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Abstract—Insider threat is one of the most damaging cyber-
security attacks to companies and organizations. In this paper,
we explore different techniques to leverage spatial and temporal
characteristics of user behaviours for insider threat detection.
In particular, feature normalization (scaling) techniques and
a scheme for representing explicit temporal information are
explored to improve the performance of the machine learning
based insider threat detection. The results show that these data
characteristics have different effects on different classifiers, where
Standard Scaler with Random Forest classifier produces the best
performance.

Index Terms—Insider Threat Detection, Machine Learning,
Spatial and Temporal Data Characteristics

I. INTRODUCTION

Insider threat is a growing concern in the area of cyberse-
curity. In the last year, 53% of the companies reported to have
faced at least one insider threat attack. Moreover, 90% of the
organizations consider themselves vulnerable to insider threats
and 66% of them believe that they are most likely to face an
insider threat attack than an external one [1].

However, even though most of the organizations are aware
of the risks of insider threat attacks, the insider threat detection
remains challenging due to its nature. Insider threat attacks
have a wide range, varying from Intellectual Property Theft
and Data Leak to IT Sabotage [2]. They can be performed both
intentionally and unintentionally. They account for just a small
fraction of user’s activities, being usually blended with non-
malicious actions. Thus, they often require the employment
of sophisticated control and intensive monitoring frameworks
[1]. As the insider threat detection task can be seen through
the prism of a classification and/or clustering problem, the
application of classical machine learning becomes a suitable
alternative [3]-[5]. This paper will focus on exploring spatial
and temporal information present on user’s activity logs to
improve the results of the application of classical machine
learning in insider threat detection. To this end, different
methods of feature normalization as well as different time
granularities will be exploited via sliding window approach.
Additionally, feature concatenation will be studied over a
longer historical time window as to provide a context for
the learning algorithms and benefit from the temporal cor-
relations of the actions. A parameter sensitivity analysis will
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be conducted and the results will be compared in terms of
performance and computational cost.

In the following, section II reviews the literature on in-
sider threat detection. Section III discusses the methodology
employed in this paper. Section IV, presents the evaluations
performed and the results obtained. Finally, in section V,
conclusions are drawn and future works are discussed.

II. RELATED WORK

Insider threat detection attracts attention not only from
cybersecurity research community but also organizations and
government agencies. General guidelines to insider threat
detection and prevention have been released by CERT insider
threat centre and U.S. National insider threat task force [2],
[6]. Recent surveys by Liu et al. [5] and Homoliak et al. [7]
summarize the literature in insider threat research. Particularly,
in [5], Liu et al. reviewed the research in detection of malicious
insider and relevant threats, such as malware and intrusions,
which can lead to different types of insider problems. Fur-
thermore, a structural taxonomy for the insider threat related
research is presented in [7].

Due to the advancement of machine learning (ML) and data
mining techniques, they have been widely adopted for many
intrusion detection tasks [3], [4]. For insider threat detection,
different ML methods have been employed [5], [7], [8],
including but not limited to graph-based [9], [10] and mixture
of models [11]-[13], stream online learning techniques [14],
[15], and supervised learning algorithms [16], [17].

An associated aspect to any application of ML methods is
data preprocessing [4], [18]. In [19], Habeeb et al. reviewed
the data pre-processing techniques in application of big data in
anomaly detection. In [20], Ramirez-Gallego et al. surveyed
the data pre-processing techniques in stream data mining —
a method that has been applied extensively in insider threat
detection [10], [14], [15]. A general review of data preprocess-
ing for anomaly based network intrusion detection is presented
by Davis et al. in [21]. Among the preprocessing techniques,
a particular example is feature normalization, which has been
examined in general intrusion detection by Wang et al. in [22].

On the other hand, cybersecurity in general and insider
threat detection in particular are highly related to the human
factors. Hence, several works have explored different ways



of employing temporal information. Most of the time, this is
a representation of user behaviours (actions) over time, for
improving the performance of the ML based detectors. Ex-
amples of techniques relying on temporal information include
Information tap [23], [24], Moving average [14], [25], and
Markovian models [26], [27].

In this research, we examine the effect (if any) of different
feature normalization techniques. Moreover, we introduce ex-
plicit temporal information on ML methods for insider threat
detection. To this end, different sizes of sliding windows over
time are evaluated to show how much temporal information is
best suited for improving the system performance.

III. METHODOLOGY

This section provides an overview of the approach followed
in this research in terms of the dataset, learning algorithms,
normalization methods and the sliding window approach em-
ployed.

A. Dataset

Although insider threats constitute one of the main cy-
bersecurity issues for companies and government agencies,
publicly available real world data of insider threat events is
very scarce [28]. This is due both to the confidentiality of
the records of users’ activities in the workplace and to the
high-cost associated with the manual detection of a set of
actions as malicious. Since malicious insider actions are a
very small portion of users’ activities, a human expert looking
for insider threat actions would spend most of his/her time
checking regular non-malicious users’ activities. Furthermore,
as many of the malicious actions performed by insiders rely
on accessing data [5], [28], the insider threat detection is also
heavily influenced by the organizational structure and the data
access rights and roles. Thus, some solutions for detecting
insider threats are specific to a particular organization.

As an option to overcome the scarcity of real world insider
threat data, CERT [28] has simulated such environments and
made the generated data publicly available for the research
community. In this paper, the release 5.2 of CERT Insider
Threat Detection Dataset (CERT 5.2 dataset), simulating the
activities of an organization with 2000 employees over a 74-
week period, is utilized [28], [29]. The CERT 5.2 dataset
presents a detailed log for emails, web history, file and device
access, logins and logoffs and the time of each of these events.
Also, it presents four different types of malicious insider
actions, ranging from data exfiltration to IT sabotage, and
different types of intellectual property thefts.

In order to obtain representative features, the dataset is
preprocessed and the features are chosen as summary statistics
of the logged actions. These consist of: (i) frequency statistics
— the ones that record the number of times that an action was
performed over a given time period; and (ii) descriptive statis-
tics — the mean and the standard deviation of the distribution
of a target variable over a given time period. Additionally,
users’ profile information is encoded categorically in [17].

For a priori analysis, three different time durations are cho-
sen, namely session, daily and weekly, and for each duration,
a particular dataset is built by aggregating each user’s actions
over a given time period. The week-based dataset presents
1092 features and the malicious insider events account for
0.38% of the actions, while in the daily dataset, there are 824
features and 0.19% of the actions are performed by malicious
insiders. On the other hand, for the session-based dataset, there
are 221 features and malicious actions accounting for 0.18%
of the events in the dataset. In order to explore the temporal
correlations present in the features, a sliding window analysis
is performed. The process that is employed to build the sliding
window is discussed in depth in subsection III-D.

B. Machine Learning Algorithms

For the detection of insider threats, three different classi-
cal supervised ML algorithms, namely Logistic Regression,
Random Forest and Multilayer Perceptron, are employed. An
overview of these algorithms are given below. A more detailed
description for them can be found in [18].

1) Logistic Regression: A Logistic Regression [30] can be
seen as a linear classifier for a binary dependent variable. It
consists of finding the vector of weights, w, that minimizes,
over all samples, the sum of squared error between the
prediction function o(w”'z) and the true value of the label
for each sample z. However, Logistic Regression is a very
simple model, always producing a linear decision boundary.
Since its outputs can be easily described in terms of its inputs,
Logistic Regression provides us a highly interpretable model,
therefore making it suitable for cybersecurity purposes.

2) Random Forest: A Random Forest [31] is a classifier
composed by an ensemble of decision trees trained with dif-
ferent training subsets obtained through bagging from the main
training set. The output is a majority vote of the decisions of
individual decision trees. Moreover, a Decision Tree classifier
can be interpreted as a non-linear classifier that splits the input
space in different regions aiming to maximize the information
gain in each split. Decision Trees can draw complex decision
boundaries and also provide very interpretable results. Thus,
they are also suitable for cybersecurity purposes.

3) Multilayer Perceptron: A Multilayer Perceptron [18] is
a neural network consisting of at least three layers - input,
hidden and output - and a non-linear activation function. It
learns from data through backpropagation. This is an efficient
algorithm that, given an error metric to minimize, calculates
how much to change each layer’s weights exploiting the
mathematical properties of the chain rule. Since the Multilayer
Perceptron can be understood as a universal function approx-
imator, it can discriminate the data even in scenarios with
extremely complex decision boundaries. This makes it useful,
for benchmarking purposes, for the insider threat detection
problem, since the real boundary of the problem for the
features chosen is unknown. However, Multilayer Perceptron is
non-transparent, where it is not possible to express the output
directly as a simple function of the inputs.



C. Data Normalization

For the application of ML in multidimensional datasets,
feature normalization is an important step in data preprocess-
ing, when the aim is to employ any algorithm based in (-
norm error minimization. Therefore, as two of the chosen ML
algorithms are Logistic Regression and Multilayer Perpectron,
feature normalization is necessary for our particular problem.
Since the true distribution of each feature is not known be-
forehand, different feature normalization methods are applied
to the data before the ML training step. The three methods,
namely Standard Scaling, Maximum Absolute Value Scaling
and Quantile Transform, used in this research are described
below. The reason we chose these three methods is based on
the previous work performed in [22].

1) Standard Scaler: Standard Scaler (SS) is a featuring
scaling method that normalize each feature removing its mean
and scaling its variance to one. As the determination of the
normalized value just depends of the mean and the variance,
it presents advantages such as being linear, reversible, fast and
highly scalable. On the other hand, Standard Scaler also has
some disadvantages such as it manifests a high sensitivity to
outliers and is more suitable for normally distributed data. In
addition, standard scaling also can struggle to handle sparse
data, since after its application the scaled data produced will
be dense. [32], [33]. For each observation X; from a sample
with mean X and standard deviation o, its normalized version
X; can be determined from equation 1.

X, = u (1)
o

2) Maximum Absolute Value Scaler: Maximum Absolute
Value Scaler (MA) is a feature scaling method that normal-
izes each feature by dividing each sample for the maximum
absolute value of the feature. MA is a linear, reversible, and
scalable method that can also handle sparse data. On the other
hand, MA, as Standard Scaler, is still very sensitive to outliers
and each feature presents a non-zero mean, potentially making
it necessary for the addition of a bias term in the models [32],
[33]. For each observation X; in a sample X with maximum
absolute value X4, each normalized observation X’l can be
determined from equation 2.

%=
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3) Quantile Transform: Quantile Transform (QT) is a feature
scaling method that utilizes quantile information to scale
each feature through the application of an inverse cumulative
distribution function. As a quantile based transform, it is robust
to marginal outliers. Also, it is a non-linear and weakly-
reversible transformation. However, a test set value which is
out of the bounds of the cumulative distribution function of
the training set cannot be perfectly recovered. This may distort
the linear correlations shown between different samples of
the same feature. Over and above that, Quantile Transform
may have performance issues on account that it both struggles
to handle sparse data, producing a non-sparse output, and
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can exhibit scalability issues once that finding a cumulative
distribution function demands sorting all the values of each
feature [32], [33]. The Quantile Transform can be determined
from taking the following steps:

e Sort the samples in order to estimate its cumulative
distribution function.

o For a sample in the input range, its Quantile Transform
coincides with its cumulative distribution function value.

« For samples outside of the input range, its Quantile trans-
form is given by the bounds of cumulative distribution
function.

D. Sliding Window

If we analyze the insider threat detection problem from the
perspective of a time series problem, it can be reduced to
detecting whether a user performed a malicious action during
a time period given the time series of each feature. Since it is
reasonable to suppose that, for a given company, the actions
performed are quite consistent, we should expect a high auto-
correlation in the features [23], [24], [34].

As an effort to assist the learning algorithm in capturing this
auto-correlation, we employ a sliding window approach where
each observation provided to the algorithm is drawn from
a sliding window. In this case, the sliding window contains
features not just for the current observation but also for a
fixed size of past observations. The sliding window approach
ensures a smooth transition between the samples. We can
also highlight that the decision of using all features from
current and past observations is highly desirable since it may
allow a near to optimal automatic weight assignment for past
and current versions of each feature and provide a highly
interpretable result.

Sliding Window based data preprocessing is build on the
CERT 5.2 weekly dataset. Each sample is composed by
the user’s profile information and by all the features of the
activities of each period in the sliding window. In other words,
for a sliding window of size 2, each sample at time ¢ will be
composed of the user’s profile information, for the features
of the activities of week ¢ and week ¢ — 1. One can easily
realize that, in this approach, the number of features grows
approximately linearly with the window size. In this case, our
goal is to explore whether the information about past behaviour
provided to the classifiers aids in detecting malicious actions
over time.

For the Sliding Window dataset, the series of actions over a
sliding window is labeled as non-malicious, if none of the
individual actions are malicious. Equivalently, it is labeled
as malicious, if any of the individual actions is malicious.
It should be noted here that, due to this AND-construction
effect, an increase in the window size also increases the ratio
of malicious samples in the population. This reduces the class
imbalance.

IV. EVALUATIONS

This section presents the experiments performed and dis-
cusses the results obtained.



A. Training Set

Given the privacy limitations, data for building and evaluat-
ing insider threat detection methods are extremely rare [7]. In
this research, we employ a training set composed of records
of 400 users (20% of the total users) from the first 37 weeks
of the CERT r5.2 dataset [28]. The aim is to “mimic” a real-
world situation, where the labelled data is rare. Hence in this
case, the work assumes labelled data from only a small amount
of user (20%) and a time period (first half of data duration).
Since our main goal is detecting whether a user has performed
a malicious action in a certain time period or not, we aggregate
all four malicious classes into one single class, thus reducing
the class imbalance presented in the dataset. In order to further
balance the training dataset in terms of malicious and normal
actions, the insider class was over-sampled in the composition
of the training set. Therefore, all users that presents any
malicious behaviour in the first 37 weeks are included in the
training set, making the training set account for 34% of the
malicious users in comparison to 18% of the normal users.
Table I presents a summary of the training and test datasets
employed.

TABLE 1
OVERVIEW OF TRAINING AND TEST DATASETS EMPLOYED
Data Training Testing
granularity Normal Malicious Normal Malicious
Session 103648 (99.42%) | 602 (0.58%) | 473159 (99.76%) | 1122 (0.24%)
Day 71931 (99.36%) | 463 (0.64%) | 328082 (99.76%) 775 (0.24%)
Week 14330 (98.94%) | 153 (1.06%) 67016 (99.47%) 355 (0.53%)

B. Performance Metrics

As this work deals with strongly skewed data, accuracy is
not an appropriate performance metric for the algorithms. In
this case, a classifier biased to the normal class would still
obtain a very high accuracy although it is unable to detect
any insider threat. On the other hand, insider detection rate
and insider detection precision appears as natural choices for
the metrics to be taken under consideration. The main goal of
the detection system is to detect as many malicious actions as
possible with the highest precision possible. F1-Score is also a
suitable choice since it is the harmonic mean of precision and
detection rate (recall). It penalizes biased results in favour of
balanced ones, producing low scores for systems with: (i) high
detection rate and low precision — which would require a lot
of effort from an expert to identify the true insiders from the
misclassified normal users; and (ii) systems with low detection
rate and high precision — which would again require a lot of
effort from the expert to identify the misclassified malicious
users in the normal users pool.

Therefore, in this paper, the insider detection rate, the in-
sider detection precision and the F1-Score will be employed as
performance metrics. For completeness, normal user detection
rate will also be provided. In doing so, our aim is to understand
when a given algorithm outperforms another and whether it
just trades detection rate for precision or vice versa. The results
are presented both for instance-based and user-based detection.

A test user is considered an insider if he/she performs at least
one malicious action during the testing weeks. The insider
detection rate, insider detection precision and F1-Score can
be determined from equations 3, 4, 5 respectively, where T'P
stands for the number of true malicious samples detected, F'P
is the number of normal samples classified as malicious, and
F'N is the number of malicious samples classified as normal.
In the following, the detection rates are reported both based
on instances (IDR) and users (UDR).

TP TP
DR=——"——- (@3 Precision = —————— 4
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The computational cost of the algorithms are given by the
median of 10-runs execution time. To ensure comparability
between the execution times, all of the algorithms are bench-
marked on the same computer.

C. Implementation and Hyper-Parameter Tuning

The dataset processing steps are implemented in Python 3.7.
The ML algorithms and the feature normalization methods are
employed using the Scikit-learn library [35]. In terms of hyper-
parameters for the ML algorithms, the Logistic Regression is
run with default parameters using [bfgs [36] as solver. For the
Random Forest classifier, the number of individual decision
trees is set to 200. Each individual tree has a number of
features available for training up to the basis-2 logarithm of
all features. Finally, a Multilayer Perceptron is applied using
two hidden layers: the first with 545 neurons and the second
with 272 neurons with Adam [37] as solver, 10~% as the [2
regularization penalty, 10~8 as Adam’s epsilon and 125 as the
maximum number of iterations allowed.

D. Impact of Feature Normalization on Learning Algorithms

Before exploiting the temporal correlations present in the
data, we analyzed the impact of feature normalization over
the performance of the ML algorithms. This not only enables
the decision of which normalization method to use, but also
provides information about the spatial arrangement of the data.

Table II shows that, for a Logistic Regression Model, a
Quantile Transform of the features seems to perform better
than the other two normalization methods. This indicates that,
for a linear model, how a user behaves in comparison with
other users seems to be more significant than its absolute
behaviour. Moreover, we can also see that the performance
of Quantile Transform, in relation to the other transforms,
quickly improves with a reduction of the time granularity. This
is expected from the standpoint of a regression towards the
mean. Since a session is the highest granularity, it is expected
that some sessions may have extreme values even for a non-
malicious user. So, it can be hard to distinguish a malicious
user from a normal one just based on one session information.
Although, when we aggregate the sessions into daily basis, it
is expected that the user’s behaviour over a day might be a
good signature of his/her long-term behaviour. We can easily
extend such an argument for a weekly analysis as well.



TABLE II
INSTANCE BASED RESULTS OF ML ALGORITHMS

ML Session Day Week
Algorithm Scaler i]n)sllzder I;l];]r{mal Precision | F1-Score | CC i;sl;der ?];]:m al Precision | F1-Score | CC il;)s]l{der ?];]l:“ al Precision | F1-Score | CC
Logistic SS 30.66% | 99.48% | 13.59% 0.1839 23.86s 46.58% | 99.03% | 11.06% 0.1759 60.85s 58.53% | 98.42% | 16.74% 0.2592 15.33s
Regression QT 20.00% | 99.60% 11.52% 0.1431 39.99s 48.98% | 99.37% 16.49% 0.2438 98.44s 59.09% | 99.06% 26.82% 0.3643 24.83s
MA 22.99% | 99.69% 19.83% 0.1960 23.86s 32.10% | 99.36% 11.35% 0.1645 60.86s 43.66% | 99.02% 21.04% 0.2778 15.55s
Random SS 31.96% | 99.98% 84.01% 0.4615 56.30s 40.87% | 99.95% 76.65% 0.5191 58.71s 50.00% | 99.98% 96.32% 0.6577 9.13s
Forest QT 31.66% | 99.98% | 82.23% 0.4539 73.90s 44.32% | 99.90% | 71.47% 0.5252 80.51s 51.01% | 99.98% | 96.29% 0.6662 19.92s
MA 31.89% | 99.97% 77.19% 0.4493 55.51s 42.29% | 99.95% 71.77% 0.5222 42.17s 48.92% | 99.97% 92.42% 0.6392 9.90s
Multilayer SS 38.93% | 98.66% 6.91% 0.1164 198.57s | 54.09% | 99.03% 12.50% 0.2008 199.62s | 64.22% | 98.94% 24.84% 0.3557 34.31s
Perceptron QT 36.84% | 98.71% | 7.071% 0.1162 333.39s | 48.69% | 99.25% | 14.01% 0.2162 42521s | 64.59% | 98.82% | 24.05% 0.3462 65.47s
MA 37.19% | 98.79% | 9.03% 0.1344 547.61s | 56.47% | 98.81% | 12.16% 0.1949 378.58s | 62.19% | 98.56% | 19.85% 0.2972 69.98s
TABLE III
USER BASED RESULTS OF ML ALGORITHMS
ML Session Day Week
Algorithm Sealer 31];1](:“ g']])rl;“al Precision | F1-Score | CC i?];l;:er S;;Tal Precision | F1-Score | CC g];l;:er g;))%nal Precision | F1-Score | CC
Logistic SS 92.15% | 91.26% | 27.85% 0.4262 23.86s 95.07% | 88.52% | 22.92% 0.3691 60.85s 93.38% | 91.86% | 29.12% 0.4434 15.33s
Regression QT 79.69% | 93.15% 29.50% 0.4295 39.99s 95.53% | 93.15% 33.32% 0.4938 98.44s 86.30% | 94.45% 36.08% 0.5079 24.83s
MA 84.76% | 95.25% 39.85% 0.5387 23.86s 88.15% | 94.37% 36.10% 0.5113 60.86s 86.46% | 95.90% 43.57% 0.5769 15.55s
Random SS 85.62% | 99.32% | 81.92% 0.8362 56.30s 84.61% | 99.30% | 82.88% 0.8325 58.71s 74.30% | 99.93% | 97.69% 0.8435 9.13s
Forest QT 85.07% | 99.27% | 81.72% 0.8297 73.90s 85.84% | 99.23% | 80.59% 0.8297 80.51s 75.84% | 99.90% | 96.29% 0.8482 19.92s
MA 86.30% | 99.10% 77.50% 0.8153 55.51s 84.92% | 99.13% 79.65% 0.8156 42.17s 73.23% | 99.86% 95.13% 0.8268 9.90s
Multilayer SS 91.23% | 87.49% 21.11% 0.3417 198.57s | 96.30% | 91.16% 28.08% 0.4345 199.62s | 93.69% | 94.99% 40.28% 0.5628 34.31s
Perceptron QT 90.46% | 84.98% | 18.25% 0.3021 333.39s | 93.84% | 89.15% | 24.48% 0.3863 42521s | 90.76% | 93.15% | 32.38% 0.4764 65.47s
MA 88.92% | 90.18% | 26.95% 0.4051 547.61s | 95.07% | 90.75% | 27.56% 0.4252 378.58s | 93.84% | 94.60% | 39.25% 0.5503 69.98s

On the other hand, a careful analysis of Multilayer Percep-
tron results in Tables II and III raises concerns on the feasi-
bility of the algorithm for insider threat detection. Although
it has high insider detection rates, it also presents the worst
precision rate of all three classifiers. Since the precision is low,
there would be a very large number of false positives for each
true positive, which alongside with its high computational cost,
makes Multilayer Perceptron undesirable. On the other hand,
Random Forest-based detection, shown in Tables II and III,
reveals the best performance and scalability of the evaluated
algorithms. Random Forest also shows the best results in terms
of precision, where >80% precision means that for every 5
alarmed users, at least 4 of them are true insider attackers.

TABLE IV
P-VALUES OF PAIRWISE T-TESTS OF WEEKLY RANDOM FOREST BASED
DETECTION METRICS

Instance User
Feature SS T SS T
Scaling Insider | Normal | Insider | Normal | Insider | Normal | Insider | Normal
IDR IDR IDR IDR UDR UDR UDR UDR
QT 0.1899 0.2265 - - 0.3988 0.6623 - -
MA 0.1743 0.4828 0.9699 0.1552 0.7047 0.6208 0.5904 0.9058

Given that it is not [-norm dependent, its performance seems
to be independent from the normalization method chosen
[38]. In order to confirm this observation, a Pairwise T-Test
is performed for each pair of feature normalization method
chosen. Since the sliding window approach is employed for
weekly data, just the weekly-based results from the Random
Forest detector is tested. In the following, we report these T-
Test results just for the descriptive series of the aforementioned
tests. From the results in Table IV, it is clear that all p-
values are greater than the p-values of the confidence intervals
(0.1, 0.05 and 0.01). Therefore, we cannot reject the null

hypothesis for all of these comparisons. Thus, for weekly data,
the choice of feature normalization method does not affect
the performance of a Random Forest based insider detection
system. Hence, it is convenient to employ Standard Scaler
for Random Forest to perform the classification faster. Given
the poor performance of Multilayer Perceptron, we only use
Logistic Regression and Random Forest for the rest of the
experiments performed.

E. Sliding Window Sensitivity Analysis

As discussed in section III-D, a Sliding Window approach is
employed to feed the ML algorithms not only with the current
user activities, but also with the previous activities. Ideally, it
is expected that this past information could be used to help the
ML algorithm to build a context for each user’s action. This
in return may provide the context to better identify whether
an action is malicious or not.

In order to investigate whether and how the detection sys-
tems can benefit from such an approach, both Random Forest
and Logistic Regression classifiers are applied to the sliding
week dataset utilizing the tuned hyper-parameters detailed in
IV-C. For the Logistic Regression, a Quantile Transform is ap-
plied on the features so that it can benefit from the performance
boost shown in section IV-D. As discussed earlier, Standard
Scaler is employed on the features for Random Forest. The
sliding window size is varied and, for each window size, a
dataset is assembled according to the discussions in III-D. A
training set is formed following the process described in IV-A.

The results of this approach are presented in Figure IV-E
and given in detail in Tables V and VI. A careful analysis of
the results shows that Random Forest and Logistic Regression
have different behaviours when fed with past information.
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Fig. 1. Insider Threat Detection Performance vs Sliding Window Size

TABLE VI
USER BASED RESULTS OF DIFFERENT WINDOW SIZES

Wi Logistic Regression Random Forest

indow - -

Size Insider T Normal Precision | F1-Score Insider T Normal Precision | F1-Score
UDR UDR UDR UDR

1 Week | 84.13% | 95.00% [ 49.34% 0.4928 79.14% | 99.87% | 94.62% 0.8611

2 Weeks | 89.13% | 94.69% | 50.20% 0.5014 74.83% | 99.90% | 95.74% 0.8392

3 Weeks | 89.82% | 93.77% 46.69% 0.4667 66.21% | 99.91% 95.39% 0.7804

4 Weeks | 87.75% | 94.13% | 47.28% 0.4721 68.28% | 99.95% | 97.49% 0.8017

5 Weeks | 87.58% | 93.76% | 45.84% 0.4570 58.10% | 99.99% | 99.24% 0.7292

6 Weeks | 83.10% | 94.08% 45.18% 0.4505 51.21% | 99.95% 96.47% 0.6649

7 Weeks | 80.86% | 94.53% 45.53% 0.4550 43.97% | 99.96% 96.72% 0.6035

TABLE VII

6 MOST IMPORTANT FEATURES OF THE RANDOM FOREST INSIDER
THREAT DETECTION FOR A SLIDING WINDOW OF SIZE 2

TABLE V
Feature
INSTANCE BASED RESULTS OF DIFFERENT WINDOW SIZES Feature Name
Importance
; Logistic Regression Random Forest #acts, supervisor’s PC, week ¢ 0.0076
Window Insider | Normal Insider | Normal g
Size IDR IDR Precision | F1-Score IbR IDR Precision | F1-Score #acts, supervisor’s PC, week ¢t — 1 0.0070
T Week | 58.44% | 99.20% | 28.03% | 03775 51.56% | 99.97% | 91.69% | 0.6578 HTTP url depth, weekend, “other” cat., week ¢ 0.0060
2 Weeks | 60.30% | 99.15% | 33.03% | 0.4229 12.27% | 9995% | 87.54% | 0.5636 HTTP url depth, weekend, “other” cat., week ¢ — 1 0.0053
3 Weeks | 58.82% | 99.00% | 31.04% | 0.4048 29.88% | 99.96% | 86.90% | 0.4406 < TR
4 Weeks | 56.46% | 08.98% | 30.61% | 04018 | 31.07% | 99.98% | 93.97% | 04645 #HTTP acts, shared PC, weekend, “othcr” cat., week ¢ 0.0048
5 Weeks | 53.72% | 98.93% | 30.19% 0.3840 22.12% | 99.99% | 95.54% 0.3560 #HTTP acts, shared PC, weekend, “other” cat., week ¢ — 1 | 0.0048
6 Weeks | 50.23% | 98.98% | 31.06% | 0.3793 17.19% | 99.98% | 90.56% | 0.2851
7 Weeks | 46.72% | 99.9% | 33.86% | 0.3914 13.7% | 99.98% | 88.73% | 0.2359

Logistic Regression shows improvement in performance when
the information of the current week and the week before (a
sliding window of size 2) is used. This improves both its
instance-based and user-based precision and insider detection
rates. This performance starts to deteriorate for bigger window
sizes, reaching even below the baseline performance of a
current week only data model (sliding window of size 1).
On the other hand, the performance of Random Forest always
decreases when it is fed with multiple weeks of sliding window
data. However, the precision for Random Forest seems to
increase both for user and instance based detection when
sliding windows of sizes 3 to 5 are used.

The above results indicate that the concatenation of user
data over many weeks does not seem to improve the detection
performance of the ML algorithms as much as we expected.
This might be because of the features chosen to be highly
correlated with the malicious (normal) activity in the first
place. In order to test this, we analyze the importance of
the features using the Random Forest classifier. Since this
classifier has the ability to choose a subset of important
features from a given set of features [31]. A sample of the
most important features for a Random Forest based Insider
Threat Detection system is presented for a sliding window of
size 2 in Table VII. These results show that the most important
features seem to belong to different periods of the same
features. We can assume that these are modeled as independent
features by Random Forest. Thus, the current and past values
of a given feature are highly correlated. In other words, as
we move forward in time, the information gain on the past
feature space gets smaller and smaller. Furthermore, this also
explains the performance drop faced by Random Forest based
detection system as a consequence of the presence of highly
correlated features [39], [40]. Thus, the utilization of the
concatenation of features via the sliding window technique
to produce new features does not seem to be beneficial for the

datasets employed in this work.

V. CONCLUSION AND FUTURE WORKS

In this paper, a thorough exploration of spatial and temporal
characteristics of the CERT 5.2 dataset was conducted in order
to better understand the data. In doing so, our aim is to enhance
the performance of insider threat detection systems based on
ML classifiers by providing insights on how to apply feature
normalization and sliding window-based temporal information
in ML for insider threat detection. Our results confirm that the
deployment of Standard Scaler with Random Forest classifier
produces a high performance in terms of different metrics
and low computational cost in terms of efficiency. Moreover,
our analysis shows that Random Forest seems to be robust
to different feature normalization techniques. This in return
makes it very scalable to different environments. On the other
hand, the use of temporal information via sliding window
approach seems to affect different classifiers differently. While
it is improving Logistic Regression, it does not seem to have
the same effect on Random Forest classifier.

As future work, we aim to conduct further investigations in
the application of different techniques for combining features.
In doing so we aim to explore a more effective translation
of the temporal correlations that might be present in the
data. Moreover, another possible exploration could be the
employment of other ML classifiers such as genetic algorithms
that could aggregate observations automatically.
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