
Best Practices for Implementing FAIR
Vocabularies and Ontologies on the Web

Daniel Garijo1r0000´0003´0454´7145s and
Maŕıa Poveda-Villalón2r0000´0003´3587´0367s

1 Information Sciences Institute, University of Southern California
dgarijo@isi.edu

2 Ontology Engineering Group, Universidad Politécnica de Madrid
mpoveda@fi.upm.es

Abstract. With the adoption of Semantic Web technologies, an increas-
ing number of vocabularies and ontologies have been developed in differ-
ent domains, ranging from Biology to Agronomy or Geosciences. How-
ever, many of these ontologies are still difficult to find, access and un-
derstand by researchers due to a lack of documentation, URI resolving
issues, versioning problems, etc. In this chapter we describe guidelines
and best practices for creating accessible, understandable and reusable
ontologies on the Web, using standard practices and pointing to exist-
ing tools and frameworks developed by the Semantic Web community.
We illustrate our guidelines with concrete examples, in order to help
researchers implement these practices in their future vocabularies.

Keywords: Ontology metadata · Ontology publication · Ontology ac-
cess · FAIR principles · Linked Data principles.

1 Introduction

In the last decade, a series of initiatives for open data, transparency and open
science have led to the development of a myriad of datasets and linked Knowl-
edge Graphs on the Web.3 Ontologies and vocabularies have been developed
accordingly to represent the contents of these datasets and Knowledge Graphs
and help in their integration and linking. However, while significant effort has
been spent on making data Findable, Accessible, Interoperable and Reusable
(FAIR) [18], ontologies and vocabularies are often difficult to access, understand
and reuse. This may be due to several reasons, including a lack of definitions
of ontology classes and properties; deprecated or unavailable imported ontolo-
gies, non-resolvable ontology URIs, lack of examples and diagrams in the docu-
mentation, or having scientific publications describing an ontology without any
reference to its implementation.

The scientific community has started to acknowledge the need for ontologies
to be properly documented, versioned, published and maintained following the

3 https://lod-cloud.net/

https://lod-cloud.net/

2 Garijo and Poveda-Villalón

Linked Data Principles [6] and adapting the FAIR principles for data [8]. But
these recommendations do not include guidelines on how to implement them for a
target vocabulary. In this chapter we address this issue by describing how to make
an ontology or vocabulary comply with the FAIR principles, including examples
summarizing best practices from the community and our own experience; and
pointing to popular existing tools and frameworks.

Our guidelines are aimed at ontology engineers, and therefore the chapter is
structured following an ontology development process: Section 2 describes design
decisions to be considered when creating an ontology URI (naming conventions,
versioning, permanent URIs); Section 3 describes how to create a documentation
that is easy to reuse and understand by others (with minimum metadata and
diagrams); Section 4 illustrates how to make an ontology accessible and findable
on the Web; Section 5 points to existing end-to-end frameworks that support the
ontology publication process; and Section 6 concludes our chapter. We consider
the design and development of an ontology out of the scope of this chapter, as
it has been covered by existing methodologies (e.g., LOT4 or NeOn [14]).

2 Accessible Ontology URI Design

Ontologies are digital artifacts, and therefore they should follow the Linked Data
Principles,5 and use a URI namespace under control of its authors. The rationale
is simple: only in a domain under our control we will be able to serve the right
serialization of our ontology.

When creating an ontology, it is also important to think carefully about its
name, namespace prefix and URI design. Well engineered ontologies are costly
to produce, and therefore they should be accessible to other potential users (e.g.,
by avoiding complex URIs) and easy to differentiate from existing vocabularies.

In this section we describe our proposed best practices for designing URIs for
ontologies to make them unique, easy to remember, and easy to maintain. We
acknowledge that naming conventions may be subjective, but these practices
reflect our experience in ontology development over a wide range of domains
(smart cities, open science, meteorology, neuroscience, etc.) and therefore provide
a good reference for others. We divide our guidelines in five main key points
for accessible ontology URI design: how to select a name and prefix (Section
2.1), whether to use hash or slash namespaces (Section 2.2), whether to use
opaque URIs (Section 2.3), how to incorporate semantic versioning in an ontology
(Section 2.4) and how to make an ontology URI permanent (Section 2.5).

For illustrating purposes, we will be using an example ontology throughout
this chapter, with the following URI: https://w3id.org/example#.

2.1 Ontology name and namespace prefix

The name and prefix of an ontology are in most cases related to its application
domain. Short and simple names will help others remember your ontology

4 https://lot.linkeddata.es/
5 https://www.w3.org/DesignIssues/LinkedData.html

https://w3id.org/example#
https://lot.linkeddata.es/
https://www.w3.org/DesignIssues/LinkedData.html

Best Practices for FAIR Vocabularies 3

easily. An extended practice for prefixes is to use acronyms to abbreviate the
name of longer ontologies, as in “The Data Catalog Ontology”6 (with prefix
dcat) or the “Friend of a Friend Ontology”7 (with prefix foaf).

Another aspect to consider when designing the name of your ontology is
to avoid overlapping with other existing vocabularies. While it is possible to
overload existing prefixes by assigning them a different URI, this often confuses
potential re-users that are already familiar with the state of the art. A good strat-
egy to prevent this problem is to look for existing prefixes in common vocabulary
registries such as prefix.cc,8 Linked Open Vocabularies (LOV) [15] or Bioportal
[17]. In our example ontology, by doing a quick search in LOV and Bioportal,
we can see that our example ontology URI (https://w3id.org/example) is not
being used. However, the prefix “example” has already been registered to refer to
“example.org”, a namespace defined to create sample URIs. Therefore we decide
on exo (derived from example ontology) as our namespace prefix.

2.2 Hash versus slash URIs

When designing the URI of an ontology, it is important to determine whether
the trailing element will be a hash (“#”) or a slash (“/”). On the one hand,
using a hash makes serving the ontology easier,9 as the client looking at the
URI strips only the part of the URI before the hash symbol. Everything after
the hash symbol is interpreted as a fragment identifier, and may be ignored or
used by browsers to refer to the right section of the HTML documentation (if
available). W3C standards usually follow the hash convention, and we will follow
it in our example as well.

On the other hand, using a slash allows treating each element of the ontology
as a separate entity that may be described in an independent manner. This can
be useful for organizational purposes when the ontology is large (e.g., thousands
of classes) and returning a full serialization or rendering a single HTML doc-
umentation may be deemed too slow, showing instead each class and property
separately. The Open Biomedical Ontology network10 is an example that follows
this convention.

2.3 Opaque URIs for classes and properties

Opaque URIs obfuscate the name of classes and properties that are part of your
ontology. For instance, let us assume we have a “Researcher” class in our example
ontology. In order to use opaque URIs, instead of using “Researcher” we would
associate the class with an identifier such as “EXO C0001”, and use it as part of
its URI. This has two main advantages: First, if we decide to change the name of

6 https://www.w3.org/TR/vocab-dcat-2/
7 http://xmlns.com/foaf/spec/
8 http://prefix.cc
9 https://www.w3.org/wiki/HashVsSlash

10 http://www.obofoundry.org/

https://www.w3.org/TR/vocab-dcat-2/
http://xmlns.com/foaf/spec/
http://prefix.cc
https://www.w3.org/wiki/HashVsSlash
http://www.obofoundry.org/

4 Garijo and Poveda-Villalón

the class in the future, the URI of the class would not be affected by it. Second,
identifiers are language agnostic. For instance, someone using another alphabet
(e.g., chinese, cyrillic, etc.) would be able to refer to the same URI with the
corresponding label. Examples of ontologies that follow this convention can be
found in the Open Biomedical Ontologies, but it is also followed by commonly
used Knowledge Graphs such as Wikidata [16].

The main drawback of using opaque URIs is the difficulty of interpreting
properly classes and properties, which usually requires additional tooling for
displaying the right labels. For this reason, we will not use them in our example.

2.4 Ontology versioning

Ontologies often have multiple versions, and these should be appropriately an-
notated as part of the ontology metadata (e.g., with the property owl:versionIRI
and owl:versionInfo). We recommend using semantic versioning11 as a guide-
line for identifying the different versions of an ontology, as it has become a
common practice in software engineering. In semantic versioning, each version
identifier should follow the format X.Y.Z, where X represents a major version
(e.g., defining a set of classes and properties to support new use cases), Y repre-
sents a minor version (e.g., adding a single property or class), and Z represents
patches or quick bug fixes (updating a label, adding examples, etc.). In our
example ontology, the first version is 1.0.0 (first major release), with the IRI
“https://w3id.org/example/1.0.0”, which we would represent in the ontol-
ogy as follows:

<https://w3id.org/example> rdf:type owl:Ontology ;
owl:versionIRI <https://w3id.org/example/1.0.0> ;
owl:versionInfo "1.0.0" .

As shown in the example, the version IRI is independent from the URI of
the ontology (“https://w3id.org/example#”). It is discouraged to include ver-
sion numbers as part of the ontology URI, as it would deeply affect interoperating
with its instances. For example, consider we had used “https://w3id.org/example-
/1.0.0#” as the ontology URI, and we had populated a knowledge graph with
two instances of “Researcher”:

@prefix exo: <https://w3id.org/example/1.0.0#> .
@prefix ex-inst: <https://example.org/instance/> .
ex-inst:alice a exo:Researcher .
ex-inst:bob a exo:Researcher .

If we now released another version of the ontology (1.0.1), all the URIs of
the class Researcher would have to change (highlighted in blue below):

@prefix exo2: <https://w3id.org/example/1.0.1#> .
@prefix ex-inst: <https://example.org/instance/> .
ex-inst:alice a exo2:Researcher .
ex-inst:bob a exo2:Researcher .

11 https://semver.org/

https://semver.org/

Best Practices for FAIR Vocabularies 5

This is an undesired behavior, because it makes ex-inst:alice and ex-inst:bob
instances of two different classes (exo:Researcher and exo2:Researcher). In-
stead, we want all the instances of a class to be compatible across different
ontology versions:

@prefix exo: <https://w3id.org/example#> .
@prefix ex-inst: <https://example.org/instance/> .
ex-inst:alice a exo:Researcher .
ex-inst:bob a exo:Researcher .

By following this convention, we can continue doing ontology releases with
appropriate versioning, while keeping the classes and properties URIs consistent.

2.5 Using permanent URIs

When publishing an ontology on the Web, it is recommended to think about
its long term sustainability, specifically if it gets widely adopted. For example,
what will happen to the domain used for the namespace URI of an ontology
after several years? (i.e., when the funding for the related research project is
over). Likewise, if the ontology is hosted on a server in a university or company,
what will happen if the server domain name changes; or if the person in charge
of maintaing the ontology needs to move it to another institution?

Permanent URIs services are community driven initiatives designed to ad-
dress these issues. The idea behind permanent URI services is simple: instead
of minting a new URI for a resource, users may use these services to create
a proxy URI which can then be redirected to wherever the target resource is
stored at any point in time. That way, if the target resource is moved, users
just have to update its location without changing its permanent URL. There are
several open, free services to create permanent URLs on the Web, among which
purl.org12 (now hosted by the Internet Archive) and w3id13 (created by the W3C
Permanent Identifier Community Group and supported by several companies)
are perhaps the most commonly used. We recommend using permanent URIs
in ontologies in order to support their long term sustainability. In fact, our ex-
ample ontology uses a w3id: https://w3id.org/example. Creating a w3id is
as simple as forking a GitHub repository and following the instructions in the
readme file.14 An advantage of w3id versus purl is that you have control on how
to redirect the ontology to its different serializations (an example is available in
Section 4).

3 Generating Reusable Ontology Documentation

We refer to “ontology documentation” as the collection of documents and ex-
planatory comments generated during the entire ontology building process [14].

12 https://archive.org/services/purl/
13 https://w3id.org/
14 https://github.com/perma-id/w3id.org

https://archive.org/services/purl/
https://w3id.org/
https://github.com/perma-id/w3id.org

6 Garijo and Poveda-Villalón

Having a proper documentation is critical, as it provides context, accurate defi-
nitions and examples of the different concepts that are included in an ontology.
In fact, an important part of the documentation is usually provided within the
ontology itself through ontology metadata and natural language annotations.
However, some of the documents may be external to the ontology, such as the
ontology requirements document, other sources used during the knowledge ac-
quisition phase, the conceptualization diagrams, examples of use, etc.

In this section we describe our recommended best practices to generate on-
tology metadata and human-readable documentation, including diagramming
guidelines to show the relationships between classes in a visual manner.

3.1 Ontology Metadata

When creating an ontology, it is crucial to describe it with appropriate meta-
data for others to understand it correctly. For example, if some of the classes
are ambiguously defined, other researchers may misinterpret their meaning when
incorporating them into their work. We distinguish two main categories of meta-
data in an ontology: the metadata associated with the ontology itself and the
metadata associated with its elements (classes, object properties, datatype prop-
erties and individuals).

The metadata associated with the ontology itself is important to provide an
overview and identify an ontology, understand its usage conditions and under-
stand its provenance. Table 1 shows our recommended and optional annotation
properties for describing ontologies, along with candidate properties that can be
reused from existing vocabularies and standards.15 The recommended proper-
ties are license (critical for others to know how the ontology may be used; we
recommend a CC-BY license); creator, contributor, creation date and previous
version to track the provenance of the ontology and compare against earlier ver-
sions; namespace URI and version IRI to properly identify the ontology; and
namespace prefix, title and description to provide a quick overview on what the
ontology does and how to properly refer to it. Finally, a citation is recommended
for letting other users know how to attribute the authors of the ontology. For
the rest of the section, we will be using the following namespaces:16

rdfs <http://www.w3.org/2000/01/rdf-schema#>
owl <http://www.w3.org/2002/07/owl#>
bibo <http://purl.org/ontology/bibo/>
foaf <http://xmlns.com/foaf/0.1/>
dcterms <http://purl.org/dc/terms/>
vaem <http://www.linkedmodel.org/schema/vaem>
vann <http://purl.org/vocab/vann/>
sw <http://www.w3.org/2003/06/sw-vocab-status/ns#>

15 Other vocabularies (e.g., https://schema.org) are alternatives to the ones pro-
posed. See https://w3id.org/widoco/bestPractices for additional suggestions.

16 For reference, the TTL version of our example ontology is available at https://

dgarijo.github.io/example/release/1.0.1/ontology.ttl

http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2002/07/owl#
http://purl.org/ontology/bibo/
http://xmlns.com/foaf/0.1/
http://purl.org/dc/terms/
http://www.linkedmodel.org/schema/vaem
http://purl.org/vocab/vann/
http://www.w3.org/2003/06/sw-vocab-status/ns#
https://schema.org
https://w3id.org/widoco/bestPractices
https://dgarijo.github.io/example/release/1.0.1/ontology.ttl
https://dgarijo.github.io/example/release/1.0.1/ontology.ttl

Best Practices for FAIR Vocabularies 7

Table 1. Recommended and optional metadata for describing ontologies

Property name Annotation Property Rationale Guideline

License dcterms:license Usage conditions Recommended

Creator dcterms:creator Provenance and attribution Recommended

Contributor dcterms:contributor Provenance and attribution Recommended

Creation date dcterms:created Provenance Recommended

Previous version owl:priorVersion Provenance and comparison Recommended

Namespace URI vann:preferredNamespaceUri Identifying the ontology Recommended

Version IRI owl:versionIRI Versioning Recommended

Namespace prefix vann:preferredNamespacePrefix Identifying the ontology Recommended

Title dcterms:title Understanding Recommended

Description dcterms:description Understanding Recommended

Citation dcterms:bibliographicCitation Credit Recommended

Abstract dcterms:abstract Additional information Optional

See also rdfs:seeAlso Additional information Optional

Status sw:status Maturity information Optional

Backward compatibility owl:backwardCompatibleWith Version compatibility Optional

Incompatibility owl:incompatibleWith Version compatibility Optional

Modification date dcterms:modified Provenance and timeliness Optional

Issued date dcterms:issued Provenance and timeliness Optional

Source dcterms:source Provenance Optional

Publisher dcterms:published Provenance Optional

DOI bibo:doi Bibliographic information Optional

Logo foaf:logo Identifying the ontology Optional

Diagram foaf:depiction Visual documentation Optional

The optional properties included in Table 1 are not critical to identify or
reuse a target ontology, but provide additional insight and ease its understand-
ing. These properties include having an abstract and see also with an additional
overview of the ontology and links to related resources; a status to describe its
maturity (first draft, specification, etc.); information about the backward compat-
ibility or other incompatible versions of the ontology; the modification and issue
dates; the original source that led to the definition of the ontology (requirement
document, use cases, etc.); information about the publisher organization sup-
porting the ontology; the DOI identifying a publication about the ontology; and
information about the logo and diagrams that can be used as a visual aid for
the ontology.

Table 2 shows the recommended and optional metadata properties for classes,
properties, data properties and individuals. Recommended metadata properties
include a human-readable label to identify an ontology term (using as many
languages as needed); and a definition for the ontology term that is as accurate
as possible. Definitions should be clear and illustrative, as classes and property
names may have different meanings to different researchers.

The rest of the properties in Table 2 are nice to have to improve the under-
standing of ontology terms. These include examples that illustrate how to use
a term; its status (e.g., deprecated, under discussion, etc.); the rationale for in-
cluding a term in the ontology (which may reflect consensus from a discussion);
the source material that motivated the inclusion of the term; and vocabulary
where the term is defined in case of being reused.

8 Garijo and Poveda-Villalón

Table 2. Recommended and optional properties for describing ontology terms

Property name Annotation Property Rationale Guideline

Label rdfs:label Readibility Recommended

Definition rdfs:comment Understanding Recommended

Example vann:example Understanding Optional

Status sw:term status Understanding Optional

Rationale vaem:rationale Understanding Optional

Source dcterms:source Provenance Optional

Defined by rdfs:isDefinedBy Provenance Optional

3.2 Creating a Human-Readable Documentation

Ontologies are usually designed in editors and then exported in formats (Tur-
tle, RDF/XML, JSON-LD, etc.) that are difficult to navigate by humans. Re-
searchers often address this issue by pointing to paper or report that explains
the ontology, but papers usually describe a scientific contribution rather than
the definitions of each ontology concept in detail. A better solution is to create
a documentation for all the terms in the ontology. Since this can be a time-
consuming task, the Semantic Web community has developed tools to help on-
tology documentation. Given an OWL file as input, these tools generate an
HTML documentation from the metadata included in the ontology itself (by
retrieving the annotation properties recommended in Section 3.1), creating sec-
tions for all classes, properties, data properties and named individuals. Popular
tools for ontology documentation include WIDOCO [3] (an evolution of the Live
OWL Documentation Environment [12] that includes automated visualization
diagrams through the WebVowl tool [9]), Parrot [2] or OwlDoc17 (integrated
with the Protégé Ontology editor [11]).

We recommend creating an HTML documentation for ontologies, as it makes
them easier for others to understand and navigate on the Web. The tools intro-
duced above are a good starting point for documentation generation, but we
recommend expanding their results with additional motivation and context for
the target ontology, pointers to the requirements and rationale; and custom di-
agrams with examples that illustrate how to use ontologies in practice.

3.3 Ontology visualization

Graphical representations of ontologies help users understand their structure,
relationships and usage. Since there is no standard convention for ontology dia-
grams, researchers have adopted several approaches, such as UML-alike diagrams
in the SAREF ontologies;18 semantic network oriented diagrams in the SSN On-
tology;19 or custom diagrams as in the W3C PROV Ontology.20

17 https://protegewiki.stanford.edu/wiki/OWLDoc
18 See the SAREF4AGRI extension https://w3id.org/def/saref4agri
19 Semantic Sensor Network Ontology https://www.w3.org/TR/vocab-ssn/
20 PROV-O: The PROV Ontology http://www.w3.org/TR/prov-o/

https://protegewiki.stanford.edu/wiki/OWLDoc
https://w3id.org/def/saref4agri
https://www.w3.org/TR/vocab-ssn/
http://www.w3.org/TR/prov-o/

Best Practices for FAIR Vocabularies 9

Class1

1.a) Named class

Class1

Class2

Class1

Class2

 <<rdfs:subClassOf>>

1.e) Subclass of 1.f) Equivalent classes

Class1 Class2

Class1 Class2

<<owl:equivalentClass>>

1.d) Union of classes

Class1 Class2

<<owl:unionOf>>

Class1 Class2

1.c) Intersection of classes

Class1 Class2

<<owl:intersectionOf>>

Class1 Class2

1.b) Class restrictions or anonymous class

1.c.i

1.c.ii

1.d.i

1.d.ii

1.e.i 1.e.ii 1.f.i

1.f.ii

Class1 Class2 Class1 Class2

1.g.i 1.g.ii

<<owl:disjointWith>>

1.g) Disjoint classes

Fig. 1. Recommended notation for classes.

In the last years, conventions for ontology diagrams have been proposed (e.g.,
VOWL [10] and Graffoo21) but none have been standardized yet. In this section
we suggest guidelines for generating ontology diagrams based on the UML Ont
profile proposed in [4].22 The rationale for our recommendation is that UML is
commonly used in software engineering, and it is familiar to software engineers.

Figure 1 depicts our proposed graphical representations for classes, class re-
strictions and class axioms. Named classes are represented by labelled boxes
(1.a); while class restrictions or anonymous classes are represented by
empty boxes (1.b). Intersection class descriptions are represented either by
using an empty circle with the <<owl:intersectionOf>> stereotype (1.c.i); or
an icon including the symbol “[” (1.c.ii). Similarly, union class descriptions may
use an empty circle with the <<owl:unionOf>> stereotype (1.d.i); or an icon
including the symbol “\”(1.d.ii).

Subclasses are represented using the generalization arrow used in UML
(1.e.i) or with a dependency arrow with the <<rdfs:subClassOf>> stereotype
(1.e.ii); and equivalent classes are represented with double-sided UML depen-

21 Specification available at https://essepuntato.it/graffoo/specification
22 The original UML Ont profile uses custom labels and dependencies to cover OWL 1

constructs. Here labels are mapped to the OWL and RDF(S) constructs.

https://essepuntato.it/graffoo/specification

10 Garijo and Poveda-Villalón

dency arrows with the <<owl:equivalentClass>> (1.f.i) stereotype or by a circle
including the symbol “”” (1.f.ii). Lastly, disjoint classes may be represented
with double-sided UML dependency arrows, using the <<owl:disjointWith>>

stereotype (1.g.i) or with a circle including the symbol “K” (1.g.ii).

Figure 2 illustrates guidelines on how to represent object properties. When
the domain or range are not known (2.a), properties can be represented with
dotted arrows (2.a.i); or with a diamond with the <<owl:ObjectProperty>>

stereotype (2.a.ii). Subproperties may be represented with the UML depen-
dency arrow with the <<owl:subPropertyOf>> stereotype linking the arrows
that represent the involved object properties (2.b.i) or with an UML depen-
dency unidirectional arrow with the <<owl:subPropertyOf>> stereotype link-
ing the diamonds that represent the involved object properties (2.b.ii). When
domain and range are known, properties can be represented with a solid line
between source and target classes (2.c.i) or with a labelled diamond accompanied
by dotted arrows labelled with <<rdfs:domain>> and <<rdfs:range>> respec-
tively (2.c.ii). Equivalent (2.d) and inverse object properties (2.e) can be rep-
resented by using a bidirectional arrow with the <<owl:equivalentProperty>>

and <<owl:inverseOf>> stereotypes between the lines (2.d.i and 2.e.i) or using
diamond shapes (2.d.ii and 2.e.ii). Lastly, functional (2.f), transitive (2.g) and
symmetric (2.h) object properties can be represented using a shared notation:
either by adding the first initial of the property type (F, T or S) to the object
property label attached to the arrow that represents the object property; or by
a labelled diamond, which represents the object property itself, including the
corresponding stereotype (e.g., <<owl:FunctionalProperty>>).

Figure 3 shows how to represent datatype properties. When the domain
or range are not known (3.a) datatype properties may be represented as la-
belled dashed boxes attached to boxes representing classes (3.a.i); or as a dia-
mond with <<owl:DatatypeProperty>>. Subproperties for datatypes may be
represented with a UML dependency arrow with the <<owl:subPropertyOf>>

stereotype linking the diamonds that represent the involved datatype properties
(3.b). When the domain and/or range are known, the box representing the
datatype property may be depicted with a solid line indicating that the domain
of the datatype property is the attached class and the range may be included
following the character “:” after the datatype label (3.c.i). Alternatively, a la-
belled diamond may be used accompanied by dotted arrows labelled with the
<<rdfs:domain>> and <<rdfs:range>> stereotypes respectively (3.c.ii). Equiv-
alent datatype properties may be represented by a UML dependency bidi-
rectional arrow with the <<owl:EquivalentProperty>> stereotype linking the
diamonds that represent the datatype properties (3.d). Functional datatype
properties may be represented by adding “(F)” to the datatype property label
(3.e.i) or by a labelled diamond including the <<owl:FunctionalProperty>>

stereotype (3.e.ii).

Finally, Figure 4 proposes how to represent individuals and class membership.
Individuals or instances may be represented by labelled boxes with underlined
names or identifiers (4.a). Class membership may be represented with labelled

Best Practices for FAIR Vocabularies 11

2.a) Object property

Class1 Class2objectProperty1

<<owl:ObjectProperty>>
objectProperty1

2.d) Equivalent object properties

<<owl:ObjectProperty>>
objectProperty1

<<owl:ObjectProperty>>
objectProperty2

 <<owl:equivalentProperty>>

objectProperty2

 <<owl:equivalentProperty>>

objectProperty1

2.e) Inverse object properties

<<owl:ObjectProperty>>
objectProperty1

<<owl:ObjectProperty>>
objectProperty2

objectProperty2

 <<owl:inverseOf>>

objectProperty1

 <<owl:inverseOf>>

2.b) Subproperty for object properties

<<owl:ObjectProperty>>
objectProperty1

<<owl:ObjectProperty>>
objectProperty2

objectProperty2

 <<owl:subPropertyOf>>

objectProperty2

 <<owl:subPropertyOf>>

<<owl:SymmetricProperty>>
objectProperty1

2.g) Transitive object property

<<owl:TransitiveProperty>>
objectProperty1

2.a.i

2.a.ii

2.d.i

2.d.ii

2.e.i

2.e.ii

2.b.i

2.b.ii

2.f) Functional object property

<<owl:FunctionalProperty>>
objectProperty1

2.f.i

2.f.ii

2.g.i

2.g.ii

2.h.i

2.h.ii

(F) objectProperty1

(T) objectProperty1 (S) objectProperty1

2.c) Domain and Range for object properties

Class1 Class2objectProperty1

Class1 Class2

<<owl:ObjectProperty>>
objectProperty1

<<rdfs:domain>> <<rdfs:range>>

2.c.i

2.c.ii

2.h) Symmetric object property

Fig. 2. Recommended notation for object properties.

boxes containing the individual name followed by the character “:” and the class
name, all underlined (4.b.i); by linking the individual box with the class us-
ing a unidirectional UML dependency arrow with the stereotype <<rdf:type>>

(4.b.ii); with a dashed line with a solid arrow (4.b.iii) or with a underlined la-
belled box for the individual attached to the class (4.b.iv).

4 Ontology Publication on the Web

Once an ontology is fully implemented and documented, it is time to make it
accessible and findable in the Web. In this section we briefly describe the best
practices to perform content negotiation to serve a target ontology in multiple
formats (Section 4.1) and registries for making ontologies findable (Section 4.2).

12 Garijo and Poveda-Villalón

3.a) Datatype property

<<owl:DatatypeProperty>>
datatypeProperty1

3.d) Equivalent datatype properties

<<owl:DatatypeProperty>>
datatypeProperty1

<<owl:DatatypeProperty>>
datatypeProperty2

 <<owl:equivalentProperty>>

3.b) Subproperty for datatype properties

<<owl:DatatypeProperty>>
objectProperty1

<<owl:DatatypeProperty>>
objectProperty2

 <<owl:subPropertyOf>>

3.a.i

3.a.ii

<<owl:FunctionalProperty>>
datatypeProperty1

Class1

(F) datatypeProperty1 : xsd:datatype

3.e.i 3.e.ii

3.c) Domain and Range for datatype properties

Class1 xsd:datatype

<<owl:DatatypeProperty>>
datatypeProperty1

<<rdfs:domain>> <<rdfs:range>>

Class1

datatypeProperty1 : xsd:datatype

3.c.i

3.c.ii

datatypeProperty1

Class1

3.e) Functional datatype property

Fig. 3. Recommended notation for datatype properties.

Individual1

4.a) Individual

Individual1: Class1

Class1

Individual1

4.b.i 4.b.iii

Class1

Individual1

4.b.ivClass1

Individual1

4.b.ii

<<rdf:type>>

4.b) Class membership

Fig. 4. Recommended notation for individuals.

4.1 Ontology Accessibility in Multiple Interoperable Formats

Ontologies should be made available in both human and machine readable man-
ner using a single identifier: the ontology URI. This way we can make any ontol-
ogy resolve to its HTML documentation when accessed by a user in a browser;
and resolve to a standard RDF serialization when importing it in an ontology
editor. In order to distinguish the target resource to serve (HTML or RDF se-
rialization), we must implement a 303 See Other redirect,23 a common practice
in the Semantic Web community for doing content negotiation over URIs. This
type of redirect indicates the location of a target resource in the server based
on the received request, but has to be appropriately configured on the server
where we are hosting the ontology. Fortunately, there are W3C best practices
(recipes) on how to configure an Apache HTTP server -a commonly used type

23 https://tools.ietf.org/html/rfc7231#page-57

https://tools.ietf.org/html/rfc7231#page-57

Best Practices for FAIR Vocabularies 13

of server for serving files- for hash ended and slash ended ontologies.24 Here
we expand these practices with our example ontology to illustrate: 1) How to
support multiple serializations of an ontology (HTML and Turtle); 2) how to
support version redirection, as we would like all the versions of the ontology
to be appropriately available, not only the latest; 3) How to specify if a serial-
ization is not supported (for example, requests for JSON-LD will return a 406
non-acceptable code, rather than an RDF/XML serialization); and 4) how to
implement a default response in case the user agent doing the request does not
specify a target in the request (by default we return Turtle). The htaccess file
to be placed in the server (in an “/example” folder) would look as follows:

Turn off MultiViews (Apache-specific command)
Options -MultiViews

Directive to specify supported types besides html and xml
Standard RDF serialization formats include Turtle, RDF/XML, N-Triples and JSON-LD
AddType text/turtle .ttl
RewriteEngine on

Rewrite rule for accessing the latest version.
RewriteCond %{HTTP_ACCEPT} !application/rdf\+xml.*(text/html|application/xhtml\+xml)
RewriteCond %{HTTP_ACCEPT} text/html [OR]
RewriteCond %{HTTP_ACCEPT} application/xhtml\+xml [OR]
RewriteCond %{HTTP_USER_AGENT} ^Mozilla/.*
RewriteRule ^$ https://dgarijo.github.io/example/release/1.0.1/index-en.html [R=303,L]

Rewrite rule to serve the Turtle serialization from the vocabulary URI (latest version)
RewriteCond %{HTTP_ACCEPT} text/turtle [OR]
RewriteCond %{HTTP_ACCEPT} text/* [OR]
RewriteCond %{HTTP_ACCEPT} */turtle
RewriteRule ^$ https://dgarijo.github.io/example/release/1.0.1/ontology.ttl [R=303,L]

Rewrite rules for retrieving a particular version (any version).
RewriteCond %{HTTP_ACCEPT} !application/rdf\+xml.*(text/html|application/xhtml\+xml)
RewriteCond %{HTTP_ACCEPT} text/html [OR]
RewriteCond %{HTTP_ACCEPT} application/xhtml\+xml [OR]
RewriteCond %{HTTP_USER_AGENT} ^Mozilla/.*
RewriteRule ^(.+)$ https://dgarijo.github.io/example/release/$1/index-en.html [R=303,L]

Rewrite rule to serve Turtle serialization of a particular version (any version)
RewriteCond %{HTTP_ACCEPT} text/turtle [OR]
RewriteCond %{HTTP_ACCEPT} text/* [OR]
RewriteCond %{HTTP_ACCEPT} */turtle
RewriteRule ^(.+)$ https://dgarijo.github.io/example/release/$1/ontology.ttl [R=303,L]

Rewrite rule for other non accepted formats
RewriteCond %{HTTP_ACCEPT} .+
RewriteRule ^(.*)$ https://dgarijo.github.io/example/release/1.0.1/406.html [R=406,L]

Rewrite rule to serve the Turtle content from the vocabulary URI by default
RewriteRule ^$https://dgarijo.github.io/example/release/1.0.1/ontology.ttl [R=303,L]

In order to test the redirection, the easiest way is just to paste the URI of
the ontology in Protégé or in your browser and check that both load the right
serialization. Another possibility is to use a curl command,25 e.g., to retrieve the
Turtle serialization of our example ontology:

24 http://www.w3.org/TR/swbp-vocab-pub/
25 https://curl.haxx.se/

http://www.w3.org/TR/swbp-vocab-pub/
https://curl.haxx.se/

14 Garijo and Poveda-Villalón

curl -sH "Accept: text/turtle" -L https://w3id.org/example#

If we need to access a particular ontology version, we can use its version IRI.
For example, the documentation of the first version of our example ontology can
be accessed with the following command:

curl -sH "Accept: text/html" -L https://w3id.org/example/1.0.0

4.2 Making an Ontology Findable on the Web

Once an ontology is published, the next step is to ensure it can be easily found by
others. There are three main activities that can help the visibility of an ontology:

1. Register the namespace prefix using prefix.cc,26 a crowdsourced registry
where users can vote the most popular URI for a given prefix.

2. Register the ontology: There are a number of existing metadata registries
that can be used for browsing existing ontologies [15][17]. Our recommenda-
tion is to look first for domain-specific registries (e.g., Bioportal [17] in the
biomedical domain, Agroportal [7] in Agronomy, etc.) commonly used by the
target community of interest. When domain-specific registries do not exist,
we suggest registering the ontology in a domain-generic metadata registry,
such as Linked Open Vocabularies [15] (which has a manual curation process
to ensure that minimum metadata is provided) or FAIRsharing.27

3. In-document annotations to help crawlers understand the metadata of
the ontology when publishing it on the Web. These annotations can be added
in your documentation through JSON-LD snippets,28 as shown below:

<!-- Annotations for the example ontology -->
<script type="application/ld+json">{

"@context":"http://schema.org",
"@type":"WebPage",
"url":"https://w3id.org/example",
"name":"The example ontology",
"datePublished":"5-2-2020",
"version":"1.0.1",
"license":"http://creativecommons.org/licenses/by/2.0/",
"author":[{"@type":"Person","name":"Daniel Garijo"},

{"@type":"Person","name":"Maria Poveda"}],
}</script>

5 Ontology Documentation and Publication Frameworks

Semantic Web researchers and practitioners have developed methods and tools
for easing ontology engineering, development, publication and exploitation. A

26 http://prefix.cc
27 https://fairsharing.org/standards/
28 https://www.w3.org/TR/json-ld11/

http://prefix.cc
https://fairsharing.org/standards/
https://www.w3.org/TR/json-ld11/

Best Practices for FAIR Vocabularies 15

number these tools have already been mentioned in the corresponding sections
of this chapter, however, they are not always integrated as part of an end-to-end
framework, and researchers have to use them separately (e.g., generate the docu-
mentation of an ontology with WIDOCO, create a visualization with WebVOWL
and publish it online using GitHub).

More recently, frameworks inspired by the continuous integration practices
in software engineering have arisen to support ontology engineering activities.
These frameworks offer end-to-end solutions that support ontology engineers
documenting, visualizing, testing and publishing their ontologies; and we recom-
mend them as an entry point to adopt some of the practices described in this
chapter. One example is OnToology [1], a web application29 that orchestrates
ontology documentation, evaluation and publication on the Web with permanent
URLs. Another similar approach is VoCol [5], which provides ontology engineers
with feedback on syntax and other errors and gives access to a human-readable
presentation of a target ontology. Finally, PoolParty [13] is a commercial solution
that also includes publication of thesauri, taxonomies and ontology management
among other features.

6 Conclusions

In this chapter we have described implementation guidelines and recommen-
dations for making ontologies findable (through metadata registries and anno-
tations); accessible (through good practices in URI design and content nego-
tiation), interoperable (showing how to serve ontologies in different standard
serializations) and reusable (by describing the metadata and diagram guidelines
needed for proper understanding) on the Web while following the Linked Data
principles. A distinct feature of our guidelines is that we have illustrated how
to carry out our recommendations with an example ontology and pointers to
usable tools developed by the Semantic Web community in the last decade. Our
recommendations reflect years of experience in ontology engineering and also
summarize community discussions for ontology design and publication. Hence,
we believe these guidelines are a comprehensive starting point for ontology en-
gineers who aim to make their ontologies FAIR and available on the Web.

References

1. Alobaid, A., Garijo, D., Poveda-Villalón, M., Santana-Perez, I., Fernández-
Izquierdo, A., Corcho, O.: Automating ontology engineering support activities with
OnToology. Journal of Web Semantics (2018)

2. Alonso, C.T., Berrueta, D., Polo, L., Fernández, S.: Current practices and perspec-
tives for metadata on web ontologies and rules. International Journal of Metadata,
Semantics and Ontologies 7(2), 93 (2012)

3. Garijo, D.: WIDOCO: A Wizard for Documenting Ontologies. In: The Semantic
Web – ISWC 2017, vol. 10588, pp. 94–102. Cham (2017)

29 http://ontoology.linkeddata.es/

http://ontoology.linkeddata.es/

16 Garijo and Poveda-Villalón

4. Haase, P., Brockmans, S., Palma, R., Euzenat, J., d’Aquin, M.: D1.1.2 updated
version of the networked ontology model. Tech. rep., Universität Karlsruhe (2009),
NeOn Project. http://www. neon-project. org

5. Halilaj, L., Petersen, N., Grangel-González, I., Lange, C., Auer, S., Coskun, G.,
Lohmann, S.: Vocol: An integrated environment to support version-controlled vo-
cabulary development. In: 20th International Conference on Knowledge Engineer-
ing and Knowledge Management - EKAW 2016, Bologna, Italy. Lecture Notes in
Computer Science, vol. 10024, pp. 303–319 (2016)

6. Janowicz, K., Hitzler, P., Adams, B., Kolas, D., Vardeman II, C.: Five stars of
Linked Data vocabulary use. Semantic Web 5(3), 173–176 (2014)

7. Jonquet, C., Toulet, A., Arnaud, E., Aubin, S., Yeumo, E.D., Emonet, V., Gray-
beal, J., Laporte, M.A., Musen, M.A., Pesce, V., Larmande, P.: Agroportal: A
vocabulary and ontology repository for agronomy. Computers and Electronics in
Agriculture 144, 126 – 143 (2018)

8. Le Franc, Y., Parland-von Essen, J., Bonino, L., Lehväslaiho, H., Coen, G., Staiger,
C.: D2.2 FAIR Semantics: First recommendations (Mar 2020), https://doi.org/
10.5281/zenodo.3707985

9. Lohmann, S., Link, V., Marbach, E., Negru, S.: WebVOWL: Web-based visualiza-
tion of ontologies. In: Proceedings of EKAW 2014 Satellite Events. LNAI, vol. 8982,
pp. 154–158. Springer (2015)

10. Lohmann, S., Negru, S., Haag, F., Ertl, T.: VOWL 2: User-oriented visualization
of ontologies. In: Proceedings of the 19th International Conference on Knowledge
Engineering and Knowledge Management (EKAW ’14). LNAI, vol. 8876, pp. 266–
281. Springer (2014)

11. Musen, M.A.: The Protégé project: a look back and a look forward. AI Matters
1(4), 4–12 (Jun 2015)

12. Peroni, S., Shotton, D., Vitali, F.: The Live OWL Documentation Environment:
A Tool for the Automatic Generation of Ontology Documentation. In: Knowledge
Engineering and Knowledge Management, vol. 7603, pp. 398–412. Springer Berlin
Heidelberg, Berlin, Heidelberg (2012)

13. Schandl, T., Blumauer, A.: Poolparty: Skos thesaurus management utilizing linked
data. In: Extended Semantic Web Conference. pp. 421–425. Springer (2010)

14. Suárez-Figueroa, M.C.: NeOn Methodology for building ontology networks: speci-
fication, scheduling and reuse. Ph.D. thesis, Facultad de Informatica, Universidad
Politécnica de Madrid (2010)

15. Vandenbussche, P.Y., Atemezing, G.A., Poveda-Villalón, M., Vatant, B.: Linked
Open Vocabularies (LOV): A gateway to reusable semantic vocabularies on the
Web. Semantic Web 8(3), 437–452 (Jan 2017)

16. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
munications of the ACM 57(10), 78–85 (Sep 2014)

17. Whetzel, P.L., Noy, N.F., Shah, N.H., Alexander, P.R., Nyulas, C., Tudorache, T.,
Musen, M.A.: BioPortal: enhanced functionality via new Web services from the
National Center for Biomedical Ontology to access and use ontologies in software
applications. Nucleic Acids Research 39(suppl), W541–W545 (Jul 2011)

18. Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M.,
Baak, A., Blomberg, N., et.al.: The FAIR Guiding Principles for scientific data
management and stewardship. Scientific Data 3, 160018 (Mar 2016)

https://doi.org/10.5281/zenodo.3707985
https://doi.org/10.5281/zenodo.3707985

	Best Practices for Implementing FAIR Vocabularies and Ontologies on the Web

