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Abstract

In order to evaluate the sensitivity of defect inspection
systems, it is convenient to examine simulated data. This
gives the possibility to tune the parameters of the inspection
method and to test the performance of the system in critical
cases. In this paper, a simple method for the simulation of
defects in radioscopic images of aluminum castings is pre-
sented. The approach simulates only the flaws and not the
whole radioscopic image of the object under test. A 3D flaw
is modeled as an ellipsoidal cavity, which is projected and
superimposed onto real radioscopic images of an homoge-
neous object according to the exponential attenuation law
for x-rays. The new gray value of a pixel, where the 3D
flaw is projected, depends only on four parameters: a) the
original gray value; b) the linear absorption coefficient of
the examined material; c) the maximal thickness observable
in the radioscopic image; and d) the length of the intersec-
tion of the 3D flaw with the modeled x-ray beam, that is
projected into the pixel. A simulation of an ellipsoidal flaw
of any size and orientation can be done in any position of
the casting by using the algorithm described in this paper.
This allows the evaluation of the performance of defect in-
spection systems in cases where the detection is known to
be difficult.

1 Introduction

Radioscopy is increasingly being used as a tool for non-
destructive testing in industrial production. An example is
the serial examination of cast light-alloy workpieces used
in the car industry, like aluminum wheels and steering gears
[12]. The material defects occurring in the casting process
such as cavities, gas, inclusions, and sponging must be de-
tected to satisfy the safety requirements; consequently, it is

necessary to check 100% of the parts. Since most defects
are not visible, x-ray imaging is used for this task. An ex-
ample of a radioscopic image is shown in Figure 1.

Over the past decades radioscopic systems have been in-
troduced in the automotive manufacturing industry in or-
der to detect flaws automatically without human interaction
[1, 5, 11]. Over the years, they have not only increased qual-
ity through repeated objective inspections and improved
processes, but have also increased productivity through de-
creased labor cost [16, 14].

An automated radioscopic system is schematically pre-
sented in Figure 2. The inspection is typically performed in
the five following steps:i) themanipulatorplaces the cast-
ing in the desired position;ii) the x-ray tubegenerates an
x-ray image of the casting via central projection;iii) the x-
ray image is detected by the fluorescent entrance screen of
the image intensifier, amplified and depicted onto a phos-

Figure 1. A real flaw in a radioscopic image of
an aluminum wheel.
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Figure 2. Diagram of a radioscopic imaging system.

phor screen. The image intensifier converts the x-ray image
to a visible radioscopic image;iv) the guided and focussed
image is registered by theCCD-camera; andv) the image
processorconverts the analog video signal, transferred by
the CCD-camera, into a digital data stream. Digital image
processing is used to improve and evaluate the radioscopic
image.

In order to evaluate the performance of a method that in-
spects aluminum castings, it is convenient to examine simu-
lated data. This evaluation gives the possibility of tuning the
parameters of the inspection method and of testing how the
method works in critical cases. Among the nondestructive
testing and evaluation community there are two widespread
approaches that produce this simulated data:flaw superim-
positionandCAD models for casting and flaw.

Flaw superimposition. The first technique attempts to sim-
ulate flaws by superimposing circles with different gray val-
ues onto real radioscopic images [11, 10, 5]. This approach
is quite simple, because it does not need any complex 3D
model of the object under test nor of the flaw. Addition-
ally, it offers a real radioscopic image with real disturbances
(with simulated flaws). Nevertheless, the flaws simulated
by this method differ significantly from the real ones. The
reason being that a real flaw does not look like a projection
of a disc. This method can only be used in restricted cases.

An improvement of this method can be obtained using
the visualization technique calledsplatting [20]. In this
technique the projection of a 3D flaw can be simulated, in
which the projected flaw is assumed as a 2D Gaussian. The
scale, position and orientation of the Gaussian are adjusted
in order to obtain the desired projected flaw. Although this
technique offers a better flaw simulation in comparison with
the disc projection, its simulation corresponds to the projec-
tion of a 3D flaw, that differs considerably from real flaws
as shown later.

CAD models for casting and flaw. The second approach

makes a simulation of the entire x-ray imaging process
[18, 6]. In this approach, the characteristic of the x-ray
source, the geometry and material properties of objects and
their defects, as well as the imaging process itself are mod-
eled and simulated independently. Complex objects and de-
fect shapes can be simulated using CAD models. Although
this approach offers excellent flexibility in setting the ob-
jects and flaws to be tested, it presents the following three
disadvantages to the evaluation of the inspection methods’
performance:i) the radioscopic image of the object under
test is simulated (it would be better if we could count on real
images with simulated flaws);ii) the simulation approach is
only available when using a sophisticated computer pack-
age;iii) the computing time is expensive.

In this paper, we address the above problems and pro-
pose an approach that only simulates the flaws (and not the
whole radioscopic image of the object under test). This new
method can be viewed as an improvement of the first men-
tioned technique and the 3D modeling for the flaws of the
second one. In our approach, a 3D modeled flaw is pro-
jected and superimposed onto real radioscopic images of a
homogeneous object according to the exponential attenua-
tion law for x-rays [7]. We propose an ellipsoidal model to
simulate the flaws. This model suits best reality for flaws
like bubbles and spherical blowholes. The methodology
used in this paper can be used for other 3D models.

The paper is organized as follows: In Section 2, a brief
overview of the x-ray imaging process is presented. Sec-
tion 3 describes our geometric model of the x-ray projec-
tion. The approach to simulate flaws in aluminum castings
is outlined in Section 4. The results obtained on radioscopic
images are described in Section 5. Finally, Section 6 gives
concluding remarks and suggestions for future research.



2 X-Ray Imaging

Radiographic examination is a nondestructive testing
technique which uses x-ray radiation to detect material
defects. In this examination method, radiation is passed
through the material under test, and a detector senses the ra-
diation intensity attenuated by the material. Thus, a defect
in the material modifies the expected radiation received by
the sensor [8]. The phenomenon of differential absorption
is illustrated in Figure 3. The contrast in the x-ray image be-
tween an area containing a flaw and a defect-free area of the
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Figure 3. Differential absorption in a speci-
men.
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Figure 5. Absorption coefficient µ for alu-
minum against x-ray energy [13, 10].

specimen allows distinguishing the flaw. We can see in an
x-ray image, that the defects, like voids, cracks or bubbles,
show up as bright regions with respect to their neighboring
area. The reason is that the attenuation is smaller.

The absorption can be macroscopically modeled using
the exponential attenuation law for x-rays [8, 7] as shown
in Figure 4:

ϕ(x) = ϕ0e
−µx, (1)

whereϕ0 is the incident radiation intensity,ϕ the transmit-
ted intensity,x the thickness of the specimen andµ is a
constant known as thelinear absorption coefficientof the
material under test with dimension cm−1. Coefficientµ de-
pends on the material and the x-ray energy. Figure 5 illus-
trates the linear absorption coefficient for aluminum plot-
ted against x-ray energy. Typically, radioscopic testing of
aluminum castings uses energy values between 50keV and
150keV [10]. In Figure 5, the reader can find the values of
µ for this energy interval, in whichµ can be modeled as a
fourth degree polynomial:

µ ≈
4∑

i=0

θiE
i for 50keV≤ E ≤ 150keV, (2)

with

θ = (6.0,−0.210,−0.00304,−1.97× 10−5, 4.72× 10−8).

The gray valueI registered by the CCD-camera can be
expressed as a linear function ofϕ:

I(x) = Aϕ(x) + B, (3)

whereA andB are the linear parameters ofI.
Now, we investigate what happens if the penetrated ob-

ject has a cavity with thicknessd as shown in Figure 3. In
this case, from (1) the transmitted radiationϕd is given by:

ϕd = ϕ(x− d) = ϕ0e
−µ(x−d) = ϕ(x)eµd, (4)

where we assume that the absorption coefficient of the cav-
ity is zero1.

The gray value registered by the CCD camera is calcu-
lated then from (4) and (3) as:

I(x− d) = Aϕ(x)eµd + B. (5)

Substituting the value ofAϕ(x) from (3) we see that (5)
may be written as:

I(x− d) = (I(x)−B)eµd + B. (6)

ParameterB can be estimated as follows: the maximal
gray valueImax in a radioscopic image is obtained when

1If the flaw is an incrusted material, its absorption coefficientµd must
be considered in (4):ϕd = ϕ0e−µ(x−d)e−µdd = ϕ(x)ed(µ−µd).



the thickness is zero. Additionally, the minimal gray value
Imin is obtained when the thickness isxmax. Substituting
these values in (3), it yields:

{
Imax = Aϕ0 + B
Imin = Aϕ0e

−µxmax + B

From these equations, we obtain that:

B = Imax −∆I/(1− e−µxmax) , (7)

where∆I = Imax− Imin. Usually,Imax andImin are 255
and 0 respectively. For these values,B can be written as:

B = 255/(1− eµxmax) . (8)

Using equation (6), we can alter the original gray value
of the radioscopic imageI(x) to simulate a new image
I(x− d) with a flaw. A 3D flaw can be modeled, projected
and superimposed onto a real radioscopic image. The new
gray value of a pixel, where the 3D flaw is projected, de-
pends only on four parameters: a) the original gray value
I(x); b) the linear absorption coefficient of the examined
materialµ; c) the maximal thickness observable in the ra-
dioscopic imagexmax; and d) the length of the intersection
of the 3D flaw with the modeled x-ray beamd, that is pro-
jected into the pixel. In the next Section we will describe
how a 3D object is projected onto a radioscopic image.

3 Geometric Model

In this Section a model is presented which relates the 3D
coordinates of the casting (from now onobject) to the 2D
coordinates of the radioscopic image pixel.

One can define the following coordinate systems to de-
scribe the relationship between a 3D object point and a 2D
pixel, as shown in Figure 2:
• The 3Dobject coordinate systemis attached to the ob-
ject. An object pointM in this coordinate system is denoted
by M = [X Y Z 1]T in projective coordinates [9, 4]. The
origin of this coordinate system is denoted byO.
• The 3Dworld coordinate systemis defined in the optical
center of the central projection, i.e. its originC corresponds
to the x-ray source. The object pointM in this coordinate
system isM̄ = [X̄ Ȳ Z̄ 1]T in projective coordinates. The
object coordinate system is then considered as a rigid dis-
placement of the world coordinate system represented by a
3× 3 rotation matrixR and a 3× 1 translation vectort [4].
With the4× 4 matrixS:

S =
[

R t
0 1

]
, (9)

one obtains the relationship between object and world coor-
dinate system:

M̄ = SM. (10)

• A 2D projection coordinate systemis then defined. This
coordinate system indicates the coordinates of a point in the
(not visible) x-ray image at a imaginary planēZ = f lo-
cated at the entrance screen of the image intensifier. Its ori-
gin o is pierced by theZ̄-axis. The x-rays make a linear
perspective projection of the pointM onto a pointm in the
imaginary plane without any distortion. Applying Thales
theorem:

x

f
=

X̄

Z̄
and

y

f
=

Ȳ

Z̄
, (11)

the projective coordinates ofm in this 2D system can be
obtained asm = [x y 1]T. UsingM̄ andm as projective
representations ofM andm respectively, the following lin-
ear equation is obtained:

λm =




f 0 0 0
0 f 0 0
0 0 1 0




︸ ︷︷ ︸
B

M̄, (12)

whereλ is a scale factor. One may denote byP = BS the
3×4 perspective projection matrix. From (10) and (12) one
obtains the equation that maps the object coordinates to the
projection plane coordinates:

λm = PM. (13)

• Finally, the 2Dimage coordinate systemis introduced as
a representation of the pixel coordinates of the (visible) ra-
dioscopic image formed at the CCD camera. The pointm is
projected onto the plane of the CCD-array asu = [u v 1]T

Figure 6. Radioscopic image of a plate with
holes distributed in a regular grid manner.



in projective coordinates. Due to the curvature of the en-
trance screen of the image intensifier and the electromag-
netic fields that may be present in the radioscopic system,
the radioscopic image received by the CCD camera is de-
formed, especially at the corners of the image. Therefore,
the relationship between the projection and the image coor-
dinate system is nonlinear:

u = f(m). (14)

The nonlinear functionf can be modeled as hyperbolic
[15, 14], cubic [2] or by a general distortion model [19].
This function can be estimated by analyzing the projective
distortion of a calibration plate which contains holes placed
in a regular grid manner. The phenomenon of the distortion
effect is illustrated in Figure 6, where a radioscopic image
of a calibration plate is shown.

From (13) and (14) a relation can be made between the
3D coordinates of the object and the radioscopic image
pixel coordinates at each position of the object.

In the following Section we use this geometric model to
simulate the projection of a modeled 3D flaw into a real
radioscopic image.

4 Simulation of Flaws

In this paper, a 3D flaw is simulated as a blowhole with a
spherical form. We propose an ellipsoidal model to simulate
the flaws, because this model suits best reality for flaws like
bubbles. The surface of the ellipsoid is given by:

X ′2

a2
+

Y ′2

b2
+

Z ′2

c2
= 1, (15)

wherea, b andc are the ellipsoid half-axes as shown in Fig-
ure 7. The axesX ′, Y ′ andZ ′ are attached to the center of
the ellipsoid. The location of the ellipsoid relative to the ob-
ject coordinate system is defined by a3× 3 rotation matrix
Re and a3× 1 translation vectorte. They can be arranged
in a4×4 matrixSe as in equation (9). Using (10), the coor-
dinates in the ellipsoid coordinate system(X ′, Y ′, Z ′) can
be expressed in the world coordinate system(X̄, Ȳ , Z̄) as:

M̄ = SM = SSeM′, (16)

with M′ = [X ′ Y ′ Z ′ 1]T andM̄ = [X̄ Ȳ Z̄ 1]T. Now, we
can write the equation of the ellipsoid in world coordinate
system from (15) and (16) as:

(h11X̄ + h12Ȳ + h13Z̄ + h14)2/a2 +
(h21X̄ + h22Ȳ + h23Z̄ + h24)2/b2 +
(h31X̄ + h32Ȳ + h33Z̄ + h34)2/c2 = 1

, (17)

wherehij are the elements of the4×4 matrixH = [SSe]−1.

Suppose that we have a pixel(u, v) of a radioscopic im-
age and we want to know if the x-ray beam, which produces
a gray value in this pixel, intersects the modeled ellipsoid.
Using the inverse function off in (14) we can calculate the
corresponding coordinates of(u, v) in the projection coor-
dinate systems(x, y):

m = g(u) = f−1(u), (18)

with u = [u v 1]T andm = [x y 1]T. The x-ray beam in the
world coordinate system is defined in (11). The intersection
of the x-ray beam with the ellipsoid is shown in Figure 8.
An intersection point must satisfy (17) and (11) simultane-
ously. SubstitutingX̄ = xZ̄/f andȲ = yZ̄/f from (11)
in (17) and after some manipulation we obtain:

AZ̄2 + BZ̄ + C = 0,

X´

Y´

Z´

b
a

c

Figure 7. Ellipsoid used as 3D flaw.
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with

A =
r2
1

a2
+

r2
2

b2
+

r2
3

c2
,

B = 2
(

r1h14

a2
+

r2h24

b2
+

r3h34

c2

)
, and

C =
h2

14

a2
+

h2
24

b2
+

h2
34

c2
− 1,

where

ri = hi1
x

f
+ hi2

y

f
+ hi3 for i = 1, 2, 3.

If B2−4AC > 0 there are two intersection points of the
x-ray beam with the ellipsoid given by:

X̄1,2 =
Z̄1,2

f
x

Ȳ1,2 =
Z̄1,2

f
y (19)

Z̄1,2 =
−B ±√B2 − 4AC

2A

The length of the x-ray beam that penetrates into the ellip-
soid can be calculated as:

d =
√

(X̄1 − X̄2)2 + (Ȳ1 − Ȳ2)2 + (Z̄1 − Z̄2)2,

that can be expressed from (19) as:

d =
√

B2 − 4AC

A

√
x2

f2
+

y2

f2
+ 1. (20)

Using matrix notation equation (20) can be rewritten as:

d = 2

√
m̄TΛm̄

m̄TΦm̄
‖ m̄ ‖ (21)

with m̄ = [x/f y/f 1]T,

Λ = HshdhT
dHT

s + (1− hT
dhd)Φ, (22)

Φ = HsHT
s , (23)

where

Hs =




h11/a h21/b h31/c
h12/a h22/b h32/c
h13/a h23/b h33/c


 ,hd =




h14/a
h24/b
h34/c


 .

b
e

a
e

α

x

y

y0

x0
0

m TΛ  m  = 0

F

Figure 9. Area of the projected ellipsoid.

From (21) we observe that the projection of the ellipsoid
is defined in the area(x, y) where

m̄TΛm̄ > 0. (24)

This area, denoted byF in Figure 9, is delimited by the
boundary whered = 0, i.e. wherem̄TΛm̄ = 0. Due to
the form of matrixΛ this equation corresponds to an ellipse
[9].

Defining the upper left hand2× 2 matrix ofΛ:

A =
[

Λ11 Λ12

Λ21 Λ22

]
, (25)

the coordinates of the center(x0, y0), the half-axesae and
be and the orientationα of the ellipse (see Figure 9) can be
computed as follows [3]:

[
x0

y0

]
= fA−1

[
Λ13

Λ23

]
, (26)

ae = f
√
−a00

λ1
, be = f

√
−a00

λ2
(27)

and

α = arctan
(

C21

C11

)
, (28)

wherea00 = det(Λ)/ det(A); λ1, λ2 are the eigenvalues
from matrixA; andCij are the elements of the2×2 matrix
C whose columns are the corresponding eigenvectors ofA.

An example can be found in Figure 10 in which the pro-
jection of an ellipsoid by computing (21) is illustrated. In
Figure 10 the lengthd is plotted againstx/f andy/f . We
can see how abrupt is the change ind between the region
d > 0 and its neighborhood. This feature is typical in real
flaws like bubbles and spherical blowholes, because they
are clearly delimited in the material [17]. The visualization
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Figure 10. Projection of a flaw using an ellip-
soidal model.

techniquesplattingoutlined in Section 1 does not have this
characteristic because the projected flaw corresponds to a
smooth profile as shown in Figure 11. For this reason, splat-
ting should only be used as a visualization technique and not
as a method that simulates projections of round flaws.

We investigate now how regionF is projected into the ra-
dioscopic image. As shown in Figure 2 there are two 2D co-
ordinate systems: in the first one, the projection coordinate
system(x, y), it take places a perspective projection without
any distortion of the 3D object under test; in the second one,
the image coordinate system(u, v), the image is deformed
due to the distortion introduced by the image intensifier.
Additionally, the coordinates are affected by rotation, trans-
lation and scaling. The relationship between these coordi-
nate systems is given by the nonlinear functionf and its in-
verseg as illustrated in Figure 12. The transformed pixels in
image coordinate system are denoted by(u, v) ∈ G. They
are obtained form condition (24), that defines regionF, by
computingm̄ as a function ofu = [u v 1]T. From (18) we
havem = g(u). By multiplying m with a 3 × 3 diagonal
matrix andK whereK11 = K22 = 1/f andK33 = 1, it
yieldsm̄ = Km. Thus, substitutinḡm = Kg(u) in condi-
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Figure 11. Projection of a flaw using a Gaus-
sian model.

tion (24) we obtain the definition of regionG in the image
coordinate system:

[g(u)]TKTΛKg(u) > 0 (29)

Sinceg is nonlinear the resulting boundary ofG corre-
sponds to a deformed ellipse.

If we evaluate (29) for each pixel of the radioscopic im-
age the computing time of the flaw simulation increases
considerably. However, due to the typical small size of
flaws in comparison with the entire image size, a better
performance of the algorithm can be obtained if condi-
tion (29) is only evaluated in the reduced areaQ that en-
closesG as illusttated in Figure 12. RegionQ is defined in
umin ≤ u ≤ umax andvmin ≤ u ≤ vmax. In following
we describe how these bounds are calculated.

Firstly, we compute the pointsm1, m2, m3, m4 as the
extremal points of the ellipse in projection coordinate sys-
tem (see Figure 12). Using (26), (27) and (28) we obtain:

mi =




xi

yi

1


 =




cos(α) − sin(α) x0

sin(α) cos(α) y0

0 0 1


 ri, (30)
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for i = 0, ..., 4, with r0 = (0, 0, 1)T, r1 = (ae, 0, 1)T,
r2 = (0, be, 1)T, r3 = (−ae, 0, 1)T, andr4 = (0,−be, 1)T.

Secondly, the pointsmi are transformed into image co-
ordinate systems byui = f(mi).

Thirdly, the verticesei of the polygon that encloses the
deformed ellipse are computed as:

e1 = u1 + u2 − u0 e3 = u3 + u2 − u0

e2 = u1 + u4 − u0 e4 = u3 + u4 − u0 (31)

Finally, the bounds ofQ are computed by

umin = fix[min(e1(1), e2(1), e3(1), e4(1))]
umax = fix[max(e1(1), e2(1), e3(1), e4(1)) + 1]
vmin = fix[min(e1(2), e2(2), e3(2), e4(2))]
vmax = fix[max(e1(2), e2(2), e3(2), e4(2)) + 1]

,

(32)
where the functionb = fix(a) roundsa toward zero, result-
ing in an integerb. Additionally, we must check that the
bounds may not lie outside of the radioscopic image.

The algorithm for flaw simulation is summarized in Fig-
ure 13. The objective of this algorithm is to change the gray
values of a radioscopic image by superimposing the projec-
tion of an ellipsoidal flaw according to the attenuation law
for x-rays.

1. Calibrate the x-ray imaging system by estimating the
parameters of the mapping function 3D → 2D (fo-
cal length f , matrix S (see (9)), and by finding the
transformation functions between projection and im-
age coordinate systems (f and g as defined in (14)
and (18) respectively).

2. Take the radioscopic image of the object under test
in the desired position and store it in matrix I.

3. Estimate the absorption coefficient µ of the casting
according to the energy used by the x-ray source
(see (2)), and find the maximal thickness observable
in the radioscopic image xmax.

4. Define the size of the flaw (parameters a, b and c)
and the location and orientation of the flaw in the
casting (matrix Se).

5. Compute the 4 × 4 matrix H = [SSe]
−1, and calcu-

late the 3 × 3 matrices Φ and Λ from (23) and (22)
respectively.

6. Find the coordinates of the center (x0, y0), the half-
axes ae and be and the orientation α of the projected
ellipse (see Figure 9) from (26), (27) and (28).

7. Estimate the area where the projected ellipse is lo-
cated in the radioscopic image (see Figure 12) by
finding the bounds umin, umax, vmin and vmax from
(30), (31) and (32).

8. For u = umin, ..., umax and for v = vmin, ..., vmax:

• calculate m = g(u), with u = [u v 1]T and
m = [x y 1]T,

• compute p = m̄TΛm̄, with m̄ = [x/f y/f 1]T,

• if p > 0 then compute the length d of the inter-
section between x-ray beam and ellipsoid given
by equation (21), and change the original gray
value of the pixel (u, v) according to (6):

I(u, v) := (I(u, v)−B)eµd + B,

where B is defined in (8).

Figure 13. Algorithm for flaw simulation.

5 Experimental Results

In this Section results of simulation of flaws in cast alu-
minum wheels using the approach outlined in the previous
Section are presented. The dimensions of the wheels used
in our experiments were 48 cm diameter and 20 cm height
approximately. The focal length (distance between x-ray
source and entrance screen of the image intensifier) was
90cm. The projection model of the x-ray imaging system
was calibrated using a hyperbolic model [15, 14].

Figures 14, 15, 16 and 17 show the resulting radioscopic



Image E µ xmax a b c
No. [ keV ] [ 1/cm] [cm] [ mm ] [ mm ] [ mm ]

1 54 0.8426 4.0 8 2 4
2 58 0.7569 3.8 4 2 1.5
3 50 0.9500 4.5 4 2 1.7
4 57 0.7765 3.85 6 3 2.5

Table 1. Values used in the simulations.

images for various simulated flaws. The values used to sim-
ulate the flaws in each image are summarized in Table 1.

Each image shows a real flaw and a simulated flaw. It
was shown that the simulation results are almost identical
with the real flaws. In Figure 18 a 3D plot of the gray values
in the vicinity of the flaws shown in Figure 17 is illustrated.
Due to the irregularity of the gray values of the simulated
flaw, it can be seem that both real and simulated flaw shows
similar patterns.

Figure 14. Radioscopic image 1.

Figure 15. Radioscopic image 2.

6 Summary

A new method for the simulation of defects in radio-
scopic images of aluminum castings has been presented.

Figure 16. Radioscopic image 3.

Figure 17. Radioscopic image 4.
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Figure 18. 3D plot of the gray values in the
vicinity of flaws of Figure 17.



We propose an approach that simulates the flaws using a
3D ellipsoidal model, which is projected and superimposed
onto real radioscopic images. The x-ray imaging process
and the projection of a 3D object is discussed.

Using this tool a simulation of an ellipsoidal flaw of any
size and orientation can be done in any position of the cast-
ing. This allows the precise evaluation of the performance
of defect inspection systems in cases where the detection is
known to be difficult.

The algorithm outlined in this paper can be used in other
similar inspection processes. For instance, in the automated
visual inspection of glass bottles in which the images of the
bottles under test are taken against the light. In this exam-
ination process, the light is attenuated by glass in a similar
manner as x-rays by aluminum castings.

The experimental results by simulating 3D flaws as el-
lipsoidal cavities has shown that the simulated defects are
almost identical with the real flaws. However, to simulate
other complex flaws, like cracks, a different 3D model must
be used to calculated.
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