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Abstract 
In this paper we report the results obtained recently by classifying potential defects in the 
automated x-ray inspection of aluminium castings using statistical pattern recognition. In 
our classification, 71 features (e.g. area, perimeter, roundness, invariant moments, Fourier 
descriptors, mean grey level, several contrasts, texture features, etc.) were analysed to 
characterise the potential flaws. The extracted features were measured from more than 
10.000 regions segmented in 56 radioscopic images (without frame averaging) of cast 
aluminium wheels. In addition, five statistical classifiers were tested. 

 

1. Introduction 
In a digital radioscopic image of an aluminium casting there are two classes of regions (of 
pixels): regions that belong to regular structures of the specimen, and regions that 
correspond to flaws. In the computer aided inspection of castings, we aim to make the best 
recognition of these two classes automatically. Usually, the pattern recognition process 
consists of three steps [Castleman96]: The first one is called image segmentation, in which 
each region is found and isolated from the rest of the scene. The second step is called 
feature extraction. This is where the regions are measured and some significant 
characteristics are quantified. The third step of pattern recognition is classification. The 
extracted features of each region are analysed and assigned to one of the classes (regular 
structure or flaw). 

In this paper we report the results obtained recently by analysing 71 features (e.g. area, 
perimeter, roundness, invariant moments, Fourier descriptors, mean interior grey level, 
several contrasts, texture features, etc.) measured from more than 10.000 regions 
segmented in 56 radioscopic images of cast aluminium wheels. In order to make a compact 
pattern representation and a simple decision strategy, the number of features are reduced 
using a Sequential Forward Selection [Jain00]. In this selection, correlated features are 
omitted ensuring a small intraclass variation and a large interclass variation in the space of 
the selected features. A new developed contrast feature is presented, which separates the 
two classes at best. 
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Additionally, five statistical classifiers (linear, threshold, nearest neighbourhood, 
Mahalanobis and Bayes) are analysed. In the statistical approach, each segmented region is 
represented in terms of the m selected features and is viewed as a point in a m-dimensional 
space. The objective of the statistical pattern recognition is to establish decision boundaries 
in the feature space which separate patterns (our segmented regions) belonging to different 
classes (regular structure or flaw). This will be determined by the probability distributions 
of the patterns belonging to each class, which must be learned.  

 
2. Segmentation of potential flaws 
The idea of the segmentation process is to detect regions that may correspond to real 
defects. The segmentation is achieved using a Laplacian-of-Gaussian (LoG) kernel and a 
zero crossing algorithm [Mery02b,Catleman96]. The LoG-operator involves a Gaussian 
lowpass filter which is a good choice for the pre-smoothing of our noisy images. The binary 
edge image obtained should produce at real flaws closed and connected contours which 
demarcate regions. In order to increase the number of closed regions, pixels with high 
gradient are added to the zero crossing image. An example is illustrated in Fig. 1. After the 
edges are detected the closed regions are segmented and considered as potential flaws. 

 

3. Feature extraction  
In order to discriminate the false alarms in the segmented potential flaws a classification 
must be performed. The classification analyses the features of each region and classifies it 
in one of the following two classes: regular structure or hypothetical flaw. In this section, 
we will explain the features that are used in the classification. In our description, the 
features will be divided into two groups: geometric and grey value features. The description 
of the features will be made using the example of Fig. 2.  

 (a) radioscopic image with three flaws.                               (b) edge detection.  
Figure 1. Segmentation of potential flaws.  
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Figure 2. Example of a region: a) X-ray image, b) segmented region, c) 3D 
representation of the grey values. 

3.1 Geometric features 
The used geometric features are: 

Height and width (  and ): These features are defined as: h w

1minmax +−= iih    and    1minmax +−= jjw      (1) 

where  and  correspond to the maximal and minimal values in the region 
that take index  and index  respectively in the image matrix. In our example 

maxmax , ji
i

minmin , ji
j 7== wh  

pixels. 

Area ( A ): The area is defined as the number of pixels that are in the region. In this work 
the edges do not belong to the region. In our example, the area corresponds to the number 
of grey pixels in Fig. 2b, i.e. . 45=A

Perimeter ( L ): The perimeter corresponds to the number of pixels in the boundary of the 
region. There is another definition of perimeter that includes the factor 2  between 
diagonal pixels of the boundary [Castleman96]. Although this definition is more precise, 
the computing time is more expensive. For this reason, we use the first definition. In this 
example  pixels. 24=L

Roundness ( R ): This feature gives a measure of the shape of the region. The roundness is 
defined as 

2

4
L
AR π

=          (2) 

The roundness R  is a value between 1 and 0. 1=R  means a circle, and  corresponds 
to a region without area. In our example 

0=R
98,0=R . 

Moments: The statistical moments are defined by: 

∑
ℜ∈

=
ji

sr
rs jim

,

  for    Ν∈sr,       (3) 

where ℜ  is the set of pixels of the region. In our example of Fig. 2b, the pixel (4,6) belongs 
to this set. The parameter sr +  is called the order of the moment. There is only one zero-
order moment  that corresponds to the area 00m A  of the region. The coordinates of centre 
of gravity of the region are: 
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The central moments are position invariant. They are calculated using ),( ji  as origin by: 

∑
ℜ∈

−−=
ji

sr
rs jjii

,
)()(µ   for    Ν∈sr,     (5) 

With the central moments one can compute the Hu central moments [Hu62,Sonka98]. 
These normalised moments are invariant under magnification, translation and rotation of 
the region: 

    (6) 
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Fourier descriptors: The coordinates of the pixels of the boundary are arranged as a 
complex number kk jji ·+ , with 1−=j  and 1,...,0 −= Lk , where L  is the perimeter of 
the region. The complex boundary function can be considered as a periodical signal of 
period L . The Discrete Fourier Transformation gives a characterisation of the shape of the 
region. The Fourier coefficients are defined by: 

∑
−

=

−
+=

1

0

2

)·(
L

k

L
knj

kkn ejjiF
π

   for 1,...,0 −= Ln     (7) 

The Fourier descriptors correspond to the coefficients nF

)

 for . They are invariant 
under rotation. The Fourier descriptors of our example in Fig. 2a are illustrated in Fig. 3. 
The first pixel of the periodic function is (

0>n

10,6(), 00 =ji . 

3.2 Grey value features 
These features are computed using the grey values in the image, where  denotes the 
grey value of pixel ( . 

[ jix , ]
), ji

Mean grey value (G ): The mean grey value of the region is computed as: 
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Figure 3. Coordinates of the boundary of region of Fig. 2 and the Fourier descriptors. 
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Figure 4. Profile x, first derivative x' and second derivative x'' of a region and its 

neighbourhood in i direction 

 [∑
ℜ∈

=
ji

jix
A

G
,

,1 ]         (8) 

where  is the set of pixels of the region and ℜ A  the area. A 3D representation of the grey 
values of the region and its neighbourhood in our example is shown in Fig. 2c. In this 
example  (  means 100% black and 90,121=G 0=G 255=G  corresponds to 100% white). 

Mean gradient in the boundary (C ): The average gradient around the contour line of the 
region  gives information about the change of the grey values in the boundary of the region. 
It is computed as: 

 [∑
∈

=
lji

jix
L

C
,

,'1 ]

]

        (9) 

where  means the gradient of the grey value function in pixel (  and  the set of 
pixels that belong to the boundary of the region. The number of pixels of this set 
corresponds to 

[ jix ,' ), ji l

L , the perimeter of the region. Using a Gauss gradient operator in our 
example in Fig. 2, we obtain C . 47,35=
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Mean second derivative ( ): This feature is computed as D

 [∑
ℜ∈

=
ji

jix
A

D
,

,''1 ]

]

]

        (10) 

where  denotes the second derivative of the grey value function in pixel . The 
Laplacian-of-Gauss (LoG) operator can be used to calculate the second derivative of the 
image. If  we have a region that is brighter than its neighbourhood as shown in Fig. 
4. 

[ jix ,''

<D

),( ji

0

Contrast of the region: The contrast gives a measure of the difference in the grey value 
between the region and its neighbourhood. The smaller the grey value difference, the 
smaller the contrast. In this work region and neighbourhood define a zone. The zone is 
considered as a window of the image: 

        (11) [ ] [ rr jjiixjig ++= ,,

for  and 12,...,1 += hi 12,...,1 += wj

r

, where  and  are the height and width as 
expressed in (1). The offsets i  and  are defined as 

h w

rj 1−−= hii  and r 1−−= wjjr , 
where ( j,i ) denotes the centre of gravity of the region as computed in (4). 

There are many definitions of contrast. Some of them are given in [Kamm98]: 

N

N

G
GG

K
−

=1   
N

N

GG
GG

K
+
−

=2    )/ln(3 NGGK =  (12) 

where  and  denote the mean grey value in the region and in the neighbourhood 
respectively. Other two definitions are given in [Mery01] where new contrast features are 
suggested. According to Fig. 5 these new features can be calculated in four steps: i) we take 
the profile in i  direction and in 

G NG

j  direction centred in the centre of gravity of the region 
(  and  respectively); ii) we calculate the ramps  and  that are estimated as a first 
order function that contains the first and the last point of  and ; iii) new profiles 
without background are computed as 

1P 2P 1R

1

2R

1P 2P

11 RPQ −=  and Q 2R2P2 −= . They are putted 
together as a new function ; iv) The new contrast features are given by: [ 1,Q ]2QQ =

QK σσ =   and   )ln( minmax QQK −=    (13) 

where Qσ ,  and Q  are the standard deviation, the maximal value and the minimal 
value of Q  respectively. Fig. 5 shows the computation of function  for the example given 
in Fig. 2. 

maxQ min

Q

Moments: We can consider grey value information in the moments explained in the 
previous Section, if we compute the moments as: 

[∑
ℜ∈

=
ji

sr
rs jixjim

,
,' ]  for    Ν∈sr,      (14) 

Substituting by  in (6), new Hu moments rsm rsm' 71 ',' φφ L  that include the grey values of 
the region are obtained. 
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Texture features: These features give information about the distribution of the grey values 
in the image. In this work however, we restrict the computation of the texture features for a 
zone only defined as region and neighbourhood (see equation (11)). A simple texture 
feature is the local variance [Jähne97]. It is given by: 

 [ ](∑ ∑
+

=

+

=

−
++

=
12

1

12

1

22 ,    
224

1 h

i

w

j
g gjig

whhw
σ )      (15) 

where g  denotes the mean grey value in the zone. Other texture features can be computed 
using the co-occurrence matrix  [Castleman96]. The element klP [ ]jiPkl ,  of this matrix for a 
zone is the number of times, divided by , that grey-levels  and TN i j  occur in two pixels 
separated by that distance and direction given by the vector ( , where  is the number 
of pixels pairs contributing to . In order to decrease the size  of the co-
occurrence matrix the grey scale is often reduced from 256 to 8 grey levels.  

)
N

, lk TN

x N×klP x

 

Table 1. Extracted features 
Feature Variable Name and equation Feature Variable Name and equation 

1 h  height (1a) 27 K  new contrast (12b) 

2 w  width (1b) 28... 34 
71 '' φφ L  Hu moments' (6) (14) 

3 A  area 35 2
gσ  local variance (15) 

4 L  perimeter 36... 39 
10,,, ZEIH  texture features k,l=10 

5 R  roundness (2) 40... 43 
20,,, ZEIH  texture features k,l=20 

6...12 
71 φφ L  Hu moments (6) 44... 47 

30,,, ZEIH  texture features k,l=30 

13...19 
71 FF L  Fourier descriptors (7) 48... 51 

01,,, ZEIH  texture features k,l=01 

20 G  mean grey value (8) 52... 55 
02,,, ZEIH  texture features k,l=02 

21 C  mean gradient (9) 56... 59 
03,,, ZEIH  texture features k,l=03 

22 D  mean 2th derivative (10) 60... 63 
11,,, ZEIH  texture features k,l=11 

23...25 
31 KK L  contrasts 1, 2, 3 (12) 64... 67 

22,,, ZEIH  texture features k,l=22 

26 
σK  deviation contrast (12a) 68... 71 

33,,, ZEIH  texture features k,l=33 

(16), (17), (18), (19). 

 

From the co-occurrence matrix several texture features can be computed. For example 



8th European Conference on Non-Destructive Testing (ECNDT 2002), Jun. 17-21, 2002, Barcelona, Spain 8

 

(a )                                       (b )                                                   (c )

1  2 3 4  5 6 7 8 9 1 0 1 1

P 2 

1 1  1 2 1 3 1 4 1 5  1 6  1 7  1 8  1 9  2 0  2 1  

= Q 2 

1 2 3 4 5 6  7 8 9 1 0  1 1  

P 1 

0  

1 8 0  

R 1 R 2 

1 2 3 4 5 6 7 8 9 1 0

Q  

= Q 1 

 
Figure 5. Computation of Q for contrast features: a) Profile in i direction, b) profile in 

j direction, c) fusion of profiles: Q= [Q1 Q2]. 
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The extracted features are summarised in Table 1. 

 
4. Classification  
The classification analyses the features of each segmented region and classifies it in one of 
the following two classes: regular structure or hypothetical flaw. The definitive 
classification of the hypothetical flaws takes place in a next step called matching and 
tracking [Mery01,Mery02a]. In the classification we aim to discriminate the false alarms 
without eliminating the real flaws. Although the methodology outlined in this section is 
applied to only two classes, it can be used for more classes. For instance, we can sub-
classify the hypothetical flaws into the classes cavity, gas, inclusion, crack, and sponging. 

4.1 Feature selection 
In the feature selection we must decide which features of the regions are relevant to the 
classification. The extracted features in our experiments are 71=n  as shown in Table 1. 
The  features are arranged in a -vector: n n [ ]Tnw1w L=w  that can be viewed as a 
point in a -dimensional space. The features are normalised as n

 
j

jij ww
w

σ
−

=~   for  0,...,1 Ni =  and  j n,...,1=   (20) 
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where  denotes the ijw j -th feature of the i -th feature vector,  is the number of the 
sample, and 

0N

jw  and jσ  are the mean and standard deviation of the j -th feature. The 
normalised features have zero mean and standard deviation equal to one.  

The key idea of the feature selection is to select a subset of  features (  that leads 
to the smallest classification error. The selected  features are arranged in a new m -
vector z . The selection of the features is done using the Sequential 
Forward Selection [Jain00]. This method selects the best single feature and then adds one 
feature at a time which in combination with the selected features maximises the 
classification performance. Once no considerable improvement in the performance is 
achieved -by adding a new feature-, the iteration is stopped. By evaluating the selection 
performance we ensure: i) a small intraclass variation and ii) a large interclass variation in 
the space of the selected features. For the first condition the intraclass-covariance is used: 

m )nm <
m

[ T
1z mzL= ]

 [ ][∑
=

−−=
N

k
kkkb p

1

TzzzzC ]        (21) 

where  means the number of classes,  denotes the a-priori probability of the -th 
class, 

N kp k

kz  and z  are the mean value of the k -th class and the mean value of the selected 
features. 

For the second condition the interclass-covariance is used: 

         (22) ∑
=

=
N

k
kkw p

1
CC

where the covariance matrix of the k -th class is given by: 

 [ ][∑
=

−−
−

=
kL

j
kkjkkj

k
k L 1

T

1
1 zzzzC ]       (23) 

with the kjz j -th selected feature vector of the -th class,  is the number of samples the 
-th class. The selection performance can be evaluated using the spur criterion for the 

selected features : 

k kL
k

z

         (24) )spur( 1
bwJ CC−=

The larger the objective function , the higher the selection performance. J

4.2 Design of the classifier  
Once the proper features are selected, a classifier can be designed. In this work, the 
classifier assigns a feature vector  to one of the two classes: regular structure (false 
alarm) or hypothetical flaw, that are labelled with ‘0’ and ‘1’ respectively. In statistical 
pattern recognition the classification is performed using the concept of similarity: patterns 
that are similar are assigned to the same class [Jain00]. Although this approach is very 
simple, a good metric that defines the similarity must be established. With a representative 
sample we can make a supervised classification finding a discriminant function d  that 

z

)(z
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gives information about how similar is a feature vector  to the feature vector of a class. In 
this work we use the following five classifiers: 

z

)
Linear classifier: A linear or a quadratic combination of the selected features is used for a 
polynomial expansion of the discriminant function d . If (z θ>)(zd  then  is assigned to 
class ‘1’, else to class ‘0’. Using a least-square approach, the function  can be 
estimated from an ideal known function d , that is obtained from the representative 
sample [Borner88]. 

z
)(zd

)(* z

Threshold classifier: The decision boundaries of class ‘1’ define a hypercube in feature 
space, i.e. if the  features are located between some decision thresholds (m 111 ''' zzz ≤≤  
and ... and ) then the feature vector is assigned to class ‘1’. The thresholds 
are set from the representative sample [Fukunaga90]. 

mm zz ''' ≤≤ mz

Nearest neighbour classifier: A mean value kz  of each class of the representative sample 
is calculated. A feature vector z  is assigned to class ‘k’ if the Euclidean distance kzz −  is 
minimal. The mean value kz  can be viewed as a template [Fukunaga90]. 

Mahalanobis classifier: By the Mahalanobis classifier we use the same idea of the nearest 
neighbour classifier. However, a new distance metric called the ‘Mahalanobis distance’ is 
used. The Mahalanobis distance between kz  and  is defined as : z

 [ ] [ kkkkkd zzCzzzz −−= −1T),( ]      (25) 

The Mahalanobis classifier takes into account errors associated with prediction 
measurements, such as noise, by using the feature covariance matrix  to scale features 
according to their variances [Ruske88]. 

kC

 
Bayes classifier: The feature vector  is assigned to class ‘k’ if the probability that z  
belongs to this class is maximal. This conditional probability can be expressed as  

z

 
)(
)|(

)|(
z

z
z

p
pkp

kp k=         (26) 

where  denotes the conditional probability of observing feature vector z given class 
‘k’,  means the probability that feature vector  will be observed given no knowledge 
about the class, and  is the probability of occurrence of class ‘k’ [Fukunaga90, 
Ruske88]. 

)|( kp z
)(zp z

kp

4.3 Results of the classification  
In this section we report the results obtained by analysing the mentioned 71 features (see 
Table 1) measured from 10.609 regions segmented in 56 radioscopic images of cast 
aluminium wheels. 

=S
The images were captured without frame averaging. In this sample there 

were 10.533 regular structures (false alarms) and only S =76 real flaws. After a 
Karhunen-Loève-Transformation [Castleman96] we can see that the information is 

=0S 1
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contained in few components as shown in Fig. 6a. This means that a feature selection must 
be done in order to omit correlated features. 

The first 15 features selected by the Sequential Forward Selection are shown in Fig. 6b. We 
can see, that the best single feature is the feature number 27, the new developed contrast 
feature K  (see equation (13b)). In addition, we observe that three of the best five features 
correspond to the texture feature energy  (features 46, 62 and 66), obtained 
from equation (18) with  = (3,0), (1,1) and (2,2). Furthermore, the geometric features 
do not provide relevant information to separate the classes. The reason is because the 
regions corresponding to flaws and regular structures have similar shapes. 

221130 ,, EEE
),( lk

The performance of the five explained classifiers (linear, threshold, nearest neighbour, 
Mahalanobis and Bayes) were tested. For each classifier,  features from the 15 
recommended features were selected. The effectiveness of the classification were measured 
in terms of ‘false positive’ or ‘false negative’ errors. False positive errors refer to the case 
where a segmented region is assigned to class ‘hypothetical flaw’ when it is a regular 
structure, and false negative errors refer to the case when an existing flaw is not detected. In 
ideal case both must be zero. Defining  and  as the number of regular structures (class 
0) and real flaws (class 1) that were segmented in the sample, we have -after the 
classification-  regular structures that were classified as  regular structures and  
hypothetical flaws: i.e. 

m

0S 1S

0S 00S 01S

01000 SSS +=

11

; and the  real flaws that were classified as  
regular structures and  hypothetical flaws: i.e. 

1S

1S
10S

S 11S10S += .  

We see that  and  correspond to the false positive and false negative errors 
respectively. This concepts are also referred in the literature as the False Acceptance Rate 
(FAR) and False Rejected Rate (FRR), defined as 

01S 10S

001 / SSFAR =  and . A 
classification can be tuned at a desired value of FAR. However, if we try to decrease the 
FAR of the system, then it would increase the FRR and vice versa. The Receiver Operation 
Curve (ROC) is a plot of FAR versus FRR which permits to assess the performance of the 
recognition system at various operating points [Jain00]. 

110 / SSFRR =

The five classifiers were manually tuned using thresholds and distance parameters 
[Mery01]. The results obtained for the Receiver Operation Curves are given in Fig. 7. Table 
2 shows an example for each classifier, where a good performance was obtained. 
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Figure 6. a) KLT Analysis, b) selected features using Sequential Forward Selection 

(see the feature numbers in Table 1). 
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Figure 7. ROC: False Rejected Rate (FRR) versus the False Acceptance Rate (FAR) for 
the evaluated classifiers. The marks ∆∇× ,,*,,o  mean 5,4,3,2,1=m  features 

respectively. 
Since the automated inspection of castings must be as fast as possible, we aimed to use in 
the classification those features which computing timing is not expensive. An interesting 
result was obtained using only two features, feature 27 (contrast K ) and feature 20 (mean 
grey value G ). The classification effectiveness of the evaluated classifiers is shown in Fig. 
8. 

 

Table 2. Classification effectiveness FRR vs. FAR 

Classifier Features  1=m  2=m  3=m 4=m  5=m  
linear 27-24-21-20-2 FRR

FAR

5,3% 

9,8% 

5,3% 

9,0% 

5,3% 

7,7% 

5,3% 

4,8% 

5,3% 

4,1% 

threshold 27-71-20-24-7 FRR

FAR

5,3% 

29,5% 

5,3% 

41,3% 

0% 

32,5% 

0% 

26,6% 

0% 

23,5% 

nearest 
neighbour 

27-21-19-46-7 FRR

FAR

10,6% 

7,2% 

13,2% 

5,8% 

7,9% 

5,3% 

9,2% 

4,9% 

9,28% 

4,7% 

Mahalanobis 27-7-62-66-19 FRR

FAR

5,3% 

11,6% 

5,3% 

9,0% 

5,3% 

7,9% 

5,3% 

7,4% 

5,3% 

7,0% 

Bayes 46-27-20 FRR

FAR

6,6% 

26,4% 

3,9% 

16,9% 

0% 

10,0% 

- 

- 

- 

- 
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• Linear     5,3%  9,6%

• Threshold    2,6% 21,1%

• Nearest neighbour 18,4%  7,1%

• Mahalanobis  10,5%  7,1%

• Bayes   5,3% 10,8%
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Figure 8. Classification using two features: contrast K and mean grey value G. 

 
5. Conclusion and Future Directions 
In this paper we propose the use of statistical pattern recognition to classify the segmented 
regions in a radioscopic image into two groups: regular structures and hypothetical flaws. 
The segmentation and the classification correspond to the first step of a method that detects 
flaws automatically from radioscopic image sequences [Mery01,Mery02a]. The second step 
tracks in an image sequence, the remaining hypothetical flaws classified in the first step. 
Using this second step the regular structures can be eliminated without discriminating the 
existing real flaws. In this first step we are not able to separate efficiently the real flaws 
from the regular structures as shown in the previous Section. The reason being is because 
we are working with noisy images that were not filtered with frame averaging. However, 
we think that the methodology outlined in this work can be used in other flaw detection 
methods, because they usually detect defects by doing a segmentation and a classification. 
It would be interesting to evaluate the features proposed in this paper by other detection 
techniques. 
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