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Abstract
While neural networks produce state-of-the-
art performance in several NLP tasks, they gen-
erally depend heavily on lexicalized informa-
tion, which transfer poorly between domains.
We present a combination of two strategies to
mitigate this dependence on lexicalized infor-
mation in fact verification tasks. We present
a data distillation technique for delexicaliza-
tion, which we then combine with a model
distillation method to prevent aggressive data
distillation. We show that by using our solu-
tion, not only does the performance of an ex-
isting state-of-the-art model remain at par with
that of the model trained on a fully lexicalized
data, but it also performs better than it when
tested out of domain. We show that the tech-
nique we present encourages models to extract
transferable facts from a given fact verification
dataset.

1 Introduction

Neural networks have matched, and in several cases
even surpassed, human performance in several su-
pervised learning problems. However, such suc-
cesses come at a cost. These neural networks typ-
ically need a great deal of human support in the
form of man power required for curating domain
specific datasets. Further, it has been shown (Gu-
rurangan et al., 2018; Poliak et al., 2018; Thorne
and Vlachos, 2020) that several such models de-
pend heavily on certain statistical nuances found in
these datasets, information that transfers poorly be-
tween domains. The ideal solution to this problem
is the creation of models that do not rely on such
statistical nuances in the given datasets, but instead
encode the true underlying semantics of the task,
that are in turn transferable to other domains.

Fact verification is the task of verifying the truth-
fulness of claims by estimating their assertions
against credible evidences. Specifically, given a
pair of claim and evidence statements, they have to
be classified into one of the 3 class labels, agree,

disagree, or neutral. Fact verification datasets,
which often constitute real life news articles, have
the added advantage of being used in practical prob-
lems such as fake news detection. More recently,
several neural network models (Nie et al., 2020; Liu
et al., 2020, inter alia) built on top of the transform-
ers (Vaswani et al., 2017), have achieved excellent
performance in fact verification tasks.

However these methods are not devoid of the
shortcomings that besiege other neural networks
in natural language processing tasks. It has been
shown that these approaches depend heavily on lex-
ical artifacts that transfer poorly between domains
(Panenghat et al., 2020; Karimi Mahabadi et al.,
2020; Schuster et al., 2019). For example, Suntwal
et al. (2019) observed that out of all the statements
containing the phrase ‘American Author’ in the
FEVER dataset (Thorne et al., 2018), 91% of them
belonged to one class label. Further, they demon-
strated that neural methods put unnecessary em-
phasis on such lexical artifacts, which limits their
transfer to other fact verification datasets such as
the Fake News Challenge (FNC) (Pomerleau and
Rao, 2017).

To mitigate the dependency on such artifacts,
Suntwal et al. (2019) proposed a data distilla-
tion (or delexicalization) approach, which replaces
some lexical artifacts such as named entities with
their type and a unique id to indicate occurrence
of the same artifact in claim and evidence. While
promising, the risk of this direction is discarding
too much information through the delexicalization
process. For example, replacing China with its
named entity (NE) type (COUNTRY) in an evidence
sentence discards the fact that the text is about an
Asian country which might be relevant in the con-
text.

In this work we propose a solution that combines
data distillation with model distillation to reduce
the risk of over delexicalization. In particular, we
introduce a teacher-student architecture inspired



from that of (Tarvainen and Valpola, 2017). In our
architecture, the student model is trained on delexi-
calized data (to take advantage of data distillation),
but is also guided by a teacher trained on the origi-
nal lexicalized data (as a form of model distillation)
to mitigate the possibility of discarding too much
lexical information. The contributions of our work
are as follows:

(1) To our knowledge, we are the first to explore
the combination of data and model distillation as
a strategy to improve domain transfer of fact ver-
ification methods. Note that while our training
process is more costly due to the combination of
the student and teacher models, the output is a sin-
gle individual model (the student), which has the
same runtime cost as an individual classifier. Fur-
ther, our approach is classifier agnostic, and can be
coupled with any fact verification method.

(2) We investigate the domain transfer of our
method between two fact verification tasks (FNC
and FEVER), where we train on one and test on the
other. For these experiments we couple our method
with the state of the art fact verification approach
based on transformers (Vaswani et al., 2017). Our
results indicate that our method achieves a cross-
domain accuracy of 73.17% in one of the experi-
ments and 74.58% in the other, outperforming other
methods that do not use the data distillation-model
distillation combination.

All the software for our proposed ap-
proach is open-source and publicly avail-
able on GitHub at: https://github.
com/clulab/releases/tree/master/
naacl2021-student-teacher.

2 Methodology

2.1 Data distillation

Suntwal et al. (2019) demonstrated that named en-
tities are most prone to overfitting for fact verifi-
cation. Based on this observation, we also replace
named entities with their type (and a unique id).
However, unlike their work, we have observed in
early experiments that more fine-grained NE types
yield better models. In particular, we utilize the
FIGER named entity recognizer (NER) (Ling and
Weld, 2012) to detect and replace named entities
with their most specific label returned by the NER.
Further, we also process the text with the CoreNLP
NER (Manning et al., 2014) to delexicalize addi-
tional NER classes not covered by FIGER. We

include in this list mentions of date, time, money,
number, and ordinal.

Claim Evidence

Plain
text

Mark Zuckerberg
made the Forbes list
of The World’s Most
Powerful People

In December 2016,
Zuckerberg was ranked
10th on Forbes list
of The World’s Most
Powerful People.

Distilled
text

personC1 made the
Forbes list of writ-
ten_workC1’s Most
Powerful People .

In December 2016, per-
sonC1 was ranked 10th
on Forbes list of writ-
ten_workC1 ’s Most
Powerful People.

Table 1: The claim and evidence before and after the
data distillation process.

Next, we align the named entities between the
claim and the evidence. That is, any named en-
tity that appears first in the claim is assigned an
id postfixed with #Cn; if an entity mention ap-
pears only in evidence then it is postfixed with
#En, where C indicates that the entity appeared
first in the claim, E indicates that the entity first
appeared in the evidence, and n indicates the nth
observed entity. Table 1 shows an example output
for this data distillation process.

2.2 Model distillation

We propose a model distillation strategy to miti-
gate the risk of overly aggressive data distillation.
In particular, we introduce a teacher-student archi-
tecture (shown in figure 1) (Hinton et al., 2015;
Tarvainen and Valpola, 2017; Laine and Aila, 2016;
Sajjadi et al., 2016), where the teacher is trained
on the original, lexicalized data, and the student is
trained on the data delexicalized with the approach
described in the previous sub-section.

The intuition behind our model distillation ap-
proach is that the proposed teacher model will “pull”
the student model towards the original underly-
ing semantics, which are partially obscured to the
student due to the delexicalization of its training
data. More formally, this is captured through a con-
sistency loss that minimizes the difference in pre-
dicted label distributions between the student and
the teacher. The consistency loss is implemented
as a mean squared error between the label scores
predicted by the student and the teacher. Addition-
ally, both the student and the teacher components
include a regular classification loss on their respec-
tive data, which is implemented using cross entropy.
This encourages both the student and the teacher to

https://github.com/clulab/releases/tree/master/naacl2021-student-teacher
https://github.com/clulab/releases/tree/master/naacl2021-student-teacher
https://github.com/clulab/releases/tree/master/naacl2021-student-teacher


Figure 1: The teacher-student architecture for model
distillation.

learn as much as possible from their own views of
the data.

2.3 Classifiers

We experiment with a state-of-the-art method for
fact verification, transformers (Vaswani et al.,
2017), which has achieved state-of-the-art results
not only in the task of fact verification but in several
other NLP tasks. Specifically, we use the PyTorch
implementation of BERT (Devlin et al., 2019) from
huggingface (Wolf et al., 2019).

We experimented with several pre-trained BERT-
base models and found that the one which gave the
highest performance was the BERT-cased model
when used with a sequence length of 128. Further,
to distinguish the vocabulary of the delexicalized
data from the lexicalized data we augment the base
vocabulary of BERT with tokens specific to the
delexicalized data. For example, as mentioned be-
fore, during delexicalization we use personC1
to denote the first occurence of the named entity
in the claim paragraph. However, to ensure that
the BERT BasicTokenizer does split personC1
into person and C1, we added the token “C1” to
the BERT vocabulary. Tokenizers for each of the
lexicalized and delexicalized dataset are initially
created using BERT BasicTokenizer, but then use
the aforementioned vocabulary created for the spe-
cific data type.

3 Experiments

3.1 Data
We use two distinct fact verification datasets for
our experiments, FEVER (Thorne et al., 2018) and
FNC (Pomerleau and Rao, 2017).

The Fact Extraction and Verification
(FEVER) dataset: This dataset consists of
145,449 data points each having a claim and
evidence pair. These claim-evidence pairs typically
contain one or more sentences compiled from
Wikipedia using an information retrieval (IR) mod-
ule and are classified into three classes: supports,
refutes and not enough info. The evidence for
data points that had the gold label of not enough
info were retrieved (using a task-provided IR
component) either by finding the nearest neighbor
to the claim or randomly. Even though the training
partition of the FEVER dataset was publicly
released, the gold test labels used in the final
shared task were not. We therefore built our own
test partition by dividing the randomized training
partition into 80% (119,197 data points) and 20%
(26,252 data points).

The Fake News Challenge (FNC) dataset:
This dataset comprises claim-evidence pairs that
were divided into four classes, agree, disagree, dis-
cuss and unrelated. These claim-evidence pairs
were created using the headlines and content sec-
tion of real news articles respectively. While the
training partition of the publicly available dataset
comprised 49,972 data points, the testing partition
had 25,413 data points. We further divided the
training partition into 40,904 data points for train-
ing and 9,068 data points for development.

Cross-domain labels: In order to evaluate the
proposed methods in a cross-domain setting, we
modified the label space of the source domain to
match that of the target domain. In particular, when
training on FEVER and testing on FNC, the data
points in FEVER that belong to the class supports
were relabeled as agree, and those in refutes as
disagree. Further, the data points belonging to
the third class not enough info (NEI) were divided
into discuss and unrelated. Specifically, of all the
claim-evidence pairs that belonged to the NEI class,
the ones whose evidences were retrieved using the
nearest neighbor technique component of FEVER,
were labeled to now belong to the discuss class
since they were more likely to be topically relevant
to the claim. The rest were assigned the label un-
related. Similarly in the other direction, i.e., when



Configuration

Train Domain FEVER FEVER FNC FNC
Eval Domain FEVER FNC FNC FEVER

BERT Lex 94.15% 68.93% 96.39% 73.21%
BERT Delex (OA-NER) 82.31% 53.59% 65.85% 46.47%
BERT Delex (OA-NER + SS) 75.26% 46.71% 45.51% 51.77%
BERT Delex (FIGER) 91.97% 54.27% 96.22% 62.99%
BERT TS (FIGER) 89.42% 73.14%* 98.89% 74.58%*

Table 2: In-domain and cross-domain accuracies for various methods. All scores reported are averaged across
three random seeds. “BERT Lex” is the stand alone model trained on the original lexicalized data; “BERT Delex”
is the standalone model trained on delexicalized data. OA-NER delexicalizes the data using the Overlap Aware
Named Entity Recognizer; SS uses Super Sense tags — two delexicalization techniques mentioned in Suntwal et al.
(2019). FIGER delexicalizes the data using a fine-grained named entity recognizer (Ling and Weld, 2012). ; and
“BERT TS” denotes the student in the proposed teacher-student architecture. * indicates that the corresponding
result is significantly better than its baseline (“BERT lex” in the same column), under a bootstrap resampling test
with 1,000 samples, and p-value < 0.035.

training on FNC and testing on FEVER, the data
points that had the labels of discuss and unrelated
were combined and given the label of not enough
info.

3.2 Settings

In all the experiments, the performance of the un-
derlying model on the respective lexicalized data
is considered as the baseline. For example when
training a teacher-student model on FEVER, the
baseline is the model that was trained using the
original text of the FEVER dataset. In the baseline
model, we use the default hyper parameters set in
the huggingface repository (Wolf et al., 2019).

We focus our analysis on cross-domain evalua-
tion, i.e., we train all models on one dataset (e.g.,
FEVER) and evaluate their accuracy on the other
dataset (e.g., FNC).

3.3 Results

Table 2 summarizes the results of our experiments
with various models tested in-domain and cross-
domain. All scores reported are averaged across
three random seeds. We use ‘BERT Lex’ as the
baseline model which is the stand alone model
trained on the original lexicalized data. ‘BERT
Delex’ denotes the standalone models trained on
delexicalized data, along with the corresponding
delexicalization techniques used. OA-NER uses
the Overlap Aware Named Entity Recognizer for
delexicalization of data and SS uses Super Sense
tags (Suntwal et al., 2019). FIGER delexicalizes
the data using a fine-grained named entity recog-
nizer (Ling and Weld, 2012). ‘BERT TS’ denotes
the student in the proposed teacher-student architec-

ture. Since the delexicalization used by the best per-
forming ‘BERT Delex’ models in the cross-domain
setting was FIGER, we chose it as the preferred
delexicalization technique for this student.

Note that the lexicalized models, which perform
well in-domain, tend to transfer poorly to a new do-
main. For example, the BERT model trained on lex-
icalized FEVER data, gave an accuracy of 94.15%
when tested on FEVER, but reduced to 68.93%
when tested on FNC. This verifies our findings that
the signal the model learns from unmasked text
does not generalize well.

In contrast, in all our experiments, the student
models trained under the teacher-student architec-
ture outperform the other models trained using lex-
icalized data, in a cross-domain setting. For ex-
ample, the student model of the teacher-student
architecture trained on FEVER, gave an accuracy
of 89.42% when tested on FEVER and an accuracy
of 73.14% when tested on FNC. Similarly in the
other direction, when the same model was trained
on FNC, it gave an accuracy of 98.89% when tested
on FNC, and an accuracy of 74.58% when tested
on FEVER. Note that in both the directions the ac-
curacy of the student model of the teacher-student
architecture surpasses the corresponding accuracy
of the model trained on lexicalized data in a cross-
domain setting. These experiments were repeated
under a bootstrap resampling test with 1,000 sam-
ples, and p-value < 0.035 to ensure statistical sig-
nificance.

3.4 Discussion

We believe that the improved performance of the
student model in the TS architecture is due to the



fact that the TS architecture provides additional in-
formation over the ground labels. The key addition
of our TS approach is that the delexicalized student
learns to mimic the label probability distributions
of the teacher through the consistency loss. As
discussed earlier, we conjecture that this pulls the
student model closer to the teacher. Another possi-
ble interpretation is that the model distillation has
a regularization effect since the consistency loss
essentially averages the behavior of both models.

Importantly, our results indicate that too much
delexicalization risks discarding useful information.
We believe this is why the standalone delexicalized
model performs worse out of domain, and why
the TS delexicalized student performs better. Un-
derstanding how much delexicalization to apply
given a task opens up interesting avenues for future
research. Nevertheless, overall this paper demon-
strates that data distillation and model distillation
can be combined as a strategy to improve domain
transfer of fact verification methods.

Lex TS Student
Apple year
year said

Rivers country
said person

Islamic according
State organization

according news
says Islamic

Watch engineer
report actor

Table 3: Top 10 tokens with the highest attention
weights by each of the trained models. ‘Lex’ is the
stand alone model trained on the original lexicalized
data and ‘TS Student’ denotes the student in the pro-
posed teacher-student architecture.

Lastly, we also inspected the word-level atten-
tion weights (Bahdanau et al., 2014) to further un-
derstand what these models are learning. Specifi-
cally, we analyze the weights assigned by the last
attention head in the last layer of the respective
transformer models. Table 3 shows the tokens that
were assigned highest weights by the model trained
on lexicalized data and the teacher-student model.1

It can be seen that the tokens that were given the
highest weights by the model trained on lexical-
ized data contain more named entities (e.g., Apple,
State). This suggests potential overfitting, since the
specific named entities should not be relevant for

1Stop words and other BERT specific tokens like [SEP],
[CLS], [PAD], etc., are removed from this list.

the fact verification task.
On the other hand, the tokens that were given the

highest weights by the teacher-student model con-
tain more generic named entity labels (e.g., country,
person). Also we found that out of all the attention
weights assigned by the model trained on lexical-
ized data, 15.60% were given to named entities.
Further, in the TS student model only 7.44% was
assigned to named entity labels. These findings
demonstrate that by using the data distillation and
model distillation techniques we are able to reduce
the importance that models place on lexical arti-
facts. This not only helps them achieve accuracies
at par with their counterparts trained on plain text
data in an in-domain setting, but also outperform
them in a cross-domain setting.

4 Conclusion

We present a new strategy to improve domain trans-
fer of fact verification methods, which combines
data distillation and model distillation. We show
that the performance of existing state-of-the-art
models degrades significantly on a cross-domain
setting, hence motivating the necessity of robust
data distillation techniques such as delexicalization
to minimize overfitting on lexical artifacts. We
further combine delexicalization with a teacher-
student architecture as a form of model distillation
to reduce the risk of over-delexicalization. We hope
that this solution will encourage the development of
architectures capable of reducing the dependency
of models on lexical artifacts in an effort to learn
domain transferable knowledge in the task of fact
verification.
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