
through the loop, or we’ve gone through the loop 10
times. Otherwise, continue from step 2.

The central loop performs a bidirectional search in which
each iteration expands the search horizon outward from S
and D (as depicted in Figure 1). Algorithm 1 represents
a family of possible focused reading algorithms, differen-
tiated by how each of the functions in the main loop are
implemented. In this work, ISCONNECTED stops after a
single path is found, but a variant could consider finding
multiple paths, paths of some length, or incorporate other
criteria about the properties of the path. We next consider
particular choices for the inner loop functions.

4. Baseline Algorithm and Evaluation
The main functions that affect the search behavior of Al-
gorithm 1 are ENDPOINTSTRATEGY and CHOOSEQUERY.
Here we describe a baseline focused reading implementa-
tion in which ENDPOINTSTRATEGY and CHOOSEQUERY
are designed to attempt to find any directed path from S to
D as quickly as possible, that is, in as few passes through
the inner loop, which in turn should tend to minimize the
number of papers that must be read.

There are a variety of approaches to consider for how END-
POINTSTRATEGY can implement exploration versus ex-
ploitation strategies. For the baseline, we consider the fol-
lowing interpretations: exploration will involve selecting
entities that are more connected to other entities, and there-
fore more likely to select documents that introduce more
entities, while exploit will focus on entities that have been
introduced more recently to the graph under the intuition
that searching for what they are connected to may be more
likely to reveal a path between the fringes of the S and
D subgraphs. Either strategy has potential advantages for
finding a connecting path: exploration will retrieve more
potential paths, but as the cost of reading more papers,
while exploiting may more quickly connect the fringes, but
only if the current fringes are sufficiently close.
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Baseline Best RL Query Policy
# IR queries 573 433 25% decrease

Unique papers read 26,197 19,883 24% decrease
# Paths recovered (out of 289) 189 (65%) 198 (68%) 3% increase

Table 1. Results of the baseline and RL Query Policy for the focused reading of biomedical literature.

For the baseline, we fix the ENDPOINTSTRATEGY to al-
ways explore, under the intuition that search will intro-
duce more entities earlier, and therefore be more likely to
connect quickly; although this might be at the cost of po-
tentially reading more than needed, it is still better than
exhaustively reading the entire corpus. Under this strat-
egy, CHOOSEENDPOINTS chooses entities (A,B) that cur-
rently have the most inward and outgoing edges (i.e., high-
est vertex degree) in the current state of G (disallowing
choosing an entity pair used in a previous query).

Now that we have our candidate entities (A,B), our next
step is to formulate how we will use these entities to re-
trieve new papers. Here we consider two classes of queries:
(1) we restrict our query to only retrieve papers that simul-
taneously mention both A and B, and therefore is more
likely to retrieve a paper with a direct link between A and
B (exploit), or (2) we retrieve papers that mention either
A or B, therefore generally retrieving more papers that
will introduce more new entities (explore). For our base-
line, where we are trying to find a path between S and D
as quickly as possible, we implement a greedy CHOOSE-
QUERY: first try the conjunctive exploitation query; if no
documents are retrieved, then “relax” the search to the dis-
junctive exploration query.

4.1. Data Set

To evaluate the baseline, we constructed a data set based
on a collection of papers seeded by a set of 132 entities
that come from the University of Pittsburgh’s Dynamic
Cell Environment (DyCE) model, a biomolecular model
of pancreatic cancer (Telmer et al., 2017). These entities
are known to participate in protein signaling pathways that
drive pancreatic cancer. Using these entities, we retrieved
70,719 papers that mention them. We processed all papers
using REACH, extracting all of the interactions mentioned,
and converted them into a single graph. The resulting graph
consisted of approximately 80,000 vertices, 115,000 edges,
and had an average (undirected) vertex degree of 24. We
will refer to this graph as the REACH graph, as it repre-
sents what can be retrieved by REACH from the set of 70K
papers. It is important to note that our focused reader has
access to this graph only during training, and not at eval-
uation time. During testing, the focused reader must dy-
namically reconstruct the subset of the graph necessary to
answer the given information need.

We then conducted an exhaustive shortest path search for

directed paths between all the entity pairs that are known
to be connected in a signaling pathway (according to the
cancer researchers) and found a total of 789 entity pairs
connected by a directed path in the REACH graph. We se-
lected 289 of these entity pairs perform an initial evaluation
of our baseline algorithm, described in the next section. (In
the more extensive evaluation in Section 5 we partition all
789 entity pairs into three parts to perform cross valida-
tion.)

4.2. Baseline Results

We ran this baseline focused reading algorithm on each of
the 289 pairs of entities, in each case attempting to recover
a directed path from one to the other. The results are sum-
marized in the middle column of Table 1: by issuing a total
of 573 queries, the baseline read 26,197 papers out of the
total 70,719 papers (37% of the corpus), in order to recover
189 of the paths (65% of the paths that could be found us-
ing this corpus).

4.3. Baseline Error Analysis

Although the baseline recovers paths between nearly two
thirds of the test pairs, we would like to understand the
conditions under which it failed to find the remaining paths
that we know exist within the REACH graph (Section 4.1).
We performed an error analysis on a random subsample of
82 of the test pairs where the baseline failed to find a path
– in all of these cases, the baseline algorithm reached the
limit of 10 iterations through the inner search loop without
finding a path. Table 2 presents a summary of the types of
errors that caused the baseline implementation to fail.

Error cause Frequency
NER error 12
Ungrounded ID 19
Empty query result 20
Premature finish 4
QUERYCHOICE exploiting too early 5
Poor choice of endpoint entities 21

Table 2. Baseline error causes

We detail these error types next:

NER error and Ungrounded ID represent cases where ei-
ther the reader made a mistake in labeling an entity, or the
entity grounding component, which attempts to link each
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extracted named entity to a knowledge base of known en-
tities, e.g., Uniprot for protein names,8 does not currently
cover the entity name.9 These kinds of errors can be ad-
dressed as part of improvements to the IE component but
are out of the scope of focused reading.

When the algorithm finished prematurely, nothing inher-
ently incorrect happened during the search process, but the
search reached the maximum number of iterations allowed.
We suspect that letting the search continue for a few more
iterations would have found an answer.

QUERYCHOICE exploiting too early occurs when, in the
cascading strategy, the most restrictive (i.e., exploitation)
IR query succeeds but returns very few documents in the
first couple iterations and the information contained in the
retrieved documents already existed in the graph. In this
case, the exploitative search was too restrictive and resulted
in no new information being added. This could have been
mitigated if the algorithm chose to do a less restrictive
query (explore) early on the process to retrieve a larger set
of documents and therefore added more information.

Poor choice of endpoint entities is the problem in which
both endpoint entities are correctly grounded, but the
retrieved set of documents does not add new informa-
tion to G. In this case, the ENDPOINTSTRATEGY and
CHOOSEENDPOINTS procedures should have selected dif-
ferent entities to try to connect.

In summary, the baseline error analysis suggests that, while
focused reading is indeed possible, choosing when to ex-
plore versus when to exploit in QUERYCHOICE and select-
ing endpoint entities (a function of ENDPOINTSTRATEGY
and CHOOSEENDPOINTS) is not trivial and leaves room
for improvement.

5. Reinforcement Learning for Focussed
Reading

From the above analysis, we found that a significant num-
ber of the failures might have been avoided had the algo-
rithm used a different strategy for ENDPOINTSTRATEGY
and/or CHOOSEQUERY. Informally, the baseline model
chose to exploit when it should have explored, or viceversa.
The conditions for making different choices depend on the
current state of G, and earlier query behavior can affect
later query opportunities, making this an iterative decision
making problem and a natural fit for a RL formulation.

Inspired by this observation, we consider RL for finding

8http://www.uniprot.org
9This happens in the current reader because it uses a condi-

tional random field model for named entity recognition, which
sometimes introduces false positives that do not exist in the rele-
vant knowledge bases.

a better policy for ENDPOINTSTRATEGY and CHOOSE-
QUERY. We consider a space of four possible actions; each
“action” must include both an endpoint entity selection and
a query choice, but there are two (explore/exploit) options
for each:

• In the context of choosing the endpoints, either ex-
ploit, which restricts the choices only to the most re-
cently added vertices, or explore, which considers the
highest ranked vertices across the whole graph. For
example, suppose focused reading is in iteration 8,
there is an entity, α, that was introduced in iteration
1 and is connected to 5 other entities in the current
search graph, and another entity, β, that was intro-
duced in the previous iteration (iteration 7) and is con-
nected to 2 other entities. In this case exploit would
select β, while explore would select α.

• In the context of querying, exploit produces a conjunc-
tive query, whereas explore uses a wider, disjunctive
query. For example, if building a query to retrieve
documents about entities α and β, exploit will require
that the documents mention both α AND β in the
same document, while explore will retrieve any docu-
ments that mention either α OR β.

Altogether, the four possible actions are then: (1) Endpoint
Explore + Query Explore, (2) Endpoint Exploit + Query
Explore, (3) Endpoint Explore + Query Exploit, and (4)
Endpoint Exploit + Query Exploit.

Table 3 summaries the features that are used to describe the
state of the search. Note that the features include represen-
tation of the history of the search (e.g., how many times
the algorithm used a particular entity to search), as well as
the state of the graph (e.g., how well connected two entities
are).

With the goal of recovering paths as quickly as possible, we
provide a reward of +1 if the algorithm successfully finds
a path, a reward of −1 if the search fails to find a path, and
assess a “living reward” of −0.05 for each step during the
search, to encourage trying to finish the search as quickly
as possible.

Based on the above framing of focused reading as a RL
problem, we evaluated different configurations of RL-
based focused reading: (1) RL All Actions learns a policy
for choosing among all four actions combinations; (2) RL
Endpoint Only fixes the query strategy to be identical to the
baseline but learns a policy for selecting between endpoint
explore and exploit; and (3) RL Query Only fixes the end-
point selection strategy to be identical to the baseline but
learns a policy for selecting between query choice explo-
ration and exploitation.

Since our interest is ultimately in improving the efficiency

http://www.uniprot.org
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Feature Name Description
Iteration Current iteration # of the search

PA query log count How many time has PA been used in previous queries
PB query log count How many time has PB been used in previous queries
Same component Are PA and PB in the same connected component of G?

Iteration of introduction for PA Which iteration first introduced PA
Iteration of introduction for PB Which iteration first introduced PB

PA Rank PA’s rank by total degree in G
PB Rank PB’s rank by total degree in G

Table 3. Features that describe the state of search in the RL-based focused reading algorithm. “PA” stands for “participant A”, i.e.,
the latest entity chosen from the source subgraph. “PB” stands for “participant B”, i.e., the latest entity chosen from the destination
subgraph. “Iteration” indicates the number of times focused reading has gone through the central loop in Algorithm 1.

Fold 1 Fold 2 Fold 3
Paths Queries Papers Score Paths Queries Papers Score Paths Queries Papers Score

RL Query Only 189 398 20,151 0.93 182 392 19,682 0.92 207 358 18,107 1.14
RL All Actions 189 412 20,791 0.90 183 415 19,884 0.92 208 388 19,355 1.07
Baseline 180 459 25,550 0.70 176 500 26,270 0.66 192 462 25,250 0.76

Table 4. 3-fold cross validation results comparing two RL focused reading models against the baseline.

of focused reading search, that is, recovering the most paths
while minimizing the number of papers read, we define the
performance score as the ratio # paths

# papers ; a higher scores is
better as it means we are generally being finding more rel-
evant paths in the papers we retrieved.

We trained the three different configurations of RL focused
reading using SARSA and Q-Learning (Sutton & Barto,
1998). As the number of unique states is large, we used
a linear approximation of the q-function. Once the policy
converged during training, we fixed the linear q-function
estimate and used this as the fixed policy for selecting
queries at evaluation time.

We evaluated the variations of RL Policies on the same
data set of entity pairs used to evaluate the baseline as
well as performed a three-fold cross validation where two
folds were used for training and one for testing; each fold
contained exactly 263 entity pairs for which a path can be
found in the paper corpus. Table 4 reports the results of the
most intersting RL policies and baseline for the three-fold
cross validation. These results show that the RL Query only
policy, which fixes the Endpoint selection strategy to explo-
ration while learning the query strategy, generally performs
the best. (We did consider two variants of the RL Endpoint
Only policy: one that chooses query exploit only, which
was found to do worse than the baseline, and query explore
only, which does better than the baseline but worse than
the other two policies.) Table 1 compares the results for
the baseline under the initial evaluation set (described in
Sec. 4.1) against the RL Query Only, and here we see that
compared to the baseline, the RL Query Policy resulted in
a 25% reduction in the number of queries that were run,
leading to a 24% reduction in the number of papers that

were read, while at the same time increasing the number of
paths recovered by 3%.

We tested the statistical significance of the difference in re-
sults between the baseline and the best RL policy on the
testing dataset by performing a bootstrap resampling test.
Our hypotheses were that the policy reads fewer papers,
makes fewer queries and finds more paths. The resulting
estimated p-values for fewer papers and fewer queries were
found to be near 0, and p < 0.003 for finding more paths.

5.1. Ablation Test for RL State Features

We performed a feature ablation study to assess what con-
tribution features make to learning efficacy. The results are
summarized in Table 5. The features are clustered into five
different groups. We measured the impact of removing one
feature group at a time. The table highlights that remov-
ing the Entity introduction feature (keeping track of which
iteration a biological entity is first introduced to the graph
during search) has a small penalty in the amount of paths
recalled, but achieves the highest ratio of paths found to
papers read score. Individually removing most of the other
features had a negative impact, indicating that each is in-
deed important to model both the state of the graph and
the history of the search. All in all, using all the features
achieves a good balance across the three metrics reported in
the table. This suggests that the design of relevant features
for RL-based focused reading is not trivial and deserves
further attention. We leave this as future work.
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All − Same − Ranks − Iteration − Query − Entity
features component number counts introduction

Paths found 198 201 202 199 200 196
Papers read 19,883 20,531 20,463 19,893 20,918 17,936

Queries made 433 467 469 487 484 403
Score 99.58 97.90 98.71 100.04 95.61 109.28

Table 5. Ablation test over the features that encode the state of the RL policies.

Error cause Freq.
Empty query result 12

Ungrounded participant 4
Low yield from IE 2

Table 6. Error analysis for the best RL-based focused reading pol-
icy.

5.2. Error Analysis of the RL Policy

Finally, we analyzed the execution trace of eighteen (20%
of the errors) of the searches that failed to find a path un-
der RL. The results are summarized in Table 6. The table
shows that the main source of failures is receiving no re-
sults from the information retrieval query, i.e., when the
IR system returns zero documents for the chosen query.
This is typically caused by over-constrained queries. The
second most common source of failures was ungrounded
participants, i.e., when at least one of the selected partici-
pants that form the query could not be linked to our protein
knowledge base. This is generally caused by mistakes in
our NER sequence model, and also tends to yield no results
from the IR component. Finally, the low yield from IE sit-
uation appears when the the information produced through
machine reading in one iteration is scarce and adds no new
components to the interaction graph, again resulting in a
stop condition.

6. Conclusions and Future Work
We introduced a framework for the focused reading of
biomedical literature, which is necessary to handle the data
overload that plagues even machine reading approaches.
We have presented a general focused reading algorithm
family, an intuitive baseline algorithm instance from that
family, and formulated a reinforcement learning approach
to search for better policies for choosing which entities to
use and how to construct a query given entities. Informally,
the RL approach learns when focused reading should ex-
plore (widen its search) or exploit (narrow the search). We
demonstrated that the RL-based focused reading is more ef-
ficient than the baseline (e.g., reading 24% fewer papers),
while successfully finding 3% more target paths.

There are many exciting directions to take this work. First,
there are many more potential ENDPOINTSSTRATEGY and
QUERYCHOICE actions to explore, along with additional
search state information that can be incorporated. Sec-
ond, we plan to be more flexible with the query actions.
Instead of facing a binary action choice (explore vs. ex-
ploit), we will use a battery of choices where the queries
allow flexibility in the number of words between the enti-
ties of interest and on the document retrieval limits, which
could lead us to further improvements to the number of pro-
cessed papers. Third, we will expand focused reading to ef-
ficiently search for multiple paths between the source entity
(S) and destination (D). Finally, we must incorporate ad-
ditional constraints into the search itself; biologists are in-
terested in paths that occur in particular biological contexts
(e.g., healthy versus cancer pancreatic cells), and paths that
help explain specific kinds of influence. These constraints
should be incorporated into the ranking of candidate search
strategies.
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